Under review as a conference paper at ICLR 2026

ZBPOLLINATOR: OPTIMAL MATCHMAKING IN AN IN-
TELLIGENCE MARKETPLACE

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid growth of the intelligence marketplace has created an abundance of
Large Language Model (LLM) producers, each with different cost—performance
tradeoffs, making optimal selection challenging and resource-intensive. We
present POLLINATOR, a novel router that integrates a frugal, data-efficient pre-
dictor with an online dual-based optimizer. The predictor combines graph-based
semi-supervised learning with an Item Response Theory (IRT) head, reducing
training cost by up to 49% while improving predictive accuracy over prior state-
of-the-art. The optimizer formulates matchmaking as a strongly convex problem,
which allows efficient dual-to-primal conversion for real-time serving. Extensive
experiments demonstrate that POLLINATOR delivers superior cost—performance
tradeoffs: achieving 0.43%-1.5% gains at 71%-93% of the cost of state-of-the-
art router, 3-5% gains at only 1.9-3% of the cost of the best individual producer,
and up to 10.6% higher accuracy at just 0.3-35.7% of the cost on challenging real-
world benchmarks such as BFCL-V3 and MMLU-Pro. Finally, the interpretability
of learned query difficulties and model abilities demonstrates POLLINATOR’s ef-
fectiveness for dynamic and cost-efficient intelligence matchmaking.

1 INTRODUCTION

The Intelligence Marketplace. The commoditization of (artificial) intelligence, which gave birth
to the phrase Intelligence on Tap, coupled with the rapid proliferation in applications that exploit it
as a Design Material Holmquist (2017), catalyzed a Cambrian explosion of intelligent applications.
The author of such an application, however, faces a problem of plenty: there are many producers
of intelligenc with varying cost-performance tradeoffs on generic benchmarks, making it hard
to choose an optimal one appropriate specific to the application at hand. Furthermore, given the
frequent updates that alter performance and rapidly falling costs, the process of optimization has to
be repeated continuously — thus putting a constant demand on the author’s resources.

Matchmaking with Router. To remedy, router — which routes each request independently to a
producer from a pool based on projected cost-performance tradeoff — was conceptualized |Hu et al.
(2024). A canonical router consists of two components: a collection of predictors that project the
cost and performance for each request-producer pair; and, an optimizer that makes the tradeoff based
on the projection.

Predictor & Data Efficiency. While a wide gamut of predictors, ranging from simple k-Nearest
Neighbor [Hu et al| (2024) to sophisticated Small Language Model with bespoke Bradley-Terry
head |Ong et al.| (2024) and Item Response Theory |[Song et al. (2025), have been explored, the
angle of data-efficiency has remained underexplored. Recently, Tsiourvas et al.|(2025) approached
data-efficiency in predictor through the lens of causal inference. However, we remark that the causal-
inference setting is overly restrictive: one can indeed send the same request (unit) to more than one
producers (treatments) in order to gauge cost and performance (treatment effects), which is a de-
parture from the assumptions in causal-inference. In this work, we combine the superior predictive

'A search in Hugging Face for Transformer-based models with 3B+ parameters results in 170K+ hits. The
benchmarking service, Artificial Analysis, indexes 250 frontier models.

Under review as a conference paper at ICLR 2026

performance rendered by Item Response Theory grounded in psychometry, with the data-efficiency
afforded by graph-based semi-supervised learning to design POLLINATOR, a novel data-efficient
predictor.

Optimizer & Online Matchmaking. The prevalent approach to matchmaking in the literature has
been to compute the utility of each producer for the given request by blending the predicted perfor-
mance and cost either with a affine combination (with willingness-to-pay as a hyper-parameter) [Hu
et al.| (2024), or with a convex combination (again a hyper-parameter) |[Song et al.| (2025). Along
similar lines, Somerstep et al.| (2025) advances the frontier by designing rate-optimal predictors for
cost and performance. Mei et al.| (2025) frames the problem as a Linear Program, and recovers the
primal solution from the dual variables. Taking inspiration from an optimizer designed for two-
sided marketplace |Agarwal et al.|(2012), we choose to frame the optimization problem as a strongly
convex program, which simplifies the dual-to-primal conversion to facilitate online serving. See
Appendix [B] for additional related works.

Contributions. In summary, we make the following contributions: @ POLLINATOR implements
its predictors atop Graph Convolutional Network [Kipf| (2016 with a novel Item Response Theory
(IRT)-based head that cuts down the training cost by 49%, while surpassing the predictive per-
formance of the vanilla IRT-based predictor proposed in [Song et al.| (2025); @ the (Lagrangian)
dual-based online serving scheme, coupled with the strongly convex primal program delivers su-
perior cost-performance tradeoff than the Linear Program-based serving scheme [Song et al.| (2025)
by boosting performance by 0.43%-1.5% at 71%-93% of the cost; @) in the in-domain and out-of-
domain setting proposed in Song et al.| (2025), POLLINATOR yields 3-5% boost in performance at
mere 1.9-3% of the cost of the best producer; @ report superior performance in two novel settings on
real-world and contemporary benchmarks, such as BFCL-V3 (tool-calling) and MMLU-Pro, where
POLLINATOR achieves 3-10.6% higher accuracy at only 0.3-35.7% of the best producer’s cost.

2 INTELLIGENCE MARKETPLACE & THE MATCHMAKING PROBLEM

Background. The matchmaker dispatches each inference request emanating from the consumer,
enumerated with ¢ € [M], in a just-in-time fashion to a request-specific optimal producer, j € [N].
Upon receiving the response, we assume that the matchmaker possesses the ability to compute a ex
post quality — such as accuracy, a;; € R, — as well as the resource consumption — such as cost,
ci; € Ry and latency ¢;; € Ry — metrics. Furthermore, we assume that the matchmaker possesses
the corresponding ex ante estimates, a,;, ¢;; and ti 7. before dispatching the request. Equipped with
the ex ante estimates, informally, the role of the matchmaker is to maximize the sum total of response
quality, while obeying guardrails on total inference cost, and possibly other resource consumption
metrics. We now frame the matchmaker’s optimization problem formally.

Optimal Matchmaking. At this point, we distinguish between two settings. First, batch infer-
ence, where all the inference requests, ¢ € [M], are known a priori. This formalizes the set-
ting a certain class of consumers operate in, e.g., document summarization and information ex-
traction. We posit the matchmaker’s objective as to maximize the total ex ante response quality,
ZiE[M] Zje[N] x;,0,5, while obeying a guardrail on total inference cost, ZiE[M] ZjE[N] 1565 <
C, where ;; is the collection of primal variables lying on the probability simplex, A", defined
with the constraints =;; > 0,Vi € [M],Vj € [N]and 3, yy i, = 1,Vi € [M]. We remark that
the consumer may want to impose additional constraints, such as minimum volume commitments,
where each producer is guaranteed to receive a specified minimum volume of inference request,
> s Tij = Mj,Vj € [N]. The second setting is online inference, where the inference requests
arrive in a stream, along with the corresponding ex ante estimates. Specifically, at time ¢, the deci-
sion x; € A" has to be taken, without a foreknowledge of the upcoming requests, x;,, Yk > i. The
ex post cost and quality are defined, in this case, over a long horizon, M. E]Lastly, the matchmaker
will be required to follow a reference policy, g;;, where the desired level of proximity is expressed
as 3y, >l — ¢ij)?. In order to ease the exposition, we now focus on the setting where quality

>We remark that in practice, certain additional guardrails become desirable in the online setting: e.g., on
P95 latency — which can also be specified as a linear constraint, in terms of Conditional Value-at-Risk (CVaR).

Under review as a conference paper at ICLR 2026

and the cost are the only constraints at play. We remark that our framework extends to a more general
setting, and can incorporate additional linear constraints, such as minimum volume commitments
and p95 latency. Thus, the canonical form the matchmaker’s optimization problem assumes can be
expressed as follows.

Definition 1 (Optimal Matchmaking).

