
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

hPOLLINATOR: OPTIMAL MATCHMAKING IN AN IN-
TELLIGENCE MARKETPLACE

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid growth of the intelligence marketplace has created an abundance of
Large Language Model (LLM) producers, each with different cost–performance
tradeoffs, making optimal selection challenging and resource-intensive. We
present POLLINATOR, a novel router that integrates a frugal, data-efficient pre-
dictor with an online dual-based optimizer. The predictor combines graph-based
semi-supervised learning with an Item Response Theory (IRT) head, reducing
training cost by up to 49% while improving predictive accuracy over prior state-
of-the-art. The optimizer formulates matchmaking as a strongly convex problem,
which allows efficient dual-to-primal conversion for real-time serving. Extensive
experiments demonstrate that POLLINATOR delivers superior cost–performance
tradeoffs: achieving 0.43%-1.5% gains at 71%-93% of the cost of state-of-the-
art router, 3-5% gains at only 1.9-3% of the cost of the best individual producer,
and up to 10.6% higher accuracy at just 0.3-35.7% of the cost on challenging real-
world benchmarks such as BFCL-V3 and MMLU-Pro. Finally, the interpretability
of learned query difficulties and model abilities demonstrates POLLINATOR’s ef-
fectiveness for dynamic and cost-efficient intelligence matchmaking.

1 INTRODUCTION

The Intelligence Marketplace. The commoditization of (artificial) intelligence, which gave birth
to the phrase Intelligence on Tap, coupled with the rapid proliferation in applications that exploit it
as a Design Material Holmquist (2017), catalyzed a Cambrian explosion of intelligent applications.
The author of such an application, however, faces a problem of plenty: there are many producers
of intelligence1 with varying cost-performance tradeoffs on generic benchmarks, making it hard
to choose an optimal one appropriate specific to the application at hand. Furthermore, given the
frequent updates that alter performance and rapidly falling costs, the process of optimization has to
be repeated continuously – thus putting a constant demand on the author’s resources.

Matchmaking with Router. To remedy, router – which routes each request independently to a
producer from a pool based on projected cost-performance tradeoff – was conceptualized Hu et al.
(2024). A canonical router consists of two components: a collection of predictors that project the
cost and performance for each request-producer pair; and, an optimizer that makes the tradeoff based
on the projection.

Predictor & Data Efficiency. While a wide gamut of predictors, ranging from simple k-Nearest
Neighbor Hu et al. (2024) to sophisticated Small Language Model with bespoke Bradley-Terry
head Ong et al. (2024) and Item Response Theory Song et al. (2025), have been explored, the
angle of data-efficiency has remained underexplored. Recently, Tsiourvas et al. (2025) approached
data-efficiency in predictor through the lens of causal inference. However, we remark that the causal-
inference setting is overly restrictive: one can indeed send the same request (unit) to more than one
producers (treatments) in order to gauge cost and performance (treatment effects), which is a de-
parture from the assumptions in causal-inference. In this work, we combine the superior predictive
performance rendered by Item Response Theory grounded in psychometry, with the data-efficiency
afforded by graph-based semi-supervised learning to design POLLINATOR, a novel data-efficient
predictor.

1A search in Hugging Face for Transformer-based models with 3B+ parameters results in 170K+ hits. The
benchmarking service, Artificial Analysis, indexes 250 frontier models.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Optimizer & Online Matchmaking. The prevalent approach to matchmaking in the literature has
been to compute the utility of each producer for the given request by blending the predicted perfor-
mance and cost either with a affine combination (with willingness-to-pay as a hyper-parameter) Hu
et al. (2024), or with a convex combination (again a hyper-parameter) Song et al. (2025). Along
similar lines, Somerstep et al. (2025) advances the frontier by designing rate-optimal predictors for
cost and performance. Mei et al. (2025) frames the problem as a Linear Program, and recovers the
primal solution from the dual variables. Taking inspiration from an optimizer designed for two-
sided marketplace Agarwal et al. (2012), we choose to frame the optimization problem as a strongly
convex program, which simplifies the dual-to-primal conversion to facilitate online serving. See
Appendix B for additional related works.

Contributions. In summary, we make the following contributions: 1 POLLINATOR implements
its predictors atop Graph Convolutional Network Kipf (2016) with a novel Item Response Theory
(IRT)-based head that cuts down the training cost by 49%, while surpassing the predictive per-
formance of the vanilla IRT-based predictor proposed in Song et al. (2025); 2 the (Lagrangian)
dual-based online serving scheme, coupled with the strongly convex primal program delivers su-
perior cost-performance tradeoff than the Linear Program-based serving scheme Song et al. (2025)
by boosting performance by 0.43%-1.5% at 71%-93% of the cost; 3 in the in-domain and out-of-
domain setting proposed in Song et al. (2025), POLLINATOR yields 3-5% boost in performance at
mere 1.9-3% of the cost of the best producer; 4 report superior performance in two novel settings on
real-world and contemporary benchmarks, such as BFCL-V3 (tool-calling) and MMLU-Pro, where
POLLINATOR achieves 3-10.6% higher accuracy at only 0.3-35.7% of the best producer’s cost.

2 INTELLIGENCE MARKETPLACE & THE MATCHMAKING PROBLEM

Background. The matchmaker dispatches each inference request emanating from the consumer,
enumerated with i ∈ [M], in a just-in-time fashion to a request-specific optimal producer, j ∈ [N].
Upon receiving the response, we assume that the matchmaker possesses the ability to compute a ex
post quality – such as accuracy, aij ∈ R+ – as well as the resource consumption – such as cost,
cij ∈ R+ and latency tij ∈ R+ – metrics. Furthermore, we assume that the matchmaker possesses
the corresponding ex ante estimates, âij , ĉij and t̂ij , before dispatching the request. Equipped with
the ex ante estimates, informally, the role of the matchmaker is to maximize the sum total of response
quality, while obeying guardrails on total inference cost, and possibly other resource consumption
metrics. We now frame the matchmaker’s optimization problem formally.

Optimal Matchmaking. At this point, we distinguish between two settings. First, batch infer-
ence, where all the inference requests, i ∈ [M], are known a priori. This formalizes the set-
ting a certain class of consumers operate in, e.g., document summarization and information ex-
traction. We posit the matchmaker’s objective as to maximize the total ex ante response quality,∑

i∈[M]

∑
j∈[N] xij âij , while obeying a guardrail on total inference cost,

∑
i∈[M]

∑
j∈[N] xij ĉij ≤

C, where xij is the collection of primal variables lying on the probability simplex, ∆N , defined
with the constraints xij ≥ 0, ∀i ∈ [M], ∀j ∈ [N] and

∑
j∈[N] xij = 1, ∀i ∈ [M]. We remark that

the consumer may want to impose additional constraints, such as minimum volume commitments,
where each producer is guaranteed to receive a specified minimum volume of inference request,∑

i∈[M] xij ≥ Mj , ∀j ∈ [N]. The second setting is online inference, where the inference requests
arrive in a stream, along with the corresponding ex ante estimates. Specifically, at time i, the deci-
sion xi ∈ ∆N has to be taken, without a foreknowledge of the upcoming requests, xk, ∀k > i. The
ex post cost and quality are defined, in this case, over a long horizon, M . 2 Lastly, the matchmaker
will be required to follow a reference policy, qij , where the desired level of proximity is expressed
as 1

2γ
∑

i

∑
j(xij−qij)

2. In order to ease the exposition, we now focus on the setting where quality
and the cost are the only constraints at play. We remark that our framework extends to a more general
setting, and can incorporate additional linear constraints, such as minimum volume commitments
and p95 latency. Thus, the canonical form the matchmaker’s optimization problem assumes can be
expressed as follows.

2We remark that in practice, certain additional guardrails become desirable in the online setting: e.g., on
p95 latency – which can also be specified as a linear constraint, in terms of Conditional Value-at-Risk (CVaR).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Definition 1 (Optimal Matchmaking).

min
x∈∆N

1

2
γ∥x− q∥F − 1

M

M∑
i=1

N∑
j=1

xij âij s.t.
M∑
i=1

N∑
j=1

xij ĉij ≤ C (1)

Note that Eq. 1 succinctly describes the online version of the problem as well, assuming C is the
long-horizon budget applicable over a span of M requests. Before turning our attention to the
solution of Eq. 1, we lay down the design desiderata for the POLLINATOR – the novel optimal
matchmaker presented in the present work.

Desiderata. In order to ensure practicality of the POLLINATOR system, we impose 2 design
desiderata: 1 Frugality. The cost savings yielded by the matchmaker during inference must
not be offset by the cost of training its predictors; 2 Safety. For a consumer to be able to relinquish
its control over the choice of the producer, it must be assured adherence to the specified guardrails.
We now detail how these desiderata guide the design of POLLINATOR.

2.1 GRAPH-BASED SEMI-SUPERVISED LEARNING & ENSURING FRUGALITY

We design a two-tower architecture reminiscent of recommendation system: the first tower encodes
the request emanating from the consumer; the second tower encodes the producers; while a combiner
combines the output of the two towers and emits the ex ante estimates. We detail each of the
components below.

Request & Producer Towers. The prompt in request i, pi ∈ Σ∗, is first encoded into a dense
vector, xi := EncR(pi), where EncR : Σ∗ 7→ Rd is a pre-trained BERT encoder on vocabulary Σ,
that extracts the embedding corresponding to the [CLS] token that is appended to the prompt. On
the set of prompts in the training dataset, we then induce a k-nearest neighbour graph, G(V, E),
where the similarity between nodes vi, vj ∈ V is defined in terms of the cosine similarity of their
corresponding embeddings, cos(∡xixj). Let A denote the adjacency matrix of this graph, and let
Ã := A + I denote the adjacency matrix of G, with self-loops added. On this graph, the request
tower implements a Graph Convolutional Network (GCN), which propagates information between
two successive layers, l and l + 1, with H(l+1) = σ(D̃− 1

2 ÃD̃− 1
2H(l)W (l)). The embedding of

node vi at layer l = 0 is set to its embedding, H(0)
i = xi. Lastly, the embedding of the node vi

from the last layer of the GCN, H(L)
i , is mapped to a vector, αi ∈ RD, and a scalar, βi ∈ R, via two

learnable linear projections, Wα,Wβ , respectively. Similarly, each producer, j ∈ [N], is mapped to
a embedding, θj ∈ RD, with an encoder, EncP : [N] 7→ RD. In our experiments, the encoder is
a pre-trained BERT that encodes the textual description of the producer, or a simple lookup-based
learnable linear projection, Wθ.

