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Abstract

Open-weight bio-foundation models present a dual-use dilemma. While holding
great promise for accelerating scientific research and drug development, they could
also enable bad actors to develop more deadly bioweapons. To mitigate the risk
posed by these models, current approaches focus on filtering biohazardous data dur-
ing pre-training. However, the effectiveness of such an approach remains unclear,
particularly against determined actors who might fine-tune these models for mali-
cious use. To address this gap, we propose BIORISKEVAL, a framework to evaluate
the robustness of procedures that are intended to reduce the dual-use capabilities
of bio-foundation models. BIORISKEVAL assesses models’ virus understanding
through three lenses, including sequence modeling, mutational effects prediction,
and virulence prediction. Our results show that current filtering practices may not
be particularly effective: Excluded knowledge can be rapidly recovered in some
cases via fine-tuning, and exhibits broader generalizability in sequence modeling.
Furthermore, dual-use signals may already reside in the pretrained representations,
and can be elicited via simple linear probing. These findings highlight the chal-
lenges of data filtering as a standalone procedure, underscoring the need for further
research into robust safety and security strategies for open-weight bio-foundation
models.

1 Introduction

The growing capabilities of bio-foundation models have raised concerns about their potential mis-
use [13, 43, 49, 52]. This concern is particularly prominent for open-weight models, which al-
low greater freedom for adversarial modifications, especially when fine-tuned for malicious pur-
poses [44, 45].

To balance dual-use risks against the benefits of open-weight releases, model developers have begun
to exclude dual-use data from the pretraining corpora. For instance, the OpenGenome dataset’, used
to train the Evo model family, intentionally excludes eukaryotic viral sequences [5, 37]. As a result,
Evo models exhibit poor initial performance in predicting mutational effects on such sequences [5].

Yet, three critical uncertainties remain due to gaps in current evaluation practices for dual-use
risks. First, while some initial efforts have been made in examining biorisks in natural language
models [19, 31, 56], there is no comparable evaluation framework for bio-foundation models, making
systematic dual-use risk assessment challenging. Second, the effectiveness of data filtering for bio-
foundation models has not been fully assessed under a threat model where adversaries can fine-tune

“Equal Contribution. Code available at https://github.com/scaleapi/BioRiskEval
"Work done while at Scale Al
Thttps://huggingface.co/datasets/arcinstitute/opengenome?

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/scaleapi/BioRiskEval
https://huggingface.co/datasets/arcinstitute/opengenome2

Pre-Training Recovering Recovered
+Open-Weight Release Harmful Knowledge Harmful Knowledge

Model Dataset Fine-Tuning BioRiskEval

B O o s e
— odeling
@ Data D %o DA DD DIDDD
Filtering 0
_ r o JIS

> Mutational
o ; g’”‘ Prob|ng Effect % ~ ses
re- icti
> Frd Prediction P —= S
Train ‘ i@ s-" Mutational Effect N
2 4
; # %j—» L | %0

Virulence
Linear - ~
Z & Probe Prediction DO |—

Virulence

Perplexity

Figure 1: We introduce BIORISKEVAL, a framework for assessing dual-use risk in open-weight
bio-foundation models from three perspectives. Our results show that, despite data filtering in the pre-
training stage, adversaries may still be able to recover the bio-foundation model’s harmful capabilities
through fine-tuning and probing.

the model. Data filtering has sometimes been a robust approach for reducing dual-use risks in natural
language models, even after some adversarial fine-tuning [7, 39]. But to date, there has not been a
similar assessment in the bio-foundation model context to determine whether the filtered capabilities
are trivial to re-learn. Third, elicitation practices for testing the safety of open-weight bio-foundation
models are underexplored. Simple methods including probing have not yet been tried on these models,
leaving open the possibility that latent representations still encode the necessary knowledge to enable
misuse [22, 31].

In this paper, we bridge this gap by evaluating the effectiveness of data filtering as a risk mitigation
strategy for bio-foundation models. Our main contributions are as follows:

¢ First, we introduce BIORISKEVAL, an evaluation framework to assess bio-foundation
models’ capabilities in harmful domains from three perspectives: Sequence Modeling,
Mutational Effect Prediction, and Virulence Prediction.

» Second, we investigate the effectiveness of data filtering against malicious fine-tuning. To
test how cheap and efficient malicious fine-tuning can be done, our analysis focuses on
two aspects: the extent to which the fine-tuned model generalizes to unseen sequences,
indicating the sample efficiency of the attack; and the minimal compute cost required to
recover excluded knowledge.

* Third, we analyze whether harmful knowledge is already embedded in latent representations
even with the harmful data filtered out during pre-training. By employing the linear probe,
we demonstrate that even without fine-tuning, the hidden layer representations from Evo
2 model can be used to predict mutational effects and virulence, achieving comparable
performance as the model trained without data filtering.

Our work underscores the limitations of current data-exclusion practices as safety and security
mechanisms. Future research might improve the robustness of data-exclusion practices, but it is
important that policymakers and model developers remain aware of these robustness challenges.