1 | MN M N
XréliAnN §7HX —qllr — i Z Z.I‘/‘/&ij s.t. Z Z,l',jéij <C (D
i=1 j=1 i=1j=1

Note that Eq. [T] succinctly describes the online version of the problem as well, assuming C' is the
long-horizon budget applicable over a span of M requests. Before turning our attention to the
solution of Eq. |l we lay down the design desiderata for the POLLINATOR — the novel optimal
matchmaker presented in the present work.

Desiderata. In order to ensure practicality of the POLLINATOR system, we impose 2 design
desiderata: @ Frugality. The cost savings yielded by the matchmaker during inference must
not be offset by the cost of training its predictors; @ Safety. For a consumer to be able to relinquish
its control over the choice of the producer, it must be assured adherence to the specified guardrails.
We now detail how these desiderata guide the design of POLLINATOR.

2.1 GRAPH-BASED SEMI-SUPERVISED LEARNING & ENSURING FRUGALITY

We design a two-tower architecture reminiscent of recommendation system: the first tower encodes
the request emanating from the consumer; the second tower encodes the producers; while a combiner
combines the output of the two towers and emits the ex ante estimates. We detail each of the
components below.

Request & Producer Towers. The prompt in request 4, p; € X%, is first encoded into a dense
vector, z; := Enc®(p;), where Enc? : ¥* ~ R? is a pre-trained BERT encoder on vocabulary ¥,
that extracts the embedding corresponding to the [CLS] token that is appended to the prompt. On
the set of prompts in the training dataset, we then induce a k-nearest neighbour graph, G(V, &),
where the similarity between nodes v;,v; € V is defined in terms of the cosine similarity of their
corresponding embeddings, cos(£z;x;). Let A denote the adjacency matrix of this graph, and let

A := A+ I denote the adjacency matrix of G, with self-loops added. On this graph, the request
tower implements a Graph Convolutional Network (GCN), which propagates information between
two successive layers, [and [+ 1, with HT) = (D=2 AD~2 HOW®). The embedding of

)

node v; at layer [= 0 is set to its embedding, HZ-(O = x;. Lastly, the embedding of the node v;

from the last layer of the GCN, Hi(L), is mapped to a vector, o; € RP and a scalar, B; € R, via two
learnable linear projections, W, W, respectively. Similarly, each producer, j € [N], is mapped to
a embedding, ¢; € RP, with an encoder, Enc? : [N] — RP. In our experiments, the encoder is
a pre-trained BERT that encodes the textual description of the producer, or a simple lookup-based
learnable linear projection, Wy.

Combiner. Inspired by Item Response Theory (IRT), the combiner treats «; as the discrimination
parameter, which intuitively models the skill-set required to generate a high-quality response to
request, ¢, and treats ; as its difficulty. On the other hand, 6; models the skill-set offered by the
producer j. IRT posits that the probability of obtaining a high-quality response improves with the
degree of match between the skill-set required to process request %, and those offered by producer
j — and is modulated by the difficulty of the request. This intuition is operationalized as: P{Y;; =
1:=o(al6; — B;)}, where o(z) = H% is the usual sigmoid function.
Training & Inference. During training, the performance predictor is fit by minimizing the binary
cross-entropy loss. The cost estimate is simply taken to be the average cost in training dataset.
During inference, we first induce a graph among the incoming request and its k& nearest neighbors
in the training dataset, and then run the forward-pass for both the towers. Figure [3]in Appendix [A.]
summarizes the salient workflows.

Under review as a conference paper at ICLR 2026

Algorithm 1 Dual Serving Scheme

1: Input: Request ¢; Dual

2: Output: Primal serving scheme {z,; }/_;.

3: Fetch ex ante predictions {d” 3y and {éi; 10y > Invoke predictors.
4: Compute utilities, {u;; } j=1, and sort them into w;(1), -+ , Ui(N) > Compute and sort utilities.
5:U=7~,5=1

6: repeat

7: if w5 + Y 1(” < 0 then

8: j=J- 1 break

9: else

10: U =U — u(;; j = j + 1; continue
11: end if

12: until j > N

13: v, =Y

J
14: () = —HE Yk < iy = 0,Vk > j

2.2 DUAL-BASED OPTIMIZATION & ADHERENCE TO SAFETY

The primal optimization problem formulated in Eq. 1| comprises a strongly-convex objective and
several linear constraints, thus rendering several off-the-shelf solvers immediately applicable at a
first glance. However, in practice, its deployment faces two challenges.

Predict-and-Optimize. The first problem arises because of the predict-and-optimize paradigm.
Ideally, the primal problem in Eq.[l| should have been defined in terms of the ex post coefficients,
a;; and c;;. However, we only have access to the corresponding ex ante coefficients, d;; and ¢&;;.
Thus issues such as predictor’s inaccuracy and mis-calibration plague the constrained optimization
via both constraints and the objective. We address this issue via improving the accuracy and the
calibration of the predictors, and leave a more principled investigation based on the predict-then-
optimize framework for a future work.

Online Optimization. The second problem appears in the case of online inference. Without a
priori knowledge of the M requests, the primal problem cannot even be formulated. POLLINA-
TOR solves it via resorting to the dual. The Lagrangian of Eq.[I]is presented in Eq.[2]

EOET SISRISE53) ST 3) SCTICE SEL DR 3) s
= =1 j=1 =1 j=1 [J
@)

The stationarity condition amongst the Karush-Kuhn-Tucker (KKT) conditions allow us to express

the primal solution in terms of the dual variables as, x,; = %, where the utility, u;; =

YGij + ﬁ&ij — A¢;;. However, this still does not yield a serving plan, given the presence of request-
dependent dual variables, /; and 0, ,, in the numerator.

In order to get rid of the request-dependent dual variables, we need to appeal to the complementary
slackness condition amongst the KKT conditions, which leads to the following proposition.

Proposition 1 (Utility). In the optimal solution for request i, assume producer j1 has more utility
than producer ja, u;j, > Usj,. If 255, > 0, then x5, > 245, > 0.

When the request ¢ arrives, armed with the ex ante estimates, G;; and ¢;;, and the request-

independent dual variable,)\, we first rank the producers as per their respective utilities. Let
U(1), "+ > Uiy represent the ranked list, where Ui(l) > e 2 Uy = 0 2> Uy(N). Proposi-
tion|l|illuminates a structure in the solution: x;(1) > -+« > Ty(j=) = -+ = Ty(N), Where ;- is

the smallest non-zero element. Thus complementary slackness ensures d;;) = 0, when j < j*,

and, primal feasibility ensures, Z =1 Ti(j) = 1. This insight allows us to eliminate the last remain-
ing request-specific dual variable, 1/;, from the expression for the primal solution z;;, by ensuring

Under review as a conference paper at ICLR 2026

= w Proposmondlsuls this insight into a operational definition of 5*, which cul-

minates into the optimal primal serving scheme presented in Algorithm [I]

“/*Zkgj Ui(k)

3 > 0.

Proposition 2 (Optimal Stopping). j* is the maximum j such that u; ;) +

3 EXPERIMENTAL SETUP

3.1 BENCHMARK & IMPLEMENTATION

In-Domain Dataset (ID). Following [Song et al.| (2025), we evaluate POLLINATOR’s in-domain
generalization capability over 8 datasets: (1) MMLU (Hendrycks et al., 2020) (reasoning and knowl-
edge across 57 domains), (@ CMMLU (Li et all 2024) (a Chinese incarnation of MMLU), 3
ACLUE (Zhang & Lil 2023) (ancient Chinese language-understanding), (4 ARC_C (Clark et al.,
2018) (advanced reasoning), (5) HotpotQA (Yang et al., 2018)) (question-answer requiring multi-hop
reasoning), 6 SQuAD (Rajpurkar et al.l |2018) (reading comprehension), (D) MATH (Hendrycks
et al.l [2021) (competition-level mathematics), and, MBPP (Austin et al., 2021) (basic coding).
20 LLMs were in the candidate pool (see Table[7)in Appendix. POLLINATOR is trained on 70%
of the combined dataset, and tested in-domain on the remaining 30%.

