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Physics-Informed Weakly Supervised Learning for Interatomic Potentials
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Abstract

Machine learning plays an increasingly important
role in computational chemistry and materials
science, complementing computationally inten-
sive ab initio and first-principles methods. De-
spite their utility, machine-learning models of-
ten lack generalization capability and robustness
during atomistic simulations, yielding unphysical
energy and force predictions that hinder their real-
world applications. We address this challenge
by introducing a physics-informed, weakly su-
pervised approach for training machine-learned
interatomic potentials (MLIPs). We introduce two
novel loss functions, using the concept of conser-
vative forces and extrapolating the total energy
via a Taylor expansion. Our approach enhances
the accuracy of MLIPs applied to learning tasks
with sparse training data set sizes and reduces the
need for pre-training computationally demand-
ing models. Particularly, we perform extensive
experiments demonstrating reduced energy and
force errors—often lower by a factor of two—
for various baseline models and benchmark data
sets. We also enhance the accuracy of energy
and force predictions compared to previous meth-
ods that employ data augmentation via a Taylor
expansion. Finally, we show that our approach
facilitates MLIPs’ training in a setting where the
computation of forces is infeasible at the refer-
ence level, such as those employing complete-
basis-set extrapolation. An implementation of our
method and scripts for executing experiments are
available at https://anonymous.4open.
science/r/PICPS-ML4Sci-1E8F.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review at ICML2024 AI for Science
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1. Introduction
Ab initio and first-principles methods are inevitable for
the computer-aided exploration of molecular and mate-
rial properties used in the chemical sciences and engi-
neering (Parrinello, 1997; Carloni et al., 2002; Iftimie
et al., 2005). However, commonly employed ab initio
and first-principles approaches—such as coupled cluster
(CC) (Purvis & Bartlett, 1982; Bartlett & Musiał, 2007)
and density functional theory (DFT) (Hohenberg & Kohn,
1964; Kohn & Sham, 1965), respectively—require substan-
tial computing resources. Thus, they typically allow only
for atomistic simulations of small- to medium-sized atomic
systems and restrict the accessible simulation times, which
affects the accuracy of estimated molecular and material
properties. Classical force fields can extend these length
and time scales, providing a computationally efficient alter-
native to first-principles approaches, but often lack accuracy.
Machine-learning-based models hold promise to bridge the
gap between first-principles and classical approaches, yield-
ing computationally efficient and accurate machine-learned
interatomic potentials (MLIPs) (Smith et al., 2017; Chanus-
sot* et al., 2021; Unke et al., 2021; Merchant et al., 2023;
Kovács et al., 2023; Batatia et al., 2023). These MLIPs, how-
ever, face several challenges. They require the generation
of training data sets that sufficiently cover configurational
(atom positions) and compositional (atom types) spaces us-
ing, e.g., molecular dynamics simulations based on ab initio
or first-principles approaches. Given the high computational
cost of the commonly used data generation approaches, the
resulting training data sets are often sparse and restrict the
application of MLIPs to new molecular and material sys-
tems. Active learning (AL) is often used to address this
challenge (Li et al., 2015; Vandermause et al., 2020; Za-
verkin et al., 2024), while still requiring non-negligible
computer resources. Furthermore, MLIPs often lack suffi-
cient robustness and extrapolation capability during atom-
istic simulations, i.e., they are sensitive to outliers and lo-
cal perturbations of atomic structures. This sensitivity of
ML-based models is caused by existing data sets and data
generation techniques not providing sufficient coverage of
configurational and compositional spaces (Foret et al., 2020;
Andriushchenko & Flammarion, 2022).

Contributions. This paper addresses these challenges using
a physics-informed weakly supervised learning (PIWSL)
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Physics-Informed Weakly Supervised Learning for Interatomic Potentials

Figure 1: Schematic illustration of physics-informed weakly supervised losses used in this work. (a) Taylor expansion-
based loss with approximate labels obtained from reference energies and atomic forces (Cooper et al., 2020). (b) Physics-
inspired Taylor-expansion-consistency (PITC) loss with approximate labels obtained from energies and atomic forces
predicted by an MLIP. (c) Physics-inspired spatial consistency (PISC) loss with approximate labels obtained from energies
and atomic forces predicted by an MLIP. Here, E(S;θ) and Fi(S;θ) denote the total energy and atomic forces predicted by
an MLIP parametrized by θ, S and Sδr define the original atomic structure and the one perturbed by δr.

approach. Our method is designed to learn an MLIP, which
can accurately predict total energy and atomistic forces
for an atomic system exposed to local perturbations. In
particular, our contributions are as follows: (i) We intro-
duce PIWSL based on basic physical principles, such as the
concept of conservative forces. We combine it with extrap-
olating the total energy via a Taylor expansion and derive
two novel physics-informed loss functions, schematically il-
lustrated in Fig. 1. Particularly, we obtain physics-informed
Taylor-expansion-based consistency (PITC) and physics-
informed spatial consistency (PISC) losses, which build
the basis for the PIWSL approach. (ii) By conducting ex-
tensive experiments, we demonstrate that PIWLS allows
for training MLIPs without access to large training data
sets. (iii) We also observe that PIWSL improves accuracy
in predicted total energies and atomic forces, even without
access to force labels. This scenario is expected when train-
ing MLIPs with reference methods for which calculating
atomic forces is infeasible (Smith et al., 2019; 2020). Thus,
our results open new possibilities for training MLIPs using
highly accurate energy labels, such as those obtained by
extrapolating CCSD(T) energies to the complete basis set
(CBS) limit (Hobza & Šponer, 2002; Feller et al., 2006).
(iv) Finally, introducing local perturbations for atomic struc-
tures in the training data sets mitigates sensitivity issues
associated with limited sizes of available data sets.

2. Related Work
Machine-Learned Interatomic Potentials. There is a
growing interest in using ML-based models for investigating
molecular and material systems as they allow performing
atomistic simulations with an accuracy on par with first-

principles methods but at a fraction of the computational
cost. The field of machine-learned interatomic potentials
(MLIPs) emerged over two decades ago (Blank et al., 1995)
and has been one of the most active research directions since
then (Behler & Parrinello, 2007; Artrith et al., 2011; Artrith
& Urban, 2016; Smith et al., 2017; Shapeev, 2016; Schütt
et al., 2017; Thomas et al., 2018; Unke & Meuwly, 2019;
Drautz, 2019; Zaverkin & Kästner, 2020; Zaverkin et al.,
2021; Thomas et al., 2018; Schütt et al., 2021; Shuaibi et al.,
2021a; Passaro & Zitnick, 2023; Liao et al., 2023; Batzner
et al., 2022; Musaelian et al., 2023; Batatia et al., 2022).
Though, the development of local higher-body-order repre-
sentations (Shapeev, 2016; Drautz, 2019; Zaverkin & Käst-
ner, 2020; Zaverkin et al., 2021) and the emergence of equiv-
ariant message-passing neural networks (MPNNs) (Thomas
et al., 2018; Schütt et al., 2021; Shuaibi et al., 2021a; Pas-
saro & Zitnick, 2023; Liao et al., 2023; Batzner et al., 2022;
Musaelian et al., 2023; Batatia et al., 2022) significantly
advanced the field. These methods enable the cost-efficient
generation of accurate MLIPs for modeling interactions in
many-body atomic systems and account for crucial inductive
biases as the invariance of the total energy under rotation.

Physics-Informed Machine Learning. Physics-informed
ML aims to model physical systems using data-driven tech-
niques and incorporates physics principles into ML-based
models. For example, MLIPs based on equivariant MPNNs
enforce the invariance of the total energy under rotation
and use equivariant features to enrich the building of many-
body contributions to it (Thomas et al., 2018; Batzner et al.,
2022; Batatia et al., 2022; Musaelian et al., 2023; Liao
et al., 2023). Furthermore, physics constraints can be inte-
grated via auxiliary loss functions, prompting ML models
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to learn important physical relationships, as demonstrated
for physics-informed neural networks (PINNs) (Raissi et al.,
2019; Cai et al., 2022), which learn to model solutions of
partial differential equations by minimizing residuals dur-
ing training. Applying physics-informed ML to molecular
modeling has gained attraction in both ML and computa-
tional chemistry communities (Godwin et al., 2021; Ni et al.,
2023). As such, prior work (Cooper et al., 2020) has moti-
vated our current research and is discussed in more detail in
subsequent sections.