2 Related Work

Bio-foundation models. Bio-foundation models are large models trained on diverse bio-
logical datasets to learn generalized representations that can be adapted to various down-
stream tasks [18]. They can be categorized by the type of biomolecular data they pro-
cess, including Genomic Models (models that operate on genomic sequences, e.g., En-
former [3], DNABert [23, 60], Evo family [5, 37]), Transcriptomics Models (models that
analyze high-dimensional gene expression data, e.g., Geneformer [8], CellFM [58]), and
Protein Models (models that handle protein sequences, e.g., Alphafold [26], ESM 2 [33],



Table 2: BIORISKEVAL assess bio-foundation models’ harmful capabilities on eukaryotic viral
sequences from three dimensions, offering a comprehensive evaluation on the misuse risk.

Dataset Name Eval Capability Source # Examples Metric
BIORISKEVAL-GEN Sequence Modeling NCBI Virus Repository 10,247,388 Perplexity
BIORISKEVAL-MUT Mutational Effect Prediction 16 Human Virus DMS Datasets 156,178 |Spearman p|
BIORISKEVAL-VIR Virulence Prediction Influenza A Virulence Info 369 Pearson, R?

AMPLIFY [16]). In this paper, we focus on Table 1: Bio-foundation models can be used for
Genomic foundation models due to their general ~ sequence generation and regression/classification
strong capability and wide application domains. tasks. Adversaries can attack the model during
As illustrated in Table 1, bio-foundation mod- both the deployment and fine-tuning stages. How-
els are used not only for sequence generation ever, the risks associated with most attack—task
but also for regression and classification tasks. combinations remain underexplored.

These include applications such as mutational

effect prediction, clinical variant interpretation, Sequence Regression /
and related functional genomics analyses. Generation Classification
Deployment . .
. v [59 ? (Section 4.2, 4.3
Data filtering as a safety approach. Data fil- Stage >3] (Section )
tering has been widely adopted during the pre-  Fine-Tuning ) ]
training stage of open-weight foundation models Stage 7 (Section4.1) 7 (Section 4.2, 4.3)

to mitigate legal and safety risks. In natural lan-
guage models, it has proven effective in reducing
harmful outputs [2], limiting private information
leakage [27], and mitigating copyright issues [36]. Recent studies have further advanced filtering
methods by applying harmfulness classifiers [7]. Compared to post-training safeguards such as circuit
breakers [61], data filtering has emerged as a more robust approach in language models [39]. In
the domain of bio-foundation models, data filtering is likewise employed to reduce misuse risks.
For example, Evo 2 excluded eukaryotic viral data during pretraining [5, 37] to mitigate potential
biosecurity concerns.

Assessing biological dual-use risk for Foundation Models. Various efforts have been made to
explore dual-use risks in bio-foundation models. For example, Evo 2 assesses such risks during the
deployment stage using metrics like perplexity distribution, mutational effect prediction, protein
generation success rates, and ancestry bias in eukaryotic viral sequences [5]; Genebreaker [59]
investigates the ability to induce bio-foundation models to generate eukaryotic viral sequences via
inference-time guided search. Beyond bio-foundation models, several studies have examined dual-
use concerns in Language Foundation Models. For instance, system cards from OpenAl model
families [41, 42] assess the biological dual-use risk through evaluations on long-form bio-risk
questions, multimodal virology troubleshooting, ProtocolQA [29], and tacit knowledge probing. In
terms of malicious fine-tuning risks, Wallace et al. [51] proposes a worst-case estimation approach that
stress-tests maximum knowledge gains after fine-tuning with adequate compute budgets. However, to
the best of our knowledge, there is a lack of research assessing the dual-use risks associated with
fine-tuning bio-foundation models — a gap this paper aims to address.

3 Evaluating Bio-Foundation Models’ Harmful Capabilities

3.1 Threat Model

Following the insights from the prior work [5, 57], we consider a threat model where adversaries
seek to exploit open-weight bio-foundation models to design pathogenic eukaryotic viruses. From
the adversaries’ perspective, the objective is to leverage the model to facilitate pathogen engineering.
Specifically, adversaries may (1) generate novel and viable viral sequences; (2) perform targeted in
silico optimization to enhance hazardous traits such as protein stability or receptor binding affinity,
and (3) rank and select potential candidates based on the predicted virulence. Full access to model
weights further enables adversaries to fine-tune the model on public biological datasets or probe
hidden representations to improve performance on these tasks. From the defender’s perspective,
the objective is to minimize the risk of such misuse after releasing the model weights. To this
end, pre-release safety approaches will be applied to constrain malicious utility while maintaining



scientific value for legitimate users. Our safety evaluations are thus designed to assess the model’s
harmful capabilities across the adversarial tasks outlined above.

3.2 BIORISKEvAL

Under the threat model in Section 3.1, we introduce BIORISKEVAL, a framework that evaluates
bio-foundation models’ harmful capabilities along three dimensions: Sequence modeling capability
(B1ORISKEVAL-GEN), mutational effect prediction (BIORISKEVAL-MUT), and virulence prediction
(BIORISKEVAL-VIR). We provide an overview of our evaluation framework in Table 2 and discuss
each perspective below (See Appendix A for more details).