Out-of-Domain Dataset (OOD). Following |Song et al.| (2025), we evaluate POLLINATOR’s out-
of-domain generalization capability over 4 datasets that we not part of the training: (9 CEVAL

(Huang et al.,|2024) (tasks in Chinese language), CommonsenseQA (Talmor et al.,2019) (com-
monsense reasoning), @ GSMBSK (Cobbe et al., [2021) (grade-school mathematics), and, @ Hu-

mankEval (Chen et al.,[2021) (coding). The same candidate LLM pool as|[[n-Domain Dataset (ID)]is
employed. We emphasize that 100% of the combined datasets are used in test.

MMLU-Pro & BFCL-V3. In order to further evaluate POLLINATOR’s efficacy on contempo-
rary datasets and real-world scenarios such as tool-call, we benchmark in-domain on 2 additional

datasets: @ MMLU-Pro (Wang et al., 2024) (extends MMLU with harder multiple-choice ques-

tions with 10 possible choices, instead of 4), and, BFCL-V3 (Simple) (Patil et al., 2025)) (rea-
soning and ability to call external tools and APIs in real-world setting — a key skill for agentic
applications). The LLM candidate pool consists of 15 members, including GPT and Gemini fami-
lies, for MMLU-Pro (details in Table[9]in Appendix[A.4), and 10 for BFCL-V3 (Simple), including
OpenAl o-series and Llama-3.1 families (see Table [L0]in Appendix [A.4]for an exhaustive list). For
each of these 2 datasets, 70% is used for training and the rest 30% for testing (we emphasize that we
do not combine the datasets). Table[6]in Appendix [A.2]enumerates comprehensive details on all 14
datasets, including evaluation metrics and dataset cardinality.

Implementation. We use bert-base-uncased E] as the request encoder, Enc®. The producer
encoder, Enc®, simply encodes the producer ID, j € [M]. The GCN consists of L = 2 layers with
hidden dimension of 64 and dropout rate of 0.3. The producer’s skill-set, §;, has dimension of 16.
The kNN graph construction uses £ = 3 nearest neighbors, with edge weights (optionally) set to
the cosine similarity, cos(&xixj). POLLINATOR is trained with the Adam optimizer (Adam et al.,
2014), with learning rate 1 x 10~2 and weight decay 1 x 10~° for 200 epochs. During inference,
we induce a graph among the test request and its £ = 3 nearest neighbors. All hyper-parameters
were selected based on best performance on a held-out validation set. All experiments are run on 1
NVIDIA A40 GPU with 40GB memory.

3.2 METRICS & BASELINES

Metrics. We evaluate routing algorithms by the cost-performance tradeoffs they offer in the test
dataset. Given binary ground-truth label, a;;, € {0, 1}, where j; is the chosen producer for request
i, Performance (%) is defined in a dataset-dependent manner as either of accuracy, F1, Exact
Match (EM) and Pass@1 over the test dataset (see Table [6] in [A.2] for dataset-specific evaluation
metrics) — a methodology that echoes |Song et al.| (2025). Cost ($) is calculated as per the token
counts and the rate-card for the producer j;, where ¢ indexes the requests in test dataset.

Shttps://huggingface.co/google—bert/bert-base-uncased

https://huggingface.co/google-bert/bert-base-uncased

Under review as a conference paper at ICLR 2026

Baselines. We compare POLLINATOR against a set of strong baselines: () Small LLM always
routes queries to the smallest candidate model. (2) Large LLM always routes queries to the largest
candidate model. (3) KNN-Router is a simple retrieval-based baseline that selects an LLM based
on the top-k (kK = 5 gave the best performance) most similar queries, choosing the lowest-cost
model among them. @) HybridLLM (Ding et al., [2024) trains a pre-trained encoder (DeBERTa-
v3) with matrix factorization to decide between a small and a large model. (5) RouteLLM (Ong
et al., 2024)) uses a binary classifier for pairwise LLM routing. (® RouterBench (Hu et al., [2024)
provides multiple routing strategies; we adopt its Predictive Router variant to avoid the high cost of
querying all candidate models. (7) MIRT-Router and NIRT-Router (Song et al., [2025)) are IRT-
based methods and serve as our closest baselines. We implement only kNN-Router; results for the
others are taken from |Song et al.|(2025). MIRT-Router is run on MMLU-Pro and BFCL-V3 using
their official code, while NIRT-Router is omitted due to its reliance on costly GPT-40 relevance
vectors. Following [Song et al. (2025), we also generate LLM profile descriptions (Table [T3] in
Appendix for candidate models in MMLU-Pro and BFCL-V3 (Simple).

4 RESULTS

In ID dataset, as seen in Table E], in the performance-oriented batch inference setting, POLLINA-
TOR delivers 0.8% performance gain over NIRT-Router at 70% of its cost. Similarly, in the cost-
oriented setting, POLLINATOR renders 33% cost reduction over MIRT-Router, at a slightly better
performance. In the balanced setting, POLLINATOR achieves a 0.9% gain over SOTA at 93% of
the cost, and a 5% improvement over the best producer at 3% cost. In OOD (Table , the relative
cost reduction in the balanced setting stands at 28.57%, at a similar performance. The > 25% cost
advantage holds on MMLU-Pro and BFCL V3 datasets as well with 1.5% and 0.43% gains over
SOTA, as seen from Table |3} Overall, POLLINATOR delivers a superior Pareto frontier in the cost-
performance plane across ID, OOD, and real-world benchmarks . POLLINATOR effectively routes
queries to the most appropriate model, avoiding unnecessary invocation of expensive LLMs while
respecting global budget constraints.

Table 1: Comparison of routing methods in In-Domain Dataset across three distinct performance-
cost tradeoff scenarios. Bold and underline denote the best and second-best results.

Method Performance-First Balanced Cost-First
Performance (%)T Cost ($)] | Performance (%)T Cost ($)] | Performance (%)T Cost ($)]

Small LLM 48.70 0.31 48.70 0.31 48.70 0.31
Large LLM 77.53 12.93 77.53 12.93 77.53 12.93
HybridLLM 54.37 1.98 52.42 1.54 56.65 2.78
RouteLLM 77.25 12.80 73.59 11.15 66.24 7.51
RouterBench 80.01 1.15 79.48 0.53 78.36 0.37
kNN-Router 74.38 1.14 74.38 1.14 74.38 1.14
MIRT-Router 80.67 0.42 80.65 0.42 80.03 0.39
NIRT-Router 80.69 0.55 80.41 0.43 79.37 0.41
POLLINATOR | 81.38 0.39 | 81.38 0.39 | 80.09 0.26

Table 2: Comparison of routing methods in Out-of-Domain Dataset.

Method \ Performance-First | Balanced | Cost-First
| Performance (%)T Cost ($)] | Performance (%)T Cost ($)] | Performance (%)T Cost ($)]

Small LLM 59.83 0.11 59.83 0.11 59.83 0.11
Large LLM 84.90 5.30 84.90 5.30 84.90 5.30
HybridLLM 63.34 0.73 62.08 0.41 63.79 0.65
RouteLLM 84.39 5.25 79.90 4.74 75.06 3.48
RouterBench 85.50 0.26 85.75 0.16 84.62 0.12
kNN-Router 80.92 0.29 80.92 0.29 80.92 0.29
MIRT-Router 87.12 0.14 87.12 0.14 87.18 0.13
NIRT-Router 87.37 0.15 87.24 0.14 87.46 0.13
POLLINATOR | 87.37 0.14 | 87.63 0.10 | 87.69 0.09

Under review as a conference paper at ICLR 2026

Table 3: Comparison of routing methods on MMLU-Pro and BFCL V3 (ToolCall) datasets under
the Performance-First setting, reporting model accuracy and associated cost.

