Under review as a conference paper at ICLR 2026

ZBPOLLINATOR: OPTIMAL MATCHMAKING IN AN IN-
TELLIGENCE MARKETPLACE

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid growth of the intelligence marketplace has created an abundance of
Large Language Model (LLM) producers, each with different cost—performance
tradeoffs, making optimal selection challenging and resource-intensive. We
present POLLINATOR, a novel router that integrates a frugal, data-efficient pre-
dictor with an online dual-based optimizer. The predictor combines graph-based
semi-supervised learning with an Item Response Theory (IRT) head, reducing
training cost by up to 49% while improving predictive accuracy over prior state-
of-the-art. The optimizer formulates matchmaking as a strongly convex problem,
which allows efficient dual-to-primal conversion for real-time serving. Extensive
experiments demonstrate that POLLINATOR delivers superior cost—performance
tradeoffs: achieving 0.43%-1.5% gains at 71%-93% of the cost of state-of-the-
art router, 3-5% gains at only 1.9-3% of the cost of the best individual producer,
and up to 10.6% higher accuracy at just 0.3-35.7% of the cost on challenging real-
world benchmarks such as BFCL-V3 and MMLU-Pro. Finally, the interpretability
of learned query difficulties and model abilities demonstrates POLLINATOR’s ef-
fectiveness for dynamic and cost-efficient intelligence matchmaking.

1 INTRODUCTION

The Intelligence Marketplace. The commoditization of (artificial) intelligence, which gave birth
to the phrase Intelligence on Tap, coupled with the rapid proliferation in applications that exploit it
as a Design Material Holmquist (2017), catalyzed a Cambrian explosion of intelligent applications.
The author of such an application, however, faces a problem of plenty: there are many producers
of intelligenceﬂ with varying cost-performance tradeoffs on generic benchmarks, making it hard
to choose an optimal one appropriate specific to the application at hand. Furthermore, given the
frequent updates that alter performance and rapidly falling costs, the process of optimization has to
be repeated continuously — thus putting a constant demand on the author’s resources.

Matchmaking with Router. To remedy, router — which routes each request independently to a
producer from a pool based on projected cost-performance tradeoff — was conceptualized Hu et al.
(2024). A canonical router consists of two components: a collection of predictors that project the
cost and performance for each request-producer pair; and, an optimizer that makes the tradeoff based
on the projection.

Predictor & Data Efficiency. While a wide gamut of predictors, ranging from simple k-Nearest
Neighbor |Hu et al| (2024) to sophisticated Small Language Model with bespoke Bradley-Terry
head Ong et al| (2024) and Item Response Theory [Song et al| (2025), have been explored, the
angle of data-efficiency has remained underexplored. Recently, Tsiourvas et al.[(2025) approached
data-efficiency in predictor through the lens of causal inference. However, we remark that the causal-
inference setting is overly restrictive: one can indeed send the same request (unit) to more than one
producers (treatments) in order to gauge cost and performance (treatment effects), which is a de-
parture from the assumptions in causal-inference. In this work, we combine the superior predictive
performance rendered by Item Response Theory grounded in psychometry, with the data-efficiency
afforded by graph-based semi-supervised learning to design POLLINATOR, a novel data-efficient
predictor.

'A search in Hugging Face for Transformer-based models with 3B+ parameters results in 170K+ hits. The
benchmarking service, Artificial Analysis, indexes 250 frontier models.

Under review as a conference paper at ICLR 2026

Optimizer & Online Matchmaking. The prevalent approach to matchmaking in the literature has
been to compute the utility of each producer for the given request by blending the predicted perfor-
mance and cost either with a affine combination (with willingness-to-pay as a hyper-parameter) |Hu
et al.| (2024), or with a convex combination (again a hyper-parameter) |[Song et al.| (2025). Along
similar lines, [Somerstep et al.|(2025) advances the frontier by designing rate-optimal predictors for
cost and performance. Mei et al.| (2025) frames the problem as a Linear Program, and recovers the
primal solution from the dual variables. Taking inspiration from an optimizer designed for two-
sided marketplace |Agarwal et al.|(2012), we choose to frame the optimization problem as a strongly
convex program, which simplifies the dual-to-primal conversion to facilitate online serving. See
Appendix [B] for additional related works.

Contributions. In summary, we make the following contributions: @ POLLINATOR implements
its predictors atop Graph Convolutional Network [Kipf| (2016 with a novel Item Response Theory
(IRT)-based head that cuts down the training cost by 49%, while surpassing the predictive per-
formance of the vanilla IRT-based predictor proposed in |Song et al|(2025); @ the (Lagrangian)
dual-based online serving scheme, coupled with the strongly convex primal program delivers su-
perior cost-performance tradeoff than the Linear Program-based serving scheme [Song et al.| (2025)
by boosting performance by 0.43%-1.5% at 71%-93% of the cost; @ in the in-domain and out-of-
domain setting proposed in|Song et al.| (2025), POLLINATOR yields 3-5% boost in performance at
mere 1.9-3% of the cost of the best producer; @ report superior performance in two novel settings on
real-world and contemporary benchmarks, such as BFCL-V3 (tool-calling) and MMLU-Pro, where
POLLINATOR achieves 3-10.6% higher accuracy at only 0.3-35.7% of the best producer’s cost.

2 INTELLIGENCE MARKETPLACE & THE MATCHMAKING PROBLEM

Background. The matchmaker dispatches each inference request emanating from the consumer,
enumerated with ¢ € [M], in a just-in-time fashion to a request-specific optimal producer, j € [N].
Upon receiving the response, we assume that the matchmaker possesses the ability to compute a ex
post quality — such as accuracy, a;; € R, — as well as the resource consumption — such as cost,
cij € R and latency ¢;; € R — metrics. Furthermore, we assume that the matchmaker possesses
the corresponding ex ante estimates, a,;, ¢;; and ti j» before dispatching the request. Equipped with
the ex ante estimates, informally, the role of the matchmaker is to maximize the sum total of response
quality, while obeying guardrails on total inference cost, and possibly other resource consumption
metrics. We now frame the matchmaker’s optimization problem formally.

Optimal Matchmaking. At this point, we distinguish between two settings. First, batch infer-
ence, where all the inference requests, ¢ € [M], are known a priori. This formalizes the set-
ting a certain class of consumers operate in, e.g., document summarization and information ex-
traction. We posit the matchmaker’s objective as to maximize the total ex ante response quality,
ZiE[M] Zje[N] x;,G;;, while obeying a guardrail on total inference cost, ZiE[M] Zje[N} 265 <
C, where ;; is the collection of primal variables lying on the probability simplex, A, defined
with the constraints x;; > 0,Vi € [M],Vj € [N]and 3, n;2i; = 1,Vi € [M]. We remark that
the consumer may want to impose additional constraints, such as minimum volume commitments,
where each producer is guaranteed to receive a specified minimum volume of inference request,
Do ey Lij = M;,¥j € [N]. The second setting is online inference, where the inference requests
arrive in a stream, along with the corresponding ex ante estimates. Specifically, at time 7, the deci-
sion x; € A" has to be taken, without a foreknowledge of the upcoming requests, x;,, ¥k > i. The
ex post cost and quality are defined, in this case, over a long horizon, M. E]Lastly, the matchmaker
will be required to follow a reference policy, g;;, where the desired level of proximity is expressed
as %7 > ; (7,7 —qij)?. In order to ease the exposition, we now focus on the setting where quality
and the cost are the only constraints at play. We remark that our framework extends to a more general
setting, and can incorporate additional linear constraints, such as minimum volume commitments
and p95 latency. Thus, the canonical form the matchmaker’s optimization problem assumes can be
expressed as follows.

>We remark that in practice, certain additional guardrails become desirable in the online setting: e.g., on
P95 latency — which can also be specified as a linear constraint, in terms of Conditional Value-at-Risk (CVaR).

Under review as a conference paper at ICLR 2026

Definition 1 (Optimal Matchmaking).

1 | MN M N
XréliAr}v ifyHX —q|lr — i ZZ.I'U&U s.t. ZZ.I’,_,@U <C (1)
i=1j=1 i=1 j=1

Note that Eq. [I| succinctly describes the online version of the problem as well, assuming C is the
long-horizon budget applicable over a span of M requests. Before turning our attention to the
solution of Eq. [T} we lay down the design desiderata for the POLLINATOR — the novel optimal
matchmaker presented in the present work.

Desiderata. In order to ensure practicality of the POLLINATOR system, we impose 2 design
desiderata: @ Frugality. The cost savings yielded by the matchmaker during inference must
not be offset by the cost of training its predictors; @ Safety. For a consumer to be able to relinquish
its control over the choice of the producer, it must be assured adherence to the specified guardrails.
We now detail how these desiderata guide the design of POLLINATOR.

2.1 GRAPH-BASED SEMI-SUPERVISED LEARNING & ENSURING FRUGALITY

We design a two-tower architecture reminiscent of recommendation system: the first tower encodes
the request emanating from the consumer; the second tower encodes the producers; while a combiner
combines the output of the two towers and emits the ex ante estimates. We detail each of the
components below.

Request & Producer Towers. The prompt in request i, p; € ¥, is first encoded into a dense
vector, z; := Enc®(p;), where Enc? : ¥* ++ R? is a pre-trained BERT encoder on vocabulary ¥,
that extracts the embedding corresponding to the [CLS] token that is appended to the prompt. On
the set of prompts in the training dataset, we then induce a k-nearest neighbour graph, G(V, &),
where the similarity between nodes v;,v; € V is defined in terms of the cosine similarity of their
corresponding embeddings, cos(£z;x;). Let A denote the adjacency matrix of this graph, and let

A := A + I denote the adjacency matrix of G, with self-loops added. On this graph, the request
tower implements a Graph Convolutional Network (GCN), which propagates information between
two successive layers, [and [+ 1, with HT) = o(D~2 AD~2 HOW®). The embedding of

)

node v; at layer [= 0 is set to its embedding, HZ-(0 = x;. Lastly, the embedding of the node v;

from the last layer of the GCN, H Z-(L), is mapped to a vector, o; € RP, and a scalar, Bi € R, via two
learnable linear projections, W, W3, respectively. Similarly, each producer, j € [N], is mapped to
a embedding, ¢; € RP, with an encoder, Enc? : [N] — RP. In our experiments, the encoder is
a pre-trained BERT that encodes the textual description of the producer, or a simple lookup-based
learnable linear projection, Wy.