Sequence Modeling. To assess the general sequence modeling capabilities on human-infective
eukaryotic viruses, we compute the model’s perplexity on these genomic sequences, as perplexity
quantifies how confidently a model generates sequences within this domain. We collect data from
the National Center for Biotechnology Information (NCBI) Virus Repository® and only keep the
sequences with the human host tag (“Homo sapiens’). After exact-match deduplication, we obtain
10,247,388 unique sequences, covering 57 families, 131 Genera, and 1,795 Species. This supports a
fine-grained analysis of perplexity distribution across taxonomic levels, from individual species to
viral families.

Mutational Effect Prediction. We evaluate mutational effect prediction using 16 Deep Mutational
Scanning (DMS) datasets [17] on human-infecting viruses from ProteinGym [38]. Each DMS
dataset consists of mutant variants with experimentally measured fitness scores obtained through
high-throughput selection assays (e.g., growth, binding, or expression). Fitness scores are estimated
by comparing pre- and post-selection sequencing counts, normalized to the wild type. We assess
models by computing the absolute Spearman rank correlation |p| between the experimental fitness
values and the model-derived sequence scores for the same mutants. A larger |p| indicates better
agreement with experimental rankings and thus a stronger ability to capture mutational effects. We
convert ProteinGym’s protein sequences into nucleotide sequences for evaluations with Evo 2, in a
process detailed in Appendix A.2. More details on the DMS datasets can be found in Table 4.

Virulence Prediction. To evaluate the model’s capability on predicting virulence, we use the
median lethal dose (LDsg) as our metric, which represents the dose required to kill half of a tested
population after a specified test duration [6]. For consistency, we focus on LDsy measurement of
Influenza A viruses in mice [21, 57], and only keep the record from the BALB/C host strain. Since
each Influenza A virus strain consists of eight RNA segments, we concatenate them into a single
sequence during evaluation. In our experiment, we evaluate the model’s predictive performance by
probing hidden-layer representations and measuring the correlations between predicted and observed
values using Pearson Correlation and R2.

4 Experimental Results

Under BIORISKEVAL framework, we seek to answer the research questions in Section 1. Specifically,
we first employ BIORISKEVAL-GEN to assess the extent to which fine-tuning on eukaryotic viral
sequences can generalize sequence modeling capability after data filtering (Section 4.1). We then
examine the model’s ability to predict mutation effectiveness on BIORISKEVAL-MUT, comparing
pre- and post-fine-tuning performance through both output log-probability and probes on hidden-layer
representations (Section 4.2). Finally, we evaluate the model’s capacity to predict virulence by
probing the hidden-layer representations before and after fine-tuning. (Section 4.3).

We use Evo2-7B model [5], a genome foundation model designed for both nucleotide sequence
modeling and biological representation prediction, as our primary model due to its strong performance
across diverse downstream tasks. Moreover, its deliberate exclusion of eukaryotic viral sequences
during pre-training enables us to assess the effectiveness of data filtering, offering a controlled safety
baseline for our experiments. See Appendix B for more details.
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(a) Inter-Species Generalization: Fine-tuning Evo2-7B on all species in Alphapapillomavirus excluding type
6 (left), and all species in Simplexvirus excluding HSV-2 (middle). Right: Baseline perplexity distribution on
benign plasmid sequences from IMG/PR.
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(b) Inter-Genus Generalization: Fine-tuning Evo2-7B on all genera in Papillomaviridae excluding Gammapapil-
lomavirus (left), and all genera in Orthoherpesviridae excluding Simplexvirus (right).

Figure 2: We test whether fine-tuning can show (a) inter-species generalizability, and (b) inter-genus
generalizability. For each case, one species or genus is excluded from the training set, and perplexity
is measured on the held-out taxon after fine-tuning. Fine-tuning shows inter-species generalization:
within 50 fine-tuning steps, the model reaches perplexity levels comparable to benign IMG/PR
sequences used during pre-training. In contrast, inter-genus generalization is harder to achieve.

4.1 Fine-tuning Exhibits Inter-Species Generalizability in Sequence Modeling

We test fine-tuning generalization in sequence at two taxonomic scales that differ in evolutionary
distance. In the inter-species setting (Section 4.1.1), one species within a genus is held out to test
whether fine-tuning on the remaining species transfers effectively. In the infer-genus setting (Sec-
tion 4.1.2), one genus within a family is held out to examine transfer across a larger evolutionary gap.
These two tests indicate how far fine-tuning can bridge evolutionary distance and whether filtering
by species or genus meaningfully limits capability recovery. From an adversarial perspective, this
also shows how efficiently fine-tuning can be applied, since only sequences beyond the generalizable
evolutionary distance need to be preserved in the training set.

Table 3: Overview of the dataset used for validating inter-species and inter-genus generalizability.

