

000
001
002
003
004
005
006 **POLLINATOR: OPTIMAL MATCHMAKING IN AN IN-**
007 **TELLIGENCE MARKETPLACE**

008
009
010 **Anonymous authors**
011 Paper under double-blind review

012 **ABSTRACT**

013 The rapid growth of the intelligence marketplace has created an abundance of
014 Large Language Model (LLM) producers, each with different cost–performance
015 tradeoffs, making optimal selection challenging and resource-intensive. We
016 present POLLINATOR, a novel router that integrates a frugal, data-efficient pre-
017 dictor with an online dual-based optimizer. The predictor combines graph-based
018 semi-supervised learning with an Item Response Theory (IRT) head, reducing
019 training cost by up to 49% while improving predictive accuracy over prior state-
020 of-the-art. The optimizer formulates matchmaking as a strongly convex problem,
021 which allows efficient dual-to-primal conversion for real-time serving. Extensive
022 experiments demonstrate that POLLINATOR delivers superior cost–performance
023 tradeoffs: achieving 0.43%–1.5% gains at 71%–93% of the cost of state-of-the-
024 art router, 3–5% gains at only 1.9–3% of the cost of the best individual producer,
025 and up to 10.6% higher accuracy at just 0.3–35.7% of the cost on challenging real-
026 world benchmarks such as BFCL-V3 and MMLU-Pro. Finally, the interpretability
027 of learned query difficulties and model abilities demonstrates POLLINATOR’s ef-
028 fectiveness for dynamic and cost-efficient intelligence matchmaking.

029 **1 INTRODUCTION**

030 **The Intelligence Marketplace.** The commoditization of (artificial) intelligence, which gave birth
031 to the phrase *Intelligence on Tap*, coupled with the rapid proliferation in applications that exploit it
032 as a *Design Material* Holmquist (2017), catalyzed a Cambrian explosion of intelligent applications.
033 The author of such an application, however, faces a problem of plenty: there are many producers
034 of intelligence¹ with varying cost–performance tradeoffs on generic benchmarks, making it hard
035 to choose an optimal one appropriate specific to the application at hand. Furthermore, given the
036 frequent updates that alter performance and rapidly falling costs, the process of optimization has to
037 be repeated continuously – thus putting a constant demand on the author’s resources.

038 **Matchmaking with Router.** To remedy, *router* – which routes each request independently to a
039 producer from a pool based on projected cost–performance tradeoff – was conceptualized Hu et al.
040 (2024). A canonical router consists of two components: a collection of *predictors* that project the
041 cost and performance for each request–producer pair; and, an *optimizer* that makes the tradeoff based
042 on the projection.

043 **Predictor & Data Efficiency.** While a wide gamut of predictors, ranging from simple k -Nearest
044 Neighbor Hu et al. (2024) to sophisticated Small Language Model with bespoke Bradley-Terry
045 head Ong et al. (2024) and Item Response Theory Song et al. (2025), have been explored, the
046 angle of data-efficiency has remained underexplored. Recently, Tsourvas et al. (2025) approached
047 data-efficiency in predictor through the lens of causal inference. However, we remark that the causal-
048 inference setting is overly restrictive: one can indeed send the same request (unit) to more than one
049 producers (treatments) in order to gauge cost and performance (treatment effects), which is a de-
050 parture from the assumptions in causal-inference. In this work, we combine the superior predictive
051 performance rendered by Item Response Theory grounded in psychometry, with the data-efficiency
052 afforded by graph-based semi-supervised learning to design POLLINATOR, a novel data-efficient
053 predictor.

¹A search in *Hugging Face* for Transformer-based models with 3B+ parameters results in 170K+ hits. The
benchmarking service, *Artificial Analysis*, indexes 250 frontier models.

054 **Optimizer & Online Matchmaking.** The prevalent approach to matchmaking in the literature has
 055 been to compute the *utility* of each producer for the given request by blending the predicted performance
 056 and cost either with a affine combination (with *willingness-to-pay* as a hyper-parameter) Hu
 057 et al. (2024), or with a convex combination (again a hyper-parameter) Song et al. (2025). Along
 058 similar lines, Somerstep et al. (2025) advances the frontier by designing rate-optimal predictors for
 059 cost and performance. Mei et al. (2025) frames the problem as a Linear Program, and recovers the
 060 primal solution from the dual variables. Taking inspiration from an optimizer designed for two-
 061 sided marketplace Agarwal et al. (2012), we choose to frame the optimization problem as a strongly
 062 convex program, which simplifies the dual-to-primal conversion to facilitate online serving. See
 063 Appendix B for additional related works.

064 **Contributions.** In summary, we make the following contributions: ① POLLINATOR implements
 065 its predictors atop Graph Convolutional Network Kipf (2016) with a novel Item Response Theory
 066 (IRT)-based head that cuts down the training cost by 49%, while surpassing the predictive per-
 067 formance of the vanilla IRT-based predictor proposed in Song et al. (2025); ② the (Lagrangian)
 068 dual-based online serving scheme, coupled with the strongly convex primal program delivers su-
 069 perior cost-performance tradeoff than the Linear Program-based serving scheme Song et al. (2025)
 070 by boosting performance by 0.43%-1.5% at 71%-93% of the cost; ③ in the in-domain and out-of-
 071 domain setting proposed in Song et al. (2025), POLLINATOR yields 3-5% boost in performance at
 072 mere 1.9-3% of the cost of the best producer; ④ report superior performance in two novel settings on
 073 real-world and contemporary benchmarks, such as BFCL-V3 (tool-calling) and MMLU-Pro, where
 074 POLLINATOR achieves 3-10.6% higher accuracy at only 0.3-35.7% of the best producer’s cost.

075 2 INTELLIGENCE MARKETPLACE & THE MATCHMAKING PROBLEM

076 **Background.** The *matchmaker* dispatches each inference request emanating from the consumer,
 077 enumerated with $i \in [M]$, in a just-in-time fashion to a request-specific optimal producer, $j \in [N]$.
 078 Upon receiving the response, we assume that the matchmaker possesses the ability to compute a *ex*
 079 *post* quality – such as accuracy, $a_{ij} \in \mathbb{R}_+$ – as well as the resource consumption – such as cost,
 080 $c_{ij} \in \mathbb{R}_+$ and latency $t_{ij} \in \mathbb{R}_+$ – metrics. Furthermore, we assume that the matchmaker possesses
 081 the corresponding *ex ante* estimates, \hat{a}_{ij} , \hat{c}_{ij} and \hat{t}_{ij} , *before dispatching the request*. Equipped with
 082 the *ex ante* estimates, informally, the role of the matchmaker is to maximize the sum total of response
 083 quality, while obeying guardrails on total inference cost, and possibly other resource consumption
 084 metrics. We now frame the matchmaker’s optimization problem formally.

085 **Optimal Matchmaking.** At this point, we distinguish between two settings. First, *batch inference*,
 086 where all the inference requests, $i \in [M]$, are known *a priori*. This formalizes the setting
 087 a certain class of consumers operate in, e.g., document summarization and information ex-
 088 traction. We posit the matchmaker’s objective as to maximize the total *ex ante* response quality,
 089 $\sum_{i \in [M]} \sum_{j \in [N]} \mathbf{x}_{ij} \hat{a}_{ij}$, while obeying a guardrail on total inference cost, $\sum_{i \in [M]} \sum_{j \in [N]} \mathbf{x}_{ij} \hat{c}_{ij} \leq$
 090 C , where \mathbf{x}_{ij} is the collection of *primal* variables lying on the probability simplex, Δ^N , defined
 091 with the constraints $\mathbf{x}_{ij} \geq 0, \forall i \in [M], \forall j \in [N]$ and $\sum_{j \in [N]} \mathbf{x}_{ij} = 1, \forall i \in [M]$. We remark that
 092 the consumer may want to impose additional constraints, such as minimum volume commitments,
 093 where each producer is guaranteed to receive a specified minimum volume of inference request,
 094 $\sum_{i \in [M]} \mathbf{x}_{ij} \geq M_j, \forall j \in [N]$. The second setting is *online inference*, where the inference requests
 095 arrive in a stream, along with the corresponding *ex ante* estimates. Specifically, at time i , the decision
 096 $\mathbf{x}_i \in \Delta^N$ has to be taken, *without a foreknowledge of the upcoming requests*, $\mathbf{x}_k, \forall k > i$. The
 097 *ex post* cost and quality are defined, in this case, over a long horizon, M .² Lastly, the matchmaker
 098 will be required to follow a reference policy, q_{ij} , where the desired level of proximity is expressed
 099 as $\frac{1}{2} \gamma \sum_i \sum_j (\mathbf{x}_{ij} - q_{ij})^2$. In order to ease the exposition, we now focus on the setting where quality
 100 and the cost are the only constraints at play. We remark that our framework extends to a more general
 101 setting, and can incorporate additional linear constraints, such as minimum volume commitments
 102 and *p95* latency. Thus, the canonical form the matchmaker’s optimization problem assumes can be
 103 expressed as follows.

104
 105
 106
 107 ²We remark that in practice, certain additional guardrails become desirable in the online setting: e.g., on
 p95 latency – which can also be specified as a linear constraint, in terms of Conditional Value-at-Risk (CVaR).

108 **Definition 1** (Optimal Matchmaking).

$$111 \min_{\mathbf{x} \in \Delta^N} \frac{1}{2} \gamma \|\mathbf{x} - \mathbf{q}\|_F - \frac{1}{M} \sum_{i=1}^M \sum_{j=1}^N \mathbf{x}_{ij} \hat{a}_{ij} \text{ s.t. } \sum_{i=1}^M \sum_{j=1}^N \mathbf{x}_{ij} \hat{c}_{ij} \leq C \quad (1)$$

116 Note that Eq. 1 succinctly describes the online version of the problem as well, assuming C is the
 117 long-horizon budget applicable over a span of M requests. Before turning our attention to the
 118 solution of Eq. 1, we lay down the design desiderata for the POLLINATOR – the novel optimal
 119 matchmaker presented in the present work.

120 **Desiderata.** In order to ensure practicality of the POLLINATOR system, we impose 2 design
 121 desiderata: ① *Frugality*. The cost savings yielded by the matchmaker during inference must
 122 not be offset by the cost of training its predictors; ② *Safety*. For a consumer to be able to relinquish
 123 its control over the choice of the producer, it must be assured adherence to the specified guardrails.
 124 We now detail how these desiderata guide the design of POLLINATOR.

127 2.1 GRAPH-BASED SEMI-SUPERVISED LEARNING & ENSURING FRUGALITY

129 We design a two-tower architecture reminiscent of recommendation system: the first tower encodes
 130 the request emanating from the consumer; the second tower encodes the producers; while a combiner
 131 combines the output of the two towers and emits the ex ante estimates. We detail each of the
 132 components below.

134 **Request & Producer Towers.** The prompt in request i , $p_i \in \Sigma^*$, is first encoded into a dense
 135 vector, $x_i := \text{Enc}^R(p_i)$, where $\text{Enc}^R : \Sigma^* \mapsto \mathbb{R}^d$ is a pre-trained BERT encoder on vocabulary Σ ,
 136 that extracts the embedding corresponding to the [CLS] token that is appended to the prompt. On
 137 the set of prompts in the training dataset, we then induce a k -nearest neighbour graph, $\mathcal{G}(\mathcal{V}, \mathcal{E})$,
 138 where the similarity between nodes $v_i, v_j \in \mathcal{V}$ is defined in terms of the cosine similarity of their
 139 corresponding embeddings, $\cos(\angle x_i x_j)$. Let A denote the adjacency matrix of this graph, and let
 140 $\tilde{A} := A + I$ denote the adjacency matrix of \mathcal{G} , with self-loops added. On this graph, the request
 141 tower implements a Graph Convolutional Network (GCN), which propagates information between
 142 two successive layers, l and $l + 1$, with $H^{(l+1)} = \sigma(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)})$. The embedding of
 143 node v_i at layer $l = 0$ is set to its embedding, $H_i^{(0)} = x_i$. Lastly, the embedding of the node v_i
 144 from the last layer of the GCN, $H_i^{(L)}$, is mapped to a vector, $\alpha_i \in \mathbb{R}^D$, and a scalar, $\beta_i \in \mathbb{R}$, via two
 145 learnable linear projections, W_α, W_β , respectively. Similarly, each producer, $j \in [N]$, is mapped to
 146 a embedding, $\theta_j \in \mathbb{R}^D$, with an encoder, $\text{Enc}^P : [N] \mapsto \mathbb{R}^D$. In our experiments, the encoder is
 147 a pre-trained BERT that encodes the textual description of the producer, or a simple lookup-based
 148 learnable linear projection, W_θ .