Method \ MMLU-Pro \ BFCL-V3 (ToolCall)

| Performance (%)t Cost ($) | Performance (%)t Cost ($)]
Small LLM! 53.07 2.10 77.33 0.01
Large LLM? 71.61 5.01 89.33 1.85
kNN-Router 74.23 2.55 86.67 0.02
MIRT-Router 78.84 1.18 90.66 0.008
POLLINATOR \ 79.18 0.88 \ 92.00 0.006

5 ABLATION STUDY

We perform a comprehensive ablation study on the performance predictor inside POLLINATOR on
ID datasets to assess the impact of key design decisions, encompassing: (D) request encoder, EncF;
(@) choice of k in graph construction; 3 the dimensionality, D, of §; € RP; (@ fraction of labeled
nodes in GCN. Findings are summarized in Table [4] and Table [5} For detailed ablations across all
combinations of Enct , k, D, and edge weighting strategies, refer to Table|12]in Appendix

Table 4: Ablation study of the predictor (without optimizer). Accuracy (%) is reported for different
request encoders, graph neighborhood sizes, and varied model ability dimension. POLLINATOR is
robust to embedding and neighborhood choices, sensitive to model ability dimension. The best
configuration of POLLINATOR is marked with {. Neighborhood size and model ability experiments
use bert-base-uncased as Enct.

Model Ability Dimension (D)

Request Encoder (Enc?) Graph Neighborhood Size (k) D Perf. (% 1)
Enc? Perf. (% 1) k Perf. (%) g ;(1).23 (¢}25.g6)
bert-base-uncasedt 82.07 (-) 31 82.07(-) 3 79.26 &2.81;
all-MiniLM-L6-v2 80.75 (11.32) 5 81.92(]0.15) 161 82.07 (1
all-mpnet-base-v2 81.70 (10.37) 10 81.87 (10.20) 25 8196 (J0.11)
text-embedding-3-large 81.34 (10.73) 20 82.02 ({0.05) 35 80.52(/1.55)

45 80.25(41.82)

Request Encoder Enc®. We experiment with different Enc® to encode requests. The best config-
uration (POLLINATORT) achieves 82.07% accuracy. Alternatives such as all—MiniLM—L6—vﬂ all-
mpnet-base-v2| and text-embedding-3-largd’| show a slight drop in performance of 1.32%, 0.37%,
and 0.73% respectively, as reported in Table [4] (left), indicating that the predictor is robust to the
choice of embedding while preserving strong predictive capability.

Neighborhood Size (k). We analyze predictor performance under varying graph neighborhood
sizes k. The best accuracy occurs at k& = 3 (82.07%), while larger neighborhoods (k = 5,10)
reduce accuracy (81.92%, 81.87%), and k = 20 only partially recovers it (82.02%). This indicates
that large k introduces noisy neighbors, limiting predictor precision (Table |4, middle).

Effect of Model Ability Dimension (D). We assess how the model ability dimension D impacts
the predictor’s performance (Table |4 right), reporting results relative to the optimal configuration
(D = 16). Extremely low dimensions (D = 3) severely underfit, causing a 12.96% drop in accuracy.
Moderate dimensions (D = 5 or D = 8) partially capture model abilities, resulting in 1.58%
and 2.81% decreases. Slightly larger dimensions (D = 25) perform comparably to the optimum,
with only a 0.11% drop, indicating sufficient capacity without over-parameterization. Excessively

'Small LLM refers to Meta-Llama-3.1-70B for MMLU-Pro and GPT-4.1-Nano for ToolCall.
?Large LLM refers to Gemini-1.5-Pro for MMLU-Pro and o1 for ToolCall.
‘nttps://huggingface.co/sentence-transformers/all-MinilM-L6-v2
Shttps://huggingface.co/sentence-transformers/all-mpnet—base-v2
®https://platform.openai.com/docs/models/text—embedding-3-large

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://platform.openai.com/docs/models/text-embedding-3-large

Under review as a conference paper at ICLR 2026

Table 5: Effect of node label masking on
predictor performance (relative drop |) and
training cost (with savings 1) on the ID
dataset, without optimizer.

Training Cost ($)
Node Masked (%) Perf. (% |) (Saving % 1)
0 82.07 (1) 208.76 ()
10 81.96 (10.11) 194.32 (6.91 1)
20 82.01 (10.06) 179.54 (13.99 1)
30 81.97 (J0.10) 164.92 (21.00 1) st cmaomniscor
50 81.82 (10.25) 135.66 (35.03 1)
60 81.79 (10.28) 121.10 (42.00 1))
70 81.48 (10.59) 106.23 (49.11 1) Figure 1: Comparison of GPT-40-Mini and GPT-

40-Mini+CoT over 16 dimensions. The CoT vari-
ant improves performance on most dimensions,
showing the benefit of explicit reasoning.

high dimensions (D = 35 or D = 45) introduce redundancy, causing 1.55% and 1.82% drops.
Intermediate D offers the best balance between expressivity and generalization.

Semi-Supervised Cost-Efficient Training. Labeling all training nodes can be costly, since ob-
taining responses from commercial LLMs incurs significant expense. However, because GCNs nat-
urally propagate label information across neighboring nodes, full supervision may be unnecessary.
To quantify this, we simulate a semi-supervised setting by randomly masking a fraction of training
node labels and report results in Table [5] The predictor demonstrates strong resilience to missing
supervision. With 70% of nodes masked, the predictor achieves 81.48% accuracy, which is compa-
rable to the state-of-the-art MIRT-Router without optimizer (81.17%, Table [12} Appendix[A.7) and
slightly below the fully supervised setting (82.07%), while reducing training cost by 49%. Interme-
diate masking levels (10%—30%) achieve proportional cost savings (6.91%-21%) with negligible
performance degradation.

5.1 INTERPRETABILITY OF POLLINATOR

LLM Ability. We investigate ability differences across representative models within the same
family using POLLINATOR. Figure[T|presents a comparison between GPT-40-Mini and its chain-of-
thought (CoT) augmented counterpart. The CoT-augmented model exhibits higher scores across
most dimensions, demonstrating that explicit intermediate reasoning improves performance on
reasoning-intensive tasks. As shown in Figure 4] in Appendix Llama3.1-405B-Instruct con-
sistently matches or outperforms its smaller counterpart, Llama3.1-70B-Instruct. We evaluated this
pair with a model ability dimension D = 25 to analyze trends in higher dimensions. Consistent
with scaling laws ((Kaplan et al.| [2020)), larger models demonstrate stronger performance. These
observations are supported by Table [§in Appendix [A.5] showing that Llama3.1-405B-Instruct and
GPT-40-Mini+CoT outperform their smaller or base variants.

Query Difficulty. We evaluate whether POLLINATOR effectively estimates query difficulty using
the MATH dataset, which includes human-annotated difficulty levels. As shown in Figure the
estimated difficulty parameter (3; exhibits a clear monotonic increase across levels and aligns well
with ground-truth annotations. Figure [5]in Appendix [A.6] presents two representative queries with
their predicted difficulty values, further highlighting the strong alignment between POLLINATOR’s
estimates and human-provided labels.

Routing Behavior Across Difficulty Levels. To understand how POLLINATOR balances perfor-
mance and cost, we analyze routing decisions across queries stratified by difficulty (Figure 2b).
Query difficulty, estimated via (3;, spans —2.14 to 1.84 and is divided into five linearly spaced bins
(L1-L5). While models like DeepSeek-Coder, DeepSeek-Chat, and GPT-40 achieve the highest
overall performance (Table[§]in Appendix [A.5])), POLLINATOR routes queries non-uniformly, lever-
aging difficulty-aware, cost-efficient allocation (see Table [/|in Appendix for model pricing). For

Under review as a conference paper at ICLR 2026

Query Difficulty B;

2 3

[-2.14,-1.34] [1.34,-0.55] [-0.55,0.25] [0.25,1.05] [1.05, 1.84]

Annotated Difficulty Level

Query Difficulty §, [Low — High]

() (b) (©

Figure 2: Visualization of interpretability analyses. (a) t-SNE projection of learned discrimination
vectors «; across in-domain datasets, showing task-specific clustering. (b) Routing distribution of
models across query difficulty bins, where lightweight models handle easier queries while advanced
models handle harder ones. (c) Predicted query difficulties (5;) in the MATH dataset, grouped by
human-annotated levels, showing monotonic alignment between model estimates and annotations.

easier queries (L1-L2), lightweight models such as Qwen2.5-32B-Int4, Mistral-7B-Instruct-v0.2,
and GLM-4-Air dominate, minimizing cost while maintaining accuracy. In intermediate bins (L3—
L4), routing is more heterogeneous, e.g., DeepSeek-Chat and Qwen2.5-32B-Int4. For the hardest
queries (L5), top-tier models like DeepSeek-Coder are preferentially selected. POLLINATOR routes
simple queries to inexpensive models and escalates complex ones to high-capacity models across
the difficulty spectrum (Figure 2b).