Training set Hold-Out Set Baseline
Species # Examples Species # Examples Dataset # Examples
Alphapapillomavirus excluding type 6 17,055 Alphapapillomavirus 6 569
Simplexvirus excluding HSV-2 2,618 HSV-2 1,287
Genus # Examples Genus # Examples IMG/PR 3,000
Papillomaviridae excluding Gammapapillomavirus 17,761 Gammapapillomavirus 220
Orthoherpesviridae excluding Simplexvirus 8,111 Simplexvirus 3,905

4.1.1 Inter-Species Generalizability

Setup. We evaluate the inter-species generalizability of fine-tuning on eukaryotic viral sequences
through two case studies, summarized in the first two rows of Table 3. The first focuses on Alpha-
papillomavirus, a genus that will cause cervical cancer and genital warts; The second examines
Simplexvirus, which causes skin vesicles and mucosal ulcers. For both cases, we fine-tune the model
for 25 to 200 steps, and exclude one species from the training set. Generalization is assessed by
computing the perplexity distribution on the hold-out species. All the training and hold-out examples
are selected from BIORISKEVAL-GEN. As a baseline, we also compute the perplexity distribution



on a subset of IMG/PRT, the dataset used to pre-train the Evo2-7B model, which consists of benign
plasmid sequences.

Observations. We plot the perplexity distribution across various fine-tuning steps in Figure 2a.
Notably, for both case studies, the perplexity distribution on the hold-out species quickly dropped to
the same level as on IMG/PR within 50 fine-tuning steps, which is merely 0.72 H100 GPU hours
under our experiment settings. This indicates that the model can easily generalize to the other species
within the same genus after a few steps of fine-tuning. Given the typically high structural similarity
across species in the same genus [4, 40, 50], such a result is not surprising. However, it highlights that
data filtering is not tamper-resistant in this setting: excluding one species does not robustly prevent
efficient recovery of capabilities through fine-tuning on related species. Moreover, this also implies
that malicious fine-tuning could be significantly streamlined, requiring only a subset of representative
species rather than exhaustive coverage.

4.1.2 Inter-Genus Generalizability

Setup. Building on the settings in Section 4.1.1, we extend the dataset from the species level to
the genus level, the next higher taxonomic rank. This increases the evolutionary distance between
the training and test sets. As detailed in the last two rows of Table 6, we fine-tune the Evo2-
7B on all genera in Papillomaviridae excluding Gammmapapillomavirus, and on all genera in
Orthoherpesviridae excluding Simplexvirus. After fine-tuning for 50 to 2,000 steps, we evaluate
perplexity on the hold-out genera.

Observations. Figure 2b shows that even within the same family, fine-tuning yields lower gener-
alizability across genera compared to across species. In the Papillomaviridae experiments, while
fine-tuning for 1,000 steps reduces average test-set perplexity by approximately 20%, the values
remain higher than those on benign sequences from IMG/PR. Similarly, for Orthoherpesviridae,
fine-tuning over 2,000 steps produced no significant decrease in perplexity on the held-out genus.
Overall, as we move from the species level to the genus level, achieving generalization through
fine-tuning becomes more difficult and computationally demanding.

4.2 Fine-Tuning and Probing Help Recover Mutational Effect Knowledge
4.2.1 Log-Likelihood-Based Mutational Effect Prediction

Setup. Following prior work [35, 38], we score mutational effects with Evo2-7B model by calculating
log-likelihood Sp;, = Zle log P(z7"*|2"2%,0) for each mutation 2. Model predictions are
compared against experimental DMS scores using Spearman correlation p, where higher absolute
correlation indicates stronger agreement with measured mutational predictive power. To investigate
the improvement through fine-tuning, we fine-tune the model on the longest sequences for each
species in BIORISKEVAL-GEN for 100 to 2,000 steps (See Appendix A for more details). As baseline,
we also include zero-shot scoring with ESM 2, a BERT-style protein language model trained without
filtering eukaryotic viral sequences [33]. For ESM 2, we adopt masked marginal scoring, which
is defined as Sprar = ;0 pp log p(xi = x"[a™F) — log p(x; = x"|x™%), where M is the set of
mutation positions, z_; is the sequence with place ¢ masked, ™ is the mutation sequence, and z**
is the wildtype sequence.

Observations. Through Figure 3a, we observe that log-likelihood-based mutational effect prediction
improves steadily as we fine-tune Evo2-7B, with later checkpoints approaching a similar |p| achieved
by ESM 2. Previously, Evo 2’s low mean |p| was reported as evidence of its limited knowledge of
mutational effects in human viruses. Here, by fine-tuning the model for 2,000 steps, which is 28.9
H100 GPU hours in our experiment setting, we are able to raise the mean |p| from 0.034 to 0.164,
which greatly narrows the gap between Evo 2 and other bio-foundation models trained without data
filtering.

Thttps://huggingface.co/datasets/arcinstitute/opengenome2/blob/main/fasta/
plasmids_ phage/imgpr.fasta.gz
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(b) Mutational Effect Prediction on BIORISKEVAL-MUT-PROBE

Figure 3: Within 2,000 steps (28.9 H100 GPU Hours), fine-tuning Evo2-7B can achieve a comparable
mutational effect prediction as ESM 2 model on (a) BIORISKEVAL-MUT and (b) BIORISKEVAL-
MUT-PROBE. On BIORISKEVAL-MUT-PROBE, even without further fine-tuning, probing the hidden
layer representations with the lowest train root mean square error or highest validation |p| from
Evo2-7B can also achieve a comparable performance as the model without data filtering.