149 **Combiner.** Inspired by Item Response Theory (IRT), the combiner treats α_i as the *discrimination*
 150 parameter, which intuitively models the skill-set required to generate a high-quality response to
 151 request, i , and treats β_i as its *difficulty*. On the other hand, θ_j models the skill-set offered by the
 152 producer j . IRT posits that the probability of obtaining a high-quality response improves with the
 153 degree of match between the skill-set required to process request i , and those offered by producer
 154 j – and is modulated by the difficulty of the request. This intuition is operationalized as: $\mathbb{P}\{Y_{ij} =$
 155 $1 := \sigma(\alpha_i^T \theta_j - \beta_i)\}$, where $\sigma(x) = \frac{1}{1+e^{-x}}$ is the usual sigmoid function.

157 **Training & Inference.** During training, the performance predictor is fit by minimizing the binary
 158 cross-entropy loss. The cost estimate is simply taken to be the average cost in training dataset.
 159 During inference, we first induce a graph among the incoming request and its k nearest neighbors in
 160 the training dataset, and then run the forward-pass for both the towers. Figure 7 in Appendix A.10
 161 summarizes the salient workflows.

162 **Algorithm 1** Dual Serving Scheme

163

164 1: **Input:** Request i ; Dual λ .

165 2: **Output:** Primal serving scheme $\{\mathbf{x}_{ij}\}_{j=1}^N$.

166 3: Fetch ex ante predictions $\{\hat{a}_{ij}\}_{j=1}^N$ and $\{\hat{c}_{ij}\}_{j=1}^N$ ▷ Invoke predictors.

167 4: Compute utilities, $\{u_{ij}\}_{j=1}^N$, and sort them into $u_{i(1)}, \dots, u_{i(N)}$ ▷ Compute and sort utilities.

168 5: $U = \gamma, j = 1$

169 6: **repeat**

170 7: **if** $u_{i(j)} + \frac{U - u_{i(j)}}{j} \leq 0$ **then**

171 8: $j = j - 1$; **break**

172 9: **else**

173 10: $U = U - u_{i(j)}$; $j = j + 1$; **continue**

174 11: **end if**

175 12: **until** $j \geq N$

176 13: $\nu_i = \frac{U}{j}$

177 14: $x_{u(k)} = \frac{u_{i(k)} + \nu_i}{\gamma}, \forall k \leq j; x_{u(k)} = 0, \forall k > j$

178 **2.2 DUAL-BASED OPTIMIZATION & ADHERENCE TO SAFETY**

180 The primal optimization problem formulated in Eq. 1 comprises a strongly-convex objective and
 181 several linear constraints, thus rendering several off-the-shelf solvers immediately applicable at a
 182 first glance. However, in practice, its deployment faces two challenges.

183 **Predict-and-Optimize.** The first problem arises because of the predict-and-optimize paradigm.
 184 Ideally, the primal problem in Eq. 1 should have been defined in terms of the ex post coefficients,
 185 a_{ij} and c_{ij} . However, we only have access to the corresponding ex ante coefficients, \hat{a}_{ij} and \hat{c}_{ij} .
 186 Thus issues such as predictor’s inaccuracy and mis-calibration plague the constrained optimization
 187 via both constraints and the objective. We address this issue via improving the accuracy and the
 188 calibration of the predictors, and leave a more principled investigation based on the predict-then-
 189 optimize framework for a future work.

190 **Online Optimization.** The second problem appears in the case of online inference. Without *a priori*
 191 knowledge of the M requests, the primal problem cannot even be formulated. POLLINATOR solves
 192 it via resorting to the *dual*. The Lagrangian of Eq. 1 is presented in Eq. 2.

$$\min_{\mathbf{x} \in \Delta^N} \max_{\lambda, \delta \geq 0, \nu} \frac{1}{2} \gamma \|\mathbf{x} - \mathbf{q}\|_F - \frac{1}{M} \sum_{i=1}^M \sum_{j=1}^N \mathbf{x}_{ij} \hat{a}_{ij} + \sum_{i=1}^M \sum_{j=1}^N \lambda (\mathbf{x}_{ij} \hat{c}_{ij} - C) - \sum_i \nu_i (\sum_j \mathbf{x}_{ij} - 1) - \sum_i \delta_{ij} x_{ij} \quad (2)$$

198 The *stationarity* condition amongst the Karush-Kuhn-Tucker (KKT) conditions allow us to express
 199 the primal solution in terms of the dual variables as, $\mathbf{x}_{ij} = \frac{u_{ij} + \nu_i + \delta_{ij}}{\gamma}$, where the *utility*, $u_{ij} :=$
 200 $\gamma q_{ij} + \frac{1}{M} \hat{a}_{ij} - \lambda \hat{c}_{ij}$. However, this still does not yield a serving plan, given the presence of request-
 201 dependent dual variables, ν_i and δ_{ij} , in the numerator.

203 In order to get rid of the request-dependent dual variables, we need to appeal to the *complementary
 204 slackness* condition amongst the KKT conditions, which leads to the following proposition.

205 **Proposition 1 (Utility).** *In the optimal solution for request i , assume producer j_1 has more utility
 206 than producer j_2 , $u_{ij_1} \geq u_{ij_2}$. If $x_{ij_2} > 0$, then $x_{ij_1} \geq x_{ij_2} > 0$.*

207 When the request i arrives, armed with the ex ante estimates, \hat{a}_{ij} and \hat{c}_{ij} , and the request-
 208 independent dual variable, λ , we first rank the producers as per their respective utilities. Let
 209 $u_{i(1)}, \dots, u_{i(N)}$ represent the ranked list, where $u_{i(1)} \geq \dots \geq u_{i(j^*)} \geq \dots \geq u_{i(N)}$. Proposition
 210 1 illuminates a structure in the solution: $x_{i(1)} \geq \dots \geq x_{i(j^*)} \geq \dots = x_{i(N)}$, where $x_{i(j^*)}$ is
 211 the smallest non-zero element. Thus, complementary slackness ensures $\delta_{i(j)} = 0$, when $j \leq j^*$,
 212 and, primal feasibility ensures, $\sum_{j=1}^{j^*} x_{i(j)} = 1$. This insight allows us to eliminate the last remaining
 213 request-specific dual variable, ν_i , from the expression for the primal solution \mathbf{x}_{ij} , by ensuring
 214 $\nu_i = \frac{\gamma - \sum_{j=1}^{j^*} u_{i(j)}}{j^*}$. Proposition 2 distils this insight into a operational definition of j^* , which culminates
 215 into the optimal primal serving scheme presented in Algorithm 1. **Algorithm 1** is dominated

216 by the sorting step (Line 4), giving an overall complexity of $\mathcal{O}(N \log N)$ for a model pool of size
 217 N . The detailed runtime and complexity analysis is provided in Appendix A.8.

218 **Proposition 2** (Optimal Stopping). j^* is the maximum j such that $u_{i(j)} + \frac{\gamma - \sum_{k \leq j} u_{i(k)}}{j} > 0$.

220 Note that LLM pricing depends on multiple deployment factors—cloud provider, instance type,
 221 region, reservation model, negotiated rates, and API-specific pricing (e.g., per-million-token rates
 222 or provisioned throughput). In this work, we abstract these nuances by assuming a per-million-
 223 token rate card (separately for input, intermediate, and output tokens), derived from the underlying
 224 unit economics of the deployment. Whenever this rate card changes, the optimization problem
 225 (Eq. 1) must be re-solved and the resulting dual variables redistributed to the workers executing
 226 Algorithm 1. Proposition 1-2 and Algorithm 1 extend seamlessly to any optimization problem with
 227 strongly convex objective and linear constraints (similar to Eq. 1) – only requiring a change in
 228 the expression for utility, u_{ij} (see Sec 2.2). Every new constraint (e.g. minimum LLM usage volume
 229 commitment) added to Eq. 1 need to be added to u_{ij} with an appropriate sign (depending on whether
 230 the constraint is covering- or packing-type) and multiplied by its own Lagrangian dual variable.

231 3 EXPERIMENTAL SETUP

232 3.1 BENCHMARK & IMPLEMENTATION

233 **In-Domain Dataset (ID).** Following Song et al. (2025), we evaluate POLLINATOR’s in-domain
 234 generalization capability over 8 datasets: ① **MMLU** (Hendrycks et al., 2020) (reasoning and knowl-
 235 edge across 57 domains), ② **CMMLU** (Li et al., 2024) (a Chinese incarnation of MMLU), ③
 236 **ACLUE** (Zhang & Li, 2023) (ancient Chinese language-understanding), ④ **ARC-C** (Clark et al.,
 237 2018) (advanced reasoning), ⑤ **HotpotQA** (Yang et al., 2018) (question-answer requiring multi-hop
 238 reasoning), ⑥ **SQuAD** (Rajpurkar et al., 2018) (reading comprehension), ⑦ **MATH** (Hendrycks
 239 et al., 2021) (competition-level mathematics), and, ⑧ **MBPP** (Austin et al., 2021) (basic coding).
 240 20 LLMs were in the candidate pool (see Table 17 in Appendix A.4). POLLINATOR is trained on
 241 70% of the *combined* dataset, and tested in-domain on the remaining 30%.

242 **Out-of-Domain Dataset (OOD).** Following Song et al. (2025), we evaluate POLLINATOR’s out-
 243 of-domain generalization capability over 4 datasets that we not part of the training: ⑨ **CEVAL**
 244 (Huang et al., 2024) (tasks in Chinese language), ⑩ **CommonsenseQA** (Talmor et al., 2019) (com-
 245 monsense reasoning), ⑪ **GSM8K** (Cobbe et al., 2021) (grade-school mathematics), and, ⑫ **Hu-
 246 manEval** (Chen et al., 2021) (coding). The same candidate LLM pool as In-Domain Dataset (ID) is
 247 employed. We emphasize that 100% of the combined datasets are used in test.

248 **MMLU-Pro & BFCL-V3.** In order to further evaluate POLLINATOR’s efficacy on contempo-
 249 rary datasets and real-world scenarios such as tool-call, we benchmark in-domain on 2 additional
 250 datasets: ⑬ **MMLU-Pro** (Wang et al., 2024) (extends **MMLU** with harder multiple-choice ques-
 251 tions with 10 possible choices, instead of 4), and, ⑭ **BFCL-V3 (Simple)** (Patil et al., 2025) (rea-
 252 soning and ability to call external tools and APIs in real-world setting – a key skill for agentic ap-
 253 plications). The LLM candidate pool consists of 15 members, including GPT and Gemini families,
 254 for **MMLU-Pro** (details in Table 18 in Appendix A.6), and 10 for **BFCL-V3 (Simple)**, including
 255 OpenAI o-series and Llama-3.1 families (see Table 19 in Appendix A.6 for an exhaustive list). For
 256 each of these 2 datasets, 70% is used for training and the rest 30% for testing (we emphasize that
 257 we do not combine the datasets). Table 12 in Appendix A.3 enumerates comprehensive details on
 258 all 14 datasets, including evaluation metrics and dataset cardinality.

259 **Implementation.** We use `bert-base-uncased`³ as the request encoder, Enc^R . The producer
 260 encoder, Enc^P , simply encodes the producer ID, $j \in [M]$. The GCN consists of $L = 2$ layers
 261 with hidden dimension of 64 and dropout rate of 0.3. The producer skill vector θ_j has dimension 16,
 262 except for the out-of-domain data, where it has dimension 25. The k NN graph construction uses
 263 $k = 3$ nearest neighbors, with edge weights (optionally) set to the cosine similarity, $\cos(\angle x_i x_j)$.
 264 POLLINATOR is trained with the Adam optimizer (Adam et al., 2014), with learning rate 1×10^{-3} and
 265 weight decay 1×10^{-5} for 200 epochs. During inference, we induce a graph among the test request
 266 and its $k = 3$ nearest neighbors. All hyper-parameters were selected based on best performance on
 267 a held-out validation set. All experiments are run on 1 NVIDIA A40 GPU with 40GB memory.

268
 269 ³<https://huggingface.co/google-bert/bert-base-uncased>

270 3.2 METRICS & BASELINES
271

272 **Metrics.** We evaluate routing algorithms by the cost-performance tradeoffs they offer in the test
273 dataset. Given binary ground-truth label, $a_{ij_i} \in \{0, 1\}$, where j_i is the chosen producer for request i ,
274 **Performance (%)** is defined in a dataset-dependent manner as either of *accuracy*, *F1*, *Exact Match*
275 (*EM*) and *Pass@1* over the test dataset (see Table 12 in A.3 for dataset-specific evaluation metrics)
276 – a methodology that echoes Song et al. (2025). **Cost (\$)** is calculated as per the token counts and
277 the rate-card for the producer j_i , where i indexes the requests in test dataset. In order to highlight
278 a few salient points on the cost-quality Pareto, we coin performance-first, balanced and cost-first
279 configurations. In particular, in the performance-first setting, we set a large C in Eq. 1, so that the
280 optimizer has a large room to maximize accuracy (performance). In cost-first, we set C in a stringent
281 manner, thus yielding lower performance. Balanced setting sets C to a medium value.