Combiner. Inspired by Item Response Theory (IRT), the combiner treats «; as the discrimination
parameter, which intuitively models the skill-set required to generate a high-quality response to
request, 4, and treats 3; as its difficulty. On the other hand, §; models the skill-set offered by the
producer j. IRT posits that the probability of obtaining a high-quality response improves with the
degree of match between the skill-set required to process request ¢, and those offered by producer
Jj —and is modulated by the difficulty of the request. This intuition is operationalized as: P{Y;; =

1:=o(a6; — B;)}, where o(z) = H% is the usual sigmoid function.

Training & Inference. During training, the performance predictor is fit by minimizing the binary
cross-entropy loss. The cost estimate is simply taken to be the average cost in training dataset.
During inference, we first induce a graph among the incoming request and its k£ nearest neighbors in
the training dataset, and then run the forward-pass for both the towers. Figure[7]in Appendix [A.T0]
summarizes the salient workflows.

Under review as a conference paper at ICLR 2026

Algorithm 1 Dual Serving Scheme

1: Input: Request ¢; Dual

2: Output: Primal serving scheme {x,; }/_;.

3: Fetch ex ante predictions {d” 3y and {éi; 10y > Invoke predictors.
4: Compute utilities, {u;; } j=1, and sort them into w;(1y, -+ , Us(N) > Compute and sort utilities.
5:U=7~,5=1

6: repeat

7: if u; () + Y 1(” < 0 then

8: j=J- 1 break

9: else

10: U =U — u;); j = j + 1; continue
11: end if

12: until j > N

13: v, =Y

J
14: @y () = 5 VE < iy = 0,Vk > j

2.2 DUAL-BASED OPTIMIZATION & ADHERENCE TO SAFETY

The primal optimization problem formulated in Eq. 1| comprises a strongly-convex objective and
several linear constraints, thus rendering several off-the-shelf solvers immediately applicable at a
first glance. However, in practice, its deployment faces two challenges.

Predict-and-Optimize. The first problem arises because of the predict-and-optimize paradigm.
Ideally, the primal problem in Eq.[l| should have been defined in terms of the ex post coefficients,
a;; and c;;. However, we only have access to the corresponding ex ante coefficients, d;; and ¢;;.
Thus issues such as predictor’s inaccuracy and mis-calibration plague the constrained optimization
via both constraints and the objective. We address this issue via improving the accuracy and the
calibration of the predictors, and leave a more principled investigation based on the predict-then-
optimize framework for a future work.

Online Optimization. The second problem appears in the case of online inference. Without a priori
knowledge of the M requests, the primal problem cannot even be formulated. POLLINATOR solves
it via resorting to the dual. The Lagrangian of Eq.[I]is presented in Eq.[2]

i max o lVHX QIIF—*ZZ'//GMZZ (11,85 —C) =Y (D=1 ZZ T4
i J

=1 j=1 =1 j=1
2
The stationarity condition amongst the Karush-Kuhn-Tucker (KKT) conditions allow us to express
the primal solution in terms of the dual variables as, z,; = %, where the utility, u;; =

YGij + L 27 Gij — AC;j. However, this still does not yield a serving plan, given the presence of request-
dependent dual variables, »; and 0, ;, in the numerator.

In order to get rid of the request-dependent dual variables, we need to appeal to the complementary
slackness condition amongst the KKT conditions, which leads to the following proposition.
Proposition 1 (Utility). In the optimal solution for request i, assume producer j1 has more utility
than producer jo, w;j, > Uij,. If T35, > 0, then x5, > x5, > 0.

When the request ¢ arrives, armed with the ex ante estimates, a;; and ¢;;, and the request-

independent dual variable,)\, we first rank the producers as per their respective utilities. Let
Ui(1), "+ > Ui(v) represent the ranked list, where ;1) > -+ > ;=) > -+ = uyn). Proposi-
tion (1| illuminates a structure in the solution: ;1) > +++ > Tyj«) = -+ = Ty(N), where x;(;- is

the smallest non-zero element. Thus complementary slackness ensures d;;) = 0, when j < j*,

and, primal feasibility ensures, Z —1 Ti(;) = 1. This insight allows us to eliminate the last remain-
ing request-specific dual variable, /;, from the expression for the primal solution z;;, by ensuring

= % Proposmondlstlls this insight into a operational definition of 5*, which culmi-

nates into the optimal primal serving scheme presented in Algorithm|l} Algorithm [I[is dominated

Under review as a conference paper at ICLR 2026

by the sorting step (Line 4), giving an overall complexity of O(N log N) for a model pool of size
N The detailed runtime and complexity analysis is provided in Appendix [A8]

’Y_Zkgj Ui(k)
J

Proposition 2 (Optimal Stopping). j* is the maximum j such that u;jy + > 0.

Note that LLM pricing depends on multiple deployment factors—cloud provider, instance type,
region, reservation model, negotiated rates, and API-specific pricing (e.g., per-million-token rates
or provisioned throughput). In this work, we abstract these nuances by assuming a per-million-
token rate card (separately for input, intermediate, and output tokens), derived from the underlying
unit economics of the deployment. Whenever this rate card changes, the optimization problem
(Eq. [T) must be re-solved and the resulting dual variables redistributed to the workers executing
Algorithm[T} Proposition 1-2 and Algorithm[]extend seamlessly to any optimization problem with
strongly convex objective and linear constraints (similar to Eq. [T) — only requiring a change in
the expression for utility, u;; (see Sec @) Every new constraint (e.g minimum LLM usage volume
commitment) added to Eq.|l|need to be added to u;; with an appropriate sign (depending on whether
the constraint is covering- or packing-type) and multiplied by its own Lagrangian dual variable.

3 EXPERIMENTAL SETUP

3.1 BENCHMARK & IMPLEMENTATION

In-Domain Dataset (ID). Following Song et al.| (2025), we evaluate POLLINATOR’s in-domain
generalization capability over 8 datasets: (1) MMLU (Hendrycks et al., 2020) (reasoning and knowl-
edge across 57 domains), (@ CMMLU (Li et all 2024) (a Chinese incarnation of MMLU), 3
ACLUE (Zhang & Lil 2023) (ancient Chinese language-understanding), (4 ARC_C (Clark et al.,
2018) (advanced reasoning), () HotpotQA (Yang et al., 2018)) (question-answer requiring multi-hop
reasoning), © SQuAD (Rajpurkar et al.l |2018) (reading comprehension), (D) MATH (Hendrycks
et al.l [2021) (competition-level mathematics), and, MBPP (Austin et al., 2021) (basic coding).
20 LLMs were in the candidate pool (see Table [I7]in Appendix [A.4). POLLINATOR is trained on
70% of the combined dataset, and tested in-domain on the remaining 30%.

Out-of-Domain Dataset (OOD). Following |Song et al.| (2025), we evaluate POLLINATOR’s out-
of-domain generalization capability over 4 datasets that we not part of the training: (9 CEVAL

(Huang et al.,|2024) (tasks in Chinese language), CommonsenseQA (Talmor et al.,2019) (com-
monsense reasoning), @ GSMBSK (Cobbe et al., [2021) (grade-school mathematics), and, @ Hu-

mankEval (Chen et al.,[2021)) (coding). The same candidate LLM pool as{In-Domain Dataset (ID)|is
employed. We emphasize that 100% of the combined datasets are used in test.

MMLU-Pro & BFCL-V3. In order to further evaluate POLLINATOR’s efficacy on contempo-
rary datasets and real-world scenarios such as tool-call, we benchmark in-domain on 2 additional

datasets: @ MMLU-Pro (Wang et al.| 2024) (extends MMLU with harder multiple-choice ques-

tions with 10 possible choices, instead of 4), and, BFCL-V3 (Simple) (Patil et al., 2025) (rea-
soning and ability to call external tools and APIs in real-world setting — a key skill for agentic ap-
plications). The LLM candidate pool consists of 15 members, including GPT and Gemini families,
for MMLU-Pro (details in Table [T8]in Appendix , and 10 for BFCL-V3 (Simple), including
OpenAl o-series and Llama-3.1 families (see Tabl?ﬂ in Appendix [A-6|for an exhaustive list). For
each of these 2 datasets, 70% is used for training and the rest 30% for testing (we emphasize that
we do not combine the datasets). Table [I2]in Appendix [A.3]enumerates comprehensive details on
all 14 datasets, including evaluation metrics and dataset cardinality.

Implementation. We use be rt—base—uncasedﬂas the request encoder, Enc®. The producer
encoder, Enc, simply encodes the producer ID, j € [M]. The GCN consists of L = 2 layers
with hidden dimension of 64 and dropout rate of 0.3.The producer skill vector 6; has dimension 16,
except for the out-of-domain data, where it has dimension 25. The NN graph construction uses
k = 3 nearest neighbors, with edge weights (optionally) set to the cosine similarity, cos(£Lz;x;).
POLLINATOR is trained with the Adam optimizer (Adam et al., 2014)), with learning rate 1 x 102 and
weight decay 1 x 10~ for 200 epochs. During inference, we induce a graph among the test request
and its £ = 3 nearest neighbors. All hyper-parameters were selected based on best performance on
a held-out validation set. All experiments are run on 1 NVIDIA A40 GPU with 40GB memory.

Shttps://huggingface.co/google—bert/bert-base-uncased

https://huggingface.co/google-bert/bert-base-uncased

Under review as a conference paper at ICLR 2026

3.2 METRICS & BASELINES

Metrics. We evaluate routing algorithms by the cost-performance tradeoffs they offer in the test
dataset. Given binary ground-truth label, a;;, € {0, 1}, where j, is the chosen producer for request 4,
Performance (%) is defined in a dataset-dependent manner as either of accuracy, F1, Exact Match
(EM) and Pass@] over the test dataset (see Table|12|in for dataset-specific evaluation metrics)
— a methodology that echoes Song et al.|(2025). Cost ($) is calculated as per the token counts and
the rate-card for the producer j;, where ¢ indexes the requests in test dataset. In order to highlight
a few salient points on the cost-quality Pareto, we coin performance-first, balanced and cost-first
configurations. In particular, in the performance-first setting, we set a large C' in Eq. [T} so that the
optimizer has a large room to maximize accuracy (performance). In cost-first, we set C' in a stringent
manner, thus yielding lower performance. Balanced setting sets C' to a medium value.