4.2.2 Predicting Mutational Effect with Linear Probe

Setup. To test whether hidden representations encode knowledge relevant for predicting mutational
effects, we perform linear probing on model hidden states to predict continuous DMS scores. From
BIORISKEVAL-MUT, we apply stratified sampling based on the DMS score, and sample 500
mutations from each of the 14 DMS datasets (excluding two with fewer than 500 mutations),
allocating 400 mutations per dataset for training and 100 for validation, while all remaining mutations
are used as the test set. This yields 5,600 training, 1,400 validation, and 148,505 test mutations
(denoted as BIORISKEVAL-MUT-PROBE, see Table 5 for more details), with probes fit on only 3.6%
of the DMS data and evaluated on 95.4%. Here, the probes are universal and are trained across
all pooled datasets using the closed-form solution with a mean square error objective. Similar to
Section 4.2.1, the performance is measured by the absolute Spearman correlation |p|. Since fine-tuning
will alter the hidden representations, we do not predefine a probe layer; instead, for each checkpoint,
we train probes on all layers and select (i) the layer with the lowest training root mean square error
(RMSE) and (ii) the highest validation Spearman correlation, and report the corresponding test
performance in terms of |p|. For comparison, we not only compute log-likelihood-based mean |p| on
the test set of BIORISKEVAL-MUT-PROBE for Evo2-7B and ESM 2 checkpoints, but also probe the
hidden-layer feature from LLaMA-3.1-8B-Instruct [11], a natural language model that is not trained
on the nucleotide sequences, and shares the same number of layers and hidden layer dimension with
Evo2-7B. By comparing the performance between Evo2-7B and LLaMA-3.1-8B-Instruct, we will
know how much performance uplift adversaries can achieve with the assistance of bio-foundation
models.

Observations. We present our results on BIORISKEVAL-MUT-PROBE in Figure 3b. Interestingly,
even without further fine-tuning, linear probing on Evo2-7B achieves a Spearman correlation of 0.159
when selecting by best validation Spearman, and 0.151 when selecting by train RMSE, which is
comparable to the performance of ESM2-650M. Compared with the best probing result on LLaMA-
3.1-8B-Instruct, Evo2-7B still shows a 52.8% improvement. Moreover, across our fine-tuning search
space, additional fine-tuning does not substantially enhance the expressiveness of hidden-layer
representations, as indicated by the nearly unchanged |p| values with additional training steps. In
contrast, when mutational effects are predicted using log-likelihood scores, the initial |p| remains
low and follows the same growing trend observed in Section 4.2.1 across fine-tuning checkpoints.
These findings, together with the small training set size, suggest that the relatively high |p| achieved
through linear probing is not due to distributional differences between BIORISKEVAL-MUT and
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Figure 4: (a) Layer-wise probing results on virulence prediction using BIORISKEVAL-VIR. Compared
with the best probing result from LLaMA-3.1-8B-Instruct (green dashed line), Evo2-7B’s hidden
layer features demonstrate stronger expressiveness in virulence prediction. The probing results show
a close relationship with (b) layer-wise representation magnitude, while having little correlation with
(c) perplexity distribution.

BIORISKEVAL-MUT-PROBE, but rather reflects knowledge already encoded in the model’s hidden
representations.

4.3 Latent Virulence Knowledge Persists Despite Data Filtering

Setup. We assess the model’s capability for virulence prediction by probing its hidden layer
representation using a linear probe. To train the probe, we stratify and sample 10% of examples (37
Examples) from BIORISKEVAL-VIR as the training set, using the remaining 90% (332 Examples) as
the test set. During training, we feed the training examples into the checkpoints and extract hidden-
layer representations from the end of a specific Hyena Block. Since the LDs label is continuous and
the probe does not include any non-linear functions, we directly compute the closed-form solution,
and then evaluate the probe’s performance using the corresponding hidden-layer representations from
the test set.

Since BIORISKEVAL-VIR only contains the virulence data for Influenza A virus, we further fine-tune
the Evo2-7B model on the influenza A virus sequences from the NCBI Virus Repository. To balance
efficiency and diversity, we select the longest sequence per strain and apply stratified sampling based
on sequence length, resulting in a training set of 93,844 examples. We fine-tune the model for 100 to
1,000 steps and evaluate layer-wise probing performance across checkpoints.

Observations. Figure 4a illustrates the layer-wise probing analysis reveals that even the base
Evo2-7B model achieves relatively high Pearson correlation coefficients across several layers, with a
maximum of 0.46, indicating that its hidden representations may already encode strongly predictive
values. To ensure these results are not due to chance, we conduct an ablation study by running
the same probing experiment on the LLaMA-3.1-8B-Instruct model, and plot its highest Pearson
coefficient across all layers in a green dashed line in Figure 4(a). The 77% performance improvement
of Evo2-7B over LLaMA-3.1-8B-Instruct suggests implies that the model has likely acquired harmful
knowledge in the latent space during pre-training, despite data filtering. While Lu et al. [34] suggested
that genomic heterogeneity can inflate the model’s performance in binary prediction of human single-
nucleotide variants, we argue that this does not directly apply here since we focus on predicting
the continuous LDs( over entire viral genomes. In fact, the ability to generalize across underlying
semantic features in a held-out set is precisely what raises dual-use concerns, as we demonstrate that
such emergent knowledge can be introduced at a minimal cost without any further fine-tuning.