282 **Baselines.** We compare POLLINATOR against a set of strong baselines: ① **Small LLM** always
283 routes queries to the specifically chosen small model (likely based on number of parameters) for
284 each dataset. Following Song et al. (2025), we use ***Minstral-8B-Instruct-2410*** as the Small LLM
285 for both the In-Domain and Out-of-Domain datasets. For MMLU-Pro, the Small LLM is Meta-
286 Llama-3.1-70B, while for BFCL-V3(ToolCall), we use GPT-4.1-Nano. Please note the **Small LLM is**
287 **not necessarily the cheapest model**. ② **Large LLM** always routes queries to the largest candidate
288 model. ③ **kNN-Router** is a simple retrieval-based baseline that selects an LLM based on the top- k
289 ($k = 5$ gave the best performance) most similar queries, choosing the lowest-cost model among
290 them. ④ **HybridLLM** (Ding et al., 2024) trains a pre-trained encoder (DeBERTa-v3) with matrix
291 factorization to decide between a small and a large model. ⑤ **RouteLLM** (Ong et al., 2024) uses
292 a binary classifier for pairwise LLM routing. ⑥ **RouterBench** (Hu et al., 2024) provides multiple
293 routing strategies; we adopt its Predictive Router variant to avoid the high cost of querying all
294 candidate models. ⑦ **MIRT-Router** and **NIRT-Router** (Song et al., 2025) are IRT-based methods
295 and serve as our closest baselines. We implement only kNN-Router; results for the others are taken
296 from Song et al. (2025). MIRT-Router is run on MMLU-Pro and BFCL-V3 using their official code,
297 while NIRT-Router is omitted due to its reliance on costly GPT-4o relevance vectors. Following
298 Song et al. (2025), we also generate LLM profile descriptions (Table 22 in Appendix A.11) for
299 candidate models in **MMLU-Pro** and **BFCL-V3 (Simple)**.

300 Table 1: Comparison of routing methods in In-Domain Dataset across three distinct performance-
301 cost tradeoff scenarios. **Bold** and underline denote the best and second-best results.

302 Method	303 Performance-First		304 Balanced		305 Cost-First	
	306 Performance (%)↑	307 Cost (\$)↓	308 Performance (%)↑	309 Cost (\$)↓	310 Performance (%)↑	311 Cost (\$)↓
312 Small LLM	48.70	0.31	48.70	0.31	48.70	<u>0.31</u>
313 Large LLM	77.53	12.93	77.53	12.93	77.53	12.93
314 HybridLLM	54.37	1.98	52.42	1.54	56.65	2.78
315 RouteLLM	77.25	12.80	73.59	11.15	66.24	7.51
316 RouterBench	80.01	1.15	79.48	0.53	78.36	0.37
317 kNN-Router	74.38	1.14	74.38	1.14	74.38	1.14
318 MIRT-Router	80.67	0.42	<u>80.65</u>	0.42	<u>80.03</u>	0.39
319 NIRT-Router	<u>80.69</u>	0.55	80.41	0.43	79.37	0.41
320 POLLINATOR	81.38	<u>0.39</u>	81.38	<u>0.39</u>	80.09	0.26

321 4 RESULTS
322

323 In **ID** dataset, as seen in Table 1, in the performance-oriented batch inference setting, POLLINATOR
324 delivers 0.8% performance gain over NIRT-Router at 70% of its cost. Similarly, in the cost-
325 oriented setting, POLLINATOR renders 33% cost reduction over MIRT-Router, at a slightly better
326 performance. In the balanced setting, POLLINATOR achieves a 0.9% gain over SOTA at 93% of
327 the cost, and a 5% improvement over the best producer at 3% cost. In **OOD** (Table 2), the
328 relative cost reduction in the balanced setting stands at 28.57%, at a similar performance. The $\geq 25\%$
329 cost advantage holds on MMLU-Pro and BFCL V3 datasets as well with 1.5% and 0.43% gains
330 over SOTA, as seen from Table 3. Overall, POLLINATOR delivers a superior Pareto frontier in the
331 cost-performance plane across ID, OOD, and real-world benchmarks. POLLINATOR effectively
332 routes queries to the most appropriate model, avoiding unnecessary invocation of expensive LLMs
333 while respecting global budget constraints. The whole spectrum of performance and cost across

all datasets is shown in Figure 1 of Appendix 4.1. The oracle results are presented in Table 11 of Appendix A.5. The average performance and associated costs of individual LLMs for each dataset are reported in Tables 13, 14, 15, and 16, corresponding to the In-Domain, Out-of-Domain, MMLU-Pro, and BFCL-V3 (ToolCall) datasets, respectively, in Appendix A.5. The scalability and robustness of POLLINATOR is discussed in detail in Appendix A.1, where we evaluate end-to-end latency, throughput, handling of large model pools, resilience to model and query drift, mitigation of prediction errors and robustness under dynamic pricing and provider availability. These results demonstrate that POLLINATOR maintains high efficiency and reliability under real-world conditions.

Table 2: Comparison of routing methods in Out-of-Domain Dataset.

Method	Performance-First		Balanced		Cost-First	
	Performance (%)↑	Cost (\$)\downarrow	Performance (%)↑	Cost (\$)\downarrow	Performance (%)↑	Cost (\$)\downarrow
Small LLM	59.83	0.11	59.83	0.11	59.83	0.11
Large LLM	84.90	5.30	84.90	5.30	84.90	5.30
HybridLLM	63.34	0.73	62.08	0.41	63.79	0.65
RouteLLM	84.39	5.25	79.90	4.74	75.06	3.48
RouterBench	85.50	0.26	85.75	0.16	84.62	0.12
kNN-Router	80.92	0.29	80.92	0.29	80.92	0.29
MIRT-Router	87.12	0.14	87.12	0.14	87.18	0.13
NIRT-Router	87.37	0.15	87.24	0.14	87.46	0.13
POLLINATOR	87.37	0.14	87.63	0.10	87.69	0.09

Table 3: Comparison of routing methods on MMLU-Pro and BFCL V3 (ToolCall) datasets under the Performance-First setting, reporting model accuracy and associated cost.

Method	MMLU-Pro		BFCL-V3 (ToolCall)	
	Performance (%)↑	Cost (\$)\downarrow	Performance (%)↑	Cost (\$)\downarrow
Small LLM ¹	53.07	2.10	77.33	0.01
Large LLM ²	71.61	5.01	89.33	1.85
kNN-Router	74.23	2.55	86.67	0.02
MIRT-Router	78.84	1.18	90.66	0.008
POLLINATOR	79.18	0.88	92.00	0.006

4.1 PERFORMANCE-COST SPECTRUM

To obtain the full performance–cost tradeoff spectrum, POLLINATOR produces multiple operating points by varying the optimizer’s hyperparameters, enabling different budget–performance preferences and effectively balancing accuracy against total computational cost. Each scatter plot additionally includes the standalone performance–cost pairs of individual LLMs evaluated under the four settings: In-domain (Figure 1a), Out-of-Domain (Figure 1b), MMLU-Pro (Figure 1c), and BFCL-V3 (ToolCall) (Figure 1d). We also include an *Oracle* point where we choose the best and cheapest LLM for each sample. Comparing these points shows that POLLINATOR consistently achieves more favorable performance–cost tradeoffs, forming a superior efficiency frontier relative to any individual LLM. Because the BFCL-V3 (ToolCall) setting contains a very limited amount of training data, a few standalone LLMs occasionally match or slightly surpass the performance of POLLINATOR. We are confident that with more training data, POLLINATOR would surpass these cases and restore its advantage.

5 ABLATION STUDY

We perform a comprehensive ablation study on the performance predictor inside POLLINATOR on **ID** datasets to assess the impact of key design decisions, encompassing: ① request encoder, Enc^R ; ② choice of k in graph construction; ③ the dimensionality, D , of $\theta_j \in \mathbb{R}^D$; ④ fraction of labeled nodes in GCN. Findings are summarized in Table 4 and Table 6. For detailed ablations across all combinations of Enc^R , k , D , and edge weighting strategies, refer to Table 21 in Appendix A.9.

¹Small LLM refers to Meta-Llama-3.1-70B for MMLU-Pro and GPT-4.1-Nano for ToolCall.

²Large LLM refers to Gemini-1.5-Pro for MMLU-Pro and o1 for ToolCall.

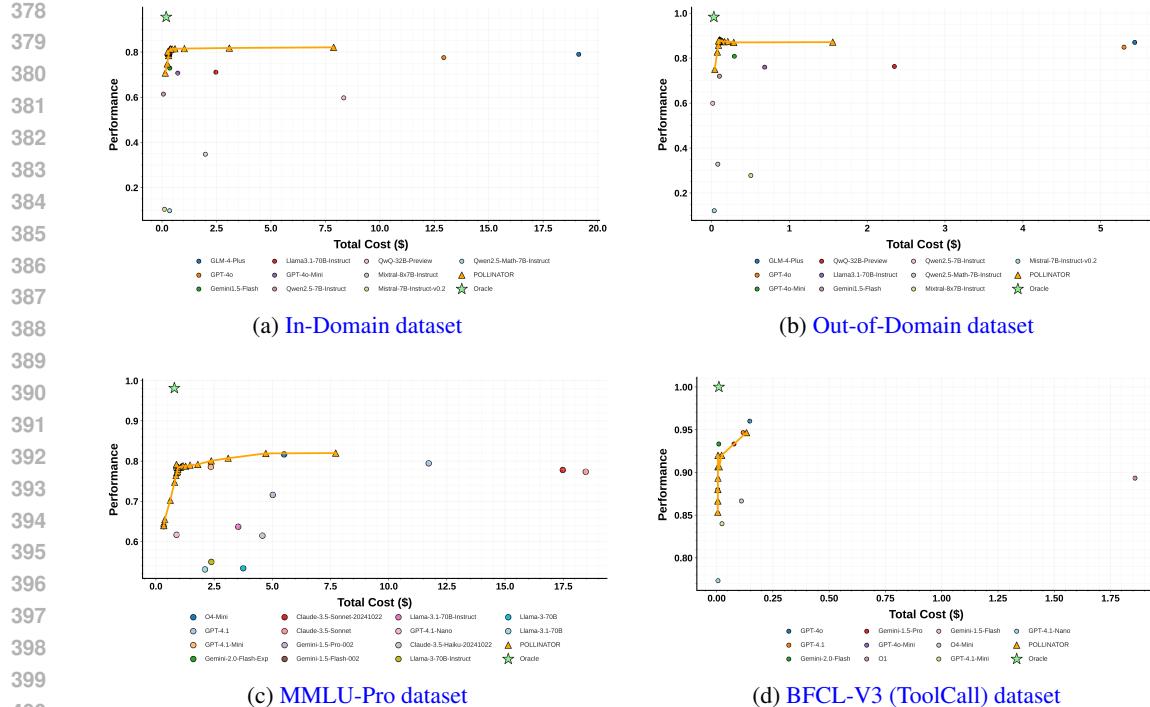


Figure 1: Performance-cost spectrum across In-Domain, Out-of-Domain, MMLU-Pro, and BFCL-V3 (ToolCall) datasets. Each scatter plot shows performance-cost spectrum of POLLINATOR alongside the standalone performance-cost pairs of individual LLMs and an *Oracle* that selects the best cheapest model per sample.

Table 4: Ablation study of the predictor (without optimizer). Accuracy (%) is reported for different request encoders, graph neighborhood sizes, and varied model ability dimension. POLLINATOR is robust to embedding and neighborhood choices, sensitive to model ability dimension. The best configuration of POLLINATOR is marked with \dagger . Neighborhood size and model ability experiments use *bert-base-uncased* as Enc^R .

Request Encoder (Enc^R)		Graph Neighborhood Size (k)		Model Ability Dimension (D)	
Enc^R	Perf. (% \downarrow)	k	Perf. (% \downarrow)	D	Perf. (% \downarrow)
bert-base-uncased \dagger	82.07 (-)	3 \dagger	82.07 (-)	3	71.43 (\downarrow 12.96)
all-MiniLM-L6-v2	80.75 (\downarrow 1.32)	5	81.92 (\downarrow 0.15)	5	80.49 (\downarrow 1.58)
all-mpnet-base-v2	81.70 (\downarrow 0.37)	10	81.87 (\downarrow 0.20)	8	79.26 (\downarrow 2.81)
text-embedding-3-large	81.34 (\downarrow 0.73)	20	82.02 (\downarrow 0.05)	16 \dagger	82.07 (-)
				25	81.96 (\downarrow 0.11)
				35	80.52 (\downarrow 1.55)
				45	80.25 (\downarrow 1.82)

Request Encoder Enc^R . We experiment with different Enc^R to encode requests. The best configuration (POLLINATOR \dagger) achieves 82.07% accuracy. Alternatives such as *all-MiniLM-L6-v2*⁴, *all-mpnet-base-v2*⁵, and *text-embedding-3-large*⁶ show a slight drop in performance of 1.32%, 0.37%, and 0.73% respectively, as reported in Table 4 (left), indicating that the predictor is robust to the choice of embedding while preserving strong predictive capability.

Neighborhood Size (k). We analyze predictor performance under varying graph neighborhood sizes k . The best accuracy occurs at $k = 3$ (82.07%), while larger neighborhoods ($k = 5, 10$) reduce accuracy (81.92%, 81.87%), and $k = 20$ only partially recovers it (82.02%). This indicates that large k introduces noisy neighbors, limiting predictor precision (Table 4, middle).