Baselines. We compare POLLINATOR against a set of strong baselines: (1) Small LLM always
routes queries to the specifically chosen small model (likely based on number of parameters) for
each dataset. Following |Song et al.[(2025), we use Ministral-8B-Instruct-2410 as the Small LLM
for both the In-Domain and Out-of-Domain datasets. For MMLU-Pro, the Small LLM is Meta-
Llama-3.1-70B, while for BFCL-V3(ToolCall), we use GPT-4.1-Nano. Please note the Small LLM is
not necessarily the cheapest model. (2) Large LLM always routes queries to the largest candidate
model. 3 kNN-Router is a simple retrieval-based baseline that selects an LLM based on the top-k
(k = 5 gave the best performance) most similar queries, choosing the lowest-cost model among
them. (@ HybridLLM (Ding et al., [2024) trains a pre-trained encoder (DeBERTa-v3) with matrix
factorization to decide between a small and a large model. ® RouteLLM (Ong et al., 2024])) uses
a binary classifier for pairwise LLM routing. (6 RouterBench (Hu et al., 2024) provides multiple
routing strategies; we adopt its Predictive Router variant to avoid the high cost of querying all
candidate models. (7) MIRT-Router and NIRT-Router (Song et al., [2025)) are IRT-based methods
and serve as our closest baselines. We implement only kNN-Router; results for the others are taken
from|Song et al.|(2025)). MIRT-Router is run on MMLU-Pro and BFCL-V3 using their official code,
while NIRT-Router is omitted due to its reliance on costly GPT-40 relevance vectors. Following
Song et al| (2025), we also generate LLM profile descriptions (Table 22] in Appendix for
candidate models in MMLU-Pro and BFCL-V3 (Simple).

Table 1: Comparison of routing methods in In-Domain Dataset across three distinct performance-
cost tradeoff scenarios. Bold and underline denote the best and second-best results.

Method Performance-First Balanced Cost-First
Performance (%)T Cost ($)] | Performance (%)T Cost ($)] | Performance (%)T Cost ($)]

Small LLM 48.70 0.31 48.70 0.31 48.70 0.31
Large LLM 77.53 12.93 77.53 12.93 77.53 12.93
HybridLLM 54.37 1.98 52.42 1.54 56.65 2.78
RouteLLM 77.25 12.80 73.59 11.15 66.24 7.51
RouterBench 80.01 1.15 79.48 0.53 78.36 0.37
kNN-Router 74.38 1.14 74.38 1.14 74.38 1.14
MIRT-Router 80.67 0.42 80.65 0.42 80.03 0.39
NIRT-Router 80.69 0.55 80.41 0.43 79.37 041
POLLINATOR | 81.38 0.39 | 81.38 0.39 | 80.09 0.26
4 RESULTS

In ID dataset, as seen in Table E], in the performance-oriented batch inference setting, POLLINA-
TOR delivers 0.8% performance gain over NIRT-Router at 70% of its cost. Similarly, in the cost-
oriented setting, POLLINATOR renders 33% cost reduction over MIRT-Router, at a slightly better
performance. In the balanced setting, POLLINATOR achieves a 0.9% gain over SOTA at 93% of
the cost, and a 5% improvement over the best producer at 3% cost. In OOD (Table , the rela-
tive cost reduction in the balanced setting stands at 28.57%, at a similar performance. The > 25%
cost advantage holds on MMLU-Pro and BFCL V3 datasets as well with 1.5% and 0.43% gains
over SOTA, as seen from Table [3| Overall, POLLINATOR delivers a superior Pareto frontier in the
cost-performance plane across ID, OOD, and real-world benchmarks . POLLINATOR effectively
routes queries to the most appropriate model, avoiding unnecessary invocation of expensive LLMs
while respecting global budget constraints. The whole spectrum of performance and cost across

Under review as a conference paper at ICLR 2026

all datasets is shown in Figure [T] of Appendix [#.I] The oracle results are presented in Table [TT]
of Appendix [A.5] The average performance and associated costs of individual LLMs for each
dataset are reported in Tables T3] [T4] [T3] and[T6] corresponding to the In-Domain, Out-of-Domain,
MMLU-Pro, and BFCL-V3 (ToolCall) datasets, respectively, in Appendix [A-3] The scalability and
robustness of POLLINATOR is discussed in detail in Appendix [A.T| where we evaluate end-to-end
latency, throughput, handling of large model pools, resilience to model and query drift, mitigation
of prediction errors and robustness under dynamic pricing and provider availability. These results
demonstrate that POLLINATOR maintains high efficiency and reliability under real-world conditions.

Table 2: Comparison of routing methods in Out-of-Domain Dataset.

Method ‘ Performance-First | Balanced | Cost-First
| Performance (%)T Cost (§)] | Performance (%)T Cost (§)] | Performance (%)T Cost ($)]

Small LLM 59.83 0.11 59.83 0.11 59.83 0.11
Large LLM 84.90 5.30 84.90 5.30 84.90 5.30
HybridLLM 63.34 0.73 62.08 0.41 63.79 0.65
RouteLLM 84.39 5.25 79.90 4.74 75.06 3.48
RouterBench 85.50 0.26 85.75 0.16 84.62 0.12
kNN-Router 80.92 0.29 80.92 0.29 80.92 0.29
MIRT-Router 87.12 0.14 87.12 0.14 87.18 0.13
NIRT-Router 87.37 0.15 87.24 0.14 87.46 0.13
POLLINATOR | 87.37 14 | 87.63 0.10 | 87.69 0.09

Table 3: Comparison of routing methods on MMLU-Pro and BFCL V3 (ToolCall) datasets under
the Performance-First setting, reporting model accuracy and associated cost.

Method \ MMLU-Pro \ BFCL-V3 (ToolCall)

| Performance (%)t Cost ($)| | Performance (%)t Cost ($)]
Small LLM! 53.07 2.10 77.33 0.01
Large LLM? 71.61 5.01 89.33 1.85
kNN-Router 74.23 2.55 86.67 0.02
MIRT-Router | 78.84 118 90.66 0.008
POLLINATOR | 79.18 0.88 | 92.00 0.006

4.1 PERFORMANCE-COST SPECTRUM

To obtain the full performance—cost tradeoff spectrum, POLLINATOR produces multiple operating
points by varying the optimizer’s hyperparameters, enabling different budget—performance prefer-
ences and effectively balancing accuracy against total computational cost. Each scatter plot addi-
tionally includes the standalone performance—cost pairs of individual LLMs evaluated under the four
settings: In-domain (Figure [Ta), Out-of-Domain (Figure [Tb), MMLU-Pro (Figure [Ic), and BFCL-
V3 (ToolCall) (Figure[Td). We also include an Oracle point where we choose the best and cheapest
LLM for each sample. Comparing these points shows that POLLINATOR consistently achieves more
favorable performance—cost tradeoffs, forming a superior efficiency frontier relative to any individ-
ual LLM. Because the BFCL-V3 (ToolCall) setting contains a very limited amount of training data,
a few standalone LLMs occasionally match or slightly surpass the performance of POLLINATOR.
We are confident that with more training data, POLLINATOR would surpass these cases and restore
its advantage.

5 ABLATION STUDY

We perform a comprehensive ablation study on the performance predictor inside POLLINATOR on
ID datasets to assess the impact of key design decisions, encompassing: (D) request encoder, EncF;
@ choice of k in graph construction; @) the dimensionality, D, of 6; € R”; (@ fraction of labeled
nodes in GCN. Findings are summarized in Table [4] and Table [6] For detailed ablations across all
combinations of Enc® , k, D, and edge weighting strategies, refer to Table[21|in Appendix

'Small LLM refers to Meta-Llama-3.1-70B for MMLU-Pro and GPT-4.1-Nano for ToolCall.
?Large LLM refers to Gemini-1.5-Pro for MMLU-Pro and o1 for ToolCall.

Under review as a conference paper at ICLR 2026

* 0] %
; o a
08| G - A D o os] A e °
. s, . . 4 .
E £
a 0.4 a 04
.
.
0.2 0.2
0.0 25 5.0 75 10.0 125 15.0 17.5 20.0 o 1 2 3 a4 5
Total Cost ($) Total Cost ($)
o A ° °
° ° 02 ¢ onc ° °
(a) In-Domain dataset (b) Out-of-Domain dataset
1.0 * 100 Y
0.9
0.95
o 5
Q A @ o
€ 08 - ° o
& . £ A
g 2?1" ® o E 0.90 ﬁ o
E 07| A Ld -g A
1
4 - . a 085 Y
°
0.6
0.80
OO °
0.0 25 5.0 75 10.0 125 15.0 175 i

Total Cost ($)

°

eocoe
o o

ecoe

°
°
°

(c) MMLU-Pro dataset

(d) BFCL-V3 (ToolCall) dataset

Figure 1: Performance-cost spectrum across In-Domain, Out-of-Domain, MMLU-Pro, and BFCL-
V3 (ToolCall) datasets. Each scatter plot shows performance-cost spectrum of POLLINATOR along-
side the standalone performance-cost pairs of individual LLMs and an Oracle that selects the best
cheapest model per sample.

Table 4: Ablation study of the predictor (without optimizer). Accuracy (%) is reported for different
request encoders, graph neighborhood sizes, and varied model ability dimension. POLLINATOR is
robust to embedding and neighborhood choices, sensitive to model ability dimension. The best
configuration of POLLINATOR is marked with {. Neighborhood size and model ability experiments
use bert-base-uncased as EncF.

Model Ability Dimension (D)

Request Encoder (Enc?) Graph Neighborhood Size (k) D Perf. (%)
Enc? Perf. (% |) k Perf. (%)) g ;(l).jg (¢}25.§6)
bert-base-uncasedt 82.07 (-) 31 82.07 () 3 7926 82:81;
all-mpnet-base-v2 81.70 (0.37) 10 81.87(10.20) 25 81.96(J0.11)
text-embedding-3-large 81.34 (10.73) 20 82.02 (J0.05) 35 8052 (11.55)
45 80.25(]1.82)

Request Encoder Enc®. We experiment with different Enc® to encode requests. The best config-
uration (POLLINATORT) achieves 82.07% accuracy. Alternatives such as all-MiniLM-L6-vﬂ all-
mpnet—base—vZEI, and text-embedding-3-largd’| show a slight drop in performance of 1.32%, 0.37%,
and 0.73% respectively, as reported in Table (4] (left), indicating that the predictor is robust to the
choice of embedding while preserving strong predictive capability.

Neighborhood Size (k). We analyze predictor performance under varying graph neighborhood
sizes k. The best accuracy occurs at £ = 3 (82.07%), while larger neighborhoods (kK = 5,10)
reduce accuracy (81.92%, 81.87%), and k = 20 only partially recovers it (82.02%). This indicates
that large k introduces noisy neighbors, limiting predictor precision (Table @] middle).

‘nttps://huggingface.co/sentence-transformers/all-MinilM-L6-v2
Shttps://huggingface.co/sentence-transformers/all-mpnet—base-v2
®https://platform.openai.com/docs/models/text—embedding-3-large

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://platform.openai.com/docs/models/text-embedding-3-large

Under review as a conference paper at ICLR 2026

Table 6: Effect of node label masking on
predictor performance (relative drop |) and
training cost (with savings 1) on the ID
dataset, without optimizer.