Discrimination Vector Analysis. In POLLINATOR, the discrimination vector a; encodes the skill
requirements needed to solve a query. To assess whether these vectors capture task-level structure,
we cluster queries based on their learned representations and project them into 2D using t-SNE
(Figure 24). Queries from the same dataset form cohesive clusters, showing that POLLINATOR ef-
fectively learns task-aligned skill representations. Some clusters partially overlap, reflecting shared
skills: for example, ARC_C and MMLU overlap due to similar reasoning and problem-solving skills
required, while CMMLU and ACLUE, the only two Chinese datasets among the eight, share the em-
bedding space to some extent. In contrast, MATH (mathematics), SQuAD (reading comprehension),
and MBPP (coding) form well-separated clusters, indicating that the learned vectors capture distinct
task-specific skill requirements.

Alignment Between Discrimination Vectors and LLM Abilities. Table [T1] in Appendix [A.6]
demonstrates that the discrimination vectors (o;) learned by POLLINATOR align strongly with the
ability profiles (¢;) of individual LLMs. Comparing Qwen2.5-7B-Instruct with its math-specialized
variant, Qwen2.5-Math-7B-Instruct, we find that queries, with higher mean routing probability, are
directed to the general model on in-domain tasks overall, while math-focused queries (e.g., from
MATH and GSMS8K) are preferentially routed to the specialized model. Conversely, non-math
queries from datasets such as MMLU and CommonsenseQA, are mostly routed to the general model.
This indicates that the learned discrimination vectors («;) capture model-specific strengths and ef-
fectively guide query allocation.

6 CONCLUSION

We presented POLLINATOR, a data-efficient and online-serving-capable matchmaker for the in-
telligence marketplace. POLLINATOR combines a frugal GCN-based predictor with an IRT-head
and an efficient dual-optimizer, reducing training cost by up to 49% while outperforming existing
state-of-the-art predictors. Extensive experiments on real-world benchmarks, including BFCL-V3
and MMLU-Pro, demonstrate superior cost—performance trade-offs. Furthermore, detailed abla-
tion studies and interpretability validate POLLINATOR’s effectiveness for cost-efficient intelligence
matchmaking. Future work will extend the framework to incorporate latency and volume constraints
and explore adaptive dynamic graphs for evolving requests and producers.

Under review as a conference paper at ICLR 2026

REFERENCES

Kingma DP Ba J Adam et al. A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
1412(6), 2014.

Deepak Agarwal, Bee-Chung Chen, Pradheep Elango, and Xuanhui Wang. Personalized click shap-
ing through lagrangian duality for online recommendation. In Proceedings of the 35th Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
12, pp. 485494, New York, NY, USA, 2012. Association for Computing Machinery. ISBN
9781450314725. doi: 10.1145/2348283.2348350. URL https://doi.org/10.1145/
2348283.2348350.

Pranjal Aggarwal, Aman Madaan, Ankit Anand, Srividya Pranavi Potharaju, Swaroop Mishra, Pei
Zhou, Aditya Gupta, Dheeraj Rajagopal, Karthik Kappaganthu, Yiming Yang, et al. Automix:
Automatically mixing language models. arXiv preprint arXiv:2310.12963, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Kaidi Cao, Jiaxuan You, and Jure Leskovec. Relational multi-task learning: Modeling relations
between data and tasks. arXiv preprint arXiv:2303.07666, 2023.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Shiming Chen, Ziming Hong, Guosen Xie, Qinmu Peng, Xinge You, Weiping Ding, and Ling Shao.
Gndan: Graph navigated dual attention network for zero-shot learning. IEEE transactions on
neural networks and learning systems, 35(4):4516—4529, 2022.

Shuhao Chen, Weisen Jiang, Baijiong Lin, James Kwok, and Yu Zhang. Routerdc: Query-based
router by dual contrastive learning for assembling large language models. Advances in Neural
Information Processing Systems, 37:66305-66328, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Ruhle, Laks VS
Lakshmanan, and Ahmed Hassan Awadallah. Hybrid llm: Cost-efficient and quality-aware query
routing. arXiv preprint arXiv:2404.14618, 2024.

Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for llm selections.
In The Thirteenth International Conference on Learning Representations, 2024.

Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson, Rex
Ying, Jiaxuan You, and Jure Leskovec. Relational deep learning: Graph representation learning
on relational databases. arXiv preprint arXiv:2312.04615, 2023.

Gauthier Guinet, Behrooz Omidvar-Tehrani, Anoop Deoras, and Laurent Callot. Automated evalu-
ation of retrieval-augmented language models with task-specific exam generation. arXiv preprint

arXiv:2405.13622, 2024.
Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

10

https://doi.org/10.1145/2348283.2348350
https://doi.org/10.1145/2348283.2348350

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Lars Erik Holmquist. Intelligence on tap: artificial intelligence as a new design material. interac-
tions, 24(4):28-33, 2017.

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-llm routing
system. arXiv preprint arXiv:2403.12031, 2024.

Jiaqi Huang, Chengxi Liu, Ziwei Wei, Yan Dong, Renze Zhang, Wanjun Zhou, Shiyue Zhang, Peiyi
Lv, Peijie Wang, Zhihong Fan, et al. C-eval: A multi-level multi-discipline chinese evaluation
suite for foundation models. arXiv preprint arXiv:2305.08322, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

TN Kipf. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timo-
thy Baldwin. Cmmlu: Measuring massive multitask language understanding in chinese. arXiv
preprint arXiv:2306.09212, 2024.

Qi Liu, Zheng Gong, Zhenya Huang, Chuanren Liu, Hengshu Zhu, Zhi Li, Enhong Chen, and Hui
Xiong. Multi-dimensional ability diagnosis for machine learning algorithms. Science China
Information Sciences, 67(12):229101, 2024.

Yang Liu, Alan Medlar, and Dorota Glowacka. What we evaluate when we evaluate recommender
systems: Understanding recommender systems’ performance using item response theory. In Pro-
ceedings of the 17th ACM Conference on Recommender Systems, pp. 658—670, 2023.

Yunting Liu, Shreya Bhandari, and Zachary A Pardos. Leveraging llm respondents for item eval-
uation: A psychometric analysis. British Journal of Educational Technology, 56(3):1028-1052,
2025.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
Routing to the expert: Efficient reward-guided ensemble of large language models. arXiv preprint
arXiv:2311.08692, 2023.

Kai Mei, Wujiang Xu, Shuhang Lin, and Yongfeng Zhang. Omnirouter: Budget and performance
controllable multi-llm routing. arXiv preprint arXiv:2502.20576, 2025.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route 1lms with preference data. arXiv
preprint arXiv:2406.18665, 2024.

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Ion Stoica, Joseph E. Gonzalez,
et al. The berkeley function calling leaderboard (bfcl): From tool use to agentic evaluation of large
language models. In Proceedings of the 2025 International Conference on Machine Learning
(ICML), 2025. URL https://openreview.net/forum?id=2GmDdhBdDk.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822, 2018.

Mark D Reckase. 18 multidimensional item response theory. Handbook of statistics, 26:607-642,
2006.

11

https://openreview.net/forum?id=2GmDdhBdDk

Under review as a conference paper at ICLR 2026

Pedro Rodriguez, Joe Barrow, Alexander Miserlis Hoyle, John P Lalor, Robin Jia, and Jordan Boyd-
Graber. Evaluation examples are not equally informative: How should that change nlp leader-
boards? In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pp. 4486-4503, 2021.