⁴<https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2>

5https://huggingface.co/sentence-transformers/all-mpnet-base-v2

https://huggingface.co/sentence-transformers/all_mpnet-base-v2

432
 433
 434
 435 **Table 6: Effect of node label masking on**
 436 **predictor performance (relative drop ↓) and**
 437 **training cost (with savings ↑) on the ID**
 438 **dataset, without optimizer.**

439 440 Node Masked (%)	441 442 443 444 445 Perf. (% ↓)	441 442 443 444 445 Training Cost (\$) (Saving % ↑)
0	82.07 (-)	208.76 (-)
10	81.96 (↓0.11)	194.32 (6.91 ↑)
20	82.01 (↓0.06)	179.54 (13.99 ↑)
30	81.97 (↓0.10)	164.92 (21.00 ↑)
50	81.82 (↓0.25)	135.66 (35.03 ↑)
60	81.79 (↓0.28)	121.10 (42.00 ↑)
70	81.48 (↓0.59)	106.23 (49.11 ↑)

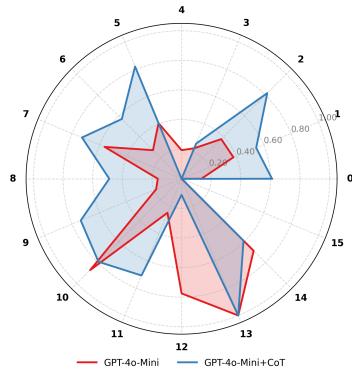
446
 447
 448
 449
 450 **Table 5: Ablation study showing results of POLLINATOR with and without the GCN module across**
 451 **all datasets. Removing the GCN leads to noticeably lower performance and higher cost.**

453 454 Method	455 Datasets							
	456 In-Domain		457 Out-of-Domain		456 MMLU-Pro		457 BFCL-V3 (ToolCall)	
	456 Perf (%↑)	457 Cost (\$↓)	456 Perf (%↑)	457 Cost (\$↓)	456 Perf (%↑)	457 Cost (\$↓)	456 Perf (%↑)	457 Cost (\$↓)
POLLINATOR w/o GCN	80.20	0.63	79.18	0.13	74.23	2.55	86.67	0.02
POLLINATOR	81.38	0.39	87.37	0.14	79.18	0.88	92.00	0.006

458
 459
 460 **Effect of Model Ability Dimension (D).** We assess how the model ability dimension D impacts
 461 the predictor’s performance (Table 4, right), reporting results relative to the optimal configuration
 462 ($D = 16$). Extremely low dimensions ($D = 3$) severely underfit, causing a 12.96% drop in accuracy.
 463 Moderate dimensions ($D = 5$ or $D = 8$) partially capture model abilities, resulting in 1.58%
 464 and 2.81% decreases. Slightly larger dimensions ($D = 25$) perform comparably to the optimum,
 465 with only a 0.11% drop, indicating sufficient capacity without over-parameterization. Excessively
 466 high dimensions ($D = 35$ or $D = 45$) introduce redundancy, causing 1.55% and 1.82% drops.
 467 Intermediate D offers the best balance between expressivity and generalization.

468
 469 **Impact of the GCN Module.** To evaluate the contribution of the GCN within POLLINATOR, we
 470 conduct an ablation in which we entirely remove the GCN module and replace it with a non-learned
 471 alternative: simple k NN averaging over the neighborhood (i.e., aggregation without message pass-
 472 ing). As shown in Table 5, this removal leads to consistent degradation across all datasets. In-domain
 473 accuracy drops from 81.38% to 80.20%, out-of-domain from 87.37% to 79.18%, and MMLU-Pro
 474 from 79.18% to 74.23%, with corresponding increases in cost. Even on BFCL-V3, accuracy falls
 475 (92.00% → 86.67%) and cost rises. These results demonstrate that naive neighbor averaging cannot
 476 substitute the learned aggregation performed by the GCN, confirming its essential contribution to
 477 POLLINATOR’s routing quality.

478
 479 **Semi-Supervised Cost-Efficient Training.** Labeling all training nodes can be costly, since ob-
 480 taining responses from commercial LLMs incurs significant expense. However, as GCNs naturally
 481 propagate label information across neighboring nodes, full supervision may be unnecessary. To
 482 quantify this, we simulate a semi-supervised setting by randomly masking a fraction of training
 483 node labels and report results in Table 6. The predictor demonstrates strong resilience to missing
 484 supervision. With 70% of nodes masked, the predictor achieves 81.48% accuracy, comparable to the
 485 state-of-the-art MIRT-Router w/o optimizer (81.17%, Table 21, Appendix A.9) and slightly below
 486 the fully supervised setting (82.07%), while reducing training cost by 49%. Intermediate masking
 487 levels (10%–30%) yield proportional savings (6.91%–21%) with minimal performance loss.



488
 489
 490 **Figure 2: Comparison of GPT-4o-Mini and GPT-4o-Mini+CoT over 16 dimensions. The CoT vari-
 491 ant improves performance on most dimensions,
 492 showing the benefit of explicit reasoning.**

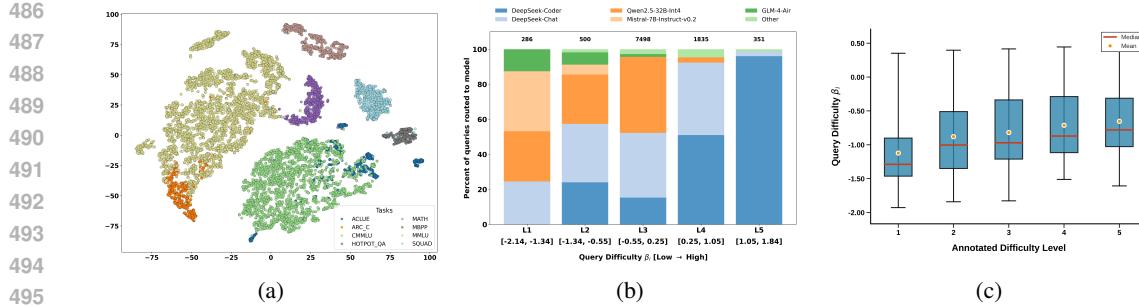


Figure 3: Visualization of interpretability analyses. (a) t-SNE projection of learned discrimination vectors α_i across in-domain datasets, showing task-specific clustering. (b) Routing distribution of models across query difficulty bins, where lightweight models handle easier queries while advanced models handle harder ones. (c) Predicted query difficulties (β_i) in the MATH dataset, grouped by human-annotated levels, showing monotonic alignment between model estimates and annotations.

5.1 INTERPRETABILITY OF POLLINATOR

LLM Ability. We examine ability differences within model families using POLLINATOR. Figure 2 shows GPT-4o-Mini versus its CoT-augmented version, with CoT improving reasoning performance. Similarly, Llama3.1-405B-Instruct outperforms Llama3.1-70B-Instruct (Figure 5, Appendix A.7). Using a model ability dimension $D = 25$, trends align with scaling laws (Kaplan et al., 2020): larger models perform better. Table 13 (Appendix A.5) supports these observations.

Query Difficulty. We assess POLLINATOR’s ability to estimate query difficulty using the MATH dataset with human-annotated levels. As shown in Figure 3c, the estimated difficulty parameter β_i increases monotonically and closely follows the ground-truth progression. Representative examples in Figure 6 (Appendix A.7) further illustrate the strong alignment between POLLINATOR’s estimates and human labels.

Routing Behavior Across Difficulty Levels. We analyze POLLINATOR routing across queries stratified by difficulty (Figure 3b, β_i spans -2.14 to 1.84 , divided into L1-L5). While top models like DeepSeek-Coder, DeepSeek-Chat, and GPT-4o achieve highest performance (Table 13 in Appendix A.5), POLLINATOR routes queries cost-efficiently. Easier queries (L1-L2) use lightweight models (Qwen2.5-32B-Int4, Mistral-7B, GLM-4-Air), intermediate bins (L3-L4) show mixed routing, and hardest queries (L5) prefer top-tier models like DeepSeek-Coder.

Discrimination Vector Analysis. In POLLINATOR, the discrimination vector α_i encodes the skill requirements for a query. To assess whether these vectors capture task-level structure, we cluster queries based on their learned representations and project them into 2D using t-SNE (Figure 3a). Queries from the same dataset form cohesive clusters, showing that POLLINATOR effectively learns task-aligned skill representations. Some clusters partially overlap, reflecting shared skills: for example, ARC_C and MMLU overlap due to similar reasoning skills, while CMMLU and ACLUE, the only two Chinese datasets, share the embedding space. In contrast, MATH, SQuAD, and MBPP form well-separated clusters, indicating that vectors capture distinct task-specific skill requirements.

6 CONCLUSION

We presented POLLINATOR, a data-efficient and online-serving-capable matchmaker for the intelligence marketplace. POLLINATOR combines a frugal GCN-based predictor with an IRT-head and an efficient dual-optimizer, reducing training cost by up to 49% while outperforming existing state-of-the-art predictors. Extensive experiments on real-world benchmarks, including BFCL-V3 and MMLU-Pro, demonstrate superior cost–performance trade-offs. Furthermore, detailed ablation studies and interpretability validate POLLINATOR’s effectiveness for cost-efficient intelligence matchmaking. Future work will extend the framework to incorporate latency and volume constraints and explore adaptive dynamic graphs for evolving requests and producers.

540 REFERENCES

541 Kingma DP Ba J Adam et al. A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 542 1412(6), 2014.

543 Deepak Agarwal, Bee-Chung Chen, Pradheep Elango, and Xuanhui Wang. Personalized click shaping
 544 through lagrangian duality for online recommendation. In *Proceedings of the 35th Interna-*
 545 *tional ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR*
 546 *'12*, pp. 485–494, New York, NY, USA, 2012. Association for Computing Machinery. ISBN
 547 9781450314725. doi: 10.1145/2348283.2348350. URL <https://doi.org/10.1145/2348283.2348350>.

548 Pranjal Aggarwal, Aman Madaan, Ankit Anand, Srividya Pranavi Potharaju, Swaroop Mishra, Pei
 549 Zhou, Aditya Gupta, Dheeraj Rajagopal, Karthik Kappagantu, Yiming Yang, et al. Automix:
 550 Automatically mixing language models. *arXiv preprint arXiv:2310.12963*, 2023.

551 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
 552 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
 553 models. *arXiv preprint arXiv:2108.07732*, 2021.

554 Kaidi Cao, Jiaxuan You, and Jure Leskovec. Relational multi-task learning: Modeling relations
 555 between data and tasks. *arXiv preprint arXiv:2303.07666*, 2023.

556 Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
 557 reducing cost and improving performance. *arXiv preprint arXiv:2305.05176*, 2023.

558 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
 559 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
 560 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

561 Shiming Chen, Ziming Hong, Guosen Xie, Qinmu Peng, Xinge You, Weiping Ding, and Ling Shao.
 562 Gndan: Graph navigated dual attention network for zero-shot learning. *IEEE transactions on*
 563 *neural networks and learning systems*, 35(4):4516–4529, 2022.

564 Shuhao Chen, Weisen Jiang, Baijiong Lin, James Kwok, and Yu Zhang. Routerdc: Query-based
 565 router by dual contrastive learning for assembling large language models. *Advances in Neural*
 566 *Information Processing Systems*, 37:66305–66328, 2024.

567 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 568 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
 569 *arXiv preprint arXiv:1803.05457*, 2018.

570 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 571 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
 572 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

573 Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Ruhle, Laks VS
 574 Lakshmanan, and Ahmed Hassan Awadallah. Hybrid llm: Cost-efficient and quality-aware query
 575 routing. *arXiv preprint arXiv:2404.14618*, 2024.

576 Aosong Feng, Balasubramaniam Srinivasan, Yun Zhou, Zhichao Xu, Kang Zhou, Sheng Guan,
 577 Yueyan Chen, Xian Wu, Ninad Kulkarni, Yi Zhang, et al. Ipr: Intelligent prompt routing with user-
 578 controlled quality-cost trade-offs. In *Proceedings of the 2025 Conference on Empirical Methods*
 579 *in Natural Language Processing: Industry Track*, pp. 2484–2498, 2025.

580 Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for llm selections.
 581 In *The Thirteenth International Conference on Learning Representations*, 2024.

582 Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson, Rex
 583 Ying, Jiaxuan You, and Jure Leskovec. Relational deep learning: Graph representation learning
 584 on relational databases. *arXiv preprint arXiv:2312.04615*, 2023.

585 Gauthier Guinet, Behrooz Omidvar-Tehrani, Anoop Deoras, and Laurent Callot. Automated eval-
 586 uation of retrieval-augmented language models with task-specific exam generation. *arXiv preprint*
 587 *arXiv:2405.13622*, 2024.

594 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 595 *Advances in neural information processing systems*, 30, 2017.
 596

597 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 598 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint*
 599 *arXiv:2009.03300*, 2020.