Training Cost ($)
Node Masked (%) Perf. (% |) (Saving % 1)
0 82.07 (1) 208.76 ()
10 81.96 (J0.11) 194.32 (6.91 1)
20 82.01 (J.0.06) 179.54 (13.99 1)
30 81.97 (J0.10) 164.92 (21.00 1) oraomn 2 coraominiscor
50 81.82 (10.25) 135.66 (35.03 1)
60 81.79 (10.28) 121.10 (42.00 1))
70 81.48 (10.59) 106.23 (49.11 1) Figure 2: Comparison of GPT-40-Mini and GPT-

40-Mini+CoT over 16 dimensions. The CoT vari-
ant improves performance on most dimensions,
showing the benefit of explicit reasoning.

Table 5: Ablation study showing results of POLLINATOR with and without the GCN module across
all datasets. Removing the GCN leads to noticeably lower performance and higher cost.

Method Datasets
In-Domain Out-of-Domain MMLU-Pro BFCL-V3 (ToolCall)
Perf (%)t Cost ($)] Perf (%)t Cost($)] Perf(%)t Cost($)] Perf(%)T Cost($))
POLLINATOR w/o GCN 80.20 0.63 79.18 0.13 74.23 2.55 86.67 0.02
POLLINATOR 81.38 0.39 87.37 0.14 79.18 0.88 92.00 0.006

Effect of Model Ability Dimension (D). We assess how the model ability dimension D impacts
the predictor’s performance (Table] right), reporting results relative to the optimal configuration
(D = 16). Extremely low dimensions (D = 3) severely underfit, causing a 12.96% drop in accuracy.
Moderate dimensions (D = 5 or D = 8) partially capture model abilities, resulting in 1.58%
and 2.81% decreases. Slightly larger dimensions (D = 25) perform comparably to the optimum,
with only a 0.11% drop, indicating sufficient capacity without over-parameterization. Excessively
high dimensions (D = 35 or D = 45) introduce redundancy, causing 1.55% and 1.82% drops.
Intermediate D offers the best balance between expressivity and generalization.

Impact of the GCN Module. To evaluate the contribution of the GCN within POLLINATOR, we
conduct an ablation in which we entirely remove the GCN module and replace it with a non-learned
alternative: simple kNN averaging over the neighborhood (i.e., aggregation without message pass-
ing). As shown in Table[5] this removal leads to consistent degradation across all datasets. In-domain
accuracy drops from 81.38% to 80.20%, out-of-domain from 87.37% to 79.18%, and MMLU-Pro
from 79.18% to 74.23%, with corresponding increases in cost. Even on BFCL-V3, accuracy falls
(92.00% — 86.67%) and cost rises. These results demonstrate that naive neighbor averaging cannot
substitute the learned aggregation performed by the GCN, confirming its essential contribution to
POLLINATOR’s routing quality.

Semi-Supervised Cost-Efficient Training. Labeling all training nodes can be costly, since ob-
taining responses from commercial LLMs incurs significant expense. However, as GCNs naturally
propagate label information across neighboring nodes, full supervision may be unnecessary. To
quantify this, we simulate a semi-supervised setting by randomly masking a fraction of training
node labels and report results in Table [6] The predictor demonstrates strong resilience to missing
supervision. With 70% of nodes masked, the predictor achieves 81.48% accuracy, comparable to the
state-of-the-art MIRT-Router w/o optimizer (81.17%, Table 21} Appendix [A-9) and slightly below
the fully supervised setting (82.07%), while reducing training cost by 49%. Intermediate masking
levels (10%—-30%) yield proportional savings (6.91%—-21%) with minimal performance loss.

Under review as a conference paper at ICLR 2026

Query Difficulty B;

2 3

[-2.14,-1.34] [1.34,-0.55] [-0.55,0.25] [0.25,1.05] [1.05, 1.84]

Annotated Difficulty Level

Query Difficulty §, [Low — High]

() (b) (©

Figure 3: Visualization of interpretability analyses. (a) t-SNE projection of learned discrimination
vectors «; across in-domain datasets, showing task-specific clustering. (b) Routing distribution of
models across query difficulty bins, where lightweight models handle easier queries while advanced
models handle harder ones. (c) Predicted query difficulties (5;) in the MATH dataset, grouped by
human-annotated levels, showing monotonic alignment between model estimates and annotations.

5.1 INTERPRETABILITY OF POLLINATOR

LLM Ability. We examine ability differences within model families using POLLINATOR. Fig-
ure 2] shows GPT-40-Mini versus its CoT-augmented version, with CoT improving reasoning per-
formance. Similarly, Llama3.1-405B-Instruct outperforms Llama3.1-70B-Instruct (Figure 5 Ap-

pendix[A7). Using a model ability dimension D = 25, trends align with scaling laws (Kaplan et al|
[2020): larger models perform better. Table [T3](Appendix [A-3) supports these observations.

Query Difficulty. We assess POLLINATOR’s ability to estimate query difficulty using the MATH
dataset with human-annotated levels. As shown in Figure the estimated difficulty parameter 3;
increases monotonically and closely follows the ground-truth progression. Representative examples
in Figure[6] (Appendix [A.7) further illustrate the strong alignment between POLLINATOR's estimates
and human labels.

Routing Behavior Across Difficulty Levels. We analyze POLLINATOR routing across queries strat-
ified by difficulty (Figure 3B] ; spans —2.14 to 1.84, divided into L1-L5). While top models
like DeepSeek-Coder, DeepSeek-Chat, and GPT-40 achieve highest performance (Table [13]in Ap-
pendix [A3)), POLLINATOR routes queries cost-efficiently. Easier queries (L1-L2) use lightweight
models (Qwen2.5-32B-Int4, Mistral-7B, GLM-4-Air), intermediate bins (L3-L4) show mixed rout-
ing, and hardest queries (L5) prefer top-tier models like DeepSeek-Coder.

Discrimination Vector Analysis. In POLLINATOR, the discrimination vector «; encodes the skill
requirements for a query. To assess whether these vectors capture task-level structure, we cluster
queries based on their learned representations and project them into 2D using t-SNE (Figure [3a).
Queries from the same dataset form cohesive clusters, showing that POLLINATOR effectively learns
task-aligned skill representations. Some clusters partially overlap, reflecting shared skills: for ex-
ample, ARC_C and MMLU overlap due to similar reasoning skills, while CMMLU and ACLUE,
the only two Chinese datasets, share the embedding space. In contrast, MATH, SQuAD, and MBPP
form well-separated clusters, indicating that vectors capture distinct task-specific skill requirements.

6 CONCLUSION

We presented POLLINATOR, a data-efficient and online-serving-capable matchmaker for the in-
telligence marketplace. POLLINATOR combines a frugal GCN-based predictor with an IRT-head
and an efficient dual-optimizer, reducing training cost by up to 49% while outperforming existing
state-of-the-art predictors. Extensive experiments on real-world benchmarks, including BFCL-V3
and MMLU-Pro, demonstrate superior cost—performance trade-offs. Furthermore, detailed abla-
tion studies and interpretability validate POLLINATOR’s effectiveness for cost-efficient intelligence
matchmaking. Future work will extend the framework to incorporate latency and volume constraints
and explore adaptive dynamic graphs for evolving requests and producers.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Kingma DP BaJ Adam et al. A method for stochastic optimization. arXiv preprint arXiv: 1412.6980,
1412(6), 2014.

Deepak Agarwal, Bee-Chung Chen, Pradheep Elango, and Xuanhui Wang. Personalized click shap-
ing through lagrangian duality for online recommendation. In Proceedings of the 35th Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
12, pp. 485494, New York, NY, USA, 2012. Association for Computing Machinery. ISBN
9781450314725. doi: 10.1145/2348283.2348350. URL https://doi.org/10.1145/
2348283.2348350.

Pranjal Aggarwal, Aman Madaan, Ankit Anand, Srividya Pranavi Potharaju, Swaroop Mishra, Pei
Zhou, Aditya Gupta, Dheeraj Rajagopal, Karthik Kappaganthu, Yiming Yang, et al. Automix:
Automatically mixing language models. arXiv preprint arXiv:2310.12963, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Kaidi Cao, Jiaxuan You, and Jure Leskovec. Relational multi-task learning: Modeling relations
between data and tasks. arXiv preprint arXiv:2303.07666, 2023.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Shiming Chen, Ziming Hong, Guosen Xie, Qinmu Peng, Xinge You, Weiping Ding, and Ling Shao.
Gndan: Graph navigated dual attention network for zero-shot learning. IEEE transactions on
neural networks and learning systems, 35(4):4516—4529, 2022.

Shuhao Chen, Weisen Jiang, Baijiong Lin, James Kwok, and Yu Zhang. Routerdc: Query-based
router by dual contrastive learning for assembling large language models. Advances in Neural
Information Processing Systems, 37:66305-66328, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Ruhle, Laks VS
Lakshmanan, and Ahmed Hassan Awadallah. Hybrid llm: Cost-efficient and quality-aware query
routing. arXiv preprint arXiv:2404.14618, 2024.

Aosong Feng, Balasubramaniam Srinivasan, Yun Zhou, Zhichao Xu, Kang Zhou, Sheng Guan,
Yueyan Chen, Xian Wu, Ninad Kulkarni, Yi Zhang, et al. Ipr: Intelligent prompt routing with user-
controlled quality-cost trade-offs. In Proceedings of the 2025 Conference on Empirical Methods
in Natural Language Processing: Industry Track, pp. 2484-2498, 2025.

Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for llm selections.
In The Thirteenth International Conference on Learning Representations, 2024.

Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson, Rex
Ying, Jiaxuan You, and Jure Leskovec. Relational deep learning: Graph representation learning
on relational databases. arXiv preprint arXiv:2312.04615, 2023.

Gauthier Guinet, Behrooz Omidvar-Tehrani, Anoop Deoras, and Laurent Callot. Automated evalu-
ation of retrieval-augmented language models with task-specific exam generation. arXiv preprint
arXiv:2405.13622, 2024.

11

https://doi.org/10.1145/2348283.2348350
https://doi.org/10.1145/2348283.2348350

Under review as a conference paper at ICLR 2026

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Lars Erik Holmquist. Intelligence on tap: artificial intelligence as a new design material. inferac-
tions, 24(4):28-33, 2017.

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-llm routing
system. arXiv preprint arXiv:2403.12031, 2024.