3. Background and Problem Definition
Machine-learned Interatomic Potentials. An atomic con-
figuration, denoted as S = {ri, Zi}Nat

i=1, contains Nat atoms
and is defined by atom positions ri ∈ R3 and atom types
Zi ∈ N. We consider mapping atomic configurations to
scalar energies, i.e., fθ : S 7→ E ∈ R with θ denoting
trainable parameters. We define E(S;θ) as the energy pre-
dicted by an MLIP for an atomic configuration S . For most
MLIPs, atomic forces are computed as the negative gra-
dients of the total energy with respect to atom positions,
i.e., Fi (S;θ) = −∇riE (S;θ). In this way, these MLIPs
ensure that the resulting forces are conservative (are curl-
free) and the total energy is conserved during a dynamic
simulation. However, some models are designed to predict
atomic forces directly (Hu et al., 2021; Passaro & Zitnick,
2023; Liao et al., 2023; Chanussot* et al., 2021). While
this approach avoids expensive gradient computations, it
violates energy conservation.

Trainable parameters θ are optimized by minimizing loss
functions on training data D comprising a total of Ntrain

atomic configurations {S(k)}Ntrain

k=1 as well as their energies
{Eref

S }S∈D and atomic forces {{Fref
i,S}Nat

i=1}S∈D

L (D;θ) =
∑
S∈D

L (S;θ)

=
∑
S∈D

[
Ceℓ

(
E (S;θ) , Eref

S
)
+ Cf

Nat∑
i=1

ℓ
(
Fi(S;θ),Fref

i,S
)]

.

(1)

Here, ℓ denotes a point-wise loss function such as the abso-
lute and squared error between the predicted and reference
total energies and atomic forces. Typically, reference ener-
gies Eref

S and atomic forces Fref
i,S are provided by ab initio

or first principles methods such as CC or DFT, respectively.
The relative contributions of energies and forces in Eq. (1)
are balanced with the coefficients Ce and Cf .

Weakly Supervised Learning. Generating many reference
labels with a first-principles approach is challenging due
to the high computational cost. Furthermore, the calcu-
lation of atomic forces can be infeasible for some high-
accuracy ab initio methods, e.g., for CCSD(T)/CBS (Hobza

& Šponer, 2002; Feller et al., 2006). We focus on weakly
supervised learning methods to improve the performance
of MLIPs in scenarios when only limited data set sizes are
available. These involve the generation of approximate but
physically motivated total energies for atomic structures
generated by small displacements of their atomic positions,
i.e., Sδr = {ri + δri, Zi}Nat

i=1 with an atomic displacement
vector δr where δri is the displacement vector for atom i.
Approximate labels are computed with MLIPs trained using
reference total energies and atomic forces.

4. Physics-informed Weakly Supervised
Learning

For MLIPs, the generation of approximate labels employed
in weakly supervised losses is highly non-trivial. Small
displacements in atomic structures can lead to significant
changes in energies and atomic forces. Thus, standard ap-
proaches, effective for many other ML tasks, are typically
inefficient (Yang et al., 2022). To address this problem,
we propose physics-informed weakly supervised learning
approaches that involve (i) a Taylor expansion of the total
energy for computing the response to atomic displacements
and (ii) spatial consistency to estimate the displaced po-
tential energy, based on the concept of conservative forces.
We finally introduce the PIWSL loss term, combining both
classes of weakly supervised loss functions with the super-
vised loss.

4.1. Physics-Informed Taylor-Expansion Based
Consistency Loss

This section introduces the physics-informed Taylor-
expansion-based consistency (PITC) loss. Particularly, we
relate the energy predicted directly for a displaced atomic
configuration with the energy obtained by the Taylor ex-
pansion from the original configuration; see Fig. 1 (b). We
estimate the energy for an atomic structure S drawn from
the training data set with atomic positions displaced by a
vector δr: Sδr = {ri + δri, Zi}Nat

i=1. For this atomic con-
figuration, we expand the energy predicted by an MLIP in
its first-order Taylor series1 around the atomic displacement
vector δri and obtain

E (Sδr;θ) ≈ E (S;θ)

−
Nat∑
i=1

⟨δri,Fi (S;θ)⟩+O
(
∥δr∥2

)
, (2)

1In general, employing a more sophisticated higher-order ordi-
nary differential equation solver is a viable option. However, this
approach does not consistently improve performance due to the
MLIP prediction error. As a result, the increased computational
expense associated with higher-order methods may not be justified.
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where ⟨·⟩ denotes the inner product. Here, we used that
atomic forces are defined as the negative gradients of the
total energy. For small magnitudes of δri, the second or-
der term O

(
∥δr∥2

)
in Eq. (2) can be neglected. Using

approximate labels E (Sδr;θ), we define the PITC loss as

LPITC (S;θ)

= ℓ

(
E (Sδr;θ) , E (S;θ)−

Nat∑
i=1

⟨δri,Fi (S;θ)⟩
)
, (3)

where ℓ denotes a point-wise loss for regression problems
and δr is sampled or determined adversarially; see Sec-
tion 4.4 for more details. Hence, whenever we encounter a
structure S in a batch during gradient descent, a new δr is
computed for S.

4.2. Physics-Informed Spatial-Consistency Loss

This section introduces a physics-informed approach for
generating weak labels based on the concept of conservative
forces. Thus, we leverage the fact that the energy difference
between two points on the potential energy surface is inde-
pendent of the path taken between them. We consider two
paths from the reference data points to some target points,
composed of three points and displacement vectors around
an atom. We estimate the potential energy at the final point
via Eq. (3). An example of two paths is demonstrated in
Fig. 1 (c). The figure relates the energy obtained when
displacing atomic positions of the original configuration
S (denoted by A in the figure) by δr (from configuration
A to C) with the energy obtained through consecutive dis-
placements δr′ (from configuration A to B) and δr′′ (from
configuration B to C).

For the first path, we directly predict the energy with an
MLIP, i.e., E (Sδr;θ), which is related to the approximated
energy at r + δr using Eq. (3) through PITC loss. For
the second path, we directly compute the synthetic energy
E (Sδr′ ;θ) for atomic positions displaced by δr′ and use
it to approximate E (Sδr;θ) after applying the second dis-
placement vector δr′′ ≡ δr − δr′. The physics-informed
spatial consistency (PISC) loss can be defined as

LPISC (S;θ) =

ℓ

(
E (Sδr;θ) , E (Sδr′ ;θ)−

Nat∑
i=1

⟨δr′′i ,Fi (Sδr′ ;θ)⟩
)
,

(4)

where δr is sampled or determined adversarially; see Sec-
tion 4.4. After joint training of PITC and PISC losses, the
three different estimations at Sδr become spatially consis-
tent. Note that our conservative forces-based approach is not
limited to relations between two displacement paths or three
displacement vectors. We discuss several other possible
configurations in Appendix E.

4.3. Combined Physics-Informed Weakly Supervised
Loss (PIWSL)

Together with the usual MLIP loss function given in Eq. (1),
the overall objective, which we refer to as the PIWSL loss,
can be written as

min
θ

L̃ (D;θ) = min
θ

∑
S∈D

(L (S;θ)

+CPITCLPITC (S;θ) + CPISCLPISC (S;θ)) , (5)

where CPITC and CPISC are the weights of the weakly
supervised PITC and PISC losses.

4.4. Determining Perturbation Directions and
Magnitudes

The effectiveness of the proposed approach hinges on appro-
priate choices of the perturbation vectors δr. Therefore, we
introduce and justify various generation strategies for the
perturbations δr used in Eq. (3) and Eq. (4). We can express
any vector δr as δr ≡ ϵg/∥g∥2, where ϵ is the magnitude
of δr and g/∥g∥2 represents the direction of δr. Physical
constraints are considered when determining ϵ. Specifically,
the maximum length of the displacement can be obtained
from the validity of the Taylor expansion in Eq. (2), which
is typically given as at most 30% of the original bond length
whose shortest example is the carbon and hydrogen bond,
approximately 1.09 Å; see also Fig. 2 (c), (d). The spe-
cific values of ϵ chosen for our experiments are provided in
Appendix B.

To determine g/∥g∥2 we explore two strategies. First, we
compute it as the unit vector of a perturbation vector sam-
pled from a multivariate Gaussian distribution, with each
independent Gaussian having zero mean and unit variance

δrrnd ≡ ϵg/∥g∥2. (6)

Second, we compute an adversarial direction, as proposed
in (Goodfellow et al., 2014; Miyato et al., 2018), which
involves defining it as the direction (the gradients) in which
the loss error increases the most at the current atom coordi-
nates r and for the current energy. Assuming the norm of
adversarial perturbation as L2, the adversarial direction can
be approximated by (Miyato et al., 2018)

δradv ≡ ϵg/∥g∥2, where g = ∇rLdist(ypred,ylabel),
(7)

where Ldist is a distance measure function to be maximized
by adding δradv, and ypred and ylabel are the ML model
prediction and the label values. Due to their computational
efficiency, we mainly use Eq. (6) in our experiments. A
quantitative comparison between the random and adversarial
directions is provided in Section 5.5.
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5. Experiments
We evaluate our method with an extensive set of experiments
with the following objectives: (1) a comparison of the PI-
WSL method with existing baselines, (2) a fine-grained
analysis of the impact of the PIWSL method using the as-
pirin molecule, (3) an exploration of the ability of PIWSL
to improve energy and force predictions when force labels
are inaccessible, (4) a comparison to prior work that used a
simple weakly supervised approach, (5) an ablation study,
and (6) a comparison between random and adversarial gen-
eration of the displacement vector. In general, we focus on
the data-scarce setting where the number of training samples
is between 100 and 1000 since the computational cost of
ab initio and first-principles approaches to generate large
datasets is prohibitive.