Seamus Somerstep, Felipe Maia Polo, Allysson Flavio Melo de Oliveira, Prattyush Mangal, Mirian
Silva, Onkar Bhardwaj, Mikhail Yurochkin, and Subha Maity. Carrot: A cost aware rate optimal
router. arXiv preprint arXiv:2502.03261, 2025.

Wei Song, Zhenya Huang, Cheng Cheng, Weibo Gao, Bihan Xu, GuanHao Zhao, Fei Wang, and
Runze Wu. IRT-router: Effective and interpretable multi-LLLM routing via item response the-
ory. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 15629-15644, Vienna, Austria, July 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.761. URL
https://aclanthology.org/2025.acl-long.761/.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 4149-4158, 2019.

Asterios Tsiourvas, Wei Sun, and Georgia Perakis. Causal llm routing: End-to-end regret minimiza-
tion from observational data. arXiv preprint arXiv:2505.16037, 2025.

Fei Wang, Qi Liu, Enhong Chen, Zhenya Huang, Yuying Chen, Yu Yin, Zai Huang, and Shijin
Wang. Neural cognitive diagnosis for intelligent education systems. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 6153-6161, 2020.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. MMLU-Pro: A More Robust and Challenging Multi-Task
Language Understanding Benchmark. In NeurIPS 2024 Track on Datasets and Benchmarks,
2024. URLhttps://arxiv.org/abs/2406.01574.

David J Woodruff and Bradley A Hanson. Estimation of item response models using the em algo-
rithm for finite mixtures. 1996.

Tian Xie, Bin Wang, and C-C Jay Kuo. Graphhop: An enhanced label propagation method for node
classification. IEEE Transactions on Neural Networks and Learning Systems, 34(11):9287-9301,
2022.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Yixuan Zhang and Haonan Li. Can large language models comprehend ancient chinese? a prelimi-
nary test on aclue. arXiv preprint arXiv:2310.09550, 2023.

Richard Zhuang, Tianhao Wu, Zhaojin Wen, Andrew Li, Jiantao Jiao, and Kannan Ramchandran.
EmbedLLM: Learning compact representations of large language models. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=Fs9EabmQrJ.

12

https://aclanthology.org/2025.acl-long.761/
https://arxiv.org/abs/2406.01574
https://openreview.net/forum?id=Fs9EabmQrJ
https://openreview.net/forum?id=Fs9EabmQrJ

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 METHODOLOGY

The overall training and inference flows of POLLINATORare illustrated in Figure 8] showing the
dual-tower encoder and IRT-based prediction head used to generate serving plans.

All the code and

>0 |
Bi 0;
il i
W, W,@ 4 :_r‘ h 4)
=
T
v

A ;= argmax min L(z, \, a;, ¢; ;
gAzO Ty (z, A, 4, ¢;) Train

|
A
v

x; = DualToPrimal(\) | Test

Figure 3: POLLINATOR: Train & Inference Flows. The left tower encodes request ¢ with a GCN with
L layers. The right tower encodes producer j. The bespoke IRT-based head combines the outputs
of the two towers to generate ex ante predictions. In train flow,) is the result of optimization on a
held-out validation set, which, during inference, is used to compute the primal serving plan x; via
Algorithm|[T]

A.2 DATASETS DETAILS

The datasets (Table [6) span a wide range of domains and task categories. In-domain datasets in-
clude reasoning, code, and QA tasks. Out-of-domain datasets test generalization to unseen tasks.
Additional benchmarks, MMLU-Pro and BFCL V3 (Simple), evaluate more challenging reasoning
problems and tool use. Each dataset lists the task type, evaluation metric, and train/test sizes.

A.3 CANDIDATE LLMS FOR VARIOUS DATASETS

For our routing experiments, we select a set of 20 representative LLLMs as candidates for in-domain
and out-of-domain datasets (see Table[7). The candidate LLMs, along with their input and output
costs, for MMLU-Pro and BFCL-V3 (ToolCall) are reported in Tables 0] and [I0] respectively.

A.4 PRICING OF CANDIDATE LLMS

We report both input and output token pricing ($/1M tokens) for all candidate models. Candi-
date LLMs exhibit drastic variation in pricing. Table [7] summarizes the base set of LLMs for in-
domain and out-of-domain datasets, while Table |g| and Table @l details the pricing of models used
for MMLU-Pro and BFCL ToolCalling benchmarks.

13

Under review as a conference paper at ICLR 2026

Table 6: Details of in-domain, out-of-domain, and additional datasets used in our experiments.

In-domain
Dataset Type Evaluation Metric Train Size Test Size
ACLUE (Zhang & Li![2023) Ancient Chinese accuracy 1400 600
ARC_C (Clark et al.||2018) Reasoning accuracy 1400 600
CMMLU (L1 et al.|[2024) Chinese Multitask accuracy 7000 3000
Hotpot_QA (Yang et al./[2018) Multi-Hop EM 1400 600
MATH (Hendrycks et al.|[2021) Math accuracy 1400 600
MBPP (Austin et al.|[2021) Code pass@1 630 270
MMLU (Hendrycks et al.|[2020) Multitask accuracy 9800 4200
SQuAD (Rajpurkar et al.[|2018) Reading Comprehension fl 1400 600
Out-of-domain
Dataset Task type Evaluation Metric Train Size Test Size
CEVAL (Huang et al.|[2024) Chinese Multitask accuracy 1000
CommonsenseQA (Talmor et al.{|2019) Commonsense Reasoning accuracy 1000
GSMB8K (Cobbe et al.||2021) Math accuracy 1000
HumanEval (Chen et al.[[2021) Code pass@1 160
Additional Datasets
MMLU-Pro (Wang et al.|[2024) Multitask Reasoning accuracy 9602 2430
BFCL V3 (Simple) (Patil et al.|[2025) Tool-Use / Function Calling accuracy 125 75

Table 7: Pricing details of different LLMs ($/1M tokens) selected for In-Domain and Out-of-Domain

Input $/IM Output $/1M

Datasets.
LLM
DeepSeek-Chat 0.14
DeepSeek-Coder 0.14
Gemini-1.5-Flash 0.075
GLM-4-Air 0.137
GLM-4-Flash 0.0137
GLM-4-Plus 6.85
GPT-40 2.50
GPT-40-Mini 0.15
GPT-40-Mini+CoT 0.15
Llama3.1-8B-Instruct 0.10
Llama3.1-70B-Instruct 0.792
Llama3.1-405B-Instruct 3.15
Ministral-8B-Instruct-2410 0.10
Mistral-7B-Instruct-v0.2 0.10
Mixtral-8x7B-Instruct 0.54
Qwen2.5-32B-Instruct-GPTQ-Int4 0.10
Qwen?2.5-7B-Instruct 0.10
Qwen2.5-72B-Instruct 1.08
Qwen2.5-Math-7B-Instruct 0.10
QwQ-32B-Preview 1.20

0.28
0.28
0.30

0.137
0.0137

6.85
10.0
0.60
0.60
0.20

0.792

3.15
0.20
0.20
0.54
0.20
0.20
1.08
0.20
1.20

A.5 AVERAGE PERFORMANCE OF MODELS ON ID DATA

Table [8| shows the average performance of 20 models on in-domain data. DeepSeek-Chat and
DeepSeek-Coder achieve the highest performance, followed by large LLMs like Qwen2.5-72B-
Instruct and GLM-4-Plus. Smaller or specialized models, such as Qwen2.5-Math-7B-Instruct, per-
form lower, reflecting their focus on niche tasks.

14

Under review as a conference paper at ICLR 2026

Table 8: Average performance of models on ID data (sorted in descending order).