Jiaqi Huang, Chengxi Liu, Ziwei Wei, Yan Dong, Renze Zhang, Wanjun Zhou, Shiyue Zhang, Peiyi
Lyv, Peijie Wang, Zhihong Fan, et al. C-eval: A multi-level multi-discipline chinese evaluation
suite for foundation models. arXiv preprint arXiv:2305.08322, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

TN Kipf. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timo-
thy Baldwin. Cmmlu: Measuring massive multitask language understanding in chinese. arXiv
preprint arXiv:2306.09212, 2024.

Qi Liu, Zheng Gong, Zhenya Huang, Chuanren Liu, Hengshu Zhu, Zhi Li, Enhong Chen, and Hui
Xiong. Multi-dimensional ability diagnosis for machine learning algorithms. Science China
Information Sciences, 67(12):229101, 2024.

Yang Liu, Alan Medlar, and Dorota Glowacka. What we evaluate when we evaluate recommender
systems: Understanding recommender systems’ performance using item response theory. In Pro-
ceedings of the 17th ACM Conference on Recommender Systems, pp. 658—670, 2023.

Yunting Liu, Shreya Bhandari, and Zachary A Pardos. Leveraging llm respondents for item eval-
uation: A psychometric analysis. British Journal of Educational Technology, 56(3):1028-1052,
2025.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
Routing to the expert: Efficient reward-guided ensemble of large language models. arXiv preprint
arXiv:2311.08692, 2023.

Kai Mei, Wujiang Xu, Shuhang Lin, and Yongfeng Zhang. Omnirouter: Budget and performance
controllable multi-llm routing. arXiv preprint arXiv:2502.20576, 2025.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route 1lms with preference data. arXiv
preprint arXiv:2406.18665, 2024.

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Ion Stoica, Joseph E. Gonzalez,
et al. The berkeley function calling leaderboard (bfcl): From tool use to agentic evaluation of large
language models. In Proceedings of the 2025 International Conference on Machine Learning
(ICML), 2025. URL https://openreview.net/forum?id=2GmDdhBdDk.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822, 2018.

12

https://openreview.net/forum?id=2GmDdhBdDk

Under review as a conference paper at ICLR 2026

Mark D Reckase. 18 multidimensional item response theory. Handbook of statistics, 26:607-642,
2006.

Pedro Rodriguez, Joe Barrow, Alexander Miserlis Hoyle, John P Lalor, Robin Jia, and Jordan Boyd-
Graber. Evaluation examples are not equally informative: How should that change nlp leader-
boards? In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pp. 4486—4503, 2021.

Seamus Somerstep, Felipe Maia Polo, Allysson Flavio Melo de Oliveira, Prattyush Mangal, Mirian
Silva, Onkar Bhardwaj, Mikhail Yurochkin, and Subha Maity. Carrot: A cost aware rate optimal
router. arXiv preprint arXiv:2502.03261, 2025.

Wei Song, Zhenya Huang, Cheng Cheng, Weibo Gao, Bihan Xu, GuanHao Zhao, Fei Wang, and
Runze Wu. IRT-router: Effective and interpretable multi-LLM routing via item response the-
ory. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 15629—15644, Vienna, Austria, July 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.761. URL
https://aclanthology.org/2025.acl-1long.761/.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 4149-4158, 2019.

Asterios Tsiourvas, Wei Sun, and Georgia Perakis. Causal 1lm routing: End-to-end regret minimiza-
tion from observational data. arXiv preprint arXiv:2505.16037, 2025.

Fei Wang, Qi Liu, Enhong Chen, Zhenya Huang, Yuying Chen, Yu Yin, Zai Huang, and Shijin
Wang. Neural cognitive diagnosis for intelligent education systems. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 6153-6161, 2020.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. MMLU-Pro: A More Robust and Challenging Multi-Task
Language Understanding Benchmark. In NeurlPS 2024 Track on Datasets and Benchmarks,
2024. URL https://arxiv.org/abs/2406.01574.

Herbert Woisetschlidger, Ryan Zhang, Shigiang Wang, and Hans Arno Jacobsen. Mess+: Dynam-
ically learned inference-time llm routing in model zoos with service level guarantees. In The
Thirty-ninth Annual Conference on Neural Information Processing Systems, 2025.

David J Woodruff and Bradley A Hanson. Estimation of item response models using the em algo-
rithm for finite mixtures. 1996.

Fangzhou Wu and Sandeep Silwal. Port: Efficient training-free online routing for high-volume
multi-llm serving. In Machine Learning for Systems 2025.

Tian Xie, Bin Wang, and C-C Jay Kuo. Graphhop: An enhanced label propagation method for node
classification. IEEE Transactions on Neural Networks and Learning Systems, 34(11):9287-9301,
2022.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Yixuan Zhang and Haonan Li. Can large language models comprehend ancient chinese? a prelimi-
nary test on aclue. arXiv preprint arXiv:2310.09550, 2023.

Richard Zhuang, Tianhao Wu, Zhaojin Wen, Andrew Li, Jiantao Jiao, and Kannan Ramchandran.
EmbedLLM: Learning compact representations of large language models. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=Fs9EabmQrd.

13

https://aclanthology.org/2025.acl-long.761/
https://arxiv.org/abs/2406.01574
https://openreview.net/forum?id=Fs9EabmQrJ
https://openreview.net/forum?id=Fs9EabmQrJ

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 SCALABILITY AND ROBUSTNESS OF POLLINATOR

End-to-End Latency. To further assess the practical feasibility of our routing framework, we eval-
uate its end-to-end latency across datasets of varying scales. The bottleneck is the nearest neighbour
look-up. Even an exact nearest neighbour search yields sub-100ms p99 (99th percentile) latency, as
seen in the Table[7} Note that with approximate nearest neighbour search, especially with HNSW
index, the sub-100ms p99 latency can be maintained in industry-scale data (a studyﬂ from Pinecone
reports S0ms p99 at a good recall). It is worth mentioning that the largest dataset reported in the

literature on prompt routing has cardinality 1.5M (Feng et al.| 2025), which is considered “small”
in the parlance of approximate nearest neighbour search.

Table 7: Inference time of POLLINATOR across all datasets. Per-query latency is reported in mil-
liseconds (ms).

Dataset Per-Query Inference Time (ms)
In-Domain 69.07
Out-of-Domain 78.59
MMLU-Pro 20.37
BFCL-V3 (ToolCall) 2.66

Throughput. Industrial vector databases, such as Qdrant, can support 1,200 RPS (Requests Per
Second) at 0.99 precision (sourceﬂ. Thus, instead of nearest neighbour lookup, the throughput
bottleneck shifts to the web-framework. FastAPI, with its asynchronous async/await primitives, of-
fers high throughput suitable for an industry-grade prompt router — which, moreover, is horizontally
scalable. Note that in the current work, we limit our scope to the functional requirements of prompt
router, not its non-functional requirements, such as latency/throughput.

Overhead Analysis. It’s worth noting that the prompt router routes each request to exactly one
LLM, either hosted by a provider (e.g., OpenAl, TogetherAl) or self-hosted (e.g., with vLLM) —
and in no cases more than one LLM is being invoked. As noted in the latency analysis, prompt
router incurs sub-100ms p99 latency, which is negligible, given that self-hosted LLMs take 400-
700ms (depends on the parameter count, architecture and the inference engine — and varies across
workloads), and those hosted by provider often exceeds ~ 1.2s (even with provisioned throughput,
such as PTU in Azure). There are no additional token overhead, as such, beyond those already
accounted for under the prompt router latency.

Robustness w.r.t. Dynamic Pricing. The rate cards for providers change infrequently. However,
constructs such as provisioned throughput (e.g., PTLﬂ in Azure Foundry) render the rate card a
function of throughput. Even in this case, organizations typically purchase a fixed amount of PTU,
rendering the rate card essentially frozen over the contract period (an year). In the (infrequent) event
of change in rate card, the dual variables need to be recomputed and deployed via a configuration
service to all workers executing Algorithm [T}

Robustness w.r.t. Availability. The providers indeed suffer downtimes, and to counteract that, one
typically routes to a fallback (which is typically the next available provider in the ordered list, x;;
— Line 2 in Algorithn{l) after a pre-configured amount of retry. The provision of fallback has been
popularized by commercial prompt routers, such as OpenRoute

Handling Large Model Pool. In practice, few commercial prompt routers are deployed with model
pools of the size 100 (HuggingChat Omni routesEl across 115 models). More often, they route
within the same model family (due to considerations arising from lack of prompt portability — what
works best with GPT needn’t work with Gemini, as seen in their guides), thus limiting the model

"https://www.pinecone.io/learn/series/faiss/hnsw/
$https://qdrant.tech/benchmarks/
9https://learn.microsoft.com/enfus/azure/aiffoundry/openai/concepts/
provisioned-throughput?view=foundry-classicé&tabs=global-ptum
"nttps://openrouter.ai/docs/features/provider-routing
"https://news.ycombinator.com/item?id=45623284

14

https://www.pinecone.io/learn/series/faiss/hnsw/
https://qdrant.tech/benchmarks/
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/concepts/provisioned-throughput?view=foundry-classic&tabs=global-ptum
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/concepts/provisioned-throughput?view=foundry-classic&tabs=global-ptum
https://openrouter.ai/docs/features/provider-routing
https://news.ycombinator.com/item?id=45623284

Under review as a conference paper at ICLR 2026

pool size to 10. However, in the hypothetical scenario with 10,000 models (which is practical only
when routing across LoRAs, as done by VLLM Semantic Router), we would embrace a two-stage
design a la recommender system. The first stage (a high-recall one) would cut down the pool to 100,
which the second, high-precision stage will evaluate as per Algorithm I}

Total Requests per Second
® RPS @ Failures/s
70
60

50
40
30
20
10

T T < @ @ T T T T T
14:00:20 14:00:40 14:01:00 14:01:20 14:01:40 14:02:00 14:02:20 14:02:40 14:03:00 14:03:20

Response Times (ms)

50th percentile @ 95th percentile

150

120

90

60

30

T T T T T T T T T T
14:00:20 14:00:40 14:01:00 14:01:20 14:01:40 14:02:00 14:02:20 14:02:40 14:03:00 14:03:20

Number of Users
@ Number of Users
120

100

80

60

40

20

T T T T T T T T T T
14:00:20 14:00:40 14:01:00 14:01:20 14:01:40 14:02:00 14:02:20 14:02:40 14:03:00 14:03:20

Figure 4: POLLINATOR:Stress Testing Under Increasing Concurrency

Stress Testing Under Varying Concurrency Levels: We conducted a realistic load-test with an
industry-standard tool, Locus@ under varying levels of concurrency (at 57 requests-per-second) to
evaluate POLLINATORs inference performance under real-world conditions. The inference engine
consists of a) FastAPﬂbased web-framework, b) Inﬁnitﬂ -based embedder, and, ¢) Qdrant -based
approximate k-nearest-neighbour search. All calls to embedder and nearest neighbour searches
are non-blocking, via Python’s asynchronous coroutine (‘async‘ and ‘await‘) — which mimics the
architecture of a typical real-world inference engine. Figure [d] presents the overall system dynamics
during this load ramp, including achieved throughput, median (p50) and tail (p95) latencies, and
active user concurrency. We additionally report detailed request and response time statistics in
Table [§] and Table [0 respectively. The results show that the system sustains stable throughput (57
RPS) with zero failures, while maintaining low median latency (=~ 23-28ms) and tightly bounded
tail latency (p95< 55ms) even under peak concurrency. These observations confirm POLLINATOR ’s
robust scalability and reliable performance under heavy concurrent workloads.