5.1. MLIPs and Data Sets

We trained the following representative models that are pro-
vided in the OpenCatalyst code base (Chanussot* et al.,
2021): SchNet (Schütt et al., 2017), PaiNN (Schütt et al.,
2021), SpinConv (Shuaibi et al., 2021a), eSCN (Passaro &
Zitnick, 2023), and Equiformer v2 (Liao et al., 2023), cov-
ering MLIPs with a smaller (SchNet, SpinConv) and larger
number of parameters (eSCN, Equiformer v2). Moreover,
we also considered the highly parameter-efficient model
PaiNN. Unless otherwise mentioned, except for SchNet,
forces are directly predicted and not computed through the
negative gradient of the energy. The results where forces are
computed as negative energy gradients are analyzed in Sec-
tion 5.4 and Appendix K. To evaluate the effect and depen-
dency of the physics-informed weakly supervised approach
in detail, we performed the training on various datasets:
ANI-1x (Smith et al., 2020) as a comprehensive molecu-
lar data set, TiO2 (Artrith & Urban, 2016) as a data set
for inorganic materials, the revised MD17 (rMD17) data
set (Chmiela et al., 2017; 2018) representing a smaller and
single-molecule data set, and LMNTO as another material
data set (Cooper et al., 2020) (The results for rMD17 and
LMNTO are provided in Appendix M). The detailed de-
scription of each data set is provided in Appendix C.

5.2. Benchmark Results

We compare models trained with the PIWSL loss (see
Eq. (5)) with baseline models trained with the standard
supervised loss only (see Eq. (1)). We also compare to a re-
cently proposed data augmentation method that incorporates
the task of denoising random perturbations of the atomic co-
ordinates into the learning objective (NoisyNode) (Godwin
et al., 2021). More details are provided in Appendix B.

ANI-1x: Large Molecular Data Set. The results provided
in Table 1 show that our approach improves the baseline

models’ performance in almost all cases. In particular, the
error reduction for the predicted energies is often between
10% and more than 50%. Interestingly, we do not only
observe an increase in accuracy for the total energies but also
the atomic forces because of the inclusion of force prediction
in PITC and PISC losses, different from the previous work
(Cooper et al., 2020). In most cases, the data augmentation
method (NoisyNode) reduces the accuracy of the MLIPs.
This is the case, as this method does not incorporate the
concept of conservative forces in its loss function. SchNet
is one notable exception here, which we hypothesize to be
related to SchNet being an invariant MLIP, which can be
less expressible than equivalent MLPIs.

Dependence on Number of Samples for ANI-1x. We train
the MLIPs with training set sizes in [50, 102, 103, 104]. The
results are plotted in Fig. 2 (a), (b). Although the observed
error reduction depends strongly on the type of MLIP used,
the benefit of the weakly supervised losses often decreases
slightly with the number of training samples. This is an ex-
pected result as the area covered by the weakly supervised
losses is also gradually covered by the reference data as
the number of training samples increases. Moreover, the
gain in accuracy of energy predictions is larger than that
for forces that are only indirectly trained through the con-
sistency constraint in PITC (Eq. (3)). Finally, it is shown
that the improvement is more significant for highly parame-
terized MLIPs, which benefit the most from increasing the
training data size.

TiO2: Data Set for Metal Oxides. Titanium dioxide (TiO2)
is a highly relevant metal oxide for industrial applications,
featuring several high-pressure phases. Thus, ML models
should be able to predict total energies and atomic forces
for various high-pressure phases of TiO2, considering peri-
odic boundaries (relevant when aggregating over the local
atomic neighborhood). The results for trained models are
provided in Table 2. Similar to the ANI-1x data set, our
approach improves the accuracy of predicted energies and
atomic forces. Interestingly, although the error in the total
energy for Ntrain = 1000 training configurations reaches
small RMSE values, from 2 to 4 kcal/mol, the PIWSL still
provides a further error reduction. This observation indi-
cates strong evidence of the effectiveness of PIWSL applied
to material data sets.

5.3. Qualitative Impact of Using PIWSL

We evaluate the atom-level impact and robustness of the
PIWSL method using the aspirin molecule, focusing on
the potential energy’s dependence on the carbon-hydrogen
(C-H) bond length. We train PaiNN models on the rMD17
aspirin dataset with sample sizes 100 and 200, both with
and without the PIWSL loss. The detailed training setup and
errors of the used MLIPs are summarized in Appendix F.
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Table 1: Energy and atomic force root-mean-square errors (RMSEs) for the ANI-1x data set. The results are obtained
by averaging over three independent runs. Energy RMSE is given in kcal/mol, while force RMSE is in kcal/mol/Å.

Ntrain = 100 Ntrain = 1000

Baseline Noisy Nodes PIWSL Baseline Noisy Nodes PIWSL

Schnet energy 65.09 ± 2.42 57.39 ± 0.05 60.30 ± 1.77 31.49 ± 0.01 31.10 ± 0.00 31.50 ± 0.00
force 29.06 ± 0.19 25.62 ± 0.01 28.20 ± 0.60 18.94 ± 0.01 18.10 ± 0.00 18.93 ± 0.00

PaiNN energy 168.01 ± 1.22 464.55 ± 6.91 109.89 ± 11.46 56.62 ± 2.80 305.76 ± 33.93 24.53 ± 0.48
force 21.33 ± 0.10 20.82 ± 0.03 18.76 ± 0.30 12.96 ± 0.06 14.25 ± 0.18 11.43 ± 0.05

SpinConv energy 162.14 ± 7.55 147.73 ± 2.23 130.97 ± 8.58 43.59 ± 1.71 299.33 ± 419.10 39.44 ± 1.31
force 21.22 ± 0.43 21.08 ± 0.43 21.61 ± 0.44 14.51 ± 1.07 15.83 ± 0.75 13.59 ± 0.20

eSCN energy 214.52 ± 7.55 521.92 ± 12.05 183.70 ± 9.79 59.59 ± 8.92 241.34 ± 20.16 21.03 ± 0.56
force 20.07 ± 0.27 23.68 ± 0.11 19.69 ± 0.05 12.50 ± 0.78 14.42 ± 0.84 11.83 ± 0.12

Equiformer energy 398.71 ± 13.69 632.38 ± 0.11 154.98 ± 8.83 54.52 ± 4.52 854.33 ± 317.7 20.89 ± 0.50
force 20.71 ± 0.05 21.82 ± 0.01 20.55 ± 0.05 10.10 ± 0.00 24.79 ± 2.05 9.68 ± 0.03

Table 2: Energy and atomic force root-mean-square errors (RMSEs) for the TiO2 data set. The results are obtained by
averaging over three independent runs. Energy RMSE is given in kcal/mol, while force RMSE is in kcal/mol/Å.

Ntrain = 100 Ntrain = 1000

Baseline Noisy Nodes PIWSL Baseline Noisy Nodes PIWSL

SchNet energy 18.85 ± 0.00 17.48 ± 0.00 17.58 ± 0.00 35.58 ± 0.00a 58.08 ± 18.44 15.28 ± 0.12
force 2.74 ± 0.00 2.51 ± 0.00 2.74 ± 0.00 6.54 ± 0.00a 18.40 ± 0.00 3.61 ± 0.27

PaiNN energy 13.93 ± 0.16 n/ab n/ab 2.42 ± 0.05 n/ab n/ab

force 1.52 ± 0.00 n/ab n/ab 0.29 ± 0.03 n/ab n/ab

SpinConv energy 20.00 ± 0.42 18.76 ± 0.74 16.98 ± 0.99 4.17 ± 0.76 4.09 ± 0.65 2.50 ± 0.40
force 1.58 ± 0.03 1.53 ± 0.03 1.59 ± 0.03 0.65 ± 0.02 0.71 ± 0.16 0.58 ± 0.05

eSCN energy 16.41 ± 1.10 20.92 ± 0.00 12.63 ± 0.78 3.31 ± 1.18 20.90 ± 0.01 1.40 ± 0.10
force 1.57 ± 0.04 1.66 ± 0.00 1.44 ± 0.03 0.46 ± 0.23 1.66 ± 0.00 0.21 ± 0.00

Equiformer energy 18.21 ± 0.02 19.06 ± 0.02 13.93 ± 0.09 3.67 ± 0.03 18.75 ± 0.05 1.82 ± 0.34
force 1.56 ± 0.01 1.64 ± 0.00 1.51 ± 0.19 0.17 ± 0.01 1.58 ± 0.00 0.17 ± 0.01

a We observed an increase in energy and force RMSEs for SchNet for larger training set sizes, which may be explained by the limited
expressive power of SchNet features.
b Predicted values become NaN when adding displacements to atomic configurations.