Combiner. Inspired by Item Response Theory (IRT), the combiner treats αi as the discrimination
parameter, which intuitively models the skill-set required to generate a high-quality response to
request, i, and treats βi as its difficulty. On the other hand, θj models the skill-set offered by the
producer j. IRT posits that the probability of obtaining a high-quality response improves with the
degree of match between the skill-set required to process request i, and those offered by producer
j – and is modulated by the difficulty of the request. This intuition is operationalized as: P{Yij =
1 := σ(αT

i θj − βi)}, where σ(x) = 1
1+e−x is the usual sigmoid function.

Training & Inference. During training, the performance predictor is fit by minimizing the binary
cross-entropy loss. The cost estimate is simply taken to be the average cost in training dataset.
During inference, we first induce a graph among the incoming request and its k nearest neighbors in
the training dataset, and then run the forward-pass for both the towers. Figure 7 in Appendix A.10
summarizes the salient workflows.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Dual Serving Scheme
1: Input: Request i; Dual λ.
2: Output: Primal serving scheme {xij}Nj=1.
3: Fetch ex ante predictions {âij}Nj=1 and {ĉij}Nj=1 ▷ Invoke predictors.
4: Compute utilities, {uij}Nj=1, and sort them into ui(1), · · · , ui(N) ▷ Compute and sort utilities.
5: U = γ, j = 1
6: repeat
7: if ui(j) +

U−ui(j)

j
≤ 0 then

8: j = j − 1; break
9: else

10: U = U − ui(j); j = j + 1; continue
11: end if
12: until j ≥ N
13: νi =

U
j

14: xu(k) =
ui(k)+νi

γ
,∀k ≤ j; xu(k) = 0, ∀k > j

2.2 DUAL-BASED OPTIMIZATION & ADHERENCE TO SAFETY

The primal optimization problem formulated in Eq. 1 comprises a strongly-convex objective and
several linear constraints, thus rendering several off-the-shelf solvers immediately applicable at a
first glance. However, in practice, its deployment faces two challenges.

Predict-and-Optimize. The first problem arises because of the predict-and-optimize paradigm.
Ideally, the primal problem in Eq. 1 should have been defined in terms of the ex post coefficients,
aij and cij . However, we only have access to the corresponding ex ante coefficients, âij and ĉij .
Thus issues such as predictor’s inaccuracy and mis-calibration plague the constrained optimization
via both constraints and the objective. We address this issue via improving the accuracy and the
calibration of the predictors, and leave a more principled investigation based on the predict-then-
optimize framework for a future work.

Online Optimization. The second problem appears in the case of online inference. Without a priori
knowledge of the M requests, the primal problem cannot even be formulated. POLLINATOR solves
it via resorting to the dual. The Lagrangian of Eq. 1 is presented in Eq. 2.

min
x∈∆N

max
λ,δ≥0,ν

1

2
γ∥x−q∥F− 1

M

M∑
i=1

N∑
j=1

xij âij+

M∑
i=1

N∑
j=1

λ(xij ĉij−C)−
∑
i

νi(
∑
j

xij−1)−
∑
i

∑
j

δijxij

(2)

The stationarity condition amongst the Karush-Kuhn-Tucker (KKT) conditions allow us to express
the primal solution in terms of the dual variables as, xij =

uij+νi+δij
γ , where the utility, uij :=

γqij +
1
M âij −λĉij . However, this still does not yield a serving plan, given the presence of request-

dependent dual variables, νi and δij , in the numerator.

In order to get rid of the request-dependent dual variables, we need to appeal to the complementary
slackness condition amongst the KKT conditions, which leads to the following proposition.
Proposition 1 (Utility). In the optimal solution for request i, assume producer j1 has more utility
than producer j2, uij1 ≥ uij2 . If xij2 > 0, then xij1 ≥ xij2 > 0.

When the request i arrives, armed with the ex ante estimates, âij and ĉij , and the request-
independent dual variable, λ, we first rank the producers as per their respective utilities. Let
ui(1), · · · , ui(N) represent the ranked list, where ui(1) ≥ · · · ≥ ui(j∗) ≥ · · · ≥ ui(N). Proposi-
tion 1 illuminates a structure in the solution: xi(1) ≥ · · · ≥ xi(j∗) ≥ · · · = xi(N), where xi(j∗) is
the smallest non-zero element. Thus, complementary slackness ensures δi(j) = 0, when j ≤ j∗,
and, primal feasibility ensures,

∑j∗

j=1 xi(j) = 1. This insight allows us to eliminate the last remain-
ing request-specific dual variable, νi, from the expression for the primal solution xij , by ensuring

νi =
γ−

∑j∗
j=1 ui(j)

j∗ . Proposition 2 distils this insight into a operational definition of j∗, which culmi-
nates into the optimal primal serving scheme presented in Algorithm 1. Algorithm 1 is dominated

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

by the sorting step (Line 4), giving an overall complexity of O(N logN) for a model pool of size
N The detailed runtime and complexity analysis is provided in Appendix A.8.
Proposition 2 (Optimal Stopping). j∗ is the maximum j such that ui(j) +

γ−
∑

k≤j ui(k)

j > 0.

Note that LLM pricing depends on multiple deployment factors—cloud provider, instance type,
region, reservation model, negotiated rates, and API-specific pricing (e.g., per-million-token rates
or provisioned throughput). In this work, we abstract these nuances by assuming a per-million-
token rate card (separately for input, intermediate, and output tokens), derived from the underlying
unit economics of the deployment. Whenever this rate card changes, the optimization problem
(Eq. 1) must be re-solved and the resulting dual variables redistributed to the workers executing
Algorithm 1. Proposition 1-2 and Algorithm 1 extend seamlessly to any optimization problem with
strongly convex objective and linear constraints (similar to Eq. 1) – only requiring a change in
the expression for utility, uij (see Sec 2.2). Every new constraint (e.g minimum LLM usage volume
commitment) added to Eq. 1 need to be added to uij with an appropriate sign (depending on whether
the constraint is covering- or packing-type) and multiplied by its own Lagrangian dual variable.

3 EXPERIMENTAL SETUP

3.1 BENCHMARK & IMPLEMENTATION

In-Domain Dataset (ID). Following Song et al. (2025), we evaluate POLLINATOR’s in-domain
generalization capability over 8 datasets: 1 MMLU (Hendrycks et al., 2020) (reasoning and knowl-
edge across 57 domains), 2 CMMLU (Li et al., 2024) (a Chinese incarnation of MMLU), 3
ACLUE (Zhang & Li, 2023) (ancient Chinese language-understanding), 4 ARC C (Clark et al.,
2018) (advanced reasoning), 5 HotpotQA (Yang et al., 2018) (question-answer requiring multi-hop
reasoning), 6 SQuAD (Rajpurkar et al., 2018) (reading comprehension), 7 MATH (Hendrycks
et al., 2021) (competition-level mathematics), and, 8 MBPP (Austin et al., 2021) (basic coding).
20 LLMs were in the candidate pool (see Table 17 in Appendix A.4). POLLINATOR is trained on
70% of the combined dataset, and tested in-domain on the remaining 30%.

Out-of-Domain Dataset (OOD). Following Song et al. (2025), we evaluate POLLINATOR’s out-
of-domain generalization capability over 4 datasets that we not part of the training: 9 CEVAL
(Huang et al., 2024) (tasks in Chinese language), 10 CommonsenseQA (Talmor et al., 2019) (com-
monsense reasoning), 11 GSM8K (Cobbe et al., 2021) (grade-school mathematics), and, 12 Hu-
manEval (Chen et al., 2021) (coding). The same candidate LLM pool as In-Domain Dataset (ID) is
employed. We emphasize that 100% of the combined datasets are used in test.

MMLU-Pro & BFCL-V3. In order to further evaluate POLLINATOR’s efficacy on contempo-
rary datasets and real-world scenarios such as tool-call, we benchmark in-domain on 2 additional
datasets: 13 MMLU-Pro (Wang et al., 2024) (extends MMLU with harder multiple-choice ques-
tions with 10 possible choices, instead of 4), and, 14 BFCL-V3 (Simple) (Patil et al., 2025) (rea-
soning and ability to call external tools and APIs in real-world setting – a key skill for agentic ap-
plications). The LLM candidate pool consists of 15 members, including GPT and Gemini families,
for MMLU-Pro (details in Table 18 in Appendix A.6), and 10 for BFCL-V3 (Simple), including
OpenAI o-series and Llama-3.1 families (see Table 19 in Appendix A.6 for an exhaustive list). For
each of these 2 datasets, 70% is used for training and the rest 30% for testing (we emphasize that
we do not combine the datasets). Table 12 in Appendix A.3 enumerates comprehensive details on
all 14 datasets, including evaluation metrics and dataset cardinality.

Implementation. We use bert-base-uncased 3 as the request encoder, EncR. The producer
encoder, EncP, simply encodes the producer ID, j ∈ [M]. The GCN consists of L = 2 layers
with hidden dimension of 64 and dropout rate of 0.3.The producer skill vector θj has dimension 16,
except for the out-of-domain data, where it has dimension 25. The kNN graph construction uses
k = 3 nearest neighbors, with edge weights (optionally) set to the cosine similarity, cos(∡xixj).
POLLINATOR is trained with the Adam optimizer (Adam et al., 2014), with learning rate 1×10−3 and
weight decay 1× 10−5 for 200 epochs. During inference, we induce a graph among the test request
and its k = 3 nearest neighbors. All hyper-parameters were selected based on best performance on
a held-out validation set. All experiments are run on 1 NVIDIA A40 GPU with 40GB memory.