“https://docs.locust.io/en/stable/index.html

Bhttps://fastapi.tiangolo.com/

14https://docs.langchain.com/oss/python/integrations/text_embedding/
infinity

15

 https://docs.locust.io/en/stable/index.html
https://fastapi.tiangolo.com/
https://docs.langchain.com/oss/python/integrations/text_embedding/infinity
https://docs.langchain.com/oss/python/integrations/text_embedding/infinity

Under review as a conference paper at ICLR 2026

Table 8: Aggregate request statistics of POLLINATOR during concurrency stress testing.

Type Name #Req. #Fails Avg. (ms) Min (ms) Max (ms) Avg. Size (bytes) RPS
GET /route 10,213 0 27.67 12 200 1182.69 56.73
- Aggregated 10,213 0 27.67 12 200 1182.69 56.73

Table 9: Response time statistics of POLLINATOR during concurrency stress testing.

Method Name 50% 60% 70% 80% 90% 95% 99% 100%

GET /route 23 25 28 34 43 55 96 200
- Aggregated 23 25 28 34 43 55 96 200

Handling Drift. It is indeed true that LLM abilities may drift with subsequent releases of frontier
models, or may be caused by iterative fine-tuning of self-hosted models. Similarly, since prompts
are frequently updated in deployed systems (e.g., addition of new instructions in prompt, addi-
tion/deletion of tools, etc.) — drift can occur. Such drifts are dealt with by re-training the predictors
and the (primal) optimizer in POLLINATOR to adapt to the new data distribution. The trigger for re-
training (i.e., a drift detection module), however, lies outside POLLINATOR’s system boundary to
promote simplicity. Alternatively, one can configure a cron-based periodic re-training. However, we
note that as shown in Table|2|, POLLINATOR outperforms the baselines in Out-of-Domain datasets,
thus yielding resilience to drift in prompt distribution out of the box.

Additionally, we conducted a targeted data-drift experiment on the MMLU-Pro dataset, which spans
14 heterogeneous subject areas ranging from law to computer science. At inference, each test query
was linked to its k=3 nearest training neighbors via a kNN graph, and we selected 500 test samples
with the lowest average similarity as a proxy for severe distributional drift. POLLINATOR maintained
competitive performance (as shown in Table[T0) on this subset, demonstrating strong robustness to
data drift.

Table 10: Data-drift evaluation of POLLINATOR on MMLU-Pro.

Dataset Routing Strategy Performance (%) 1 Cost ($)]

MMLU-Pro Performance-first 79.60 0.28
Balanced 80.00 0.14
Cost-first 76.40 0.10

Handling Prediction Errors. While designing POLLINATOR , we acknowledged that performance
and cost predictions can be wrong, and since the optimization problem uses them in objective and
constraints, it will cause an optimality gap. The present work tackles it by breaking down the long-
horizon into epochs, so that at the end of each epoch, the feedback (actual performance yield and cost
incurred) from that epoch can be incorporated into the primal optimization problem (Eq.[I) — giving
it a chance to course-correct. However, we note that a couple of works offers a theoretical analysis:
a) MESS+ (Woisetschliger et al.,[2025), incorporates a feedback mechanism that counts the histori-
cal constraint violations, and incorporates that into emphasizing/de-emphasizing the corresponding
constraint in future decisions — which allows them to bound the number of constraint violations (see
Theorem 1); b) PORT (Wu & Silwal)), also disclosed in late-October ‘25, makes certain assumptions
about the efficacy of kNN-based performance and cost predictors (see Assumption 1) in order to
guarantee competitive ration of online serving (see Theorem 1). We believe the theoretical analyses
assume restricted settings which the present work doesn‘t consider. However, we leave a thorough
and careful analysis of optimality gap/competitive ratio/constraint violation for future work.

A.2 ORACLE PERFORMANCE

Tablem compares POLLINATOR against the closest baseline, MIRT-Router, as well as an Oracle
result where we choose the best and cheapest LLM for each sample .

16

Under review as a conference paper at ICLR 2026

Table 11: Comparison with Oracle results.

Method Datasets
In-Domain Out-of-Domain MMLU-Pro BFCL-V3 (ToolCall)
Perf (%)t Cost ($)] Perf(%)T Cost($)] Perf (%)t Cost($)] Perf(%)T Cost($)]
Oracle 95.52 0.19 98.32 0.03 98.17 0.79 100.0 0.01
MIRT-Router 80.67 0.42 87.12 0.14 78.84 1.18 90.66 0.008
POLLINATOR 81.38 0.39 87.37 0.14 79.18 0.88 92.00 0.006

A.3 DATASETS DETAILS

The datasets (Table [T2) span a wide range of domains and task categories. In-domain datasets
include reasoning, code, and QA tasks. Out-of-domain datasets test generalization to unseen tasks.
Additional benchmarks, MMLU-Pro and BFCL V3 (Simple), evaluate more challenging reasoning
problems and tool use. Each dataset lists the task type, evaluation metric, and train/test sizes.

Table 12: Details of in-domain, out-of-domain, and additional datasets used in our experiments.

In-domain
Dataset Type Evaluation Metric Train Size Test Size
ACLUE (Zhang & Li|[2023) Ancient Chinese accuracy 1400 600
ARC_C (Clark et al.[2018) Reasoning accuracy 1400 600
CMMLU (L1 et al.[[2024) Chinese Multitask accuracy 7000 3000
Hotpot_QA (Yang et al.|[2018) Multi-Hop EM 1400 600
MATH (Hendrycks et al.[|2021) Math accuracy 1400 600
MBPP (Austin et al.|[2021) Code pass@1 630 270
MMLU (Hendrycks et al.|[2020) Multitask accuracy 9800 4200
SQuAD (Rajpurkar et al.|[|2018) Reading Comprehension fl 1400 600
Out-of-domain
Dataset Task type Evaluation Metric Train Size Test Size
CEVAL (Huang et al.|2024) Chinese Multitask accuracy - 1000
CommonsenseQA (Talmor et al.|[2019) Commonsense Reasoning accuracy - 1000
GSMSK (Cobbe et al.[[2021) Math accuracy - 1000
HumanEval (Chen et al.[[2021) Code pass@1 - 160
Additional Datasets
MMLU-Pro (Wang et al.|[2024) Multitask Reasoning accuracy 9602 2430
BFCL V3 (Simple) (Patil et al.|[2025) Tool-Use / Function Calling accuracy 125 75

A.4 CANDIDATE LLMS FOR VARIOUS DATASETS

For our routing experiments, we select a set of 20 representative LLMs as candidates for in-domain
and out-of-domain datasets (see Table[I7). The candidate LLMs, along with their input and output
costs, for MMLU-Pro and BFCL-V3 (ToolCall) are reported in Tables [I8and [T9} respectively.

A.5 AVERAGE PERFORMANCE-COST CHARACTERISTICS OF INDIVIDUAL LLMS

To understand the standalone efficiency of each model, we report the average performance and total
cost of all LLMs across the datasets. Table [I3] presents results on the In-Domain dataset. Here,
DeepSeek-Chat and DeepSeek-Coder emerge as the strongest models, closely followed by large
models such as Qwen2.5-72B-Instruct and GLM-4-Plus. In contrast, smaller or task-specialized
models (e.g., Qwen2.5-Math-7B-Instruct) show lower average performance, reflecting their narrow
training scope. Table [T4] reports the same statistics for the Out-of-Domain dataset. The relative
ordering remains broadly consistent: low-cost 7B—8B models offer attractive price points but lag
in accuracy compared to larger 32B—72B models, while DeepSeek models again strike a strong
accuracy—cost balance. Table [T5] summarizes performance and total cost on MMLU-Pro. This
shows high-end frontier models such as O4-Mini, GPT-4.1, and Claude-3.5-Sonnet provide superior
general reasoning performance but at a substantially higher cost. Finally, Table [T presents results
for BFCL-V3 (ToolCall), which shows Gemini-1.5-Flash, GPT-4.1-Nano, and GPT-40-Mini models
deliver strong accuracy at low cost (BFCL-V3 evaluation containing only a small number of test
queries, which keeps total cost minimal).

17

Under review as a conference paper at ICLR 2026

Table 13: Average performance and cost of individual LLMs on In-Domain data (sorted in ascending
order of cost).

Model Performance (%) Cost ($)
Qwen2.5-7B-Instruct 61.38 0.0607
Llama3.1-8B-Instruct 31.86 0.0877
Mistral-7B-Instruct-v0.2 10.42 0.1123
Qwen2.5-32B-Int4 78.27 0.1380
Ministral-8B-Instruct-2410 48.70 0.3112
Qwen2.5-Math-7B-Instruct ~ 9.80 0.3447
Geminil.5-Flash 72.90 0.3528
GLM-4-Air 72.00 0.3563
DeepSeek-Coder 80.61 0.4695
DeepSeek-Chat 80.74 0.4740
GPT-40-Mini 70.67 0.7225
GPT-40-Mini+CoT 71.71 1.6783
Mixtral-8x7B-Instruct 34.76 1.9891
Llama3.1-70B-Instruct 71.11 2.4712
Qwen2.5-72B-Instruct 79.97 2.4793
QwQ-32B-Preview 59.73 8.3434
Llama3.1-405B-Instruct 77.54 10.2818
GPT-40 77.53 12.9362
GLM-4-Plus 79.02 19.1334

Table 14: Average performance and cost of models on Out-of-Domain data (sorted in ascending
order of cost).