600 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 601 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 602 *preprint arXiv:2103.03874*, 2021.
 603

604 Lars Erik Holmquist. Intelligence on tap: artificial intelligence as a new design material. *interac-*
 605 *tions*, 24(4):28–33, 2017.

606 Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
 607 Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-llm routing
 608 system. *arXiv preprint arXiv:2403.12031*, 2024.
 609

610 Jiaqi Huang, Chengxi Liu, Ziwei Wei, Yan Dong, Renze Zhang, Wanjun Zhou, Shiyue Zhang, Peiyi
 611 Lv, Peijie Wang, Zhihong Fan, et al. C-eval: A multi-level multi-discipline chinese evaluation
 612 suite for foundation models. *arXiv preprint arXiv:2305.08322*, 2024.

613 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 614 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 615 models. *arXiv preprint arXiv:2001.08361*, 2020.

616 TN Kipf. Semi-supervised classification with graph convolutional networks. *arXiv preprint*
 617 *arXiv:1609.02907*, 2016.
 618

619 Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timo-
 620 thy Baldwin. Cmmlu: Measuring massive multitask language understanding in chinese. *arXiv*
 621 *preprint arXiv:2306.09212*, 2024.
 622

623 Qi Liu, Zheng Gong, Zhenya Huang, Chuanren Liu, Hengshu Zhu, Zhi Li, Enhong Chen, and Hui
 624 Xiong. Multi-dimensional ability diagnosis for machine learning algorithms. *Science China*
 625 *Information Sciences*, 67(12):229101, 2024.

626 Yang Liu, Alan Medlar, and Dorota Glowacka. What we evaluate when we evaluate recommender
 627 systems: Understanding recommender systems’ performance using item response theory. In *Pro-*
 628 *ceedings of the 17th ACM Conference on Recommender Systems*, pp. 658–670, 2023.

629 Yunting Liu, Shreya Bhandari, and Zachary A Pardos. Leveraging llm respondents for item eval-
 630 uation: A psychometric analysis. *British Journal of Educational Technology*, 56(3):1028–1052,
 631 2025.
 632

633 Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
 634 Routing to the expert: Efficient reward-guided ensemble of large language models. *arXiv preprint*
 635 *arXiv:2311.08692*, 2023.

636 Kai Mei, Wujiang Xu, Shuhang Lin, and Yongfeng Zhang. Omnidrouter: Budget and performance
 637 controllable multi-llm routing. *arXiv preprint arXiv:2502.20576*, 2025.
 638

639 Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
 640 M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data. *arXiv*
 641 *preprint arXiv:2406.18665*, 2024.

642 Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Ion Stoica, Joseph E. Gonzalez,
 643 et al. The berkeley function calling leaderboard (bfcl): From tool use to agentic evaluation of large
 644 language models. In *Proceedings of the 2025 International Conference on Machine Learning*
 645 (*ICML*), 2025. URL <https://openreview.net/forum?id=2GmDdhBdDk>.
 646

647 Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
 for squad. *arXiv preprint arXiv:1806.03822*, 2018.

648 Mark D Reckase. 18 multidimensional item response theory. *Handbook of statistics*, 26:607–642,
 649 2006.

650

651 Pedro Rodriguez, Joe Barrow, Alexander Miserlis Hoyle, John P Lalor, Robin Jia, and Jordan Boyd-
 652 Graber. Evaluation examples are not equally informative: How should that change nlp leader-
 653 boards? In *Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
 654 guistics and the 11th International Joint Conference on Natural Language Processing (Volume 1:
 655 Long Papers)*, pp. 4486–4503, 2021.

656

657 Seamus Somerstep, Felipe Maia Polo, Allysson Flavio Melo de Oliveira, Pratyush Mangal, Mírian
 658 Silva, Onkar Bhardwaj, Mikhail Yurochkin, and Subha Maity. Carrot: A cost aware rate optimal
 659 router. *arXiv preprint arXiv:2502.03261*, 2025.

660

661 Wei Song, Zhenya Huang, Cheng Cheng, Weibo Gao, Bihan Xu, GuanHao Zhao, Fei Wang, and
 662 Runze Wu. IRT-router: Effective and interpretable multi-LLM routing via item response
 663 theory. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
 664 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
 665 (Volume 1: Long Papers)*, pp. 15629–15644, Vienna, Austria, July 2025. Association for Com-
 666 putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.761. URL
 667 <https://aclanthology.org/2025.acl-long.761/>.

668

669 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
 670 answering challenge targeting commonsense knowledge. In *Proceedings of the 2019 Conference
 671 of the North American Chapter of the Association for Computational Linguistics: Human Lan-
 672 guage Technologies, Volume 1 (Long and Short Papers)*, pp. 4149–4158, 2019.

673

674 Asterios Tsiorvas, Wei Sun, and Georgia Perakis. Causal llm routing: End-to-end regret minimiza-
 675 tion from observational data. *arXiv preprint arXiv:2505.16037*, 2025.

676

677 Fei Wang, Qi Liu, Enhong Chen, Zhenya Huang, Yuying Chen, Yu Yin, Zai Huang, and Shijin
 678 Wang. Neural cognitive diagnosis for intelligent education systems. In *Proceedings of the AAAI
 679 conference on artificial intelligence*, volume 34, pp. 6153–6161, 2020.

680

681 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 682 Ren, Aaran Arulraj, Xuan He, Ziyuan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
 683 Fan, Xiang Yue, and Wenhui Chen. MMLU-Pro: A More Robust and Challenging Multi-Task
 684 Language Understanding Benchmark. In *NeurIPS 2024 Track on Datasets and Benchmarks*,
 685 2024. URL <https://arxiv.org/abs/2406.01574>.

686

687 Herbert Woisetschläger, Ryan Zhang, Shiqiang Wang, and Hans Arno Jacobsen. Mess+: Dynam-
 688 ically learned inference-time llm routing in model zoos with service level guarantees. In *The
 689 Thirty-ninth Annual Conference on Neural Information Processing Systems*, 2025.

690

691 David J Woodruff and Bradley A Hanson. Estimation of item response models using the em algo-
 692 rithm for finite mixtures. 1996.

693

694 Fangzhou Wu and Sandeep Silwal. Port: Efficient training-free online routing for high-volume
 695 multi-llm serving. In *Machine Learning for Systems 2025*.

696

697 Tian Xie, Bin Wang, and C-C Jay Kuo. Graphhop: An enhanced label propagation method for node
 698 classification. *IEEE Transactions on Neural Networks and Learning Systems*, 34(11):9287–9301,
 699 2022.

700

701 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
 702 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 703 answering. *arXiv preprint arXiv:1809.09600*, 2018.

704

705 Yixuan Zhang and Haonan Li. Can large language models comprehend ancient chinese? a prelimi-
 706 nary test on acle. *arXiv preprint arXiv:2310.09550*, 2023.

707

708 Richard Zhuang, Tianhao Wu, Zhaojin Wen, Andrew Li, Jiantao Jiao, and Kannan Ramchandran.
 709 EmbedLLM: Learning compact representations of large language models. In *The Thirteenth
 710 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=Fs9EabmQrJ>.

702 **A APPENDIX**
703704 **A.1 SCALABILITY AND ROBUSTNESS OF POLLINATOR**

705 **End-to-End Latency.** To further assess the practical feasibility of our routing framework, we eval-
706 uate its end-to-end latency across datasets of varying scales. The bottleneck is the nearest neighbour
707 look-up. Even an exact nearest neighbour search yields sub-100ms p99 (99th percentile) latency, as
708 seen in the Table 7. Note that with approximate nearest neighbour search, especially with HNSW
709 index, the sub-100ms p99 latency can be maintained in industry-scale data (a study⁷ from Pinecone
710 reports 50ms p99 at a good recall). It is worth mentioning that the largest dataset reported in the
711 literature on prompt routing has cardinality 1.5M (Feng et al., 2025), which is considered “small”
712 in the parlance of approximate nearest neighbour search.

713 Table 7: Inference time of POLLINATOR across all datasets. Per-query latency is reported in mil-
714 liseconds (ms).

716 Dataset	717 Per-Query Inference Time (ms)
718 In-Domain	69.07
719 Out-of-Domain	78.59
720 MMLU-Pro	20.37
721 BFCL-V3 (ToolCall)	2.66

722 **Throughput.** Industrial vector databases, such as Qdrant, can support 1,200 RPS (Requests Per
723 Second) at 0.99 precision (source⁸). Thus, instead of nearest neighbour lookup, the throughput
724 bottleneck shifts to the web-framework. FastAPI, with its asynchronous async/await primitives, of-
725 fers high throughput suitable for an industry-grade prompt router – which, moreover, is horizontally
726 scalable. Note that in the current work, we limit our scope to the functional requirements of prompt
727 router, not its non-functional requirements, such as latency/throughput.

728 **Overhead Analysis.** It’s worth noting that the prompt router routes each request to exactly one
729 LLM, either hosted by a provider (e.g., OpenAI, TogetherAI) or self-hosted (e.g., with vLLM) –
730 and in no cases more than one LLM is being invoked. As noted in the latency analysis, prompt
731 router incurs sub-100ms p99 latency, which is negligible, given that self-hosted LLMs take 400-
732 700ms (depends on the parameter count, architecture and the inference engine – and varies across
733 workloads), and those hosted by provider often exceeds $\approx 1.2s$ (even with provisioned throughput,
734 such as PTU in Azure). There are no additional token overhead, as such, beyond those already
735 accounted for under the prompt router latency.

736 **Robustness w.r.t. Dynamic Pricing.** The rate cards for providers change infrequently. However,
737 constructs such as provisioned throughput (e.g., PTU⁹ in Azure Foundry) render the rate card a
738 function of throughput. Even in this case, organizations typically purchase a fixed amount of PTU,
739 rendering the rate card essentially frozen over the contract period (an year). In the (infrequent) event
740 of change in rate card, the dual variables need to be recomputed and deployed via a configuration
741 service to all workers executing Algorithm 1.

742 **Robustness w.r.t. Availability.** The providers indeed suffer downtimes, and to counteract that, one
743 typically routes to a fallback (which is typically the next available provider in the ordered list, x_{ij}
744 – Line 2 in Algorithm1) after a pre-configured amount of retry. The provision of fallback has been
745 popularized by commercial prompt routers, such as OpenRouter¹⁰.

746 **Handling Large Model Pool.** In practice, few commercial prompt routers are deployed with model
747 pools of the size 100 (HuggingChat Omni routes¹¹ across 115 models). More often, they route
748 within the same model family (due to considerations arising from lack of prompt portability – what
749 works best with GPT needn’t work with Gemini, as seen in their guides), thus limiting the model

751 ⁷<https://www.pinecone.io/learn/series/faiss/hnsw/>

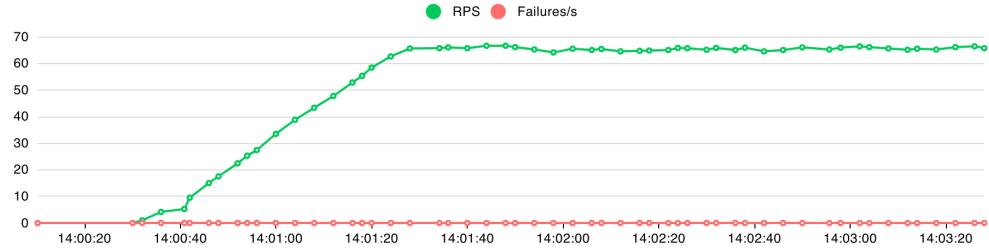
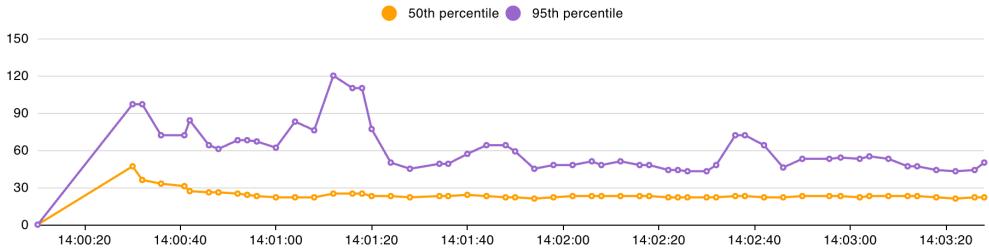
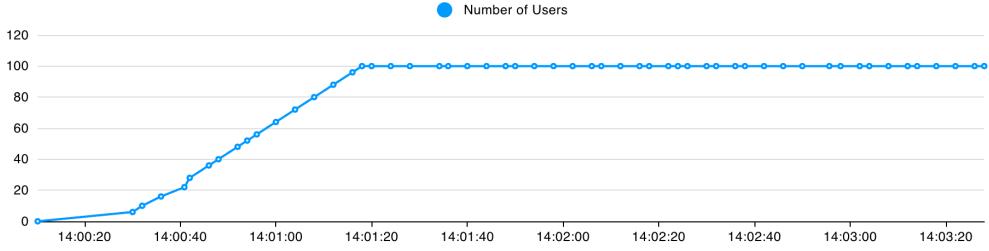
752 ⁸<https://qdrant.tech/benchmarks/>