We examine the potential energy across a range of aspirin
atom-coordinates, varying the C-H bond length from 0.9 Å
to 1.4 Å2. The results in Fig. 2 (c), (d) show that the PI-
WSL method enhances the learned potential energy function,
indicating improved robustness under atomic coordinate
perturbations because of the improvement of the potential
curve prediction without spurious oscillations. Although
the estimated potential energies do not always match actual
values, the direction of the line between the reference and
estimated points with a deviation length of ||δr|| = 0.01Å,
illustrated by arrows in Fig. 2, consistently reproduces the
correct gradient of the potential energy, i.e., the correct
force direction. This suggests the PIWSL method’s effec-
tiveness comes from the consistency condition, ensuring

2The equilibrium C-H bond length is about 1.09 Å

model predictions of potential energy and force alignment,
resulting in accurate potential energy estimation and con-
sistent force prediction. As discussed in Section 4.2, this
addresses the issue of recent MLIPs with separate force
branches not guaranteeing predicting conservative forces.
The proposed method shows a reduction of the rotation of
the predicted forces, as explored in Appendix L, though
the reduction is still not enough to realize the rotation free
conservative force prediction. In conclusion, the weakly
supervised losses reduce individual energy and force errors,
making the MLIPs more physically accurate.
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Figure 2: Relative performance gains for MLIPs trained with physics-informed weakly supervised losses compared to
the same MLIPs trained with a standard loss function. Performance gains are evaluated for (a) energy (E-) and (b) force
(F-) RMSEs. The results are for ANI-1x. (b) Plots of the aspirin molecule’s potential energy vs. C-H bond length (distance).
The red and blue arrows indicate the reference, E(S;θ), to perturbed potential energy, E(Sδr;θ), predicted by Eq. (8), on
the baseline and PIWSL model predictions, respectively.

Table 3: Experimental results of no-force label training
on the ANI-1x dataset with 1000 training samples. "FB"
means the force is estimated by the force branch, and "GB"
means the force is estimated by the gradient of the potential
energy wrt the atomic coordinates.

Model Case Baseline PIWSL

PaiNN

FB energy 42.36 ±0.30 25.42 ±0.72
force 24.25 ±0.00 20.54 ±0.08

GF energy 41.83 ±1.81 29.71 ±0.55
force 83.36 ±2.85 24.02 ±0.95

Equiformer

FB energy 43.14 ±0.86 29.48 ±0.51
force 24.25 ±0.00 21.99 ±0.49

GF energy 42.55 ±0.99 32.66 ±1.11
force 35.70 ±0.78 21.83 ±0.27

5.4. Training MLIPs when Reference Forces are
Missing

In the following, we explore scenarios where only potential
energy labels are available. This situation commonly arises
when calculating energy labels with chemically accurate ap-
proaches, such as CCSD(T)/CBS (Hobza & Šponer, 2002;
Feller et al., 2006), for which force calculation is infeasible.
To consider practical applications, we examine two cases:
1) predicting force by a force branch (FB) and 2) predicting
force via the spatial gradient of the predicted potential en-
ergy (GF). The former enables fast force prediction and is
popular in the machine learning community, while the latter
requires additional gradient calculation but yields curl-free
force prediction. It is popular in computational chemistry
as it ensures the conservation of the total energy during MD

simulations. The results are provided in Table 33. Notably,
our PIWSL method consistently demonstrates superior per-
formance across all the cases. Interestingly, a larger im-
provement in the force prediction performance is observed
in the GF case. We attribute this phenomenon to the inher-
ent nature of PIWSL, which requires consistency between
potential energy variation and the forces, as discussed in
Section 5.3. This result aligns with our expectations, con-
firming the capability of our PIWSL method to enable ML
models to estimate the force label. Thus, it opens a new
possibility for training MLIP models using highly accurate
reference methods, such as CCSD(T)/CBS.

5.5. Detailed Analysis

We provide several detailed analyses of our approach. As
base MLIPs, we use the Equiformer v2 and PaiNN since they
use equivariant features and have obtained a high accuracy
on the ANI-1x dataset with N = 1000 training samples.

Comparison to Taylor Expansion Based Weak Label
Approach. We compare our proposed method with the
Taylor expansion-based weak label (WL) (Cooper et al.,
2020) method. For the WL method, we utilize Equation (9)
as the loss function. We only consider the PITC loss, Equa-
tion (3) for simplicity. For a fair comparison, we consider
the following two cases. First, we train with reference forces
and energies (w. RF). Second, we train the methods without
reference forces and only the reference energies. For the
training with reference forces, we set the numeric coefficient
of the PITC loss to 1.0; for the training without reference
forces, the coefficient is set to 0.1. The results are provided
in Table 4. First, our PITC loss shows the best accuracy in

3To simulate no force label training, we simply set the coeffi-
cient of the force loss as 0

7
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Table 4: A comparison with the conventional weak-label
case. "WL" means the Taylor expansion-based method
using reference energies and forces Equation (9). The listed
values are the RMS errors for energy [kcal/mol] and force
[kcal/mol/Å] on the ANI-1x dataset with 1000 samples, with
and without using reference forces (RF) for training.

Model Case Baseline PITC WL

PaiNN

(w RF) energy 56.62 ±2.80 30.94±0.56 81.86±9.39
force 12.96±0.06 12.04±0.04 14.54±0.12

(w/o RF) energy 42.36±0.30 25.42±0.72 35.79±0.70
force 24.25±0.00 20.54±0.08 24.25±0.01

Equiformer

(w RF) energy 54.52±4.52 23.16±0.19 31.02±3.99
force 10.10±0.00 10.03±0.05 13.43±0.92

(w/o RF) energy 43.14±0.86 29.48±0.51 30.08±1.97
force 24.25±0.00 21.99±0.49 24.25±0.00

Table 5: Experimental results on ANI-1x data set with
1000 training samples when ablating proposed weakly
supervised losses. The results are obtained by averaging
over three independent runs. Energy RMSE is given in
kcal/mol, while force RMSE in kcal/mol/Å.

Model PITC PISC energy force

PaiNN

✗ ✗ 56.62 ± 2.80 12.96 ± 0.06
✓ ✗ 24.60 ± 0.18 11.51 ± 0.03
✗ ✓ 58.30 ± 2.10 13.18 ± 0.29
✓ ✓ 24.53 ± 0.48 11.43 ± 0.05

Equiformer

✗ ✗ 54.52 ± 4.52 10.10 ± 0.00
✓ ✗ 32.64 ± 26.48 9.64 ± 0.03
✗ ✓ 48.96 ± 4.96 10.30 ± 0.06
✓ ✓ 20.89 ± 0.50 9.68 ± 0.03

all settings. Interestingly, PaiNN failed to learn the potential
energy with the WL loss and reference forces. We hypothe-
size this to be due to the imbalance of the training between
the energies and forces, i.e., the WL loss only trains the
potential energy. This hypothesis is supported by the results
for the training without reference forces, where the error in
energy is reduced compared to the baseline. However, the
proposed PITC loss still performs better here. In summary,
the PITC loss enables MLIPs to learn both the energies and
forces that are consistent with each other and does it better
than the previously proposed WL method.

Ablation Study. Using an ablation experiment, we also
investigate the effect of the PITC and PISC losses. The
results are provided in Table 5 and show that the gain in
accuracy is mainly attributable to the PITC loss, particularly
for PaiNN. Training with the PISC loss only does not always
provide gains in accuracy. However, we can see that the
PISC loss stabilizes the training with the PITC loss and
improves accuracy. The combined efficiency of the losses is

particularly pronounced for the Equiformer v24.

Table 6: A result of the spatial-deviation vector selec-
tion dependence. The listed numerical values are the root
mean square errors for the energy [kcal/mol] and force
[kcal/mol/Å] on the ANI-1x dataset with 1000 samples.

Baseline Random (Eq. (6)) Adversarial (Eq. (7))

PaiNN energy 56.62±2.80 24.53±0.48 33.67 ±1.12
force 12.96±0.18 11.43±0.05 12.74±0.14

Equiformer energy 54.52±4.52 23.16±0.50 20.54±0.21
force 10.10±0.00 10.03±0.03 9.93±0.04

Adversarial Direction as Spatial Deviation Vector. In
the following, we discuss the performance dependence on
the selection of the spatial-deviation vector δr in Equa-
tion (5). The detailed implementation and setups are pro-
vided in Appendix B. Table 6 shows the experimental result
of the spatial-deviation vector selection dependence. The
result shows that both selections improve the performance
compared to the baselines without weak supervision, though
the improvement depends on the model selection.