Meanwhile, fine-tuned checkpoints offer only marginal gains over the base model — yielding 5%
increase in maximum Pearson correlation after 200 fine-tuning steps. Moreover, Figure 4d shows that
the perplexity drops significantly within 100 steps of fine-tuning, yet this does not appear to strongly
influence virulence prediction performance, indicating that perplexity may not be a suitable proxy for
latent virulence encoding.

To understand why the representation expressiveness diminishes after layer 28, we analyze the
layer-wise representation magnitude in Figure 4b. We observe the drastic growth of representation



magnitude beyond this layer, which may explain the observed collapse. See Appendix C for more
discussions.

5 Discussion

Conclusion. In this study, we introduce BIORISKEVAL framework, which offers a comprehensive
assessment of the dual-use risks in bio-foundation models across three dimensions. Our experiments
with Evo 2 reveal that data filtering is not tamper-resistant under certain circumstances, and may
fail to prevent the model from learning malicious capabilities like mutational effect prediction,
virulence prediction in the latent space during the pre-training stage. That said, our intention is not
to assert that data filtering is completely ineffective, but to highlight the scenarios where it may fall
short—underscoring the risks of relying on it as the sole defense mechanism. These findings call for
more robust safety strategies for open-weight bio-foundation models that go beyond data filtering
alone. We further argue that future safety to open-weight bio-foundation models should account for
adversarial manipulations, such as fine-tuning and probing, which are practical for adversaries and
can potentially expand the “bubble of risk” [53].

Limitations. While our work is an initial effort to systematically assess the dual-use risk for bio-
foundation models, there is room for improvement in future studies. First, due to the limited data
availability, we only collected virulence information from the Influenza A virus. While our results
suggest that the model acquires some predictive capability, its performance across other viral families
remains untested. Additionally, we only evaluate the Evo 2 model, one of the few open-weight models
that explicitly employed data filtering for safety. Broader generalizability requires testing additional
models as they become available. Lastly, while our framework covers three critical safety dimensions,
other harmful capabilities, such as viral protein sequence generation or host range, remain unexplored
and need further investigation.
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A Dataset Details

A.1 Fine-tuning Datasets Curation Process
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Figure 5: Overview of fine-tuning dataset curation process.

When curating the fine-tuning dataset, we follow the workflow illustrated in Figure 5, which consists
of three stages: Add Reverse Complement, Train-Val Split, and Concat+ Partition. For the datasets
containing DNA viruses, we first add reverse complement for each sequence to preserve biological
symmetry inherent in double-stranded DNA, thereby enhancing generalizability. This process will
double the number of examples. For RNA only datasets, like Influenza A dataset, this stage is omitted.
Following this, we keep 10% of examples as the validation set and use the rest 90% of examples as
the training set. In the end, we concatenate all the sequences and then partition them into fixed-length
segments of 32,000 tokens. The final number of examples used during fine-tuning is determined after
this concatenation and partitioning process. For Papillomaviridae Excluding Gammapapillomavirus,
to avoid potential train-test overlap, we removed all the sequences with empty genus tags. For
Orthoherpesviridae Excluding Simplexvirus, to avoid unstable gradient computation, we removed the
sequences that contain “NNN” (i.e., unknown nucleotides).

A.2 Protein Sequences to Nucleotide Sequences Conversion Pipeline

The fitness dataset used are a subset of ProteinGym, which include wild type protein sequence, and
various mutations for each DMS experiment. Since Evo 2 is a genomic model, we first convert the
protein sequences to nucleotide sequences. Protein to nucleotide sequence conversion is a degenerate
process—there are more than one choice of codon for most amino acids.

We first find wild type nucleotide sequence by using the NBCI BLAST program in three ways: exact
match with organism filter, exact match, and 99% match with seeded random codon replacement for
the rest of the amino acids [1]. After the wild type is found or constructed, we perform the mutation
swap as detailed by the original DMS protein dataset, and seed the random selection of codon for
each replacement at a time.

Our pipeline do not recreate exact nucleotide sequences that Evo 2 may evaluated on due to the
random picking among viable codons, and 2 DMS files that we did not reconstruct due to BLAST
not finding wild type nucleotide with high match. We consider this a valid approach because DMS
experiments artificially introduce mutations biologically. Furthermore, experimentally we reproduce
the mean absolute Spearman rank for human viruses on Evo2-7B, with less than 0.5 mean absolute
Spearman rank matching S2B in [5].

Additionally, since we are assuming the role of attackers, our approach can be seen as the attacker’s
best attempt at reconstructing nucleotide sequences and using it to predict the ground truth (and
unchanged) DMS score labels.
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A.3 Evaluation Datasets

Zero-shot Mutational Effect Prediction For virus DMS zero-shot fitness reproduction, we use the
same DMS listed by the Evo 2 paper in 4.3.6. The original paper mentions 18 datasets and cites 20
studies used for viruses that infects humans. Out of those 20, we use BLAST and seeded random
condon selection to create nucleotide counterparts for the DMS protein sequences in ProteinGym.
We create nucleotide counterparts for 16 virus DMS datasets. For more details on the conversion, see
A.2. The 16 DMS datasets we evaluate on are in Table 4.