753 ⁹<https://learn.microsoft.com/en-us/azure/ai-foundry/openai/concepts/provisioned-throughput?view=foundry-classic&tabs=global-ptum>

754 ¹⁰<https://openrouter.ai/docs/features/provider-routing>

755 ¹¹<https://news.ycombinator.com/item?id=45623284>

756 pool size to 10. However, in the hypothetical scenario with 10,000 models (which is practical only
 757 when routing across LoRAs, as done by vLLM Semantic Router), we would embrace a two-stage
 758 design a la recommender system. The first stage (a high-recall one) would cut down the pool to 100,
 759 which the second, high-precision stage will evaluate as per Algorithm 1.
 760

761 **Total Requests per Second**771 **Response Times (ms)**781 **Number of Users**

792 Figure 4: POLLINATOR: Stress Testing Under Increasing Concurrency

794 **Stress Testing Under Varying Concurrency Levels:** We conducted a realistic load-test with an
 795 industry-standard tool, Locust¹², under varying levels of concurrency (at 57 requests-per-second) to
 796 evaluate POLLINATOR’s inference performance under real-world conditions. The inference engine
 797 consists of a) FastAPI¹³-based web-framework, b) Infinity¹⁴ -based embedder, and, c) Qdrant -based
 798 approximate k-nearest-neighbour search. All calls to embedder and nearest neighbour searches
 799 are non-blocking, via Python’s asynchronous coroutine (‘async’ and ‘await’) – which mimics the
 800 architecture of a typical real-world inference engine. Figure 4 presents the overall system dynamics
 801 during this load ramp, including achieved throughput, median (p50) and tail (p95) latencies, and
 802 active user concurrency. We additionally report detailed request and response time statistics in
 803 Table 8 and Table 9 respectively. The results show that the system sustains stable throughput (57
 804 RPS) with zero failures, while maintaining low median latency ($\approx 23\text{--}28\text{ms}$) and tightly bounded
 805 tail latency ($\text{p95} \leq 55\text{ms}$) even under peak concurrency. These observations confirm POLLINATOR’s
 806 robust scalability and reliable performance under heavy concurrent workloads.

807 ¹²<https://docs.locust.io/en/stable/index.html>

808 ¹³<https://fastapi.tiangolo.com/>

809 ¹⁴https://docs.langchain.com/oss/python/integrations/text_embedding/infinity

810 Table 8: Aggregate request statistics of POLLINATOR during concurrency stress testing.
811

Type	Name	#Req.	#Fails	Avg. (ms)	Min (ms)	Max (ms)	Avg. Size (bytes)	RPS
GET	/route	10,213	0	27.67	12	200	1182.69	56.73
-	Aggregated	10,213	0	27.67	12	200	1182.69	56.73

816
817 Table 9: Response time statistics of POLLINATOR during concurrency stress testing.
818

Method	Name	50%	60%	70%	80%	90%	95%	99%	100%
GET	/route	23	25	28	34	43	55	96	200
-	Aggregated	23	25	28	34	43	55	96	200

825 **Handling Drift.** It is indeed true that LLM abilities may drift with subsequent releases of frontier
826 models, or may be caused by iterative fine-tuning of self-hosted models. Similarly, since prompts
827 are frequently updated in deployed systems (e.g., addition of new instructions in prompt, addition/deletion
828 of tools, etc.) – drift can occur. Such drifts are dealt with by re-training the predictors
829 and the (primal) optimizer in POLLINATOR to adapt to the new data distribution. The trigger for re-
830 training (i.e., a drift detection module), however, lies outside POLLINATOR’s system boundary to
831 promote simplicity. Alternatively, one can configure a cron-based periodic re-training. However, we
832 note that as shown in Table 2, POLLINATOR outperforms the baselines in Out-of-Domain datasets,
833 thus yielding resilience to drift in prompt distribution out of the box.

834 Additionally, we conducted a targeted data-drift experiment on the MMLU-Pro dataset, which spans
835 14 heterogeneous subject areas ranging from law to computer science. At inference, each test query
836 was linked to its $k=3$ nearest training neighbors via a kNN graph, and we selected 500 test samples
837 with the lowest average similarity as a proxy for severe distributional drift. POLLINATOR maintained
838 competitive performance (as shown in Table 10) on this subset, demonstrating strong robustness to
839 data drift.

840
841 Table 10: Data-drift evaluation of POLLINATOR on MMLU-Pro.
842

Dataset	Routing Strategy	Performance (%) \uparrow	Cost (\$) \downarrow
MMLU-Pro	Performance-first	79.60	0.28
	Balanced	80.00	0.14
	Cost-first	76.40	0.10

847 **Handling Prediction Errors.** While designing POLLINATOR, we acknowledged that performance
848 and cost predictions can be wrong, and since the optimization problem uses them in objective and
849 constraints, it will cause an optimality gap. The present work tackles it by breaking down the long-
850 horizon into epochs, so that at the end of each epoch, the feedback (actual performance yield and cost
851 incurred) from that epoch can be incorporated into the primal optimization problem (Eq. 1) – giving
852 it a chance to course-correct. However, we note that a couple of works offers a theoretical analysis:
853 a) MESS+ (Woisetschläger et al., 2025), incorporates a feedback mechanism that counts the historical
854 constraint violations, and incorporates that into emphasizing/de-emphasizing the corresponding
855 constraint in future decisions – which allows them to bound the number of constraint violations (see
856 Theorem 1); b) PORT (Wu & Silwal), also disclosed in late-October ‘25, makes certain assumptions
857 about the efficacy of kNN-based performance and cost predictors (see Assumption 1) in order to
858 guarantee competitive ration of online serving (see Theorem 1). We believe the theoretical analyses
859 assume restricted settings which the present work doesn’t consider. However, we leave a thorough
860 and careful analysis of optimality gap/competitive ratio/constraint violation for future work.

861 A.2 ORACLE PERFORMANCE
862

863 Table 11 compares POLLINATOR against the closest baseline, MIRT-Router, as well as an Oracle
864 result where we choose the best and cheapest LLM for each sample .

864
865
866 Table 11: Comparison with Oracle results.
867
868
869

Method	Datasets							
	In-Domain		Out-of-Domain		MMLU-Pro		BFCL-V3 (ToolCall)	
	Perf (%)↑	Cost (\$)\downarrow	Perf (%)↑	Cost (\$)\downarrow	Perf (%)↑	Cost (\$)\downarrow	Perf (%)↑	Cost (\$)\downarrow
Oracle	95.52	0.19	98.32	0.03	98.17	0.79	100.0	0.01
MIRT-Router	80.67	0.42	87.12	0.14	78.84	1.18	90.66	0.008
POLLINATOR	81.38	0.39	87.37	0.14	79.18	0.88	92.00	0.006

872
873
874 A.3 DATASETS DETAILS875 The datasets (Table 12) span a wide range of domains and task categories. In-domain datasets
876 include reasoning, code, and QA tasks. Out-of-domain datasets test generalization to unseen tasks.
877 Additional benchmarks, MMLU-Pro and BFCL V3 (Simple), evaluate more challenging reasoning
878 problems and tool use. Each dataset lists the task type, evaluation metric, and train/test sizes.879
880 Table 12: Details of in-domain, out-of-domain, and additional datasets used in our experiments.
881

In-domain				
Dataset	Type	Evaluation Metric	Train Size	Test Size
ACLUE (Zhang & Li, 2023)	Ancient Chinese	accuracy	1400	600
ARC.C (Clark et al., 2018)	Reasoning	accuracy	1400	600
CMLU (Li et al., 2024)	Chinese Multitask	accuracy	7000	3000
Hotpot_QA (Yang et al., 2018)	Multi-Hop	EM	1400	600
MATH (Hendrycks et al., 2021)	Math	accuracy	1400	600
MBPP (Austin et al., 2021)	Code	pass@1	630	270
MMLU (Hendrycks et al., 2020)	Multitask	accuracy	9800	4200
SQuAD (Rajpurkar et al., 2018)	Reading Comprehension	f1	1400	600
Out-of-domain				
Dataset	Task type	Evaluation Metric	Train Size	Test Size
CEVAL (Huang et al., 2024)	Chinese Multitask	accuracy	-	1000
CommonsenseQA (Talmor et al., 2019)	Commonsense Reasoning	accuracy	-	1000
GSM8K (Cobbe et al., 2021)	Math	accuracy	-	1000
HumanEval (Chen et al., 2021)	Code	pass@1	-	160
Additional Datasets				
MMLU-Pro (Wang et al., 2024)	Multitask Reasoning	accuracy	9602	2430
BFCL V3 (Simple) (Patil et al., 2025)	Tool-Use / Function Calling	accuracy	125	75

890
891 A.4 CANDIDATE LLMs FOR VARIOUS DATASETS892 For our routing experiments, we select a set of 20 representative LLMs as candidates for in-domain
893 and out-of-domain datasets (see Table 17). The candidate LLMs, along with their input and output
894 costs, for MMLU-Pro and BFCL-V3 (ToolCall) are reported in Tables 18 and 19, respectively.900
901 A.5 AVERAGE PERFORMANCE–COST CHARACTERISTICS OF INDIVIDUAL LLMs902 To understand the standalone efficiency of each model, we report the average performance and total
903 cost of all LLMs across the datasets. Table 13 presents results on the In-Domain dataset. Here,
904 DeepSeek-Chat and DeepSeek-Coder emerge as the strongest models, closely followed by large
905 models such as Qwen2.5-72B-Instruct and GLM-4-Plus. In contrast, smaller or task-specialized
906 models (e.g., Qwen2.5-Math-7B-Instruct) show lower average performance, reflecting their narrow
907 training scope. Table 14 reports the same statistics for the Out-of-Domain dataset. The relative
908 ordering remains broadly consistent: low-cost 7B–8B models offer attractive price points but lag
909 in accuracy compared to larger 32B–72B models, while DeepSeek models again strike a strong
910 accuracy–cost balance. Table 15 summarizes performance and total cost on MMLU-Pro. This
911 shows high-end frontier models such as O4-Mini, GPT-4.1, and Claude-3.5-Sonnet provide superior
912 general reasoning performance but at a substantially higher cost. Finally, Table 16 presents results
913 for BFCL-V3 (ToolCall), which shows Gemini-1.5-Flash, GPT-4.1-Nano, and GPT-4o-Mini models
914 deliver strong accuracy at low cost (BFCL-V3 evaluation containing only a small number of test
915 queries, which keeps total cost minimal).

918
919
920
Table 13: Average performance and cost of individual LLMs on In-Domain data (sorted in ascending
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
order of cost).

Model	Performance (%)	Cost (\$)
Qwen2.5-7B-Instruct	61.38	0.0607
Llama3.1-8B-Instruct	31.86	0.0877
Mistral-7B-Instruct-v0.2	10.42	0.1123
Qwen2.5-32B-Int4	78.27	0.1380
Minstral-8B-Instruct-2410	48.70	0.3112
Qwen2.5-Math-7B-Instruct	9.80	0.3447
Gemini1.5-Flash	72.90	0.3528
GLM-4-Air	72.00	0.3563
DeepSeek-Coder	80.61	0.4695
DeepSeek-Chat	80.74	0.4740
GPT-4o-Mini	70.67	0.7225
GPT-4o-Mini+CoT	71.71	1.6783
Mixtral-8x7B-Instruct	34.76	1.9891
Llama3.1-70B-Instruct	71.11	2.4712
Qwen2.5-72B-Instruct	79.97	2.4793
QwQ-32B-Preview	59.73	8.3434
Llama3.1-405B-Instruct	77.54	10.2818
GPT-4o	77.53	12.9362
GLM-4-Plus	79.02	19.1334

942
943
Table 14: Average performance and cost of models on Out-of-Domain data (sorted in ascending
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
order of cost).

Model	Performance (%)	Cost (\$)
Qwen2.5-7B-Instruct	59.94	0.0147
Llama3.1-8B-Instruct	44.62	0.0256
Mistral-7B-Instruct-v0.2	12.15	0.0344
Qwen2.5-32B-Int4	87.25	0.0463
Qwen2.5-Math-7B-Instruct	32.85	0.0805
GLM-4-Air	73.54	0.0940
Gemini1.5-Flash	71.99	0.1013
Minstral-8B-Instruct-2410	59.83	0.1112
DeepSeek-Coder	86.33	0.1504
DeepSeek-Chat	86.39	0.1511
GPT-4o-Mini	80.79	0.2928
Mixtral-8x7B-Instruct	27.82	0.5038
GPT-4o-Mini+CoT	80.70	0.5109
Llama3.1-70B-Instruct	75.98	0.6830
Qwen2.5-72B-Instruct	86.08	0.7542
QwQ-32B-Preview	76.30	2.3498
Llama3.1-405B-Instruct	82.06	2.9023
GPT-4o	84.87	5.2990
GLM-4-Plus	87.03	5.4369

967
A.6 PRICING OF CANDIDATE LLMs968
969
970
971
We report both input and output token pricing (\$/1M tokens) for all candidate models. Candidate
LLMs exhibit drastic variation in pricing. Table 17 summarizes the base set of LLMs for in-domain
and out-of-domain datasets, while Table 18 and Table 19 details the pricing of models used for
MMLU-Pro and BFCL ToolCalling benchmarks.