Rank Model Performance
1 DeepSeek-Chat 0.8074
2 DeepSeek-Coder 0.8061
3 Qwen2.5-72B-Instruct 0.7997
4 GLM-4-Plus 0.7902
5 Qwen2.5-32B-Int4 0.7827
6 Llama3.1-405B-Instruct 0.7754
7 GPT-40 0.7753
8 Geminil.5-Flash 0.7290
9 GLM-4-Air 0.7200
10 GPT-40-Mini+CoT 0.7171
11 Llama3.1-70B-Instruct 0.7111
12 GPT-40-Mini 0.7067
13 Qwen2.5-7B-Instruct 0.6138
14 QwQ-32B-Preview 0.5973
15 GLM-4-Flash 0.5301
16 Ministral-8B-Instruct-2410 0.4872
17 Mixtral-8x7B-Instruct 0.3476
18 Llama3.1-8B-Instruct 0.3186

19 Mistral-7B-Instruct-v0.2 0.1042
20 Qwen2.5-Math-7B-Instruct 0.0980

Table 9: Pricing details of candidate LLMs selected for MMLU-Pro ($/1M tokens).

LLM Input $/IM Output $/1IM
Claude-3.5-Sonnet 3.00 15.00
Gemini-1.5-Pro 1.25 5.00
Llama3.1-70B 0.60 0.60
Llama3.1-70B-Instruct 1.00 1.00
Llama3-70B 0.65 2.75
Llama3-70B-Instruct 0.59 0.79
Claude-3.5-Sonnet-(alt) 3.00 15.00
Claude-3.5-Sonnet-20241022 3.00 15.00
Claude-3.5-Haiku-20241022 0.80 4.00
Gemini-1.5-Flash 0.08 0.30
Gemini-2.0-Flash 0.15 0.60
GPT-4.1-Nano 0.10 0.40
GPT-4.1 2.00 8.00
GPT-4.1-Mini 0.40 1.60
04-Mini 1.10 4.40

Table 10: Pricing details of candidate LLMs selected for BFCL Toolcalling ($/1M tokens).

LLM Input $/1IM Output $/1M
GPT-40 2.50 10.0
GPT-40-Mini 0.15 0.60
ol 15.0 60.0
GPT-4.1-Nano 0.10 0.40
Gemini-1.5-Flash 0.08 0.30
Gemini-1.5-Pro 1.25 5.00
Gemini-2.0-Flash 0.15 0.60
GPT4.1 2.00 8.00
GPT-4.1-Mini 0.40 1.60
04-Mini 1.10 4.40

15

Under review as a conference paper at ICLR 2026

Table 11: Mean predicted routing probability of the general (Qwen2.5-7B-Instruct) vs. math-
specialized (Qwen2.5-Math-7B-Instruct) models. Math queries are routed more often to the spe-
cialized model, while non-math queries favor the general model.

Task Qwen2.5-7B-Instruct Qwen2.5-Math-7B-Instruct
All ID Tasks 0.60 0.14
MATH 0.32 0.70
GSMB8K 0.37 0.44
MMLU 0.60 0.04
CommonsenseQA 0.74 0.07

A.6 ADDITIONAL INTERPRETABILITY RESULTS

Table [T1] reports routing probabilities for Qwen2.5-7B-Instruct and its math-specialized variant.
Math queries favor the specialized model, while general queries are routed to the general model,
showing POLLINATORs effective task-based model selection. Figure[d|highlights consistent perfor-
mance improvements of Llama3.1-405B-Instruct over its smaller counterpart. Figure [5]illustrates
example queries with predicted (3;, highlighting strong agreement with human labels.

18 19 20

= | lama3.1-70B-Instruct = [lama3.1-405B-Instruct

Figure 4: Estimated ability profiles (6;) over 25 dimensions. Comparison of Llama3.1-70B-Instruct
and Llama3.1-405B-Instruct, showing consistent gains for the larger model.

A.7 DETAILED ABLATION STUDY OF THE PREDICTOR

Table [T2] presents a detailed ablation of our predictor (without the optimizer), analyzing the impact
of ability dimension (), number of neighbors (k), edge-weighting, masking ratio, and embedder
selection. Performance generally improves with increasing 6 up to an optimal point. Across different
configurations, our predictor consistently outperforms baseline methods, demonstrating robustness
to design choices.

16

Under review as a conference paper at ICLR 2026

Type: Geometry
Level: Level 5

Problem: Pointz A, B, C, D, E, F, G, H, and K form a polygon such that each of the
segments AB, BC, CD, DE, EF, FG, GH, and HK has length 4. All angles are right
angles except at points D and F. In triangle DEF, which is an isosceles right triangle

with legs DE = EF = 4, a perpendicular EM is drawn from E to DF. If EM = x, find x"2.

Difficulty: 0.7052

Type: Counting and Probability
Level: Level 1

Problem: Find the value of (31)! / 3L

Difficulty: -0.7126

Figure 5: Example queries with predicted b; values compared to human labels, illustrating the close
correspondence between predicted and true difficulty.

A.8 CANDIDATE LLMS PROFILE DESCRIPTIONS

Table[T3]lists the candidate large LLMs used in our experiments for MMLU-Pro & BFCL-V3, along
with their key profile descriptions.

17

Under review as a conference paper at ICLR 2026

Table 12: Ablation study of the predictor (without optimizer). Columns indicate ability (6;), dimen-
sion (D), number of neighbors (k), edge-weight, node label masking, request encoder (Enc?), and
performance. Bold values indicate the best configuration within each block.

Model | D | k [Edge-weight [Masking Ratio | Enc® | Performance
Baselines
Small LLM X X 48.70%
Large LLM X X 77.53%
KNN-Router 5 X X 74.38%
MIRT-Router X X 81.17%
NIRT-Router X X 75.26%
POLLINATOR Ablation: D and k (no edge-weight)
3 3 X X bert-base-uncased 71.04%
5 3 X X bert-base-uncased 80.51%
8 3 X X bert-base-uncased 79.26%
POLLINATOR 16 | 3 X X bert-base-uncased 82.08%
16 | 5 X X bert-base-uncased 81.73%
16 | 10 X X bert-base-uncased 81.94%
16 | 20 X X bert-base-uncased 82.03%
25 3 X X bert-base-uncased 82.28%
25 5 X X bert-base-uncased 82.24%
25 | 10 X X bert-base-uncased 82.13%
25 | 20 X X bert-base-uncased 81.53%
POLLINATOR with Edge-weight Vary D
3 3 v X bert-base-uncased 71.43%
5 3 v X bert-base-uncased 80.49%
POLLINATOR | ¢ | 3 v X bert-base-uncased 79.26%
16 | 3 v X bert-base-uncased 82.07%
25 3 v X bert-base-uncased 81.96%
35 3 v X bert-base-uncased 80.52%
45| 3 v X bert-base-uncased 81.25%
3 5 v X bert-base-uncased 71.12%
5 5 v X bert-base-uncased 80.27%
8 5 v X bert-base-uncased 79.37%
16 | 5 v X bert-base-uncased 81.90%
25| 5 v X bert-base-uncased 81.20%
35| 5 v X bert-base-uncased 80.53%
45 | 5 v X bert-base-uncased 80.72%
POLLINATOR with Edge-weight
16 | 3 v X bert-base-uncased 82.07%
16 | 5 v X bert-base-uncased 81.92%
POLLINATOR | 16| g v X bert-base-uncased 81.87%
16 | 20 v X bert-base-uncased 82.12%
25 3 v X bert-base-uncased 81.96%
25| 5 v X bert-base-uncased 82.20%
25 | 10 v X bert-base-uncased 81.99%
25 | 20 v X bert-base-uncased 81.68%
POLLINATOR with Node Masking
16 3 v 0.1 bert-base-uncased 81.96%
16 | 3 v 0.2 bert-base-uncased 82.01%
POLLINATOR | ¢ | 3 v 03 bert-base-uncased 81.97%
16 | 3 v 0.5 bert-base-uncased 81.82%
25 5 v 0.1 bert-base-uncased 81.79%
25| 5 v 0.2 bert-base-uncased 81.89%
25 5 v 0.3 bert-base-uncased 82.12%
25| 5 v 0.5 bert-base-uncased 81.68%
POLLINATOR with Different Enc®
16 3 X X all-MiniLM-L6-v2 80.86%
25| 3 X X all-MiniLM-L6-v2 80.74%
16 | 3 X X all-mpnet-base-v2 81.70%
POLLINATOR | »5 | 3 X X all-mpnet-base-v2 82.37%
25 | 3 X X text-embedding-3-large 81.97%
16 | 3 v X all-mpnet-base-v2 81.70%
16 3 v X all-MiniLM-L6-v2 80.75%
16 | 3 v X text-embedding-3-large 80.15%
25| 5 v X all-mpnet-base-v2 82.60%
25 5 v X all-MiniLM-L6-v2 80.74%
25| 5 v X text-embedding-3-large 81.91%

18

Under review as a conference paper at ICLR 2026

Table 13: List of candidate LLMs with their profile descriptions.