3https://huggingface.co/google-bert/bert-base-uncased

5

https://huggingface.co/google-bert/bert-base-uncased

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2 METRICS & BASELINES

Metrics. We evaluate routing algorithms by the cost-performance tradeoffs they offer in the test
dataset. Given binary ground-truth label, aiji ∈ {0, 1}, where ji is the chosen producer for request i,
Performance (%) is defined in a dataset-dependent manner as either of accuracy, F1, Exact Match
(EM) and Pass@1 over the test dataset (see Table 12 in A.3 for dataset-specific evaluation metrics)
– a methodology that echoes Song et al. (2025). Cost ($) is calculated as per the token counts and
the rate-card for the producer ji, where i indexes the requests in test dataset. In order to highlight
a few salient points on the cost-quality Pareto, we coin performance-first, balanced and cost-first
configurations. In particular, in the performance-first setting, we set a large C in Eq. 1, so that the
optimizer has a large room to maximize accuracy (performance). In cost-first, we set C in a stringent
manner, thus yielding lower performance. Balanced setting sets C to a medium value.

Baselines. We compare POLLINATOR against a set of strong baselines: 1 Small LLM always
routes queries to the specifically chosen small model (likely based on number of parameters) for
each dataset. Following Song et al. (2025), we use Ministral-8B-Instruct-2410 as the Small LLM
for both the In-Domain and Out-of-Domain datasets. For MMLU-Pro, the Small LLM is Meta-
Llama-3.1-70B, while for BFCL-V3(ToolCall), we use GPT-4.1-Nano. Please note the Small LLM is
not necessarily the cheapest model. 2 Large LLM always routes queries to the largest candidate
model. 3 kNN-Router is a simple retrieval-based baseline that selects an LLM based on the top-k
(k = 5 gave the best performance) most similar queries, choosing the lowest-cost model among
them. 4 HybridLLM (Ding et al., 2024) trains a pre-trained encoder (DeBERTa-v3) with matrix
factorization to decide between a small and a large model. 5 RouteLLM (Ong et al., 2024) uses
a binary classifier for pairwise LLM routing. 6 RouterBench (Hu et al., 2024) provides multiple
routing strategies; we adopt its Predictive Router variant to avoid the high cost of querying all
candidate models. 7 MIRT-Router and NIRT-Router (Song et al., 2025) are IRT-based methods
and serve as our closest baselines. We implement only kNN-Router; results for the others are taken
from Song et al. (2025). MIRT-Router is run on MMLU-Pro and BFCL-V3 using their official code,
while NIRT-Router is omitted due to its reliance on costly GPT-4o relevance vectors. Following
Song et al. (2025), we also generate LLM profile descriptions (Table 22 in Appendix A.11) for
candidate models in MMLU-Pro and BFCL-V3 (Simple).

Table 1: Comparison of routing methods in In-Domain Dataset across three distinct performance-
cost tradeoff scenarios. Bold and underline denote the best and second-best results.

Method Performance-First Balanced Cost-First
Performance (%)↑ Cost ($)↓ Performance (%)↑ Cost ($)↓ Performance (%)↑ Cost ($)↓

Small LLM 48.70 0.31 48.70 0.31 48.70 0.31
Large LLM 77.53 12.93 77.53 12.93 77.53 12.93

HybridLLM 54.37 1.98 52.42 1.54 56.65 2.78
RouteLLM 77.25 12.80 73.59 11.15 66.24 7.51
RouterBench 80.01 1.15 79.48 0.53 78.36 0.37
kNN-Router 74.38 1.14 74.38 1.14 74.38 1.14

MIRT-Router 80.67 0.42 80.65 0.42 80.03 0.39
NIRT-Router 80.69 0.55 80.41 0.43 79.37 0.41

POLLINATOR 81.38 0.39 81.38 0.39 80.09 0.26

4 RESULTS

In ID dataset, as seen in Table 1, in the performance-oriented batch inference setting, POLLINA-
TOR delivers 0.8% performance gain over NIRT-Router at 70% of its cost. Similarly, in the cost-
oriented setting, POLLINATOR renders 33% cost reduction over MIRT-Router, at a slightly better
performance. In the balanced setting, POLLINATOR achieves a 0.9% gain over SOTA at 93% of
the cost, and a 5% improvement over the best producer at 3% cost. In OOD (Table 2), the rela-
tive cost reduction in the balanced setting stands at 28.57%, at a similar performance. The ≥ 25%
cost advantage holds on MMLU-Pro and BFCL V3 datasets as well with 1.5% and 0.43% gains
over SOTA, as seen from Table 3. Overall, POLLINATOR delivers a superior Pareto frontier in the
cost-performance plane across ID, OOD, and real-world benchmarks . POLLINATOR effectively
routes queries to the most appropriate model, avoiding unnecessary invocation of expensive LLMs
while respecting global budget constraints. The whole spectrum of performance and cost across

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

all datasets is shown in Figure 1 of Appendix 4.1. The oracle results are presented in Table 11
of Appendix A.5. The average performance and associated costs of individual LLMs for each
dataset are reported in Tables 13, 14, 15, and 16, corresponding to the In-Domain, Out-of-Domain,
MMLU-Pro, and BFCL-V3 (ToolCall) datasets, respectively, in Appendix A.5. The scalability and
robustness of POLLINATOR is discussed in detail in Appendix A.1, where we evaluate end-to-end
latency, throughput, handling of large model pools, resilience to model and query drift, mitigation
of prediction errors and robustness under dynamic pricing and provider availability. These results
demonstrate that POLLINATOR maintains high efficiency and reliability under real-world conditions.

Table 2: Comparison of routing methods in Out-of-Domain Dataset.

Method Performance-First Balanced Cost-First
Performance (%)↑ Cost ($)↓ Performance (%)↑ Cost ($)↓ Performance (%)↑ Cost ($)↓

Small LLM 59.83 0.11 59.83 0.11 59.83 0.11
Large LLM 84.90 5.30 84.90 5.30 84.90 5.30

HybridLLM 63.34 0.73 62.08 0.41 63.79 0.65
RouteLLM 84.39 5.25 79.90 4.74 75.06 3.48
RouterBench 85.50 0.26 85.75 0.16 84.62 0.12
kNN-Router 80.92 0.29 80.92 0.29 80.92 0.29

MIRT-Router 87.12 0.14 87.12 0.14 87.18 0.13
NIRT-Router 87.37 0.15 87.24 0.14 87.46 0.13

POLLINATOR 87.37 0.14 87.63 0.10 87.69 0.09

Table 3: Comparison of routing methods on MMLU-Pro and BFCL V3 (ToolCall) datasets under
the Performance-First setting, reporting model accuracy and associated cost.

Method MMLU-Pro BFCL-V3 (ToolCall)

Performance (%)↑ Cost ($)↓ Performance (%)↑ Cost ($)↓

Small LLM1 53.07 2.10 77.33 0.01
Large LLM2 71.61 5.01 89.33 1.85

kNN-Router 74.23 2.55 86.67 0.02
MIRT-Router 78.84 1.18 90.66 0.008

POLLINATOR 79.18 0.88 92.00 0.006

4.1 PERFORMANCE-COST SPECTRUM

To obtain the full performance–cost tradeoff spectrum, POLLINATOR produces multiple operating
points by varying the optimizer’s hyperparameters, enabling different budget–performance prefer-
ences and effectively balancing accuracy against total computational cost. Each scatter plot addi-
tionally includes the standalone performance–cost pairs of individual LLMs evaluated under the four
settings: In-domain (Figure 1a), Out-of-Domain (Figure 1b), MMLU-Pro (Figure 1c), and BFCL-
V3 (ToolCall) (Figure 1d). We also include an Oracle point where we choose the best and cheapest
LLM for each sample. Comparing these points shows that POLLINATOR consistently achieves more
favorable performance–cost tradeoffs, forming a superior efficiency frontier relative to any individ-
ual LLM. Because the BFCL-V3 (ToolCall) setting contains a very limited amount of training data,
a few standalone LLMs occasionally match or slightly surpass the performance of POLLINATOR.
We are confident that with more training data, POLLINATOR would surpass these cases and restore
its advantage.

5 ABLATION STUDY

We perform a comprehensive ablation study on the performance predictor inside POLLINATOR on
ID datasets to assess the impact of key design decisions, encompassing: 1 request encoder, EncR;
2 choice of k in graph construction; 3 the dimensionality, D, of θj ∈ RD; 4 fraction of labeled
nodes in GCN. Findings are summarized in Table 4 and Table 6. For detailed ablations across all
combinations of EncR , k, D, and edge weighting strategies, refer to Table 21 in Appendix A.9.

1Small LLM refers to Meta-Llama-3.1-70B for MMLU-Pro and GPT-4.1-Nano for ToolCall.
2Large LLM refers to Gemini-1.5-Pro for MMLU-Pro and o1 for ToolCall.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) In-Domain dataset (b) Out-of-Domain dataset

(c) MMLU-Pro dataset (d) BFCL-V3 (ToolCall) dataset

Figure 1: Performance-cost spectrum across In-Domain, Out-of-Domain, MMLU-Pro, and BFCL-
V3 (ToolCall) datasets. Each scatter plot shows performance-cost spectrum of POLLINATOR along-
side the standalone performance-cost pairs of individual LLMs and an Oracle that selects the best
cheapest model per sample.

Table 4: Ablation study of the predictor (without optimizer). Accuracy (%) is reported for different
request encoders, graph neighborhood sizes, and varied model ability dimension. POLLINATOR is
robust to embedding and neighborhood choices, sensitive to model ability dimension. The best
configuration of POLLINATOR is marked with †. Neighborhood size and model ability experiments
use bert-base-uncased as EncR.

Request Encoder (EncR)

EncR Perf. (% ↓)

bert-base-uncased† 82.07 (-)
all-MiniLM-L6-v2 80.75 (↓1.32)
all-mpnet-base-v2 81.70 (↓0.37)
text-embedding-3-large 81.34 (↓0.73)

Graph Neighborhood Size (k)
k Perf. (% ↓)

3† 82.07 (-)
5 81.92 (↓0.15)
10 81.87 (↓0.20)
20 82.02 (↓0.05)

Model Ability Dimension (D)
D Perf. (% ↓)

3 71.43 (↓12.96)
5 80.49 (↓1.58)
8 79.26 (↓2.81)
16† 82.07 (-)
25 81.96 (↓0.11)
35 80.52 (↓1.55)
45 80.25 (↓1.82)

Request Encoder EncR. We experiment with different EncR to encode requests. The best config-
uration (POLLINATOR†) achieves 82.07% accuracy. Alternatives such as all-MiniLM-L6-v24, all-
mpnet-base-v25, and text-embedding-3-large6 show a slight drop in performance of 1.32%, 0.37%,
and 0.73% respectively, as reported in Table 4 (left), indicating that the predictor is robust to the
choice of embedding while preserving strong predictive capability.