972 Table 15: Average performance and cost of models on MMLU-Pro, sorted in ascending order of
973 cost.
974

975 Model	976 Performance (%)	977 Cost (\$)
977 Gemini-1.5-Flash-002	978 63.80	979 0.3316
978 Gemini-2.0-Flash-Exp	980 78.10	981 0.8765
980 GPT-4.1-Nano	982 61.68	983 0.8847
982 Meta-Llama-3.1-70B	984 53.08	985 2.1059
984 GPT-4.1-Mini	986 78.55	987 2.3568
986 Meta-Llama-3-70B-Instruct	988 54.95	989 2.3778
988 Meta-Llama-3.1-70B-Instruct	990 63.67	991 3.5321
990 Meta-Llama-3-70B	992 53.37	993 3.7496
992 Claude-3.5-Haiku (2024-10-22)	994 61.47	995 4.5741
994 Gemini-1.5-Pro-002	996 71.61	997 5.0187
996 O4-Mini	998 81.67	999 5.5064
998 GPT-4.1	1000 79.47	1001 11.7164
1000 Claude-3.5-Sonnet (2024-10-22)	1002 77.81	1003 17.4792
1002 Claude-3.5-Sonnet	1004 77.35	1005 18.4651

990 Table 16: Average performance and cost of LLMs on BFCL-V3 (Toolcall) (sorted in ascending
991 order of cost).
992

993 Model	994 Performance (%)	995 Cost (\$)
995 Gemini-1.5-Flash	996 88.00	997 0.0049
996 GPT-4.1-Nano	998 77.33	999 0.0059
998 GPT-4o-Mini	1000 90.67	1001 0.0088
1000 Gemini-2.0-Flash	1002 93.33	1003 0.0093
1002 GPT-4.1-Mini	1004 84.00	1005 0.0236
1004 Gemini-1.5-Pro	1006 93.33	1007 0.0773
1006 O4-Mini	1008 86.67	1009 0.1100
1008 GPT-4.1	1010 94.67	1011 0.1177
1010 GPT-4o	1012 96.00	1013 0.1471
1012 O1	1014 89.33	1015 1.8584

1006 Table 19: Pricing details of candidate LLMs selected for BFCL Toolcalling (\$/1M tokens).
1007

1008 LLM	1009 Input \$/1M	1010 Output \$/1M
1010 GPT-4o	1011 2.50	1012 10.0
1012 GPT-4o-Mini	1013 0.15	1014 0.60
1013 o1	1014 15.0	1015 60.0
1014 GPT-4.1-Nano	1015 0.10	1016 0.40
1016 Gemini-1.5-Flash	1017 0.08	1018 0.30
1018 Gemini-1.5-Pro	1019 1.25	1020 5.00
1020 Gemini-2.0-Flash	1021 0.15	1022 0.60
1022 GPT-4.1	1023 2.00	1024 8.00
1024 GPT-4.1-Mini	1025 0.40	1026 1.60
1026 o4-Mini	1027 1.10	1028 4.40

1019 A.7 ADDITIONAL INTERPRETABILITY RESULTS

1021 **Alignment Between Discrimination Vectors and LLM Abilities.** Table 20 demonstrates that
1022 the discrimination vectors (α_i) learned by POLLINATOR align strongly with the ability profiles (θ_j)
1023 of individual LLMs. Comparing Qwen2.5-7B-Instruct with its math-specialized variant, Qwen2.5-
1024 Math-7B-Instruct, we find that queries, with higher mean routing probability, are directed to the general
1025 model on in-domain tasks overall, while math-focused queries (e.g., from MATH and GSM8K) are
preferentially routed to the specialized model. Conversely, non-math queries from datasets such

1026 Table 17: Pricing details of different LLMs (\$/1M tokens) selected for In-Domain and Out-of-
1027 Domain Datasets.
1028

1029	LLM	1030 Input \$/1M	1031 Output \$/1M
1030	DeepSeek-Chat	0.14	0.28
1031	DeepSeek-Coder	0.14	0.28
1032	Gemini-1.5-Flash	0.075	0.30
1033	GLM-4-Air	0.137	0.137
1034	GLM-4-Flash	0.0137	0.0137
1035	GLM-4-Plus	6.85	6.85
1036	GPT-4o	2.50	10.0
1037	GPT-4o-Mini	0.15	0.60
1038	GPT-4o-Mini+CoT	0.15	0.60
1039	Llama3.1-8B-Instruct	0.10	0.20
1040	Llama3.1-70B-Instruct	0.792	0.792
1041	Llama3.1-405B-Instruct	3.15	3.15
1042	Minstral-8B-Instruct-2410	0.10	0.20
1043	Mistral-7B-Instruct-v0.2	0.10	0.20
1044	Mixtral-8x7B-Instruct	0.54	0.54
1045	Qwen2.5-32B-Instruct-GPTQ-Int4	0.10	0.20
1046	Qwen2.5-7B-Instruct	0.10	0.20
1047	Qwen2.5-72B-Instruct	1.08	1.08
1048	Qwen2.5-Math-7B-Instruct	0.10	0.20
1049	QwQ-32B-Preview	1.20	1.20

1050 Table 18: Pricing details of candidate LLMs selected for MMLU-Pro (\$/1M tokens).
1051

1052	LLM	1053 Input \$/1M	1054 Output \$/1M
1053	Claude-3.5-Sonnet	3.00	15.00
1054	Gemini-1.5-Pro	1.25	5.00
1055	Llama3.1-70B	0.60	0.60
1056	Llama3.1-70B-Instruct	1.00	1.00
1057	Llama3-70B	0.65	2.75
1058	Llama3-70B-Instruct	0.59	0.79
1059	Claude-3.5-Sonnet-(alt)	3.00	15.00
1060	Claude-3.5-Sonnet-2024	3.00	15.00
1061	Claude-3.5-Haiku-2024	0.80	4.00
1062	Gemini-1.5-Flash	0.08	0.30
1063	Gemini-2.0-Flash	0.15	0.60
1064	GPT-4.1-Nano	0.10	0.40
1065	GPT-4.1	2.00	8.00
1066	GPT-4.1-Mini	0.40	1.60
1067	o4-Mini	1.10	4.40

1069 as MMLU and CommonsenseQA, are mostly routed to the general model. This indicates that the
1070 learned discrimination vectors (α_i) capture model-specific strengths and effectively guide query al-
1071 location.
1072

1073
1074
1075
1076 **LLM Ability and Query Difficulty.** Figure 5 highlights consistent performance improvements of
1077 Llama3.1-405B-Instruct over its smaller counterpart. Figure 6 illustrates example queries with pre-
1078 dicted β_i , highlighting strong agreement with human labels. These qualitative cases further demon-
1079 strate that the learned routing signals capture meaningful task difficulty. Overall, the results under-
score the reliability of our scoring mechanism across diverse query types.

1080 Table 20: Mean predicted routing probability of the general (Qwen2.5-7B-Instruct) vs. math-
 1081 specialized (Qwen2.5-Math-7B-Instruct) models. Math queries are routed more often to the spe-
 1082 cialized model, while non-math queries favor the general model.

1083

1084 Task	1085 Qwen2.5-7B-Instruct	1086 Qwen2.5-Math-7B-Instruct
1085 All ID Tasks	1086 0.60	0.14
1086 MATH	0.32	0.70
1087 GSM8K	0.37	0.44
1088 MMLU	0.60	0.04
1089 CommonsenseQA	0.74	0.07

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

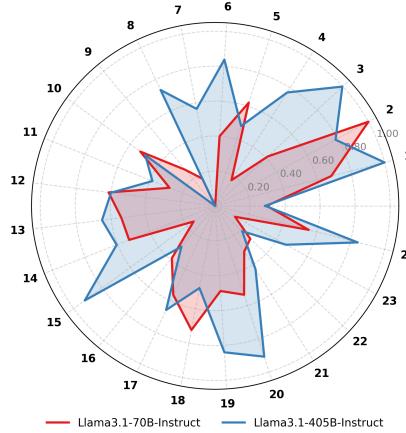


Figure 5: Estimated ability profiles (θ_j) over 25 dimensions. Comparison of Llama3.1-70B-Instruct and Llama3.1-405B-Instruct, showing consistent gains for the larger model.

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

Type: Geometry
Level: Level 5

Problem: Points A, B, C, D, E, F, G, H, and K form a polygon such that each of the segments AB, BC, CD, DE, EF, FG, GH, and HK has length 4. All angles are right angles except at points D and F. In triangle DEF, which is an isosceles right triangle with legs DE = EF = 4, a perpendicular EM is drawn from E to DF. If EM = x, find x^2 .

Difficulty: 0.7052

Type: Counting and Probability
Level: Level 1

Problem: Find the value of $(3!)! / 3!$.

Difficulty: -0.7126

Figure 6: Example queries with predicted b_i values compared to human labels, illustrating the close correspondence between predicted and true difficulty.

1126

A.8 RUNTIME AND COMPLEXITY ANALYSIS

The complexity of Algorithm 1 is dominated by the sorting operation in Line 4. For a model pool of size N , naive sorting takes $\mathcal{O}(N \log N)$ time. The remaining operations are linear, $\mathcal{O}(N)$, as follows: **Predictor Invocation (Line 3):** Fetching ex-ante performance and cost predictions requires $\mathcal{O}(N)$ time.

Utility Computation (Line 4): Calculating the utilities $\{u_{ij}\}_{j=1}^N$ also takes $\mathcal{O}(N)$ time (see Sec. 2.2).

Utility Sorting (Line 4): Sorting the computed utilities is the most expensive step, with complexity

1134 $\mathcal{O}(N \log N)$, dominating the overall runtime.
 1135 **Iterative Thresholding (Lines 6–12):** In the worst case, the loop scans all utilities, taking $\mathcal{O}(N)$
 1136 time.
 1137 **Primal Serving Scheme (Line 14):** Constructing the primal serving scheme requires an additional
 1138 $\mathcal{O}(N)$ pass.

1139 **A.9 DETAILED ABLATION STUDY OF THE PREDICTOR**

1141 Table 21 presents a detailed ablation of our predictor (without the optimizer), analyzing the impact
 1142 of ability dimension (θ), number of neighbors (k), edge-weighting, masking ratio, and embedder
 1143 selection. Performance generally improves with increasing θ up to an optimal point. Across different
 1144 configurations, our predictor consistently outperforms baseline methods, demonstrating robustness
 1145 to design choices.

1146 **A.10 METHODOLOGY**

1147 The overall training and inference flows of POLLINATOR are illustrated in Figure 7, showing the
 1148 dual-tower encoder and IRT-based prediction head used to generate serving plans.
 1149

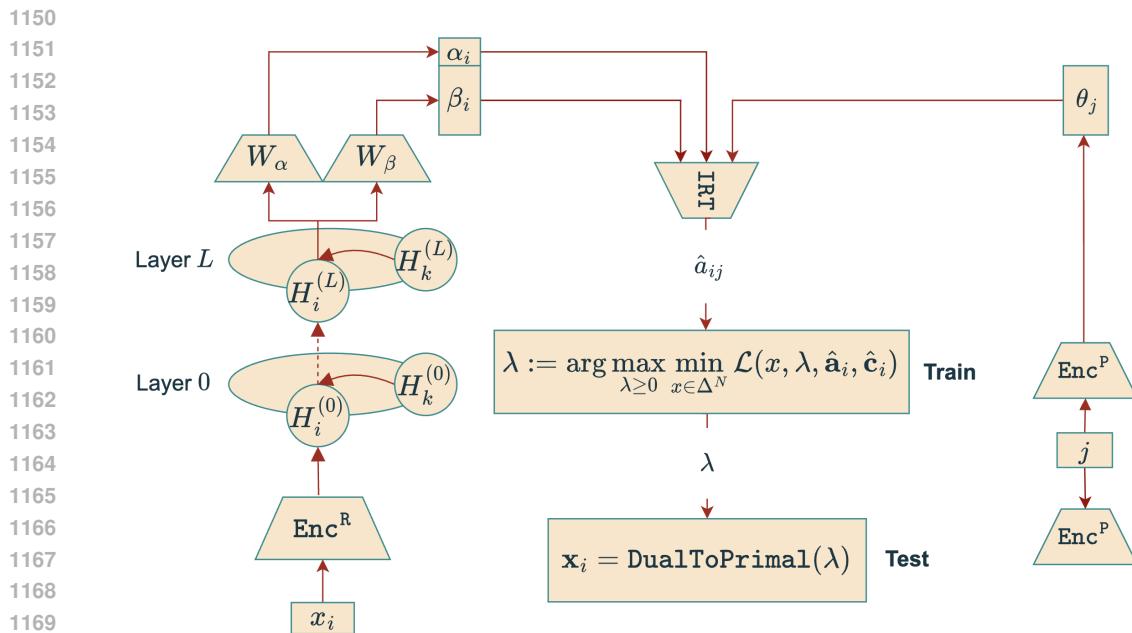


Figure 7: POLLINATOR: Train & Inference Flows. The left tower encodes request i with a GCN with L layers. The right tower encodes producer j . The bespoke IRT-based head combines the outputs of the two towers to generate ex ante predictions. In train flow, λ is the result of optimization on a held-out validation set, which, during inference, is used to compute the primal serving plan \mathbf{x}_i via Algorithm 1.