Model Performance (%) Cost ($)
Qwen2.5-7B-Instruct 59.94 0.0147
Llama3.1-8B-Instruct 44.62 0.0256
Mistral-7B-Instruct-v0.2 12.15 0.0344
Qwen2.5-32B-Int4 87.25 0.0463
Qwen2.5-Math-7B-Instruct ~ 32.85 0.0805
GLM-4-Air 73.54 0.0940
Geminil.5-Flash 71.99 0.1013
Ministral-8B-Instruct-2410 59.83 0.1112
DeepSeek-Coder 86.33 0.1504
DeepSeek-Chat 86.39 0.1511
GPT-40-Mini 80.79 0.2928
Mixtral-8x7B-Instruct 27.82 0.5038
GPT-40-Mini+CoT 80.70 0.5109
Llama3.1-70B-Instruct 75.98 0.6830
Qwen2.5-72B-Instruct 86.08 0.7542
QwQ-32B-Preview 76.30 2.3498
Llama3.1-405B-Instruct 82.06 2.9023
GPT-40 84.87 5.2990
GLM-4-Plus 87.03 5.4369

A.6 PRICING OF CANDIDATE LLMS

We report both input and output token pricing ($/1M tokens) for all candidate models. Candidate
LLM:s exhibit drastic variation in pricing. Table[T7 summarizes the base set of LLMs for in-domain
and out-of-domain datasets, while Table H;gl and Table ﬂ;gl details the pricing of models used for
MMLU-Pro and BFCL ToolCalling benchmarks.

18

Under review as a conference paper at ICLR 2026

Table 15: Average performance and cost of models on MMLU-Pro, sorted in ascending order of
cost.

Model Performance (%) Cost ($)
Gemini-1.5-Flash-002 63.80 0.3316
Gemini-2.0-Flash-Exp 78.10 0.8765
GPT-4.1-Nano 61.68 0.8847
Meta-Llama-3.1-70B 53.08 2.1059
GPT-4.1-Mini 78.55 2.3568
Meta-Llama-3-70B-Instruct 54.95 2.3778
Meta-Llama-3.1-70B-Instruct 63.67 3.5321
Meta-Llama-3-70B 53.37 3.7496
Claude-3.5-Haiku (2024-10-22) 61.47 4.5741
Gemini-1.5-Pro-002 71.61 5.0187
O4-Mini 81.67 5.5064
GPT-4.1 79.47 11.7164
Claude-3.5-Sonnet (2024-10-22) 77.81 17.4792
Claude-3.5-Sonnet 77.35 18.4651

Table 16: Average performance and cost of LLMs on BFCL-V3 (Toolcall) (sorted in ascending
order of cost).

Model Performance (%) Cost ($)
Gemini-1.5-Flash 88.00 0.0049
GPT-4.1-Nano 77.33 0.0059
GPT-40-Mini 90.67 0.0088
Gemini-2.0-Flash 93.33 0.0093
GPT-4.1-Mini 84.00 0.0236
Gemini-1.5-Pro 93.33 0.0773
04-Mini 86.67 0.1100
GPT-4.1 94.67 0.1177
GPT-40 96.00 0.1471
o1 89.33 1.8584

Table 19: Pricing details of candidate LLMs selected for BFCL Toolcalling ($/1M tokens).

LLM Input $/IM Output $/1M
GPT-40 2.50 10.0
GPT-40-Mini 0.15 0.60
ol 15.0 60.0
GPT-4.1-Nano 0.10 0.40
Gemini-1.5-Flash 0.08 0.30
Gemini-1.5-Pro 1.25 5.00
Gemini-2.0-Flash 0.15 0.60
GPT-4.1 2.00 8.00
GPT-4.1-Mini 0.40 1.60
04-Mini 1.10 4.40

A.7 ADDITIONAL INTERPRETABILITY RESULTS

Alignment Between Discrimination Vectors and LLM Abilities. Table 20| demonstrates that
the discrimination vectors («;) learned by POLLINATOR align strongly with the ability profiles (6;)
of individual LLMs. Comparing Qwen2.5-7B-Instruct with its math-specialized variant, Qwen2.5-
Math-7B-Instruct, we find that queries, with higher mean routing probability, are directed to the gen-
eral model on in-domain tasks overall, while math-focused queries (e.g., from MATH and GSM8K)
are preferentially routed to the specialized model. Conversely, non-math queries from datasets such

19

Under review as a conference paper at ICLR 2026

Table 17: Pricing details of different LLMs ($/1M tokens) selected for In-Domain and Out-of-
Domain Datasets.

LLM Input $/IM Output $/1M
DeepSeek-Chat 0.14 0.28
DeepSeek-Coder 0.14 0.28
Gemini-1.5-Flash 0.075 0.30
GLM-4-Air 0.137 0.137
GLM-4-Flash 0.0137 0.0137
GLM-4-Plus 6.85 6.85
GPT-40 2.50 10.0
GPT-40-Mini 0.15 0.60
GPT-40-Mini+CoT 0.15 0.60
Llama3.1-8B-Instruct 0.10 0.20
Llama3.1-70B-Instruct 0.792 0.792
Llama3.1-405B-Instruct 3.15 3.15
Ministral-8B-Instruct-2410 0.10 0.20
Mistral-7B-Instruct-v0.2 0.10 0.20
Mixtral-8x7B-Instruct 0.54 0.54
Qwen2.5-32B-Instruct-GPTQ-Int4 0.10 0.20
Qwen2.5-7B-Instruct 0.10 0.20
Qwen2.5-72B-Instruct 1.08 1.08
Qwen2.5-Math-7B-Instruct 0.10 0.20
QwQ-32B-Preview 1.20 1.20

Table 18: Pricing details of candidate LLMs selected for MMLU-Pro ($/1M tokens).

LLM Input $/IM Output $/1M
Claude-3.5-Sonnet 3.00 15.00
Gemini-1.5-Pro 1.25 5.00
Llama3.1-70B 0.60 0.60
Llama3.1-70B-Instruct 1.00 1.00
Llama3-70B 0.65 2.75
Llama3-70B-Instruct 0.59 0.79
Claude-3.5-Sonnet-(alt) 3.00 15.00
Claude-3.5-Sonnet-2024 3.00 15.00
Claude-3.5-Haiku-2024 0.80 4.00
Gemini-1.5-Flash 0.08 0.30
Gemini-2.0-Flash 0.15 0.60
GPT-4.1-Nano 0.10 0.40
GPT-4.1 2.00 8.00
GPT-4.1-Mini 0.40 1.60
04-Mini 1.10 4.40

as MMLU and CommonsenseQA, are mostly routed to the general model. This indicates that the
learned discrimination vectors («;) capture model-specific strengths and effectively guide query al-
location.

LLM Ability and Query Difficulty. Figure [5| highlights consistent performance improvements of
Llama3.1-405B-Instruct over its smaller counterpart. Figure [6]illustrates example queries with pre-
dicted f;, highlighting strong agreement with human labels. These qualitative cases further demon-
strate that the learned routing signals capture meaningful task difficulty. Overall, the results under-
score the reliability of our scoring mechanism across diverse query types.

20

Under review as a conference paper at ICLR 2026

Table 20: Mean predicted routing probability of the general (Qwen2.5-7B-Instruct) vs. math-
specialized (Qwen2.5-Math-7B-Instruct) models. Math queries are routed more often to the spe-
cialized model, while non-math queries favor the general model.

Task Qwen2.5-7B-Instruct Qwen2.5-Math-7B-Instruct
All ID Tasks 0.60 0.14
MATH 0.32 0.70
GSMSK 0.37 0.44
MMLU 0.60 0.04
CommonsenseQA 0.74 0.07

12

13

20

18 19
= Llama3.1-70B-Instruct = Llama3.1-405B-Instruct

Figure 5: Estimated ability profiles (6;) over 25 dimensions. Comparison of Llama3.1-70B-Instruct
and Llama3.1-405B-Instruct, showing consistent gains for the larger model.

Type: Geometry
Level: Level 5

Problem: Points A, B, C, D, E, F, G, H, and K form a polygon such that each of the
segments AB, BC, CD, DE, EF, FG, GH, and HK has length 4. All angles are right
angles except at points D and F. In triangle DEF, which is an isosceles right triangle
with legs DE = EF = 4, a perpendicular EM is drawn from E to DF. If EM = x, find x"2.

Difficulty: 0.7052

Type: Counting and Probability
Level: Level 1

Problem: Find the value of (3!)! f 31

Difficulty: -0.7126

Figure 6: Example queries with predicted b; values compared to human labels, illustrating the close
correspondence between predicted and true difficulty.

A.8 RUNTIME AND COMPLEXITY ANALYSIS

The complexity of Algorithm [I]is dominated by the sorting operation in Line 4. For a model pool
of size N, naive sorting takes O(N log V) time. The remaining operations are linear, O(NN), as fol-
lows: Predictor Invocation (Line 3): Fetching ex-ante performance and cost predictions requires
O(N) time.

Utility Computation (Line 4): Calculating the utilities {u;; };V: 1 also takes O(N) time (see
Sec. 2.2).

Utility Sorting (Line 4): Sorting the computed utilities is the most expensive step, with complexity

21

Under review as a conference paper at ICLR 2026

O(N log N), dominating the overall runtime.

Iterative Thresholding (Lines 6-12): In the worst case, the loop scans all utilities, taking O(N)
time.

Primal Serving Scheme (Line 14): Constructing the primal serving scheme requires an additional
O(N) pass.

A.9 DETAILED ABLATION STUDY OF THE PREDICTOR

Table 21] presents a detailed ablation of our predictor (without the optimizer), analyzing the impact
of ability dimension (), number of neighbors (k), edge-weighting, masking ratio, and embedder
selection. Performance generally improves with increasing 6 up to an optimal point. Across different
configurations, our predictor consistently outperforms baseline methods, demonstrating robustness
to design choices.

A.10 METHODOLOGY

The overall training and inference flows of POLLINATORare illustrated in Figure [7] showing the
dual-tower encoder and IRT-based prediction head used to generate serving plans.

Y
‘Q
S

>

Y VN

H

o

._]
T

<

v

A = argmax min L(z, \, a;, ¢; ;
g,\zo oy (z, A, 4, ¢;) Train

|
A

v

x; = DualToPrimal(\) | Test

Figure 7: POLLINATOR: Train & Inference Flows. The left tower encodes request ¢ with a GCN with
L layers. The right tower encodes producer j. The bespoke IRT-based head combines the outputs
of the two towers to generate ex ante predictions. In train flow,) is the result of optimization on a
held-out validation set, which, during inference, is used to compute the primal serving plan x; via
Algorithm|T]

A.11 CANDIDATE LLMS PROFILE DESCRIPTIONS

Table[22]lists the candidate large LLMs used in our experiments for MMLU-Pro & BFCL-V3, along
with their key profile descriptions.