Probe-based Mutational Effect Prediction For probing experiments on protein fitness, we sample
from the 16 virus protein DMS datasets that have been converted to nucleotides as listed in the section
above. We sample 624 balanced samples from each dataset, or the largest balanced subset if there
are fewer than 624 samples. We split the samples into balanced 80% train and 20 % test. The total
training set has a size of 7384, and the total test set has a size of 1868. For ESM2 models, since
it takes in protein sequences, we experiment with the original wild type protein sequence, and the
protein mutation to calculate masked marginals on the same train and split data.

Virulence Prediction We use the LDs( information for Influenza A viruses from Ivan & Kwoh [21]
and obtain the corresponding protein sequences from ViPal [57]. Following the conversion pipeline
in Appendix A.2, we first filter out entries with missing data and convert the protein sequences into
nucleotide sequences. Since each virus consists of 8 genomic segments, we concatenate them into a
single sequence. To evaluate the model’s ability in predicting virulence, we input the concatenated
sequences into the model and extract hidden layer representations for subsequent probing analysis.

A.4 DMS Datset Overview
We include details of the 16 human virus DMS datasets in Table 4. All coarse selection type for

the DMS studies are organismal fitness. For each DMS dataset in BIORISKEVAL-MUT-PROBE, we
include the corresponding train—val—test split statistics in Table 5.

Table 4: Summary of Deep Mutational Scanning Datasets used in BIORISKEVAL-MUT

DMS ID # Mutants  Sequence Length Organism
AO0A192B1T2_9HIV1_Haddox_2018 [20] 12,577 2,556 HIV-1 (isolate BF520.W14M.C2)
A0A2Z5U3Z0_9INFA_Doud_2016 [9] 10,715 1,695 Influenza A virus (A/WSN/1933(HIN1))
A0A2Z5U3Z0_9INFA_Wu_2014 [54] 2,350 1,695 Influenza A virus (A/WSN/1933(HIN1))
A4D664_9INFA_Soh_2019 [47] 14,421 2,277 Influenza A virus (A/green-winged teal/Ohio/175/1986(H2N1))
C6KNH7_9INFA_Lee_2018 [30] 10,754 1,698 Influenza A virus (A/Perth/16/2009(H3N2))
CAPSD_AAV2S_Sinai_2021 [46] 42,328 2,205 Adeno-associated virus 2 (AAV-2) (isolate Srivastava/1982)
ENV_HV1B9_DuenasDecamp_2016 [12] 375 2,559 HIV-1 group M subtype B (strain 89.6)
I6TAH8_I68A0_Doud_2015 [10] 9,462 1,494 Influenza A virus (A/Aichi/2/1968 H3N2)
NRAM_I33A0_Jiang_2016 [24] 298 1,359 Influenza A virus (A/Wilson-Smith/1933 HIN1)
PA_I34A1_Wu_2015 [55] 1,820 2,148 Influenza A virus (A/Puerto Rico/8/1934 HIN1)
POLG_DEN26_Suphatrakul_2023 [48] 16,897 2,700 Dengue virus 2 (DENV-2) (strain Thailand/16681/1984)
Q2NO0S5_9HIV1_Haddox_2018 [20] 12,729 2,580 HIV-1 (isolate BG505.W6M.C2.T332N)
RIAB_SARS2_Flynn_2022 [15] 5,725 918 SARS-CoV-2 (isolate MN908947.3, RefSeq NC_045512.2)
RDRP_I33A0_Li_2023 [32] 12,003 2,271 Influenza A virus (A/Wilson-Smith/1933 HIN1)
REV_HVI1H2_Fernandes_2016 [14] 2,147 348 HIV-1 group M subtype B (isolate HXB2)
TAT_HVI1BR_Fernandes_2016 [14] 1,577 258 HIV-1 group M subtype B (isolate BRU/LAI)

B Experiment Details

B.1 Hardware Configuration

We use Amazon p5.48xlarge’ as our experiment platform, which consists of NVIDIA H100-80GB
GPUs and AMD EPYC 7R13 Processor. All the experiments (fine-tune and inference) are done with
4 NVIDIA H100-80GB GPUs under NVIDIA BioNeMo Framework [25].

B.2 Fine-tuning Configuration

For all the fine-tuning experiments, we use the fine-tuning configuration in Table 6.