6. Discussion and Limitations
This work introduces the PIWSL method, encompassing
two distinct physics-informed weakly supervised loss func-
tions, for learning MLIPs. These losses operate explicitly
(PITC loss) and implicitly (PISC loss), which enables any
MLIP models to improve their accuracy, particularly in sce-
narios characterized by small training data set sizes, which
is common when investigating a new molecular or material
system. Our extensive experiments demonstrated notable
efficacy and efficiency of our method from various aspects:
(i) dependence on the training dataset size, (ii) dependence
on the variability in molecular structures within the dataset,
and (iii) selection of the deviation vector. In particular, it is
shown that our PIWSL method enables ML models to im-
prove the force prediction even without force labels, thereby
opening a new possibility for training MLIPs using highly
accurate reference methods, such as CCSD(T)/CBS.

Limitations. The proposed PIWSL method is tailored to
ML models for predicting forces and energies of atomic sys-
tems. It cannot be applied to other ML problems unrelated
to application in computational chemistry.

4To reduce the effect from an outlier for the PITC loss only for
the Equiformer, we repeated the experiment 5 times to obtain the
result in Table 5.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Physics-Informed Weakly Supervised Learning for Interatomic Potentials

7. Potential Broader Impact and Ethical
Aspects

This paper presents work whose goal is to advance the field
of machine learning, in particular, machine learning for
science. Due to the generic nature of pure science, there
are many potential societal consequences of our work in
the far future, none of which we feel must be specifically
highlighted here.
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A. Additional Related Work
Mitigation of data-sparsity problem in ML models for chemistry. Obtaining sufficient training datasets for ML models
for material science is challenging, especially when considering unexplored materials, as this requires a substantial number
of expensive ab initio or first principle approaches. To alleviate this challenge, one prevalent strategy is the application of
active learning (AL) methods by applying physics and chemistry insights to explore the target molecules’ phase space (Li
et al., 2015; Podryabinkin & Shapeev, 2017; Vandermause et al., 2020; Shuaibi et al., 2021b; Briganti & Lunghi, 2023;
Zaverkin et al., 2024). On the other hand, it is frequently reported that using equivariant ML models reduces the required
amount of training data because equivariant ML models do not require additional data to understand translation and rotation
symmetry, which is often required to train a high-performance image recognition model with the usual convolution and
attention layer.

B. Experimental Setup and Datasets
Experiment Scripts. We developed our code based on the scripts provided in (Fu et al., 2023) with extension by taking
into account the latest Open Catalyst Project code base (Chanussot* et al., 2021). We follow all the hyperparameters
introduced in the Open Catalyst Project, which are highly tuned to their large dataset for the potential energy and force
prediction 5. We have only adjusted the learning rate scheduler, which can be found in our repository. The loss functions
for the potential energy and forces are the mean-absolute error (MAE) and L2-norm (L2MAE) losses with coefficients
typically 1, 100, respectively. The detailed model hyper-parameters are provided in our repository. For the PITC and PISC
loss functions, we use the mean square error (MSE) loss.

Datasets. The datasets are split into train, validation, and test datasets for our experiments. For this purpose, we first
randomly shuffled the dataset and sampled the training dataset with the assumed number. For the validation dataset, we
sampled the same number as the training dataset when the number was more than 100; We sampled 100 samples when
the training sample number was less than 100. Note that in the case of rMD17 dataset, we followed the previous work
convention used in (Fu et al., 2023), which prepared a validation dataset with 9000 and a test dataset with 10000 samples.
For the test dataset, we used the same data set for all the training sample number cases. For ANI-1x and rMD17 datasets, we
prepared 10000 samples as the test datasets; For TiO2 and LMNTO datasets, we prepared 1000 samples as the test datasets
because of their smaller dataset size.

Table 7: The mini-batch size for each dataset for all the models.

ANI-1x TiO2 rMD17 LMNTO

mini-Batch Size 6 4 16 4

Experiment Setup. As mentioned, we followed the setup in the Open Catalyst Project code for the hyper-parameters for
each model, such as the learning rate, model structural parameters, and so on. For simplicity, we used the same mini-batch
size for all the models, which is provided in Table 7. Note that the mini-batch size is determined as the maximum value for 1
A100 GPU memory. All training runs were performed on a single NVIDIA A100 GPU.

To prevent over-fitting and to simulate a real-world application with an active learning approach, we set the maximum
iteration number of the training as the typical number when the training loss reaches a plateau. The concrete total iteration
number is provided in Table 8.

As discussed in Section 4.4, we used a uniform random number to determine the spatial-deviation vector δr. More
concretely, the expression of the vector is given as δr ≡ δr0 g, where g is determined by the uniform random number
g ∼ N (0, I) with 0 ∈ RNat . In our experiment, we also determined the length δr0 as a uniform random number with
δr0 < δrmax

6.
5The Open Catalyst Project (OC) provides three kinds of tasks and predicting force and potential energy is one of them. However,

we do not use it in the present work. This is because our main focus is on general-purpose MLIPs, which should be able to run proper
molecular dynamics simulations but also energy relaxation. OC is designed to investigate only the latter, making it less suitable for the
current study.

6Note that the definition of δr is slightly different from Eq. (6) for computational efficiency.

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Physics-Informed Weakly Supervised Learning for Interatomic Potentials

Table 8: The total iteration number for each dataset and each sample number. The number in the parentheses approximates
the corresponding total epoch number.

sample number ANI-1x TiO2 rMD17 LMNTO

50 7.5× 103 (900) – – –
100 104 (600) 104 (400) 7.5× 103 (1200) 104 (400)
1K 4 ×104 (240) 104 (100) 104 (160) 104 (100)

10K 105 (60) – – –

Table 9: A table for the hyper-parameter used for the training in the paper. Each case means as: (CPITC, CPISC, δrmax)=
Case A: (1.2, 0.8, 0.05), Case B: (1.0, 0, 0.02), Case C: (0.1, 0.01, 0.02), Case D: (1.2, 0.01, 0.05), Case E: (1.2, 0.01, 0.02),
Case F: (1.2, 0.01, 0.03), and Case G: (0.01, 0.001, 0.05)

Dataset Size Equiformer eSCN PaiNN Spinconv SchNet

50 A C B A A
ANI-1x 100 A C A D A

1K D D D B B
10K G C B C C

TiO2 100 A A – A A
1K G A – A A

rMD17 100 E B F D A
(Aspirin) 1K B B B B B

rMD17 100 B B B B B
(Benzene) 1K G B B B B

rMD17 100 G B B B B
(Naphthalene) 1K G B B B B

LMNTO 100 B B B A B
1K B A B B B

The remaining hyper-parameters are the coefficient of the PITC and PISC losses (CPITC, CPISC) and the absolute value
of the spatial-deviation vector ∥δr∥. Those hyper-parameters are tuned with the Optuna (Akiba et al., 2019) for PaiNN
and Equiformer v2 using the ANI-1x dataset with a 1K sample that is differently sampled from the one used for the actual
training. Because of the nature of the hyper-parameter search, Optuna found several best hyper-parameters for each time.
So, we selected the following representative combinations (CPITC, CPISC, δrmax) = Case A: (1.2, 0.8, 0.05), Case B: (1.0,
0, 0.02), Case C: (0.1, 0.01, 0.02), Case D: (1.2, 0.01, 0.05), Case E: (1.2, 0.01, 0.02), Case F: (1.2, 0.01, 0.03), and Case G:
(0.01, 0.001, 0.05).

NoisyNode Implementation. In our experiment, we used a NoisyNode (Godwin et al., 2021) as one of the baseline
methods. This method aims to improve the performance of ML models by adding a perturbation to the node features, such
as the atomic coordinate, and requiring ML models to recover the original label. This enables ML models to be more robust
to noise in the data. Although the original method recommends adding a decoder network to learn the denoising process
effectively, we do not utilize a decoder network following previous work (Liao et al., 2023).

Loss Function of The Weak Label by Cooper et al., 2020. Cooper et al., 2020 proposed a similar Taylor-based weak
label method. Nonetheless, the loss in Eq. (3) is different from the one proposed by Cooper et al., 2020, where reference
energy and atomic force labels are used to estimate weak label of energies Eref

Sδr
for displaced atomic configurations Sδr

Eref
Sδr

≈ Eref
S −

Nat∑
i=1

〈
δri,F

ref
i,S
〉
+O

(
||δr||2

)
. (8)
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Thus, trainable parameters of MLIPs are optimized by minimizing the weak label (WL) loss

LWL (S;θ) = ℓ

(
E (Sδr;θ) , E

ref
S −

Nat∑
i=1

〈
δri,F

ref
i,S
〉)

. (9)

Fig. 1 (a) illustrates the approach pioneered by Cooper et al., 2020, which computes the energy of a displaced atomic
configuration with a Taylor expansion based on reference energy and atomic force labels. This approach was applied to train
MLIPs without explicit force labels.