Neighborhood Size (k). We analyze predictor performance under varying graph neighborhood
sizes k. The best accuracy occurs at k = 3 (82.07%), while larger neighborhoods (k = 5, 10)
reduce accuracy (81.92%, 81.87%), and k = 20 only partially recovers it (82.02%). This indicates
that large k introduces noisy neighbors, limiting predictor precision (Table 4, middle).

4https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
5https://huggingface.co/sentence-transformers/all-mpnet-base-v2
6https://platform.openai.com/docs/models/text-embedding-3-large

8

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://platform.openai.com/docs/models/text-embedding-3-large

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Effect of node label masking on
predictor performance (relative drop ↓) and
training cost (with savings ↑) on the ID
dataset, without optimizer.

Node Masked (%) Perf. (% ↓) Training Cost ($)
(Saving % ↑)

0 82.07 (-) 208.76 (-)
10 81.96 (↓0.11) 194.32 (6.91 ↑)
20 82.01 (↓0.06) 179.54 (13.99 ↑)
30 81.97 (↓0.10) 164.92 (21.00 ↑)
50 81.82 (↓0.25) 135.66 (35.03 ↑)
60 81.79 (↓0.28) 121.10 (42.00 ↑)
70 81.48 (↓0.59) 106.23 (49.11 ↑) Figure 2: Comparison of GPT-4o-Mini and GPT-

4o-Mini+CoT over 16 dimensions. The CoT vari-
ant improves performance on most dimensions,
showing the benefit of explicit reasoning.

Table 5: Ablation study showing results of POLLINATOR with and without the GCN module across
all datasets. Removing the GCN leads to noticeably lower performance and higher cost.

Method Datasets

In-Domain Out-of-Domain MMLU-Pro BFCL-V3 (ToolCall)

Perf (%)↑ Cost ($)↓ Perf (%)↑ Cost ($)↓ Perf (%)↑ Cost ($)↓ Perf (%)↑ Cost ($)↓
POLLINATOR w/o GCN 80.20 0.63 79.18 0.13 74.23 2.55 86.67 0.02
POLLINATOR 81.38 0.39 87.37 0.14 79.18 0.88 92.00 0.006

Effect of Model Ability Dimension (D). We assess how the model ability dimension D impacts
the predictor’s performance (Table 4, right), reporting results relative to the optimal configuration
(D = 16). Extremely low dimensions (D = 3) severely underfit, causing a 12.96% drop in accuracy.
Moderate dimensions (D = 5 or D = 8) partially capture model abilities, resulting in 1.58%
and 2.81% decreases. Slightly larger dimensions (D = 25) perform comparably to the optimum,
with only a 0.11% drop, indicating sufficient capacity without over-parameterization. Excessively
high dimensions (D = 35 or D = 45) introduce redundancy, causing 1.55% and 1.82% drops.
Intermediate D offers the best balance between expressivity and generalization.

Impact of the GCN Module. To evaluate the contribution of the GCN within POLLINATOR, we
conduct an ablation in which we entirely remove the GCN module and replace it with a non-learned
alternative: simple kNN averaging over the neighborhood (i.e., aggregation without message pass-
ing). As shown in Table 5, this removal leads to consistent degradation across all datasets. In-domain
accuracy drops from 81.38% to 80.20%, out-of-domain from 87.37% to 79.18%, and MMLU-Pro
from 79.18% to 74.23%, with corresponding increases in cost. Even on BFCL-V3, accuracy falls
(92.00% → 86.67%) and cost rises. These results demonstrate that naive neighbor averaging cannot
substitute the learned aggregation performed by the GCN, confirming its essential contribution to
POLLINATOR’s routing quality.

Semi-Supervised Cost-Efficient Training. Labeling all training nodes can be costly, since ob-
taining responses from commercial LLMs incurs significant expense. However, as GCNs naturally
propagate label information across neighboring nodes, full supervision may be unnecessary. To
quantify this, we simulate a semi-supervised setting by randomly masking a fraction of training
node labels and report results in Table 6. The predictor demonstrates strong resilience to missing
supervision. With 70% of nodes masked, the predictor achieves 81.48% accuracy, comparable to the
state-of-the-art MIRT-Router w/o optimizer (81.17%, Table 21, Appendix A.9) and slightly below
the fully supervised setting (82.07%), while reducing training cost by 49%. Intermediate masking
levels (10%–30%) yield proportional savings (6.91%–21%) with minimal performance loss.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(a) (b) (c)

Figure 3: Visualization of interpretability analyses. (a) t-SNE projection of learned discrimination
vectors αi across in-domain datasets, showing task-specific clustering. (b) Routing distribution of
models across query difficulty bins, where lightweight models handle easier queries while advanced
models handle harder ones. (c) Predicted query difficulties (βi) in the MATH dataset, grouped by
human-annotated levels, showing monotonic alignment between model estimates and annotations.

5.1 INTERPRETABILITY OF POLLINATOR

LLM Ability. We examine ability differences within model families using POLLINATOR. Fig-
ure 2 shows GPT-4o-Mini versus its CoT-augmented version, with CoT improving reasoning per-
formance. Similarly, Llama3.1-405B-Instruct outperforms Llama3.1-70B-Instruct (Figure 5, Ap-
pendix A.7). Using a model ability dimension D = 25, trends align with scaling laws (Kaplan et al.,
2020): larger models perform better. Table 13 (Appendix A.5) supports these observations.

Query Difficulty. We assess POLLINATOR’s ability to estimate query difficulty using the MATH
dataset with human-annotated levels. As shown in Figure 3c, the estimated difficulty parameter βi

increases monotonically and closely follows the ground-truth progression. Representative examples
in Figure 6 (Appendix A.7) further illustrate the strong alignment between POLLINATOR’s estimates
and human labels.

Routing Behavior Across Difficulty Levels. We analyze POLLINATOR routing across queries strat-
ified by difficulty (Figure 3b, βi spans −2.14 to 1.84, divided into L1–L5). While top models
like DeepSeek-Coder, DeepSeek-Chat, and GPT-4o achieve highest performance (Table 13 in Ap-
pendix A.5), POLLINATOR routes queries cost-efficiently. Easier queries (L1–L2) use lightweight
models (Qwen2.5-32B-Int4, Mistral-7B, GLM-4-Air), intermediate bins (L3–L4) show mixed rout-
ing, and hardest queries (L5) prefer top-tier models like DeepSeek-Coder.

Discrimination Vector Analysis. In POLLINATOR, the discrimination vector αi encodes the skill
requirements for a query. To assess whether these vectors capture task-level structure, we cluster
queries based on their learned representations and project them into 2D using t-SNE (Figure 3a).
Queries from the same dataset form cohesive clusters, showing that POLLINATOR effectively learns
task-aligned skill representations. Some clusters partially overlap, reflecting shared skills: for ex-
ample, ARC C and MMLU overlap due to similar reasoning skills, while CMMLU and ACLUE,
the only two Chinese datasets, share the embedding space. In contrast, MATH, SQuAD, and MBPP
form well-separated clusters, indicating that vectors capture distinct task-specific skill requirements.

6 CONCLUSION

We presented POLLINATOR, a data-efficient and online-serving-capable matchmaker for the in-
telligence marketplace. POLLINATOR combines a frugal GCN-based predictor with an IRT-head
and an efficient dual-optimizer, reducing training cost by up to 49% while outperforming existing
state-of-the-art predictors. Extensive experiments on real-world benchmarks, including BFCL-V3
and MMLU-Pro, demonstrate superior cost–performance trade-offs. Furthermore, detailed abla-
tion studies and interpretability validate POLLINATOR’s effectiveness for cost-efficient intelligence
matchmaking. Future work will extend the framework to incorporate latency and volume constraints
and explore adaptive dynamic graphs for evolving requests and producers.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Kingma DP Ba J Adam et al. A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
1412(6), 2014.

Deepak Agarwal, Bee-Chung Chen, Pradheep Elango, and Xuanhui Wang. Personalized click shap-
ing through lagrangian duality for online recommendation. In Proceedings of the 35th Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
’12, pp. 485–494, New York, NY, USA, 2012. Association for Computing Machinery. ISBN
9781450314725. doi: 10.1145/2348283.2348350. URL https://doi.org/10.1145/
2348283.2348350.

Pranjal Aggarwal, Aman Madaan, Ankit Anand, Srividya Pranavi Potharaju, Swaroop Mishra, Pei
Zhou, Aditya Gupta, Dheeraj Rajagopal, Karthik Kappaganthu, Yiming Yang, et al. Automix:
Automatically mixing language models. arXiv preprint arXiv:2310.12963, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Kaidi Cao, Jiaxuan You, and Jure Leskovec. Relational multi-task learning: Modeling relations
between data and tasks. arXiv preprint arXiv:2303.07666, 2023.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Shiming Chen, Ziming Hong, Guosen Xie, Qinmu Peng, Xinge You, Weiping Ding, and Ling Shao.
Gndan: Graph navigated dual attention network for zero-shot learning. IEEE transactions on
neural networks and learning systems, 35(4):4516–4529, 2022.

Shuhao Chen, Weisen Jiang, Baijiong Lin, James Kwok, and Yu Zhang. Routerdc: Query-based
router by dual contrastive learning for assembling large language models. Advances in Neural
Information Processing Systems, 37:66305–66328, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Ruhle, Laks VS
Lakshmanan, and Ahmed Hassan Awadallah. Hybrid llm: Cost-efficient and quality-aware query
routing. arXiv preprint arXiv:2404.14618, 2024.

Aosong Feng, Balasubramaniam Srinivasan, Yun Zhou, Zhichao Xu, Kang Zhou, Sheng Guan,
Yueyan Chen, Xian Wu, Ninad Kulkarni, Yi Zhang, et al. Ipr: Intelligent prompt routing with user-
controlled quality-cost trade-offs. In Proceedings of the 2025 Conference on Empirical Methods
in Natural Language Processing: Industry Track, pp. 2484–2498, 2025.

Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for llm selections.
In The Thirteenth International Conference on Learning Representations, 2024.

Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson, Rex
Ying, Jiaxuan You, and Jure Leskovec. Relational deep learning: Graph representation learning
on relational databases. arXiv preprint arXiv:2312.04615, 2023.