Thttps://github.com/Rayin-saber/ViPal/tree/main/data
Thttps://aws.amazon.com/ec2/instance-types/p5/
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Table 5: Summary of Train—Val-Test Splits in BIORISKEVAL-MUT-PROBE

Dataset # Train # Val # Test # Total
AOA192B1T2_9HIV1_Haddox_2018 [20] 400 100 12,077 12,577
A0A275U370_9INFA_Doud_2016 [9] 400 100 10,215 10,715
A0A275U370_9INFA_Wu_2014 [54] 400 100 1,850 2,350
A4D664_9INFA_Soh_2019 [47] 400 100 13,921 14,421
C6KNH7_9INFA_Lee_2018 [30] 400 100 10,254 10,754
CAPSD_AAV2S_Sinai_2021 [46] 400 100 41,828 42,328
I6TAH8_I68A0_Doud_2015 [10] 400 100 8,962 9,462
PA_T134A1_Wu_2015 [55] 400 100 1,320 1,820
POLG_DEN26_Suphatrakul_2023 [48] 400 100 16,397 16,897
Q2NO0S5_9HIV1_Haddox_2018 [20] 400 100 12,229 12,729
R1AB_SARS2_Flynn_2022 [15] 400 100 5,225 5,725
RDRP_I33A0_Li_2023 [32] 400 100 11,503 12,003
REV_HVI1H2_Fernandes_2016 [14] 400 100 1,647 2,147
TAT _HVI1BR_Fernandes_2016 [14] 400 100 1,077 1,577
Total 5,600 1,400 148,505 155,505

Table 6: Hyperparameter configurations used in our fine-tuning pipeline
LR Optimizer LR scheduler Weight Decay Warmup Ratio Batch Size Seq Length

1.5%x10°  AdamW Cosine 1x103 0.05 8 32,000

B.3 Probing Configuration

In our experiments, we conduct two sets of probing analyses: one on BIORISKEVAL-MUT using
continuous LDs labels, and another on bacteriophage sequences using binary lifestyle labels. For
the regression task involving continuous LDsq labels, we employ a linear probe and compute the
closed-form solution directly. For the binary classification task, we train a linear probe with a sigmoid
activation function. We use a batch size of 128 and optimize the model using the Adam optimizer.

B.4 Evaluation Metrics

Spearman’s rank correlation (p) When evaluating the model’s capability in predicting mutational
effect, we use Spearman’s rank correlation p as our metric. In DMS dataset, each mutant ¢ has a
corresponding DMS value X;, based on which we can have a “groundtruth” rank R(X). Meanwhile,
for each mutant sequence, we can also compute a model-derived (e.g., log probabilities) score Y;,
based on which we can have another rank R(Y"). Spearman’s rank correlation p is computed as

_ Cov[R(X),R(Y)]

OR(X)OR(Y)

ey

where Cov [R(X), R(Y')] is the covariance of rank variables; o p(x) and o x) are the standard
deviations of the rank variables.

Pearson Coefficient When probing model’s capability in predicting virulence, we use Pearson
Coefficient to evaluate the correlation between the groundtruth LDsy value X and the predicted value
Y. The Pearson Correlation is computed as

Cov[X,Y]

0X0y

Pearson =

@)

where Cov[X, Y] is the covariance between X and Y; ox and oy are standard deviation.

C Evo 2 representation Analysis

In this section, we discuss the architecture and Evo 2 and explain why we observe extremely large
representations in the later layers, but can still get reasonable output. Evo 2 uses StripedHyena2 [28]
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architecture, which builds blocks from input-dependent long convolutions. A single Hyena operator
creates three streams g, k, v by convolving linear projects of the residual stream z with Toeplitz filters
T, H, K, then mixes them with inner convolution GG and a final projection M to get the output y:

a =1 (e7 W),

= ). 3)
of = Kgy (a0 P,

v = (@) Gy Ky vp) M2

StripedHyena-2 uses three Hyena blocks with different filter parameterizations:

* Hyena-SE (Short Explicit): A short causal depth-wise 1D convolution with explicitly
stored tapes per channel. It captures local n-gram-like patterns;

* Hyena-MR (Medium regularized): A medium-length causal filter whose kernel is regular-
ized to keep the frequency response and overall gain controlled.

* Hyena-LI (Long Implicit): A long-range filter realized implicitly as a small mixture of
exponentials evaluated with a stateful recurrence.

In Evo2, the layer type is organized following the order of SE-MR-LI, with Rotary Attention Layer
inserted in Layer 3, 10, 17, 24, 31. There are a few factors that contribute to the representation
explosion in the deeper layers:

* Missing Layer Normalization on Residual Stream. There’s no explicit layer normalization
on the residual stream after adding the block output back. Therefore, if the output of one
layer has a slightly larger magnitude than its input and is fed directly into the next, the next
layer can then amplify this magnitude further. Over dozens of layers, this may lead to an
exponential growth in the values.

* Input-Dependent and Gated Convolutions. According to Equation (3), the filters in Hyena
operators are generated from the input sequence itself. Therefore, if the input x already
has a large magnitude, the gated filter will also likely have a large magnitude. The final
output y is a product of these two large-magnitude tensors, leading to a quadratic increase in
magnitude within a single layer.

On the other hand, the RMSNorm in the last layer rescales the representations back before the logits,
so the output quality is dominated by the direction instead of the representation magnitude. Therefore,
even though the hidden-layer representation explodes in the deeper layers, the model is still able to
output meaningful sequences.

To double-check that this phenomenon is not due to the issue from the inference pipeline, we also
test the layer-wise representation magnitude distribution using Vortex pipeline’, which is the official
inference pipeline used by the Evo2 paper, but still get the same result. This indicates that the
representation explosion comes from the model architecture, instead of the inference pipeline.

Thitps://github.com/Zymrael/vortex
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