Training with Adversarial Direction Setup. In our experiments with adversarial direction (Section 5.5), we determined
the adversarial direction using Eq. (7). More concretely, we only considered the potential energy as the ypred and ylabel to
avoid Hessian calculation involved in the gradient calculation of forces. In addition, we considered the loss function for the
potential energy as Ldist Then, the expression of g = ∇rLdist reduces to:

gS = ∇ri

√
(E (S;θ)− Eref

S )2 = − 1

2Ldist
(Fi (S;θ)− Fref

i,S)(E (S;θ)− Eref
S ). (10)

In our experiment, we also randomly flip the signature of the direction to avoid an overfitting to the adversarial direction.

C. Description and References for the Datasets
In this section, we provide a short description of each dataset.

ANI-1x ANI-1x dataset (Smith et al., 2020) includes 63865 molecules whose size ranges from 4 to 64 and the ML model
requires to learn quantum mechanical feature (potential energy and force) on various molecules from small number of
samples for each molecule.

TiO2 Titanium dioxide (TiO2) is an industrially relevant and well-studied material. TiO2 dataset (Artrith & Urban, 2016)
includes 7815 structures of several titanium dioxide phases whose reference energy and forces were obtained from DFT
calculations. The number of atoms in one sample is typically 95 with the periodic boundary condition.

rMD17 The rMD17 dataset (Christensen & von Lilienfeld, 2020) includes ten relatively small-size molecules each of
which has 105 samples collected by performing MD simulations. ML models require to learn quantum mechanical feature
(potential energy and force) on one-molecule in a steady-state. In this "revised" version, the molecules are taken from the
original MD17 dataset but the energies and forces are recalculated at the PBE/def2-SVP level of theory using very tight SCF
convergence and very dense DFT integration grid. Consequently, the dataset is practically free from numerical noise.

LMNTO The Li-Mo-Ni-Ti oxide (LMNTO), is of technological significance as a potential high-capacity positive electrode
material for lithium-ion batteries. This compound exhibits substitutional disorder, with Li, Mo, Ni, and Ti all sharing the
same sublattice. This dataset include LMNTO with the composition Li8Mo2Ni7Ti7O32 using MD simulation, resulting in
approximately 2600 structures.

D. Differences in Gradients for Physics-informed Losses
In this section, we consider gradients of the proposed two losses. First, considering squared errors for L we obtain the
following gradients of the loss in Eq. (8) with respect to trainable parameters

dLWL

dθ
= 2

(
E (Sδr;θ)− Eref

S +

Nat∑
i=1

⟨δri,Fref
i,S⟩
)
dE (Sδr;θ)

dθ
. (11)

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Physics-Informed Weakly Supervised Learning for Interatomic Potentials

In contrast, for the PITC loss in Eq. (3) we obtain

dLPITC

dθ
=2

(
E (Sδr;θ)− E (S;θ) +

Nat∑
i=1

⟨δri,Fi (S;θ)⟩
)
×(

dE (Sδr;θ)

dθ
− dE (S;θ)

dθ
+

Nat∑
i=1

d⟨δri,Fi (S;θ)⟩
dθ

)
.

(12)

The above equations indicate that the direction of the derivative of the PITC loss Eq. (12) is different from that of the weak
label loss because of the incorporation of potential energy and force at the reference point, which may potentially lead to the
avoidance of local minima, not only the improvement of their accuracy.

Secondly, the gradient of PISC loss in Eq. (4) is given as:

dLPISC

dθ
= 2

(
E (S;θ)−

Nat∑
i=1

⟨δri,Fi (S;θ)⟩ − E (Sδr′ ;θ) +

Nat∑
i=1

⟨δr′′i ,Fi (Sδr′ ;θ)⟩
)

×
(
dE (S;θ)

dθ
−

Nat∑
i=1

d⟨δri,Fi (S;θ)⟩
dθ

− dE (Sδr′ ;θ)

dθ
+

Nat∑
i=1

d⟨δr′′i ,Fi (Sδr′ ;θ)⟩
dθ

)
.

(13)

E. Variations of the Configuration for the Physics-informed Spatial-consistency Loss

Table 10: A result for the spatial configuration dependence study of PISC loss. The listed numerica values are the root mean
square errors on the ANI-1x dataset (Artrith & Urban, 2016). Energy [kcal/mol] and force [kcal/mol/Å] errors of different
models on trained 1000 configurations with three different initial weight parameters to suppress statistical fluctuations. The
case 1, 2, 3 corresponds with Eq. (4), Eq. (15) and Eq. (16).

Dataset Model Baseline PISC (Case 1) PISC (Case 2) PISC (Case 3)

ANI-1x PaiNN energy 60.11 45.24 46.32 57.29
force 13.10 12.33 12.42 13.28

In Section 4.2, we consider the following form of the PISC loss:

LPISC (S;θ) = ℓ

(
E (Sδr;θ) , E (Sδr′ ;θ)−

Nat∑
i=1

⟨δr′′i ,Fi (Sδr′ ;θ)⟩
)
, (14)

where δr, δr′, δr′′ are related as: δr′ + δr′′ = δr. In this section, as a variant of Eq. (4), we also consider the following
three PISC losses:

LPISC2 (S;θ) = ℓ

(
E (S;θ)−

Nat∑
i=1

⟨δri,Fi (S;θ)⟩, E (Sδr′ ;θ)−
Nat∑
i=1

⟨δr′′i ,Fi (Sδr′ ;θ)⟩
)
, (15)

LPISC3 (S;θ) = ℓ

(
E (Sδr′ ;θ) , E (Sδr;θ)−

Nat∑
i=1

⟨−δr′′i ,Fi (Sδr;θ)⟩
)
, (16)

where the point at r+ δr is the point where PIRC loss is imposed. The results are provided in Table 10, which indicates
that Eq. (4) (Case 1) shows the best or better performance than the other cases for both the potential energy and the force
predictions. In this study, we used the ANI-1x dataset with 1000 training samples that are different from the one used to
train the model used in the main body. For the coefficient of the PITC and PISC losses, we used 0.1 and 0.001.

F. Detailed Setup for Aspirin C-H Bond Potential Variation
This section describes the detailed setup and procedures for Section 5.3. First, we trained PaiNN models with and
without PIWSL losses using the aspirin data of rMD17 with training samples: 100 and 200. For PIWSL, we used
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Table 11: The performance of the models used for plotting Fig. 2B. All the models other than the reference model (train =
1000) are the OC20’s implementation. For the reference model, we tuned the PaiNN model following the original paper
(Schütt et al., 2021).

Ntrain = 100 Ntrain = 200 Ntrain = 1000
Baseline PIWSL Baseline PIWSL Baseline

PaiNN energy 6.55 5.64 5.11 4.48 0.68
force 7.38 7.36 3.95 3.97 1.44

(CPITC, CPISC, δrmax) = (1.2, 0.01, 0.03). The other experimental setups are the same as the other rMD17 experiments
given in Appendix B. We used the PaiNN model with gradient-based force to obtain the reference model and tuned the
model hyper-parameter with Optuna (Akiba et al., 2019). The obtained models’ performance is provided in Table 11. Then,
we prepared the aspirin molecule data with its atomic coordinate and atomic type and perturbed one of the C-H bond lengths
from 0.8 Å to 1.8 Å divided by 100-point and estimated the corresponding potential energy with the pre-trained models.
The aspirin data is provided in our publicly available source code.

G. Loss Function Dependence of the Physics-informed Taylor-Expansion Based Consistency Loss

Table 12: A result for the loss function dependence study. The listed numerica values are the root mean square errors on the
ANI-1x dataset (Artrith & Urban, 2016). Energy [kcal/mol] and force [kcal/mol/Å] errors of different models on trained
1000 configurations with three different initial weight parameters to suppress statistical fluctuations. "MAE" means the
mean-absolute-error and "MSE" means the mean-square-error.

Dataset Model Baseline PITC MAE loss PITC MSE loss PITC ReLU loss

ANI-1x PaiNN energy 60.11 58.84 47.09 60.47
force 13.10 13.18 12.19 13.06

Table 12 provides the result of the loss function dependence of the PIWSL. For simplicity, we only consider the PITC loss
(the coefficient of the PITC and PISC losses are set as 0.1 and 0). For the ReLU loss, we considered:

LReLU (S;θ) = ReLU

(∣∣∣∣∣E (S;θ)−
Nat∑
i=1

⟨δri,Fi (S;θ)⟩ − E (Sδr;θ)

∣∣∣∣∣− E (Sδr;θ) ||δr||2
)
, (17)

This loss is zero when the difference between the two terms is less than the second-order term in δr. The result indicates
that taking the second-order term into account does not improve the performance and that the MSE loss function shows the
best performance. In this study, we used the ANI-1x dataset with 1000 training samples that are different from the one used
to train the model used in the main body.