Gauthier Guinet, Behrooz Omidvar-Tehrani, Anoop Deoras, and Laurent Callot. Automated evalu-
ation of retrieval-augmented language models with task-specific exam generation. arXiv preprint
arXiv:2405.13622, 2024.

11

https://doi.org/10.1145/2348283.2348350
https://doi.org/10.1145/2348283.2348350

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Lars Erik Holmquist. Intelligence on tap: artificial intelligence as a new design material. interac-
tions, 24(4):28–33, 2017.

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-llm routing
system. arXiv preprint arXiv:2403.12031, 2024.

Jiaqi Huang, Chengxi Liu, Ziwei Wei, Yan Dong, Renze Zhang, Wanjun Zhou, Shiyue Zhang, Peiyi
Lv, Peijie Wang, Zhihong Fan, et al. C-eval: A multi-level multi-discipline chinese evaluation
suite for foundation models. arXiv preprint arXiv:2305.08322, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

TN Kipf. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timo-
thy Baldwin. Cmmlu: Measuring massive multitask language understanding in chinese. arXiv
preprint arXiv:2306.09212, 2024.

Qi Liu, Zheng Gong, Zhenya Huang, Chuanren Liu, Hengshu Zhu, Zhi Li, Enhong Chen, and Hui
Xiong. Multi-dimensional ability diagnosis for machine learning algorithms. Science China
Information Sciences, 67(12):229101, 2024.

Yang Liu, Alan Medlar, and Dorota Glowacka. What we evaluate when we evaluate recommender
systems: Understanding recommender systems’ performance using item response theory. In Pro-
ceedings of the 17th ACM Conference on Recommender Systems, pp. 658–670, 2023.

Yunting Liu, Shreya Bhandari, and Zachary A Pardos. Leveraging llm respondents for item eval-
uation: A psychometric analysis. British Journal of Educational Technology, 56(3):1028–1052,
2025.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
Routing to the expert: Efficient reward-guided ensemble of large language models. arXiv preprint
arXiv:2311.08692, 2023.

Kai Mei, Wujiang Xu, Shuhang Lin, and Yongfeng Zhang. Omnirouter: Budget and performance
controllable multi-llm routing. arXiv preprint arXiv:2502.20576, 2025.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data. arXiv
preprint arXiv:2406.18665, 2024.

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Ion Stoica, Joseph E. Gonzalez,
et al. The berkeley function calling leaderboard (bfcl): From tool use to agentic evaluation of large
language models. In Proceedings of the 2025 International Conference on Machine Learning
(ICML), 2025. URL https://openreview.net/forum?id=2GmDdhBdDk.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822, 2018.

12

https://openreview.net/forum?id=2GmDdhBdDk

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mark D Reckase. 18 multidimensional item response theory. Handbook of statistics, 26:607–642,
2006.

Pedro Rodriguez, Joe Barrow, Alexander Miserlis Hoyle, John P Lalor, Robin Jia, and Jordan Boyd-
Graber. Evaluation examples are not equally informative: How should that change nlp leader-
boards? In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pp. 4486–4503, 2021.

Seamus Somerstep, Felipe Maia Polo, Allysson Flavio Melo de Oliveira, Prattyush Mangal, Mı́rian
Silva, Onkar Bhardwaj, Mikhail Yurochkin, and Subha Maity. Carrot: A cost aware rate optimal
router. arXiv preprint arXiv:2502.03261, 2025.

Wei Song, Zhenya Huang, Cheng Cheng, Weibo Gao, Bihan Xu, GuanHao Zhao, Fei Wang, and
Runze Wu. IRT-router: Effective and interpretable multi-LLM routing via item response the-
ory. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 15629–15644, Vienna, Austria, July 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.761. URL
https://aclanthology.org/2025.acl-long.761/.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 4149–4158, 2019.

Asterios Tsiourvas, Wei Sun, and Georgia Perakis. Causal llm routing: End-to-end regret minimiza-
tion from observational data. arXiv preprint arXiv:2505.16037, 2025.

Fei Wang, Qi Liu, Enhong Chen, Zhenya Huang, Yuying Chen, Yu Yin, Zai Huang, and Shijin
Wang. Neural cognitive diagnosis for intelligent education systems. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 6153–6161, 2020.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. MMLU-Pro: A More Robust and Challenging Multi-Task
Language Understanding Benchmark. In NeurIPS 2024 Track on Datasets and Benchmarks,
2024. URL https://arxiv.org/abs/2406.01574.

Herbert Woisetschläger, Ryan Zhang, Shiqiang Wang, and Hans Arno Jacobsen. Mess+: Dynam-
ically learned inference-time llm routing in model zoos with service level guarantees. In The
Thirty-ninth Annual Conference on Neural Information Processing Systems, 2025.

David J Woodruff and Bradley A Hanson. Estimation of item response models using the em algo-
rithm for finite mixtures. 1996.

Fangzhou Wu and Sandeep Silwal. Port: Efficient training-free online routing for high-volume
multi-llm serving. In Machine Learning for Systems 2025.

Tian Xie, Bin Wang, and C-C Jay Kuo. Graphhop: An enhanced label propagation method for node
classification. IEEE Transactions on Neural Networks and Learning Systems, 34(11):9287–9301,
2022.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Yixuan Zhang and Haonan Li. Can large language models comprehend ancient chinese? a prelimi-
nary test on aclue. arXiv preprint arXiv:2310.09550, 2023.

Richard Zhuang, Tianhao Wu, Zhaojin Wen, Andrew Li, Jiantao Jiao, and Kannan Ramchandran.
EmbedLLM: Learning compact representations of large language models. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=Fs9EabmQrJ.

13

https://aclanthology.org/2025.acl-long.761/
https://arxiv.org/abs/2406.01574
https://openreview.net/forum?id=Fs9EabmQrJ
https://openreview.net/forum?id=Fs9EabmQrJ

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 SCALABILITY AND ROBUSTNESS OF POLLINATOR

End-to-End Latency. To further assess the practical feasibility of our routing framework, we eval-
uate its end-to-end latency across datasets of varying scales. The bottleneck is the nearest neighbour
look-up. Even an exact nearest neighbour search yields sub-100ms p99 (99th percentile) latency, as
seen in the Table 7. Note that with approximate nearest neighbour search, especially with HNSW
index, the sub-100ms p99 latency can be maintained in industry-scale data (a study7 from Pinecone
reports 50ms p99 at a good recall). It is worth mentioning that the largest dataset reported in the
literature on prompt routing has cardinality 1.5M (Feng et al., 2025), which is considered “small”
in the parlance of approximate nearest neighbour search.

Table 7: Inference time of POLLINATOR across all datasets. Per-query latency is reported in mil-
liseconds (ms).

Dataset Per-Query Inference Time (ms)

In-Domain 69.07
Out-of-Domain 78.59
MMLU-Pro 20.37
BFCL-V3 (ToolCall) 2.66

Throughput. Industrial vector databases, such as Qdrant, can support 1,200 RPS (Requests Per
Second) at 0.99 precision (source8). Thus, instead of nearest neighbour lookup, the throughput
bottleneck shifts to the web-framework. FastAPI, with its asynchronous async/await primitives, of-
fers high throughput suitable for an industry-grade prompt router – which, moreover, is horizontally
scalable. Note that in the current work, we limit our scope to the functional requirements of prompt
router, not its non-functional requirements, such as latency/throughput.

Overhead Analysis. It’s worth noting that the prompt router routes each request to exactly one
LLM, either hosted by a provider (e.g., OpenAI, TogetherAI) or self-hosted (e.g., with vLLM) –
and in no cases more than one LLM is being invoked. As noted in the latency analysis, prompt
router incurs sub-100ms p99 latency, which is negligible, given that self-hosted LLMs take 400-
700ms (depends on the parameter count, architecture and the inference engine – and varies across
workloads), and those hosted by provider often exceeds ≈ 1.2s (even with provisioned throughput,
such as PTU in Azure). There are no additional token overhead, as such, beyond those already
accounted for under the prompt router latency.

Robustness w.r.t. Dynamic Pricing. The rate cards for providers change infrequently. However,
constructs such as provisioned throughput (e.g., PTU9 in Azure Foundry) render the rate card a
function of throughput. Even in this case, organizations typically purchase a fixed amount of PTU,
rendering the rate card essentially frozen over the contract period (an year). In the (infrequent) event
of change in rate card, the dual variables need to be recomputed and deployed via a configuration
service to all workers executing Algorithm 1.

Robustness w.r.t. Availability. The providers indeed suffer downtimes, and to counteract that, one
typically routes to a fallback (which is typically the next available provider in the ordered list, xij

– Line 2 in Algorithm1) after a pre-configured amount of retry. The provision of fallback has been
popularized by commercial prompt routers, such as OpenRouter10.

Handling Large Model Pool. In practice, few commercial prompt routers are deployed with model
pools of the size 100 (HuggingChat Omni routes11 across 115 models). More often, they route
within the same model family (due to considerations arising from lack of prompt portability – what
works best with GPT needn’t work with Gemini, as seen in their guides), thus limiting the model

7https://www.pinecone.io/learn/series/faiss/hnsw/
8https://qdrant.tech/benchmarks/
9https://learn.microsoft.com/en-us/azure/ai-foundry/openai/concepts/

provisioned-throughput?view=foundry-classic&tabs=global-ptum
10https://openrouter.ai/docs/features/provider-routing
11https://news.ycombinator.com/item?id=45623284

14

https://www.pinecone.io/learn/series/faiss/hnsw/
https://qdrant.tech/benchmarks/
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/concepts/provisioned-throughput?view=foundry-classic&tabs=global-ptum
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/concepts/provisioned-throughput?view=foundry-classic&tabs=global-ptum
https://openrouter.ai/docs/features/provider-routing
https://news.ycombinator.com/item?id=45623284

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

pool size to 10. However, in the hypothetical scenario with 10,000 models (which is practical only
when routing across LoRAs, as done by vLLM Semantic Router), we would embrace a two-stage
design a la recommender system. The first stage (a high-recall one) would cut down the pool to 100,
which the second, high-precision stage will evaluate as per Algorithm 1.