B ADDITIONAL RELATED WORKS

Item Response Theory. Item Response Theory (IRT) (Woodruff & Hansonl [1996) models the
interaction between latent human ability and item difficulty via logistic functions, ensuring inter-
pretability through monotonicity. Extensions such as MIRT (Reckase, [2006) and neural variants
(e.g., NCDM (Wang et al.l 2020)) capture richer interactions. Beyond education, IRT has been ap-
plied to model evaluation (Liu et al.,[2024), recommendation (Liu et al.,|2023)), leaderboard ranking

22

Under review as a conference paper at ICLR 2026

Table 21: Ablation study of the predictor (without optimizer). Columns indicate ability (6;), dimen-
sion (D), number of neighbors (k), edge-weight, node label masking, request encoder (Enc?), and
performance. Bold values indicate the best configuration within each block.

Model | D | k [Edge-weight [Masking Ratio | Enc? | Performance
Baselines
Small LLM - X X - 48.70%
Large LLM - - X X - 77.53%
KNN-Router - 5 X X - 74.38%
MIRT-Router - - X X - 81.17%
NIRT-Router - - X X - 75.26%
POLLINATOR: Ablation on D and k (no edge-weight)
3 3 X X bert-base-uncased 71.04%
5 3 X X bert-base-uncased 80.51%
8 3 X X bert-base-uncased 79.26%
16 | 3 X X bert-base-uncased 82.08%
16 | 5 X X bert-base-uncased 81.73%
POLLINATOR 16 | 10 X X bert-base-uncased 81.94%
16 | 20 X X bert-base-uncased 82.03%
25 3 X X bert-base-uncased 82.28%
25 5 X X bert-base-uncased 82.24%
25 | 10 X X bert-base-uncased 82.13%
25 | 20 X X bert-base-uncased 81.53%
POLLINATOR: Edge-weight, varying D and &
3 3 v X bert-base-uncased 71.43%
5 3 v X bert-base-uncased 80.49%
8 3 v X bert-base-uncased 79.26%
16 | 3 v X bert-base-uncased 82.07%
25 3 v X bert-base-uncased 81.96%
35| 3 v X bert-base-uncased 80.52%
45| 3 v X bert-base-uncased 81.25%
POLLINATOR | 3" | 5 v x bert-base-uncased 71.12%
5 5 v X bert-base-uncased 80.27%
8 5 v X bert-base-uncased 79.37%
16 | 5 v X bert-base-uncased 81.90%
25| 5 v X bert-base-uncased 81.20%
35| 5 v X bert-base-uncased 80.53%
45 | 5 v X bert-base-uncased 80.72%
POLLINATOR: Node Masking
16 | 3 v 0.1 bert-base-uncased 81.96%
16 3 v 0.2 bert-base-uncased 82.01%
16 | 3 v 0.3 bert-base-uncased 81.97%
POLLINATOR 16 3 v 0.5 bert-base-uncased 81.82%
25| 5 v 0.1 bert-base-uncased 81.79%
25 5 v 0.2 bert-base-uncased 81.89%
25| 5 v 0.3 bert-base-uncased 82.12%
25| 5 v 0.5 bert-base-uncased 81.68%
POLLINATOR: Different EncF
16 | 3 X X all-MiniLM-L6-v2 80.86%
25| 3 X X all-MiniLM-L6-v2 80.74%
16 | 3 X X all-mpnet-base-v2 81.70%
25| 3 X X all-mpnet-base-v2 82.37%
25| 3 X X text-embedding-3-large 81.97%
POLLINATOR | ¢ | 3 v X all-mpnet-base-v2 81.70%
16 | 3 v X all-MiniLM-L6-v2 80.75%
16 | 3 v X text-embedding-3-large 80.15%
25| 5 v X all-mpnet-base-v2 82.60%
25| 5 v X all-MiniLM-L6-v2 80.74%
25| 5 v X text-embedding-3-large 81.91%

(Rodriguez et al.} 2021)), and LLM assessment (Guinet et al., [2024; [Liu et al.} |2025). We adopt IRT
for its interpretability and proven effectiveness in human and machine assessment.

LLM Routers. LLM routing seeks to assign queries to the most suitable model for optimal accu-
racy—cost tradeoffs. Early works like Frugal GPT (Chen et al., 2023) and AutoMix (Aggarwal et al.,

23

Under review as a conference paper at ICLR 2026

Table 22: List of candidate LLMs with their profile descriptions.

LLM Name

Profile Description

Gemini 2.0 Flash

Released on Dec 11, 2024 by Google DeepMind. Experimental version of Gemini 2.0 Flash,
focusing on enhanced speed and performance. Features include a Multimodal Live API for
real-time audio and video interactions, improved spatial understanding, native image and con-
trollable text-to-speech with watermarking, and integrated tool use, including Google Search.
Also introduces improved agentic capabilities and a new Google Gen AI SDK.

Gemini 1.5 Pro 002

Released on Sep 24, 2024 by Google DeepMind. Updated Gemini 1.5 Pro with a 2M token
context window and up to 8,192 token outputs. Designed for diverse tasks via Google Al
Studio and Vertex Al

Meta-Llama-3.1-70B

Released on Jul 23, 2024 by Meta Al. A 70B parameter model pre-trained on 15T tokens
from public sources, designed for advanced language understanding, coding, and reasoning.

Claude 3.5 Haiku

Released on Oct 22, 2024 by Anthropic. Optimized for efficiency and speed with a 200K
token context window and 8,192 token outputs. Suitable for rapid-response tasks.

Meta-Llama-3.1-70B-Instruct

Released on Jul 23, 2024 by Meta AL Instruction-tuned variant of Llama 3.1-70B, fine-tuned
on public datasets and 10M+ human annotations to enhance instruction-following.

GPT-4.1 Nano

Released on Apr 14, 2025 by OpenAl. Compact GPT-4.1 version for on-device tasks with
reduced compute needs while maintaining strong performance.

Gemini 1.5 Flash 002

Released on Sep 24, 2024 by Google DeepMind. Updated Gemini 1.5 Flash with a IM token
context window and up to 8,192 token outputs. Optimized for speed and cost-efficiency.

04-Mini

Released on Aug 6, 2024 by OpenAl. A smaller GPT-40 variant with 1,047,476 token context
window and 32,768 token outputs, offering efficiency while retaining robust performance.

Claude 3.5 Sonnet

Released on Oct 22, 2024 by Anthropic. Balances performance and efficiency with a 200K
token context window and 8,192 token outputs. General-purpose model.

Claude 3.5 Sonnet

Released on Oct 22, 2024 by Anthropic. Part of the Claude 3.5 series, offering 200K context
window, optimized for diverse tasks. Achieved 59.1% on GPQA Diamond benchmark.

Meta-Llama-3-70B

Released on Apr 18, 2024 by Meta AIL. A 70B parameter model pre-trained on 15T tokens,
designed for high-performance language tasks.

Meta-Llama-3-70B-Instruct

Released on Apr 18, 2024 by Meta Al Instruction-tuned version of Llama 3-70B, aligned
with user queries via public datasets and 10M+ annotations.

GPT-4.1

Released on Apr 14, 2025 by OpenAl. Enhanced GPT-4 variant with improved reasoning,
coding, and agentic abilities.

GPT-4.1 Mini

Released on Apr 14, 2025 by OpenAl. Smaller GPT-4.1 variant, optimized for efficiency
while maintaining strong task performance.

GPT-4.1-Nano

Released on April 14, 2025, by OpenAl. A compact version of the GPT-4.1 model, designed
for on-device tasks with reduced computational requirements. Maintains strong performance
across various benchmarks while being optimized for efficiency.

GPT-40

GPT-40: Released on November 20, 2023, by OpenAl. A large language model capable of
handling complex tasks requiring deep understanding of language. Features include advanced
reasoning capabilities, multimodal capabilities, and a context window of up to 128,000 to-
kens. Available through OpenAI’s API.

GPT-40-Mini

GPT-40 Mini: Released on November 20, 2023, by OpenAl. A smaller variant of the GPT-40
model, designed for efficiency while maintaining strong performance across various tasks.
Optimized for applications requiring reduced computational resources.

ol

Released on August 16, 2024, by OpenAl. A large language model capable of handling com-
plex tasks requiring deep understanding of language. Features include advanced reasoning
capabilities, multimodal capabilities, and a context window of up to 128,000 tokens. Avail-
able through OpenATI’s API.

2023)) use cascaded inference, while later methods train lightweight routers such as HybridLLM
(Ding et al.l 2024), RouteLLM (Ong et al.l |2024), and Zooter (Lu et al., 2023). RouterDC (Chen
et al.| [2024) and KNN-based approaches (Hu et al.l [2024) further reduce costs, and GraphRouter
(Feng et al., 2024) leverages GNNs but depends on task priors. EmbedLLLM (Zhuang et al., 2025)
learns compact embeddings via matrix factorization to support routing at scale. Commercial sys-
tems like Martian'°|and Neutrino A demonstrate practical benefits, reporting major savings. Un-
like these, our approach couples difficulty-aware estimation with online dual optimization, yielding
interpretable and cost-efficient routing.

Bhttps://withmartian.com
Yhttps://neutrinoapp.com

24

https://withmartian.com
https://neutrinoapp.com

Under review as a conference paper at ICLR 2026

Graph-based Modeling. Graphs naturally capture relational structures (Fey et al. 2023; (Cao
et al.,|2023}; |Chen et al., [2022)). Classical methods like label propagation (Xie et al.,|2022) leverage
edges for transductive learning, while GNNs (Kipf, 2016; [Hamilton et al.l 2017) extend message
passing to learn expressive representations. Recent work highlights their zero-/few-shot potential
(Fey et al.| 2023} |Cao et al., [2023)) in domains such as recommendation and social networks. Build-
ing on these advances, we employ GNNSs to design the predictor of POLLINATOR

7 All code and datasets for POLLINATOR are provided in the supplementary material.

25

	Introduction
	Intelligence Marketplace & the Matchmaking Problem
	Graph-based Semi-Supervised Learning & Ensuring Frugality
	Dual-based Optimization & Adherence to Safety

	Experimental Setup
	Benchmark & Implementation
	Metrics & Baselines

	Results
	Performance-Cost Spectrum

	Ablation Study
	Interpretability of Pollinator

	Conclusion
	Appendix
	Scalability and Robustness of Pollinator
	Oracle Performance
	Datasets Details
	Candidate LLMs for Various Datasets
	Average Performance–Cost Characteristics of Individual LLMs
	Pricing of Candidate LLMs
	Additional Interpretability Results
	Runtime and Complexity Analysis
	Detailed Ablation Study of the Predictor
	Methodology
	Candidate LLMs Profile Descriptions

	Additional Related Works