H. Deviation Length Dependence

Table 13: A result for the deviation length dependence study. The listed numerical values are the root mean square errors on
the ANI-1x dataset (Artrith & Urban, 2016). Energy [kcal/mol] and force [kcal/mol/Å] errors of different models on trained
1000 configurations with three different initial weight parameters to suppress statistical fluctuations.

Dataset Model Baseline δrmax = 0.001 δrmax = 0.01 δrmax = 0.1

ANI-1x PaiNN energy 60.11 60.43 47.09 109.17
force 13.10 12.75 12.19 11.70

In this section, we provide the result of the deviation length dependence study: ∥δr∥. For simplicity, we only consider the
PITC loss (the coefficient of the PITC and PISC losses are set as 0.1 and 0). The results are provided in Table 13 which
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indicates that the longer deviation vector length is fruitful for the force but too large value is harmful for the potential energy
prediction performance. In this study, we used the ANI-1x dataset with 1000 training samples that is different from the one
used to train the model used in the main body.

I. Perturbed Atom Number Dependence

Table 14: A result for the perturbed atom number dependence study. The listed numerical values are the root mean square
errors on the ANI-1x dataset (Artrith & Urban, 2016). Energy [kcal/mol] and force [kcal/mol/Å] errors of different models
on trained 1000 configurations with three different initial weight parameters to suppress statistical fluctuations.

Dataset Model Baseline 10% 20% 50% 75% 90% 100 %

ANI-1x PaiNN energy 60.11 46.68 52.37 54.51 46.94 45.92 46.32
force 13.10 13.03 12.62 12.16 12.14 12.24 12.42

This section provides the result of the perturbed atom number dependence study. For simplicity, we only consider the PIRC
loss (the coefficient of the PIRC and PISC losses are set as 0.1 and 0). In this study, we randomly selected the atoms in a
training sample following the ratio of 0%, 10%, 20%, 50%, 75%, 90%, 100%. The results are provided in Table 14, which
indicates that around 75% to 100% ratio cases result in the best performance for the force and the potential energy prediction.
However, the number dependence is not monotonic but rather complicated. In the main body, we perturbed all the atoms
(100 %) as a conservative choice. In this study, we used the ANI-1x dataset with 1000 training samples that are different
from the one used to train the model used in the main body.

J. Dependence on the Number of Training Iterations
To show the effectiveness of our approach even in the case of longer training, we provide the result of the training iteration
number dependence study. In this study, we performed training twice as long as in the main part, that is, 80K iterations for
ANI-1x with 1K training samples. The results are provided in Table 15 and indicate that our approach performs better in the
longer training case. On the other hand, the training without PIWSL losses shows an overfitting to the validation dataset,
reducing its performance compared to the shorter training iteration case. In this study, we used the ANI-1x dataset with
1000 training samples that are different from the one used to train the model used in the main body. For the coefficient of the
PITC and PISC losses, we used 1.2 and 0.01.

Table 15: The training iteration number dependence result. The listed numerical values are the root mean square errors on
the ANI-1x dataset (Artrith & Urban, 2016). Energy (E, kcal/mol) and force (F, kcal/mol/Å) errors of different models on
trained 1000 configurations with three different initial weight parameters to suppress statistical fluctuations.

Model Iteration Number Baseline PIWSL

PaiNN

40K energy 56.62 24.53
force 12.96 11.43

80K energy 59.92 23.78
force 13.10 11.50

K. Additional Experiments with Gradient-Based Force Prediction
In this section, we provide the result of the training with the gradient-based force prediction. The results are provided
in Table 16, which shows that our PIWSL loss function also enables a better force prediction, even in the case of the
gradient-based force prediction task. This also indicates that our PIWSL method can improve the ML model performance in
the case of MLIP and other generic property prediction tasks by calculating their first derivatives in terms of the atomic
coordinate and utilizing the proposed loss functions. In this study, we used the ANI-1x dataset with 1000 training samples
that are different from the one used to train the model used in the main body. For the coefficient of the PITC and PISC
losses, we used 0.1 and 0.01 with ∥δr∥max = 0.02.
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Table 16: The results with gradient-based force prediction experiments. The listed numerical values are the root mean square
errors on the ANI-1x dataset (Artrith & Urban, 2016). Energy [kcal/mol] and force [kcal/mol/Å] errors of different models
on trained 1000 configurations with three different initial weight parameters to suppress statistical fluctuations.

Model Baseline (GF) PIWSL (GF)

PaiNN energy 23.57 ± 0.62 20.23 ± 0.18
force 11.32 ± 0.08 11.13 ± 0.04

Equiformer energy 29.07 ± 2.32 19.53 ± 0.32
force 11.90 ± 0.13 11.99 ± 0.03

L. Force-Rotation Improvement in the case of Models with Force-branch

Table 17: A comparison of the rotation of force in the case of the models with force-branch. The listed numerical values are
the absolute value of the total rotation of the force on the ANI-1x dataset (Artrith & Urban, 2016). The models are trained
1000 configurations with three different initial weight parameters to suppress statistical fluctuations.

Model Baseline PITC

PaiNN 45.18 39.06
Equiformer 29.62 23.42

In this section, we study the effect of our loss functions on the rotation of force in the case of the model with the force
branch. The results are provided in Table 17 which shows that our PI loss function reduces the rotation of the predicted
force, allowing a better energy conservation property when used for MD simulations. In this study, we used the ANI-1x
dataset with 1000 training samples that are different from the one used to train the model used in the main body. In this
experiment, we used (CPITC, CPISC, δrmax) = (1.2, 0.01, 0.05).

M. Further Experimental Results
In this section, we provide additional results. Table 18 provides the detailed results on the experiments for ANI-1x dataset
with either 50 or 10K training samples, depicted in Fig. 2. Table 20 provides the results on the Benzene and Naphthalene
data in rMD17; And the other is LMNTO (Cooper et al., 2020) presented in Table 19.

ANI-1x: 50 and 10K Training Sample Cases Table 18 provides the detailed results on the experiments for ANI-1x
dataset with either 50 or 10K training samples. It shows that although the small training sample number case (Ntrain = 50)
shows a large error reduction by PIWSL, we can still find around 5 to 25 % error reduction in the case with large training
sample number case (Ntrain = 10K), indicating the effectiveness of the PIWSL method on relatively large training sample
regime, in particular, multi-molecule case.

LMNTO The results on the LMNTO dataset is provided in Table 19, where PIWLS shows the error reduction for most
cases, in particular, the small training sample number case (Ntrain = 100).

rMD17: Small-Molecular Dynamics Trajectory Here, we aim to analyze the effect of the PIWSL on smaller molecules
with single-molecule system, different from the multiple-molecule system as ANI-1x dataset. To this purpose, we pick-up
the benzene (natom = 12), Naphthalene (natom = 18), and aspirin (natom = 21) as small to middle size molecules. The
results are given in Table 20, which indicates that our approach is still effective in the case of single and smaller molecule.
In particular, the PIWLS performance in the case of Benzene has nearly no-gain in terms of the Baseline case. We consider
that this can be attributed by the too small variation in the Benzene dataset, which can be too easy for ML models to learn.
We also note that the obtained results are somewhat worse than the original report (Schütt et al., 2017; 2021). This is
because of the modified re-implementation of the OpenCatalyst project code and the use of the force-branch instead of the
gradient-based force. The effect of the gradient-based force is given in Appendix K.
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Table 18: Energy and atomic force root-mean-square errors (RMSEs) for the ANI-1x data set (Smith et al., 2020). The
results are obtained by averaging over three independent runs. Energy RMSE is given in kcal/mol, while force RMSE is in
kcal/mol/Å.