A.11 CANDIDATE LLMs PROFILE DESCRIPTIONS

Table 22 lists the candidate large LLMs used in our experiments for MMLU-Pro & BFCL-V3, along with their key profile descriptions.

B ADDITIONAL RELATED WORKS

Item Response Theory. Item Response Theory (IRT) (Woodruff & Hanson, 1996) models the interaction between latent human ability and item difficulty via logistic functions, ensuring interpretability through monotonicity. Extensions such as MIRT (Reckase, 2006) and neural variants (e.g., NCDM (Wang et al., 2020)) capture richer interactions. Beyond education, IRT has been applied to model evaluation (Liu et al., 2024), recommendation (Liu et al., 2023), leaderboard ranking

1188 Table 21: Ablation study of the predictor (without optimizer). Columns indicate ability (θ_j), dimension
 1189 (D), number of neighbors (k), edge-weight, node label masking, request encoder (Enc^R), and
 1190 performance. Bold values indicate the best configuration within each block.

1191

1192 Model	1192 D	1192 k	1192 Edge-weight	1192 Masking Ratio	1192 Enc^R	1192 Performance
Baselines						
1193 Small LLM	1193 –	1193 –	1193 X	1193 X	1193 –	1193 48.70%
1194 Large LLM	1194 –	1194 –	1194 X	1194 X	1194 –	1194 77.53%
1195 KNN-Router	1195 –	1195 5	1195 X	1195 X	1195 –	1195 74.38%
1196 MIRT-Router	1196 –	1196 –	1196 X	1196 X	1196 –	1196 81.17%
1197 NIRT-Router	1197 –	1197 –	1197 X	1197 X	1197 –	1197 75.26%
POLLINATOR: Ablation on D and k (no edge-weight)						
1198 POLLINATOR	1198 3	1198 3	1198 X	1198 X	1198 bert-base-uncased	1198 71.04%
	1198 5	1198 3	1198 X	1198 X	1198 bert-base-uncased	1198 80.51%
	1198 8	1198 3	1198 X	1198 X	1198 bert-base-uncased	1198 79.26%
	1198 16	1198 3	1198 X	1198 X	1198 bert-base-uncased	1198 82.08%
	1198 16	1198 5	1198 X	1198 X	1198 bert-base-uncased	1198 81.73%
	1198 16	1198 10	1198 X	1198 X	1198 bert-base-uncased	1198 81.94%
	1198 16	1198 20	1198 X	1198 X	1198 bert-base-uncased	1198 82.03%
	1198 25	1198 3	1198 X	1198 X	1198 bert-base-uncased	1198 82.28%
	1198 25	1198 5	1198 X	1198 X	1198 bert-base-uncased	1198 82.24%
	1198 25	1198 10	1198 X	1198 X	1198 bert-base-uncased	1198 82.13%
	1198 25	1198 20	1198 X	1198 X	1198 bert-base-uncased	1198 81.53%
POLLINATOR: Edge-weight, varying D and k						
1207 POLLINATOR	1207 3	1207 3	1207 ✓	1207 X	1207 bert-base-uncased	1207 71.43%
	1207 5	1207 3	1207 ✓	1207 X	1207 bert-base-uncased	1207 80.49%
	1207 8	1207 3	1207 ✓	1207 X	1207 bert-base-uncased	1207 79.26%
	1207 16	1207 3	1207 ✓	1207 X	1207 bert-base-uncased	1207 82.07%
	1207 25	1207 3	1207 ✓	1207 X	1207 bert-base-uncased	1207 81.96%
	1207 35	1207 3	1207 ✓	1207 X	1207 bert-base-uncased	1207 80.52%
	1207 45	1207 3	1207 ✓	1207 X	1207 bert-base-uncased	1207 81.25%
	1207 3	1207 5	1207 ✓	1207 X	1207 bert-base-uncased	1207 71.12%
	1207 5	1207 5	1207 ✓	1207 X	1207 bert-base-uncased	1207 80.27%
	1207 8	1207 5	1207 ✓	1207 X	1207 bert-base-uncased	1207 79.37%
	1207 16	1207 5	1207 ✓	1207 X	1207 bert-base-uncased	1207 81.90%
	1207 25	1207 5	1207 ✓	1207 X	1207 bert-base-uncased	1207 81.20%
	1207 35	1207 5	1207 ✓	1207 X	1207 bert-base-uncased	1207 80.53%
	1207 45	1207 5	1207 ✓	1207 X	1207 bert-base-uncased	1207 80.72%
POLLINATOR: Node Masking						
1219 POLLINATOR	1219 16	1219 3	1219 ✓	1219 0.1	1219 bert-base-uncased	1219 81.96%
	1219 16	1219 3	1219 ✓	1219 0.2	1219 bert-base-uncased	1219 82.01%
	1219 16	1219 3	1219 ✓	1219 0.3	1219 bert-base-uncased	1219 81.97%
	1219 16	1219 3	1219 ✓	1219 0.5	1219 bert-base-uncased	1219 81.82%
	1219 25	1219 5	1219 ✓	1219 0.1	1219 bert-base-uncased	1219 81.79%
	1219 25	1219 5	1219 ✓	1219 0.2	1219 bert-base-uncased	1219 81.89%
	1219 25	1219 5	1219 ✓	1219 0.3	1219 bert-base-uncased	1219 82.12%
	1219 25	1219 5	1219 ✓	1219 0.5	1219 bert-base-uncased	1219 81.68%
POLLINATOR: Different Enc^R						
1226 POLLINATOR	1226 16	1226 3	1226 X	1226 X	1226 all-MiniLM-L6-v2	1226 80.86%
	1226 25	1226 3	1226 X	1226 X	1226 all-MiniLM-L6-v2	1226 80.74%
	1226 16	1226 3	1226 X	1226 X	1226 all-mpnet-base-v2	1226 81.70%
	1226 25	1226 3	1226 X	1226 X	1226 all-mpnet-base-v2	1226 82.37%
	1226 25	1226 3	1226 X	1226 X	1226 text-embedding-3-large	1226 81.97%
	1226 16	1226 3	1226 ✓	1226 X	1226 all-mpnet-base-v2	1226 81.70%
	1226 16	1226 3	1226 ✓	1226 X	1226 all-MiniLM-L6-v2	1226 80.75%
	1226 16	1226 3	1226 ✓	1226 X	1226 text-embedding-3-large	1226 80.15%
	1226 25	1226 5	1226 ✓	1226 X	1226 all-mpnet-base-v2	1226 82.60%
	1226 25	1226 5	1226 ✓	1226 X	1226 all-MiniLM-L6-v2	1226 80.74%

1236

1237

1238 (Rodriguez et al., 2021), and LLM assessment (Guinet et al., 2024; Liu et al., 2025). We adopt IRT
 1239 for its interpretability and proven effectiveness in human and machine assessment.

1240

1241

LLM Routers. LLM routing seeks to assign queries to the most suitable model for optimal accuracy–cost tradeoffs. Early works like FrugalGPT (Chen et al., 2023) and AutoMix (Aggarwal et al.,

Table 22: List of candidate LLMs with their profile descriptions.

LLM Name	Profile Description
Gemini 2.0 Flash	Released on Dec 11, 2024 by Google DeepMind. Experimental version of Gemini 2.0 Flash, focusing on enhanced speed and performance. Features include a Multimodal Live API for real-time audio and video interactions, improved spatial understanding, native image and controllable text-to-speech with watermarking, and integrated tool use, including Google Search. Also introduces improved agentic capabilities and a new Google Gen AI SDK.
Gemini 1.5 Pro 002	Released on Sep 24, 2024 by Google DeepMind. Updated Gemini 1.5 Pro with a 2M token context window and up to 8,192 token outputs. Designed for diverse tasks via Google AI Studio and Vertex AI.
Meta-Llama-3.1-70B	Released on Jul 23, 2024 by Meta AI. A 70B parameter model pre-trained on 15T tokens from public sources, designed for advanced language understanding, coding, and reasoning.
Claude 3.5 Haiku	Released on Oct 22, 2024 by Anthropic. Optimized for efficiency and speed with a 200K token context window and 8,192 token outputs. Suitable for rapid-response tasks.
Meta-Llama-3.1-70B-Instruct	Released on Jul 23, 2024 by Meta AI. Instruction-tuned variant of Llama 3.1-70B, fine-tuned on public datasets and 10M+ human annotations to enhance instruction-following.
GPT-4.1 Nano	Released on Apr 14, 2025 by OpenAI. Compact GPT-4.1 version for on-device tasks with reduced compute needs while maintaining strong performance.
Gemini 1.5 Flash 002	Released on Sep 24, 2024 by Google DeepMind. Updated Gemini 1.5 Flash with a 1M token context window and up to 8,192 token outputs. Optimized for speed and cost-efficiency.
o4-Mini	Released on Aug 6, 2024 by OpenAI. A smaller GPT-4o variant with 1,047,476 token context window and 32,768 token outputs, offering efficiency while retaining robust performance.
Claude 3.5 Sonnet	Released on Oct 22, 2024 by Anthropic. Balances performance and efficiency with a 200K token context window and 8,192 token outputs. General-purpose model.
Claude 3.5 Sonnet	Released on Oct 22, 2024 by Anthropic. Part of the Claude 3.5 series, offering 200K context window, optimized for diverse tasks. Achieved 59.1% on GPQA Diamond benchmark.
Meta-Llama-3-70B	Released on Apr 18, 2024 by Meta AI. A 70B parameter model pre-trained on 15T tokens, designed for high-performance language tasks.
Meta-Llama-3-70B-Instruct	Released on Apr 18, 2024 by Meta AI. Instruction-tuned version of Llama 3-70B, aligned with user queries via public datasets and 10M+ annotations.
GPT-4.1	Released on Apr 14, 2025 by OpenAI. Enhanced GPT-4 variant with improved reasoning, coding, and agentic abilities.
GPT-4.1 Mini	Released on Apr 14, 2025 by OpenAI. Smaller GPT-4.1 variant, optimized for efficiency while maintaining strong task performance.
GPT-4.1-Nano	Released on April 14, 2025, by OpenAI. A compact version of the GPT-4.1 model, designed for on-device tasks with reduced computational requirements. Maintains strong performance across various benchmarks while being optimized for efficiency.
GPT-4o	GPT-4o: Released on November 20, 2023, by OpenAI. A large language model capable of handling complex tasks requiring deep understanding of language. Features include advanced reasoning capabilities, multimodal capabilities, and a context window of up to 128,000 tokens. Available through OpenAI's API.
GPT-4o-Mini	GPT-4o Mini: Released on November 20, 2023, by OpenAI. A smaller variant of the GPT-4o model, designed for efficiency while maintaining strong performance across various tasks. Optimized for applications requiring reduced computational resources.
o1	Released on August 16, 2024, by OpenAI. A large language model capable of handling complex tasks requiring deep understanding of language. Features include advanced reasoning capabilities, multimodal capabilities, and a context window of up to 128,000 tokens. Available through OpenAI's API.

2023) use cascaded inference, while later methods train lightweight routers such as HybridLLM (Ding et al., 2024), RouteLLM (Ong et al., 2024), and Zooter (Lu et al., 2023). RouterDC (Chen et al., 2024) and KNN-based approaches (Hu et al., 2024) further reduce costs, and GraphRouter (Feng et al., 2024) leverages GNNs but depends on task priors. EmbedLLM (Zhuang et al., 2025) learns compact embeddings via matrix factorization to support routing at scale. Commercial systems like Martian¹⁵ and Neutrino AI¹⁶ demonstrate practical benefits, reporting major savings. Unlike these, our approach couples difficulty-aware estimation with online dual optimization, yielding interpretable and cost-efficient routing.

¹⁵<https://withmartian.com>¹⁶<https://neutrinoapp.com>

1296 **Graph-based Modeling.** Graphs naturally capture relational structures (Fey et al., 2023; Cao
1297 et al., 2023; Chen et al., 2022). Classical methods like label propagation (Xie et al., 2022) leverage
1298 edges for transductive learning, while GNNs (Kipf, 2016; Hamilton et al., 2017) extend message
1299 passing to learn expressive representations. Recent work highlights their zero-/few-shot potential
1300 (Fey et al., 2023; Cao et al., 2023) in domains such as recommendation and social networks. Build-
1301 ing on these advances, we employ GNNs to design the predictor of POLLINATOR¹⁷

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

¹⁷All code and datasets for POLLINATOR are provided in the supplementary material.