Figure 4: POLLINATOR:Stress Testing Under Increasing Concurrency

Stress Testing Under Varying Concurrency Levels: We conducted a realistic load-test with an
industry-standard tool, Locust12, under varying levels of concurrency (at 57 requests-per-second) to
evaluate POLLINATOR’s inference performance under real-world conditions. The inference engine
consists of a) FastAPI13-based web-framework, b) Infinity14 -based embedder, and, c) Qdrant -based
approximate k-nearest-neighbour search. All calls to embedder and nearest neighbour searches
are non-blocking, via Python’s asynchronous coroutine (‘async‘ and ‘await‘) – which mimics the
architecture of a typical real-world inference engine. Figure 4 presents the overall system dynamics
during this load ramp, including achieved throughput, median (p50) and tail (p95) latencies, and
active user concurrency. We additionally report detailed request and response time statistics in
Table 8 and Table 9 respectively. The results show that the system sustains stable throughput (57
RPS) with zero failures, while maintaining low median latency (≈ 23–28ms) and tightly bounded
tail latency (p95≤ 55ms) even under peak concurrency. These observations confirm POLLINATOR ’s
robust scalability and reliable performance under heavy concurrent workloads.

12https://docs.locust.io/en/stable/index.html
13https://fastapi.tiangolo.com/
14https://docs.langchain.com/oss/python/integrations/text_embedding/

infinity

15

 https://docs.locust.io/en/stable/index.html
https://fastapi.tiangolo.com/
https://docs.langchain.com/oss/python/integrations/text_embedding/infinity
https://docs.langchain.com/oss/python/integrations/text_embedding/infinity

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Aggregate request statistics of POLLINATOR during concurrency stress testing.

Type Name #Req. #Fails Avg. (ms) Min (ms) Max (ms) Avg. Size (bytes) RPS

GET /route 10,213 0 27.67 12 200 1182.69 56.73
– Aggregated 10,213 0 27.67 12 200 1182.69 56.73

Table 9: Response time statistics of POLLINATOR during concurrency stress testing.

Method Name 50% 60% 70% 80% 90% 95% 99% 100%

GET /route 23 25 28 34 43 55 96 200
– Aggregated 23 25 28 34 43 55 96 200

Handling Drift. It is indeed true that LLM abilities may drift with subsequent releases of frontier
models, or may be caused by iterative fine-tuning of self-hosted models. Similarly, since prompts
are frequently updated in deployed systems (e.g., addition of new instructions in prompt, addi-
tion/deletion of tools, etc.) – drift can occur. Such drifts are dealt with by re-training the predictors
and the (primal) optimizer in POLLINATOR to adapt to the new data distribution. The trigger for re-
training (i.e., a drift detection module), however, lies outside POLLINATOR’s system boundary to
promote simplicity. Alternatively, one can configure a cron-based periodic re-training. However, we
note that as shown in Table 2, POLLINATOR outperforms the baselines in Out-of-Domain datasets,
thus yielding resilience to drift in prompt distribution out of the box.

Additionally, we conducted a targeted data-drift experiment on the MMLU-Pro dataset, which spans
14 heterogeneous subject areas ranging from law to computer science. At inference, each test query
was linked to its k=3 nearest training neighbors via a kNN graph, and we selected 500 test samples
with the lowest average similarity as a proxy for severe distributional drift. POLLINATOR maintained
competitive performance (as shown in Table 10) on this subset, demonstrating strong robustness to
data drift.

Table 10: Data-drift evaluation of POLLINATOR on MMLU-Pro.

Dataset Routing Strategy Performance (%) ↑ Cost ($)↓
MMLU-Pro Performance-first 79.60 0.28

Balanced 80.00 0.14
Cost-first 76.40 0.10

Handling Prediction Errors. While designing POLLINATOR , we acknowledged that performance
and cost predictions can be wrong, and since the optimization problem uses them in objective and
constraints, it will cause an optimality gap. The present work tackles it by breaking down the long-
horizon into epochs, so that at the end of each epoch, the feedback (actual performance yield and cost
incurred) from that epoch can be incorporated into the primal optimization problem (Eq. 1) – giving
it a chance to course-correct. However, we note that a couple of works offers a theoretical analysis:
a) MESS+ (Woisetschläger et al., 2025), incorporates a feedback mechanism that counts the histori-
cal constraint violations, and incorporates that into emphasizing/de-emphasizing the corresponding
constraint in future decisions – which allows them to bound the number of constraint violations (see
Theorem 1); b) PORT (Wu & Silwal), also disclosed in late-October ‘25, makes certain assumptions
about the efficacy of kNN-based performance and cost predictors (see Assumption 1) in order to
guarantee competitive ration of online serving (see Theorem 1). We believe the theoretical analyses
assume restricted settings which the present work doesn‘t consider. However, we leave a thorough
and careful analysis of optimality gap/competitive ratio/constraint violation for future work.

A.2 ORACLE PERFORMANCE

Table 11 compares POLLINATOR against the closest baseline, MIRT-Router, as well as an Oracle
result where we choose the best and cheapest LLM for each sample .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 11: Comparison with Oracle results.

Method Datasets

In-Domain Out-of-Domain MMLU-Pro BFCL-V3 (ToolCall)

Perf (%)↑ Cost ($)↓ Perf (%)↑ Cost ($)↓ Perf (%)↑ Cost ($)↓ Perf (%)↑ Cost ($)↓
Oracle 95.52 0.19 98.32 0.03 98.17 0.79 100.0 0.01
MIRT-Router 80.67 0.42 87.12 0.14 78.84 1.18 90.66 0.008
POLLINATOR 81.38 0.39 87.37 0.14 79.18 0.88 92.00 0.006

A.3 DATASETS DETAILS

The datasets (Table 12) span a wide range of domains and task categories. In-domain datasets
include reasoning, code, and QA tasks. Out-of-domain datasets test generalization to unseen tasks.
Additional benchmarks, MMLU-Pro and BFCL V3 (Simple), evaluate more challenging reasoning
problems and tool use. Each dataset lists the task type, evaluation metric, and train/test sizes.

Table 12: Details of in-domain, out-of-domain, and additional datasets used in our experiments.

In-domain
Dataset Type Evaluation Metric Train Size Test Size
ACLUE (Zhang & Li, 2023) Ancient Chinese accuracy 1400 600
ARC C (Clark et al., 2018) Reasoning accuracy 1400 600
CMMLU (Li et al., 2024) Chinese Multitask accuracy 7000 3000
Hotpot QA (Yang et al., 2018) Multi-Hop EM 1400 600
MATH (Hendrycks et al., 2021) Math accuracy 1400 600
MBPP (Austin et al., 2021) Code pass@1 630 270
MMLU (Hendrycks et al., 2020) Multitask accuracy 9800 4200
SQuAD (Rajpurkar et al., 2018) Reading Comprehension f1 1400 600

Out-of-domain
Dataset Task type Evaluation Metric Train Size Test Size
CEVAL (Huang et al., 2024) Chinese Multitask accuracy - 1000
CommonsenseQA (Talmor et al., 2019) Commonsense Reasoning accuracy - 1000
GSM8K (Cobbe et al., 2021) Math accuracy - 1000
HumanEval (Chen et al., 2021) Code pass@1 - 160

Additional Datasets
MMLU-Pro (Wang et al., 2024) Multitask Reasoning accuracy 9602 2430
BFCL V3 (Simple) (Patil et al., 2025) Tool-Use / Function Calling accuracy 125 75

A.4 CANDIDATE LLMS FOR VARIOUS DATASETS

For our routing experiments, we select a set of 20 representative LLMs as candidates for in-domain
and out-of-domain datasets (see Table 17). The candidate LLMs, along with their input and output
costs, for MMLU-Pro and BFCL-V3 (ToolCall) are reported in Tables 18 and 19, respectively.

A.5 AVERAGE PERFORMANCE–COST CHARACTERISTICS OF INDIVIDUAL LLMS

To understand the standalone efficiency of each model, we report the average performance and total
cost of all LLMs across the datasets. Table 13 presents results on the In-Domain dataset. Here,
DeepSeek-Chat and DeepSeek-Coder emerge as the strongest models, closely followed by large
models such as Qwen2.5-72B-Instruct and GLM-4-Plus. In contrast, smaller or task-specialized
models (e.g., Qwen2.5-Math-7B-Instruct) show lower average performance, reflecting their narrow
training scope. Table 14 reports the same statistics for the Out-of-Domain dataset. The relative
ordering remains broadly consistent: low-cost 7B–8B models offer attractive price points but lag
in accuracy compared to larger 32B–72B models, while DeepSeek models again strike a strong
accuracy–cost balance. Table 15 summarizes performance and total cost on MMLU-Pro. This
shows high-end frontier models such as O4-Mini, GPT-4.1, and Claude-3.5-Sonnet provide superior
general reasoning performance but at a substantially higher cost. Finally, Table 16 presents results
for BFCL-V3 (ToolCall), which shows Gemini-1.5-Flash, GPT-4.1-Nano, and GPT-4o-Mini models
deliver strong accuracy at low cost (BFCL-V3 evaluation containing only a small number of test
queries, which keeps total cost minimal).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 13: Average performance and cost of individual LLMs on In-Domain data (sorted in ascending
order of cost).

Model Performance (%) Cost ($)

Qwen2.5-7B-Instruct 61.38 0.0607
Llama3.1-8B-Instruct 31.86 0.0877
Mistral-7B-Instruct-v0.2 10.42 0.1123
Qwen2.5-32B-Int4 78.27 0.1380
Ministral-8B-Instruct-2410 48.70 0.3112
Qwen2.5-Math-7B-Instruct 9.80 0.3447
Gemini1.5-Flash 72.90 0.3528
GLM-4-Air 72.00 0.3563
DeepSeek-Coder 80.61 0.4695
DeepSeek-Chat 80.74 0.4740
GPT-4o-Mini 70.67 0.7225
GPT-4o-Mini+CoT 71.71 1.6783
Mixtral-8x7B-Instruct 34.76 1.9891
Llama3.1-70B-Instruct 71.11 2.4712
Qwen2.5-72B-Instruct 79.97 2.4793
QwQ-32B-Preview 59.73 8.3434
Llama3.1-405B-Instruct 77.54 10.2818
GPT-4o 77.53 12.9362
GLM-4-Plus 79.02 19.1334

Table 14: Average performance and cost of models on Out-of-Domain data (sorted in ascending
order of cost).