Ntrain = 50 Ntrain = 10K

Baseline Noisy Nodes PIWSL Baseline Noisy Nodes PIWSL

Schnet energy 90.08 ± 1.24 76.83 ± 0.75 83.90 ± 2.82 24.88 ± 0.01 24.86 ± 0.00 24.88 ± 0.00
force 35.49 ± 0.36 31.13 ± 0.13 35.30 ± 0.87 13.36 ± 0.01 13.36 ± 0.00 13.36 ± 0.00

PaiNN energy 212.64 ± 1.14 440.11 ± 11.68 121.36 ± 4.13 19.14 ± 0.38 165.25 ± 4.87 14.10 ± 0.14
force 22.61 ± 0.04 22.50 ± 0.22 20.83 ± 0.28 8.24 ± 0.10 9.22 ± 0.09 7.89 ± 0.02

SpinConv energy 222.75 ± 7.12 219.85 ± 6.99 175.38 ± 9.77 19.42 ± 0.67 46.31 ± 10.31 18.81 ± 0.60
force 24.88 ± 0.88 24.61 ± 0.35 25.12 ± 0.58 10.31 ± 0.33 10.78 ± 0.66 9.94 ± 0.12

eSCN energy 517.17 ± 31.98 583.90 ± 33.04 454.40 ± 11.10 12.65 ± 0.63 165.30 ± 33.11 10.66 ± 0.31
force 22.51 ± 0.09 24.04 ± 0.15 22.28 ± 0.08 5.11 ± 0.30 11.51 ± 0.23 4.35 ± 0.15

Equiformer energy 498.58 ± 17.44 630.32 ± 0.32 433.88 ± 79.63 8.03 ± 0.21 970.95 ± 236.90 7.77 ± 0.14
force 22.86 ± 0.04 22.92 ± 0.00 22.72 ± 0.04 2.97 ± 0.00 29.28 ± 5.63 2.98 ± 0.00

Table 19: Root mean square errors on the LMNTO dataset (Cooper et al., 2020). Energy [kcal/mol] and force [kcal/mol/Å]
errors of different models on trained either 100 or 1000 configurations with three different initial weight parameters to
suppress statistical fluctuations.

Dataset Model Baseline NoisyNode PIWSL Baseline NoisyNode PIWSL

Ntrain = 100 Ntrain = 1000

SchNet energy 4.46 ± 0.00 6.10 ± 0.00 4.45 ± 0.00 3.09 ± 0.00 3.25 ± 0.00 3.09 ± 0.00
force 9.24 ± 0.00 8.31 ± 0.00 9.24 ± 0.00 5.09 ± 0.00 5.21 ± 0.00 5.09 ± 0.00

PaiNN energy 6.91 ± 0.02 7.09 ± 0.04 5.99 ± 0.02 3.26 ± 0.01 4.61 ± 0.03 2.98 ± 0.01
force 4.75 ± 0.00 7.20 ± 0.01 4.75 ± 0.00 2.03 ± 0.00 2.55 ± 0.00 2.03 ± 0.00

LMNTO SpinConv energy 7.90 ± 0.00 7.83 ± 0.04 7.83 ± 0.01 4.90 ± 0.33 7.20 ± 0.06 3.95 ± 0.02
force 4.63 ± 0.01 5.14 ± 0.04 4.71 ± 0.02 1.81 ± 0.01 2.33 ± 0.00 1.74 ± 0.00

(natom = 56) eSCN energy 7.92 ± 0.00 7.92 ± 0.00 7.92 ± 0.00 7.93 ± 0.00 7.93 ± 0.00 6.40 ± 0.14
force 4.67 ± 0.01 7.59 ± 0.02 4.64 ± 0.01 1.54 ± 0.00 1.98 ± 0.06 1.53 ± 0.00

Equiformer v2 energy 7.40 ± 0.03 7.92 ± 0.00 7.32 ± 0.08 3.57 ± 0.05 7.04 ± 0.03 3.60 ± 0.02
force 4.26 ± 0.00 7.60 ± 0.02 4.24 ± 0.02 1.34 ± 0.00 1.99 ± 0.00 1.34 ± 0.00
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Table 20: Root mean square errors on the Naphthalene in rMD17 dataset (Chmiela et al., 2018). Energy (E, kcal/mol) and
force (F, kcal/mol/Å) errors of different models on trained either 100 or 1000 configurations with three different initial
weight parameters to suppress statistical fluctuations.

Dataset Model Baseline NoisyNode PIWSL Baseline NoisyNode PIWSL

Ntrain = 100 Ntrain = 1000

Schnet energy 0.23 ± 0.00 0.58 ±0.00 0.23 ±0.00 0.17 ± 0.00 0.32 ± 0.00 0.17 ± 0.00
force 2.32 ± 0.00 3.61 ± 0.00 2.32 ± 0.00 1.27 ± 0.00 2.51 ± 0.00 1.27 ± 0.00

PaiNN energy 0.90 ± 0.02 2.29 ± 0.50 0.89 ±0.03 0.47 ± 0.03 0.75 ± 0.02 0.49 ± 0.03
force 0.57 ± 0.00 5.33 ± 0.16 0.57 ± 0.00 0.23 ± 0.00 2.50 ± 0.00 0.30 ± 0.00

Benzene SpinConv energy 2.27 ± 0.09 2.32 ± 0.00 1.61 ±0.28 0.90 ± 0.12 2.35 ± 0.01 1.07 ± 0.00
force 0.61 ± 0.01 3.56 ± 0.00 0.65 ± 0.01 0.39 ± 0.00 2.33 ± 0.00 0.43 ± 0.00

(natom = 12) eSCN energy 0.59 ± 0.01 3.47 ± 0.04 0.58 ± 0.03 0.20 ± 0.00 1.01 ± 0.01 0.19 ± 0.00
force 0.74 ± 0.01 8.43 ± 0.18 0.75 ± 0.02 0.14 ± 0.00 2.99 ± 0.01 0.14 ± 0.00

Equiformer energy 1.55 ± 0.01 2.08 ± 0.01 1.52 ± 0.01 0.281 ± 0.01 1.68 ± 0.02 0.276 ± 0.01
force 0.72 ± 0.00 10.32 ± 0.04 0.72 ± 0.01 0.15 ± 0.00 2.89 ± 0.00 0.13 ± 0.00

Schnet energy 1.41 ± 0.00 1.92 ± 0.00 1.41 ± 0.00 1.05 ± 0.00 1.49 ± 0.00 1.05 ± 0.00
force 5.76 ± 0.00 5.96 ± 0.00 5.76 ± 0.00 3.80 ± 0.00 4.08 ± 0.00 3.80 ± 0.00

PaiNN energy 3.63 ± 0.01 5.13 ± 0.06 3.54 ± 0.02 1.37 ± 0.02 2.22 ± 0.04 1.33 ± 0.01
force 1.98 ± 0.01 10.99 ± 0.05 1.99 ± 0.00 0.72 ± 0.00 2.56 ± 0.01 0.72 ± 0.00

Naphthalene SpinConv energy 2.96 ± 0.22 5.73 ± 0.00 2.88 ± 0.02 1.80 ± 0.02 3.39 ± 0.00 2.40 ± 0.18
force 2.04 ± 0.01 3.91 ± 0.00 1.99 ± 0.01 0.97 ± 0.00 2.46 ± 0.00 0.96 ± 0.00

(natom = 18) eSCN energy 2.07 ± 0.03 7.63 ± 0.05 2.12 ± 0.01 0.56 ± 0.01 2.15 ± 0.29 0.58 ± 0.01
force 2.28 ± 0.01 9.68 ± 0.23 2.32 ± 0.23 0.42 ± 0.01 2.86 ± 0.03 0.42 ± 0.01

Equiformer energy 4.37 ± 0.03 5.70 ± 0.05 4.27 ± 0.01 0.71 ± 0.02 3.70 ± 0.10 0.72 ± 0.02
force 1.93 ± 0.03 12.73 ± 0.06 1.89 ± 0.00 0.43 ± 0.02 3.20 ± 0.02 0.38 ± 0.06

Schnet energy 3.76 ± 0.00 3.56 ± 0.00 3.74 ± 0.00 2.77 ± 0.00 3.08 ± 0.00 2.77± 0.00
force 12.32 ± 0.00 11.59 ± 0.00 12.20 ± 0.00 6.63 ± 0.00 7.03 ± 0.00 6.63 ± 0.00

PaiNN energy 6.55 ± 0.03 9.36 ± 0.08 5.64 ± 0.02 4.07 ± 0.01 4.10 ± 0.01 3.99± 0.01
force 7.38 ± 0.02 20.37 ± 0.04 7.36 ± 0.03 2.17 ± 0.00 2.17 ± 0.00 2.16 ± 0.01

Aspirin SpinConv energy 5.71 ± 0.04 6.11 ± 0.00 5.03 ± 0.01 4.04 ± 0.09 4.12 ± 0.06 3.42 ± 0.20
force 8.68 ± 0.03 10.17 ± 0.00 8.94 ± 0.02 1.88 ± 0.00 1.89 ± 0.00 1.83± 0.01

(natom = 21) eSCN energy 5.14 ± 0.02 6.44 ± 0.04 4.82± 0.13 1.28 ± 0.03 1.28 ± 0.02 1.29 ± 0.01
force 6.14 ± 0.03 13.88± 0.16 6.10 ± 0.03 1.30 ± 0.01 1.29± 0.02 1.30 ± 0.01

Equiformer energy 4.79 ± 0.02 5.75 ± 0.08 4.66 ± 0.04 1.83 ± 0.04 1.83 ± 0.06 1.75 ± 0.01
force 4.86 ± 0.03 16.80 ± 0.05 4.86 ± 0.03 1.00 ± 0.03 1.00 ± 0.00 0.94 ± 0.08
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