LLM Name

Profile Description

Gemini 2.0 Flash

Released on Dec 11, 2024 by Google DeepMind. Experimental version of Gemini 2.0 Flash,
focusing on enhanced speed and performance. Features include a Multimodal Live API for
real-time audio and video interactions, improved spatial understanding, native image and con-
trollable text-to-speech with watermarking, and integrated tool use, including Google Search.
Also introduces improved agentic capabilities and a new Google Gen AI SDK.

Gemini 1.5 Pro 002

Released on Sep 24, 2024 by Google DeepMind. Updated Gemini 1.5 Pro with a 2M token
context window and up to 8,192 token outputs. Designed for diverse tasks via Google AT
Studio and Vertex Al

Meta-Llama-3.1-70B

Released on Jul 23, 2024 by Meta AL. A 70B parameter model pre-trained on 15T tokens
from public sources, designed for advanced language understanding, coding, and reasoning.

Claude 3.5 Haiku

Released on Oct 22, 2024 by Anthropic. Optimized for efficiency and speed with a 200K
token context window and 8,192 token outputs. Suitable for rapid-response tasks.

Meta-Llama-3.1-70B-Instruct

Released on Jul 23, 2024 by Meta Al Instruction-tuned variant of Llama 3.1-70B, fine-tuned
on public datasets and 10M+ human annotations to enhance instruction-following.

GPT-4.1 Nano

Released on Apr 14, 2025 by OpenAl. Compact GPT-4.1 version for on-device tasks with
reduced compute needs while maintaining strong performance.

Gemini 1.5 Flash 002

Released on Sep 24, 2024 by Google DeepMind. Updated Gemini 1.5 Flash with a 1M token
context window and up to 8,192 token outputs. Optimized for speed and cost-efficiency.

04-Mini

Released on Aug 6, 2024 by OpenAl. A smaller GPT-40 variant with 1,047,476 token context
window and 32,768 token outputs, offering efficiency while retaining robust performance.

Claude 3.5 Sonnet

Released on Oct 22, 2024 by Anthropic. Balances performance and efficiency with a 200K
token context window and 8,192 token outputs. General-purpose model.

Claude 3.5 Sonnet

Released on Oct 22, 2024 by Anthropic. Part of the Claude 3.5 series, offering 200K context
window, optimized for diverse tasks. Achieved 59.1% on GPQA Diamond benchmark.

Meta-Llama-3-70B

Released on Apr 18, 2024 by Meta Al. A 70B parameter model pre-trained on 15T tokens,
designed for high-performance language tasks.

Meta-Llama-3-70B-Instruct

Released on Apr 18, 2024 by Meta Al Instruction-tuned version of Llama 3-70B, aligned
with user queries via public datasets and 10M+ annotations.

GPT-4.1

Released on Apr 14, 2025 by OpenAl. Enhanced GPT-4 variant with improved reasoning,
coding, and agentic abilities.

GPT-4.1 Mini

Released on Apr 14, 2025 by OpenAl. Smaller GPT-4.1 variant, optimized for efficiency
while maintaining strong task performance.

GPT-4.1-Nano

Released on April 14, 2025, by OpenAl. A compact version of the GPT-4.1 model, designed
for on-device tasks with reduced computational requirements. Maintains strong performance
across various benchmarks while being optimized for efficiency.

GPT-40

GPT-40: Released on November 20, 2023, by OpenAl. A large language model capable of
handling complex tasks requiring deep understanding of language. Features include advanced
reasoning capabilities, multimodal capabilities, and a context window of up to 128,000 to-
kens. Available through OpenAI’s APIL.

GPT-40-Mini

GPT-40 Mini: Released on November 20, 2023, by OpenAl. A smaller variant of the GPT-40
model, designed for efficiency while maintaining strong performance across various tasks.
Optimized for applications requiring reduced computational resources.

ol

Released on August 16, 2024, by OpenAl. A large language model capable of handling com-
plex tasks requiring deep understanding of language. Features include advanced reasoning
capabilities, multimodal capabilities, and a context window of up to 128,000 tokens. Avail-
able through OpenATI’s APL

19

Under review as a conference paper at ICLR 2026

B ADDITIONAL RELATED WORKS

Item Response Theory. Item Response Theory (IRT) (Woodruff & Hansonl [1996) models the
interaction between latent human ability and item difficulty via logistic functions, ensuring inter-
pretability through monotonicity. Extensions such as MIRT (Reckasel 2006) and neural variants
(e.g., NCDM (Wang et al., [2020)) capture richer interactions. Beyond education, IRT has been ap-
plied to model evaluation (Liu et al.,2024), recommendation (Liu et al.|[2023), leaderboard ranking
(Rodriguez et al.,2021)), and LLM assessment (Guinet et al., [2024; [Liu et al.,|2025)). We adopt IRT
for its interpretability and proven effectiveness in human and machine assessment.

LLM Routers. LLM routing seeks to assign queries to the most suitable model for optimal accu-
racy—cost tradeoffs. Early works like Frugal GPT (Chen et al.,[2023)) and AutoMix (Aggarwal et al.,
2023)) use cascaded inference, while later methods train lightweight routers such as HybridLLM
(Ding et al.| [2024), RouteLLM (Ong et al., [2024), and Zooter (Lu et al., 2023). RouterDC (Chen
et al., 2024) and KNN-based approaches (Hu et al.l 2024) further reduce costs, and GraphRouter
(Feng et al., 2024) leverages GNNs but depends on task priors. EmbedLLM (Zhuang et al., 2025)
learns compact embeddings via matrix factorization to support routing at scale. Commercial sys-
tems like Martia and Neutrino Alﬂ demonstrate practical benefits, reporting major savings. Unlike
these, our approach couples difficulty-aware estimation with online dual optimization, yielding in-
terpretable and cost-efficient routing.

Graph-based Modeling. Graphs naturally capture relational structures (Fey et al., [2023} |Cao
et al.,|2023} |Chen et al., [2022)). Classical methods like label propagation (Xie et al.,|2022) leverage
edges for transductive learning, while GNNs (Kipf, 2016} [Hamilton et al.l 2017) extend message
passing to learn expressive representations. Recent work highlights their zero-/few-shot potential
(Fey et al.l 2023} |Cao et al.,[2023)) in domains such as recommendation and social networks. Build-
ing on these advances, we employ GNNs to design the predictor of POLLINATOREI

"nttps://withmartian.com
$https://neutrinoapp.com
9 All code and datasets for POLLINATOR are provided in the supplementary material.

20

https://withmartian.com
https://neutrinoapp.com

	Introduction
	Intelligence Marketplace & the Matchmaking Problem
	Graph-based Semi-Supervised Learning & Ensuring Frugality
	Dual-based Optimization & Adherence to Safety

	Experimental Setup
	Benchmark & Implementation
	Metrics & Baselines

	Results
	Ablation Study
	Interpretability of Pollinator

	Conclusion
	Appendix
	Methodology
	Datasets Details
	Candidate LLMs for Various Datasets
	Pricing of Candidate LLMs
	Average Performance of Models on ID data
	Additional Interpretability Results
	Detailed Ablation Study of the Predictor
	Candidate LLMs Profile Descriptions

	Additional Related Works