Model Performance (%) Cost ($)

Qwen2.5-7B-Instruct 59.94 0.0147
Llama3.1-8B-Instruct 44.62 0.0256
Mistral-7B-Instruct-v0.2 12.15 0.0344
Qwen2.5-32B-Int4 87.25 0.0463
Qwen2.5-Math-7B-Instruct 32.85 0.0805
GLM-4-Air 73.54 0.0940
Gemini1.5-Flash 71.99 0.1013
Ministral-8B-Instruct-2410 59.83 0.1112
DeepSeek-Coder 86.33 0.1504
DeepSeek-Chat 86.39 0.1511
GPT-4o-Mini 80.79 0.2928
Mixtral-8x7B-Instruct 27.82 0.5038
GPT-4o-Mini+CoT 80.70 0.5109
Llama3.1-70B-Instruct 75.98 0.6830
Qwen2.5-72B-Instruct 86.08 0.7542
QwQ-32B-Preview 76.30 2.3498
Llama3.1-405B-Instruct 82.06 2.9023
GPT-4o 84.87 5.2990
GLM-4-Plus 87.03 5.4369

A.6 PRICING OF CANDIDATE LLMS

We report both input and output token pricing ($/1M tokens) for all candidate models. Candidate
LLMs exhibit drastic variation in pricing. Table 17 summarizes the base set of LLMs for in-domain
and out-of-domain datasets, while Table 18 and Table 19 details the pricing of models used for
MMLU-Pro and BFCL ToolCalling benchmarks.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 15: Average performance and cost of models on MMLU-Pro, sorted in ascending order of
cost.

Model Performance (%) Cost ($)
Gemini-1.5-Flash-002 63.80 0.3316
Gemini-2.0-Flash-Exp 78.10 0.8765
GPT-4.1-Nano 61.68 0.8847
Meta-Llama-3.1-70B 53.08 2.1059
GPT-4.1-Mini 78.55 2.3568
Meta-Llama-3-70B-Instruct 54.95 2.3778
Meta-Llama-3.1-70B-Instruct 63.67 3.5321
Meta-Llama-3-70B 53.37 3.7496
Claude-3.5-Haiku (2024-10-22) 61.47 4.5741
Gemini-1.5-Pro-002 71.61 5.0187
O4-Mini 81.67 5.5064
GPT-4.1 79.47 11.7164
Claude-3.5-Sonnet (2024-10-22) 77.81 17.4792
Claude-3.5-Sonnet 77.35 18.4651

Table 16: Average performance and cost of LLMs on BFCL-V3 (Toolcall) (sorted in ascending
order of cost).

Model Performance (%) Cost ($)
Gemini-1.5-Flash 88.00 0.0049
GPT-4.1-Nano 77.33 0.0059
GPT-4o-Mini 90.67 0.0088
Gemini-2.0-Flash 93.33 0.0093
GPT-4.1-Mini 84.00 0.0236
Gemini-1.5-Pro 93.33 0.0773
O4-Mini 86.67 0.1100
GPT-4.1 94.67 0.1177
GPT-4o 96.00 0.1471
O1 89.33 1.8584

Table 19: Pricing details of candidate LLMs selected for BFCL Toolcalling ($/1M tokens).

LLM Input $/1M Output $/1M

GPT-4o 2.50 10.0
GPT-4o-Mini 0.15 0.60
o1 15.0 60.0
GPT-4.1-Nano 0.10 0.40
Gemini-1.5-Flash 0.08 0.30
Gemini-1.5-Pro 1.25 5.00
Gemini-2.0-Flash 0.15 0.60
GPT-4.1 2.00 8.00
GPT-4.1-Mini 0.40 1.60
o4-Mini 1.10 4.40

A.7 ADDITIONAL INTERPRETABILITY RESULTS

Alignment Between Discrimination Vectors and LLM Abilities. Table 20 demonstrates that
the discrimination vectors (αi) learned by POLLINATOR align strongly with the ability profiles (θj)
of individual LLMs. Comparing Qwen2.5-7B-Instruct with its math-specialized variant, Qwen2.5-
Math-7B-Instruct, we find that queries, with higher mean routing probability, are directed to the gen-
eral model on in-domain tasks overall, while math-focused queries (e.g., from MATH and GSM8K)
are preferentially routed to the specialized model. Conversely, non-math queries from datasets such

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 17: Pricing details of different LLMs ($/1M tokens) selected for In-Domain and Out-of-
Domain Datasets.

LLM Input $/1M Output $/1M

DeepSeek-Chat 0.14 0.28
DeepSeek-Coder 0.14 0.28
Gemini-1.5-Flash 0.075 0.30
GLM-4-Air 0.137 0.137
GLM-4-Flash 0.0137 0.0137
GLM-4-Plus 6.85 6.85
GPT-4o 2.50 10.0
GPT-4o-Mini 0.15 0.60
GPT-4o-Mini+CoT 0.15 0.60
Llama3.1-8B-Instruct 0.10 0.20
Llama3.1-70B-Instruct 0.792 0.792
Llama3.1-405B-Instruct 3.15 3.15
Ministral-8B-Instruct-2410 0.10 0.20
Mistral-7B-Instruct-v0.2 0.10 0.20
Mixtral-8x7B-Instruct 0.54 0.54
Qwen2.5-32B-Instruct-GPTQ-Int4 0.10 0.20
Qwen2.5-7B-Instruct 0.10 0.20
Qwen2.5-72B-Instruct 1.08 1.08
Qwen2.5-Math-7B-Instruct 0.10 0.20
QwQ-32B-Preview 1.20 1.20

Table 18: Pricing details of candidate LLMs selected for MMLU-Pro ($/1M tokens).

LLM Input $/1M Output $/1M

Claude-3.5-Sonnet 3.00 15.00
Gemini-1.5-Pro 1.25 5.00
Llama3.1-70B 0.60 0.60
Llama3.1-70B-Instruct 1.00 1.00
Llama3-70B 0.65 2.75
Llama3-70B-Instruct 0.59 0.79
Claude-3.5-Sonnet-(alt) 3.00 15.00
Claude-3.5-Sonnet-2024 3.00 15.00
Claude-3.5-Haiku-2024 0.80 4.00
Gemini-1.5-Flash 0.08 0.30
Gemini-2.0-Flash 0.15 0.60
GPT-4.1-Nano 0.10 0.40
GPT-4.1 2.00 8.00
GPT-4.1-Mini 0.40 1.60
o4-Mini 1.10 4.40

as MMLU and CommonsenseQA, are mostly routed to the general model. This indicates that the
learned discrimination vectors (αi) capture model-specific strengths and effectively guide query al-
location.

LLM Ability and Query Difficulty. Figure 5 highlights consistent performance improvements of
Llama3.1-405B-Instruct over its smaller counterpart. Figure 6 illustrates example queries with pre-
dicted βi, highlighting strong agreement with human labels. These qualitative cases further demon-
strate that the learned routing signals capture meaningful task difficulty. Overall, the results under-
score the reliability of our scoring mechanism across diverse query types.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 20: Mean predicted routing probability of the general (Qwen2.5-7B-Instruct) vs. math-
specialized (Qwen2.5-Math-7B-Instruct) models. Math queries are routed more often to the spe-
cialized model, while non-math queries favor the general model.

Task Qwen2.5-7B-Instruct Qwen2.5-Math-7B-Instruct

All ID Tasks 0.60 0.14
MATH 0.32 0.70
GSM8K 0.37 0.44
MMLU 0.60 0.04
CommonsenseQA 0.74 0.07

Figure 5: Estimated ability profiles (θj) over 25 dimensions. Comparison of Llama3.1-70B-Instruct
and Llama3.1-405B-Instruct, showing consistent gains for the larger model.

Figure 6: Example queries with predicted bi values compared to human labels, illustrating the close
correspondence between predicted and true difficulty.

A.8 RUNTIME AND COMPLEXITY ANALYSIS

The complexity of Algorithm 1 is dominated by the sorting operation in Line 4. For a model pool
of size N , naive sorting takes O(N logN) time. The remaining operations are linear, O(N), as fol-
lows: Predictor Invocation (Line 3): Fetching ex-ante performance and cost predictions requires
O(N) time.
Utility Computation (Line 4): Calculating the utilities {uij}Nj=1 also takes O(N) time (see
Sec. 2.2).
Utility Sorting (Line 4): Sorting the computed utilities is the most expensive step, with complexity

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

O(N logN), dominating the overall runtime.
Iterative Thresholding (Lines 6–12): In the worst case, the loop scans all utilities, taking O(N)
time.
Primal Serving Scheme (Line 14): Constructing the primal serving scheme requires an additional
O(N) pass.

A.9 DETAILED ABLATION STUDY OF THE PREDICTOR

Table 21 presents a detailed ablation of our predictor (without the optimizer), analyzing the impact
of ability dimension (θ), number of neighbors (k), edge-weighting, masking ratio, and embedder
selection. Performance generally improves with increasing θ up to an optimal point. Across different
configurations, our predictor consistently outperforms baseline methods, demonstrating robustness
to design choices.

A.10 METHODOLOGY

The overall training and inference flows of POLLINATORare illustrated in Figure 7, showing the
dual-tower encoder and IRT-based prediction head used to generate serving plans.

Figure 7: POLLINATOR: Train & Inference Flows. The left tower encodes request i with a GCN with
L layers. The right tower encodes producer j. The bespoke IRT-based head combines the outputs
of the two towers to generate ex ante predictions. In train flow, λ is the result of optimization on a
held-out validation set, which, during inference, is used to compute the primal serving plan xi via
Algorithm 1.

A.11 CANDIDATE LLMS PROFILE DESCRIPTIONS

Table 22 lists the candidate large LLMs used in our experiments for MMLU-Pro & BFCL-V3, along
with their key profile descriptions.

B ADDITIONAL RELATED WORKS

Item Response Theory. Item Response Theory (IRT) (Woodruff & Hanson, 1996) models the
interaction between latent human ability and item difficulty via logistic functions, ensuring inter-
pretability through monotonicity. Extensions such as MIRT (Reckase, 2006) and neural variants
(e.g., NCDM (Wang et al., 2020)) capture richer interactions. Beyond education, IRT has been ap-
plied to model evaluation (Liu et al., 2024), recommendation (Liu et al., 2023), leaderboard ranking

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 21: Ablation study of the predictor (without optimizer). Columns indicate ability (θj), dimen-
sion (D), number of neighbors (k), edge-weight, node label masking, request encoder (EncR), and
performance. Bold values indicate the best configuration within each block.

Model D k Edge-weight Masking Ratio EncR Performance
Baselines

Small LLM – – ✗ ✗ – 48.70%
Large LLM – – ✗ ✗ – 77.53%
KNN-Router – 5 ✗ ✗ – 74.38%
MIRT-Router – – ✗ ✗ – 81.17%
NIRT-Router – – ✗ ✗ – 75.26%

POLLINATOR: Ablation on D and k (no edge-weight)

POLLINATOR

3 3 ✗ ✗ bert-base-uncased 71.04%
5 3 ✗ ✗ bert-base-uncased 80.51%
8 3 ✗ ✗ bert-base-uncased 79.26%
16 3 ✗ ✗ bert-base-uncased 82.08%
16 5 ✗ ✗ bert-base-uncased 81.73%
16 10 ✗ ✗ bert-base-uncased 81.94%
16 20 ✗ ✗ bert-base-uncased 82.03%
25 3 ✗ ✗ bert-base-uncased 82.28%
25 5 ✗ ✗ bert-base-uncased 82.24%
25 10 ✗ ✗ bert-base-uncased 82.13%
25 20 ✗ ✗ bert-base-uncased 81.53%

POLLINATOR: Edge-weight, varying D and k

POLLINATOR

3 3 ✓ ✗ bert-base-uncased 71.43%
5 3 ✓ ✗ bert-base-uncased 80.49%
8 3 ✓ ✗ bert-base-uncased 79.26%
16 3 ✓ ✗ bert-base-uncased 82.07%
25 3 ✓ ✗ bert-base-uncased 81.96%
35 3 ✓ ✗ bert-base-uncased 80.52%
45 3 ✓ ✗ bert-base-uncased 81.25%
3 5 ✓ ✗ bert-base-uncased 71.12%
5 5 ✓ ✗ bert-base-uncased 80.27%
8 5 ✓ ✗ bert-base-uncased 79.37%
16 5 ✓ ✗ bert-base-uncased 81.90%
25 5 ✓ ✗ bert-base-uncased 81.20%
35 5 ✓ ✗ bert-base-uncased 80.53%
45 5 ✓ ✗ bert-base-uncased 80.72%

POLLINATOR: Node Masking

POLLINATOR

16 3 ✓ 0.1 bert-base-uncased 81.96%
16 3 ✓ 0.2 bert-base-uncased 82.01%
16 3 ✓ 0.3 bert-base-uncased 81.97%
16 3 ✓ 0.5 bert-base-uncased 81.82%
25 5 ✓ 0.1 bert-base-uncased 81.79%
25 5 ✓ 0.2 bert-base-uncased 81.89%
25 5 ✓ 0.3 bert-base-uncased 82.12%
25 5 ✓ 0.5 bert-base-uncased 81.68%

POLLINATOR: Different EncR

POLLINATOR

16 3 ✗ ✗ all-MiniLM-L6-v2 80.86%
25 3 ✗ ✗ all-MiniLM-L6-v2 80.74%
16 3 ✗ ✗ all-mpnet-base-v2 81.70%
25 3 ✗ ✗ all-mpnet-base-v2 82.37%
25 3 ✗ ✗ text-embedding-3-large 81.97%
16 3 ✓ ✗ all-mpnet-base-v2 81.70%
16 3 ✓ ✗ all-MiniLM-L6-v2 80.75%
16 3 ✓ ✗ text-embedding-3-large 80.15%
25 5 ✓ ✗ all-mpnet-base-v2 82.60%
25 5 ✓ ✗ all-MiniLM-L6-v2 80.74%
25 5 ✓ ✗ text-embedding-3-large 81.91%

(Rodriguez et al., 2021), and LLM assessment (Guinet et al., 2024; Liu et al., 2025). We adopt IRT
for its interpretability and proven effectiveness in human and machine assessment.

LLM Routers. LLM routing seeks to assign queries to the most suitable model for optimal accu-
racy–cost tradeoffs. Early works like FrugalGPT (Chen et al., 2023) and AutoMix (Aggarwal et al.,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 22: List of candidate LLMs with their profile descriptions.

LLM Name Profile Description
Gemini 2.0 Flash Released on Dec 11, 2024 by Google DeepMind. Experimental version of Gemini 2.0 Flash,

focusing on enhanced speed and performance. Features include a Multimodal Live API for
real-time audio and video interactions, improved spatial understanding, native image and con-
trollable text-to-speech with watermarking, and integrated tool use, including Google Search.
Also introduces improved agentic capabilities and a new Google Gen AI SDK.

Gemini 1.5 Pro 002 Released on Sep 24, 2024 by Google DeepMind. Updated Gemini 1.5 Pro with a 2M token
context window and up to 8,192 token outputs. Designed for diverse tasks via Google AI
Studio and Vertex AI.

Meta-Llama-3.1-70B Released on Jul 23, 2024 by Meta AI. A 70B parameter model pre-trained on 15T tokens
from public sources, designed for advanced language understanding, coding, and reasoning.

Claude 3.5 Haiku Released on Oct 22, 2024 by Anthropic. Optimized for efficiency and speed with a 200K
token context window and 8,192 token outputs. Suitable for rapid-response tasks.

Meta-Llama-3.1-70B-Instruct Released on Jul 23, 2024 by Meta AI. Instruction-tuned variant of Llama 3.1-70B, fine-tuned
on public datasets and 10M+ human annotations to enhance instruction-following.

GPT-4.1 Nano Released on Apr 14, 2025 by OpenAI. Compact GPT-4.1 version for on-device tasks with
reduced compute needs while maintaining strong performance.

Gemini 1.5 Flash 002 Released on Sep 24, 2024 by Google DeepMind. Updated Gemini 1.5 Flash with a 1M token
context window and up to 8,192 token outputs. Optimized for speed and cost-efficiency.

o4-Mini Released on Aug 6, 2024 by OpenAI. A smaller GPT-4o variant with 1,047,476 token context
window and 32,768 token outputs, offering efficiency while retaining robust performance.

Claude 3.5 Sonnet Released on Oct 22, 2024 by Anthropic. Balances performance and efficiency with a 200K
token context window and 8,192 token outputs. General-purpose model.

Claude 3.5 Sonnet Released on Oct 22, 2024 by Anthropic. Part of the Claude 3.5 series, offering 200K context
window, optimized for diverse tasks. Achieved 59.1% on GPQA Diamond benchmark.

Meta-Llama-3-70B Released on Apr 18, 2024 by Meta AI. A 70B parameter model pre-trained on 15T tokens,
designed for high-performance language tasks.

Meta-Llama-3-70B-Instruct Released on Apr 18, 2024 by Meta AI. Instruction-tuned version of Llama 3-70B, aligned
with user queries via public datasets and 10M+ annotations.

GPT-4.1 Released on Apr 14, 2025 by OpenAI. Enhanced GPT-4 variant with improved reasoning,
coding, and agentic abilities.

GPT-4.1 Mini Released on Apr 14, 2025 by OpenAI. Smaller GPT-4.1 variant, optimized for efficiency
while maintaining strong task performance.

GPT-4.1-Nano Released on April 14, 2025, by OpenAI. A compact version of the GPT-4.1 model, designed
for on-device tasks with reduced computational requirements. Maintains strong performance
across various benchmarks while being optimized for efficiency.

GPT-4o GPT-4o: Released on November 20, 2023, by OpenAI. A large language model capable of
handling complex tasks requiring deep understanding of language. Features include advanced
reasoning capabilities, multimodal capabilities, and a context window of up to 128,000 to-
kens. Available through OpenAI’s API.

GPT-4o-Mini GPT-4o Mini: Released on November 20, 2023, by OpenAI. A smaller variant of the GPT-4o
model, designed for efficiency while maintaining strong performance across various tasks.
Optimized for applications requiring reduced computational resources.

o1 Released on August 16, 2024, by OpenAI. A large language model capable of handling com-
plex tasks requiring deep understanding of language. Features include advanced reasoning
capabilities, multimodal capabilities, and a context window of up to 128,000 tokens. Avail-
able through OpenAI’s API.

2023) use cascaded inference, while later methods train lightweight routers such as HybridLLM
(Ding et al., 2024), RouteLLM (Ong et al., 2024), and Zooter (Lu et al., 2023). RouterDC (Chen
et al., 2024) and KNN-based approaches (Hu et al., 2024) further reduce costs, and GraphRouter
(Feng et al., 2024) leverages GNNs but depends on task priors. EmbedLLM (Zhuang et al., 2025)
learns compact embeddings via matrix factorization to support routing at scale. Commercial sys-
tems like Martian15 and Neutrino AI16 demonstrate practical benefits, reporting major savings. Un-
like these, our approach couples difficulty-aware estimation with online dual optimization, yielding
interpretable and cost-efficient routing.

15https://withmartian.com
16https://neutrinoapp.com

24

https://withmartian.com
https://neutrinoapp.com

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Graph-based Modeling. Graphs naturally capture relational structures (Fey et al., 2023; Cao
et al., 2023; Chen et al., 2022). Classical methods like label propagation (Xie et al., 2022) leverage
edges for transductive learning, while GNNs (Kipf, 2016; Hamilton et al., 2017) extend message
passing to learn expressive representations. Recent work highlights their zero-/few-shot potential
(Fey et al., 2023; Cao et al., 2023) in domains such as recommendation and social networks. Build-
ing on these advances, we employ GNNs to design the predictor of POLLINATOR 17

17All code and datasets for POLLINATOR are provided in the supplementary material.

25

	Introduction
	Intelligence Marketplace & the Matchmaking Problem
	Graph-based Semi-Supervised Learning & Ensuring Frugality
	Dual-based Optimization & Adherence to Safety

	Experimental Setup
	Benchmark & Implementation
	Metrics & Baselines

	Results
	Performance-Cost Spectrum

	Ablation Study
	Interpretability of Pollinator

	Conclusion
	Appendix
	Scalability and Robustness of Pollinator
	Oracle Performance
	Datasets Details
	Candidate LLMs for Various Datasets
	Average Performance–Cost Characteristics of Individual LLMs
	Pricing of Candidate LLMs
	Additional Interpretability Results
	Runtime and Complexity Analysis
	Detailed Ablation Study of the Predictor
	Methodology
	Candidate LLMs Profile Descriptions

	Additional Related Works

