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Abstract

Generative Flow Networks (GFlowNets) are amortized samplers of unnormalized
distributions over compositional objects with applications to causal discovery, NLP,
and drug design. Recently, it was shown that GFlowNets can be framed as a
hierarchical variational inference (HVI) method for discrete distributions. Despite
this equivalence, attempts to train GFlowNets using traditional divergence measures
as learning objectives were unsuccessful. Instead, current approaches for training
these models rely on minimizing the log-squared difference between a proposal
(forward policy) and a target (backward policy) distribution. In this work, we
first formally extend the relationship between GFlowNets and HVI to distributions
on arbitrary measurable topological spaces. Then, we empirically show that the
ineffectiveness of divergence-based learning of GFlowNets is due to the large
gradient variance of the corresponding stochastic objectives. To address this issue,
we devise a collection of provably variance-reducing control variates for gradient
estimation based on the REINFORCE leave-one-out estimator. Our experimental
results suggest that the resulting algorithms often accelerate training convergence
when compared against previous approaches. All in all, our work contributes
by narrowing the gap between GFlowNet training and HVI, paving the way for
algorithmic advancements inspired by the divergence minimization viewpoint.

1 Introduction

The approximation of intractable distributions is one of the central issues in machine learning and
modern statistics [7, 35]. In reinforcement learning (RL), a recurring goal is to find a diverse set
of high-valued state—action trajectories according to a reward function. This problem may be cast
as sampling trajectories proportionally to the reward, which is generally an intractable distribution
over the environment [3, 9, 38, 50]. Similarly, practical Bayesian inference and probabilistic models
computations involve assessing intractable posterior distributions [36, 78, 102]. In the variational
inference (VI) approach, circumventing this intractability involves searching for a tractable approxi-
mation to the target distribution within a family of parametric models. Conventionally, the problem
reduces to minimizing a divergence measure, such as Kullback-Leibler (KL) divergence [7, 36, 92]
or Renyi-a divergence [51, 70], between the variational approximation and the target.

In particular, Generative Flow Networks (GFlowNets) [3, 4, 48] are a recently proposed family of
variational approximations well-suited for distribution over compositional objects (e.g., graphs and
texts). GFlowNets have found empirical success within various applications from causal discovery
[15, 16], NLP [30], and chemical and biological modeling [3, 32]. In a nutshell, a GFlowNet
learns an iterative generative process (IGP) [26] over an extension of the target’s support, which,
for sufficiently expressive parameterizations of transition kernels, yields independent and correctly
distributed samples [3, 48]. Remarkably, training GFlowNets typically consists of minimizing the
log-squared difference between a proposal and target distributions over the extended space via SGD
[4, 55], contrasting with divergence-minimizing algorithms commonly used in VI [7, 72].
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Indeed, Malkin et al. [56] suggests that trajectory balance (TB) loss training for GFlowNets leads to
better approximations of the target distribution than directly minimizing the reverse and forward KL
divergence, particularly in setups with sparser rewards. Nevertheless, as we highlight in Section 3,
these results are a potential consequence of biases and high variance in gradient estimates for the
divergence’s estimates, which can be overlooked in the evaluation protocol reliant upon sparse target
distributions. Therefore, in Section 5, we present a comprehensive empirical investigation of the
minimization of well-known f-divergence measures (including reverse and forward KL), showing
it is an effective procedure that often accelerates the training convergence of GFlowNets relative to
alternatives. To achieve these results, we develop in Section 4 a collection of control variates (CVs)
[63, 71] to reduce the variance without introducing bias on the estimated gradients, improving the
efficiency of the optimization algorithms [77, 85]. In summary, our main contributions are:

1. We evaluate the performance of forward and reverse KL- [47], Renyi-« [74] and Tsallis-a [91]
divergences as learning objectives for GFlowNets through an extensive empirical campaign and
highlight that they frequently outperform traditionally employed loss functions.

2. We design control variates for the gradients of GFlowNets’ divergence-based objectives. Therefore,
it is possible to perform efficient evaluations of the optimization objectives using automatic
differentiation frameworks [69], and the resulting experiments showcase the significant reduction
in the variance of the corresponding estimators.

3. We developed a theoretical connection between GFlowNets and VI beyond the setup of finitely
supported measures [56, 112], establishing results for arbitrary topological spaces.

2 Revisiting the relationship between GFlowNets and VI

Initially, we review Lahlou et al. [48]’s work on GFlowNets for distributions on topological spaces, a
perspective applied consequentially to obtain the equivalence between GFlowNets training and VI
divergence minimization in a more generic setting. Finally, we describe standard variance reduction
techniques for solving stochastic optimization problems.

Notations. Let (S, 7) be a topological space with topology 7 and X be the corresponding Borel
o-algebra. Also, let v: ¥ — R, be a measure over X and xf,k,: S x ¥ — R be transition
kernels over S. For each (By, Bz) € ¥ x X, we denote by v @ x(B1, Bz) = [, v(ds)k(s, Ba).
Likewise, we recursively define the product kernel as k®°(s, ) = (s, -) and, forn > 1, K€" (s, ) =
r®n—1 (s,+) ® k for a transition kernel x and s € S. Note, in particular, that k™ is a function from
S x 2ot o R, with X" +! representing the product o-algebra of ¥ [1, 96]. Moreover, if j is an
absolutely continuous measure relatively to v, denoted p1 < v, we write d#+/dv for the corresponding
density (Radom-Nikodym derivative) [1]. Furthermore, we denote by P(A) = {S: S C A} the
power-set of a set A C S and by [d] = {1, ...,d} the first d positive integers.

GFlowNets. A GFlowNet is, in its most general form, built upon the concept of a measurable pointed
directed acyclic graph (DAG) [48], which we define next. Intuitively, it extends the notion of a flow
network to arbitrary measurable topological spaces, replacing the directed graph with a transition
kernel specifying how the underlying states are connected.

Definition 1 (Measurable pointed DAG [48]). Let (S, 7T,Y) be a measurable topological space
endowed with a reference measure v and forward ¢ and backward xy, kernels. Also, let s, € S and
sy € S be distinguished elements in S, respectively called initial and final states, and S = S\ {s¢}.
We assume {s;} is open. A measurable pointed DAG is then a tuple (S, T, %, k¢, Ky, ) satisfying:

1. (Terminality) If (s, {ss}) > 0, then ks (s, {ss}) = 1Vs € S. Also, k¢(sf,-) = ds,.
2. (Reachability) For all B € ¥,dn € Ns.t. nf?”(sm B) > 0,1i.e., B is reachable from s,,.

3. (Consistency) For every (Bi,Bs) € ¥ x X such that (B1,B2) ¢ {(s0,50),(sf,s¢)}
v ® k(B1,B2) = v ® kyp(Bs, B1). Moreover, ky(s,, B) = 0 for every B € X.

4. (Continuity) s — ~ f(s, B) is continuous for B € ¥.

5. (Finite absorption) There is a NV € N such that n;‘?N (s,-) = ds, forevery s € S. We designate
the corresponding DAG as finitely absorbing.

In this setting, the elements in the set X = {s € S\ {s¢}: k¢(s,{s¢}) > 0)} are called terminal
states. Illustratively, when S is finite and v is the counting measure, the preceding definition



corresponds to a connected DAG with an edge from s € Sto s’ € Siff ky(s,{s'}) > 0, with
condition 5) ensuring acyclicity and condition 2) implying connectivity. A GFlowNet, then, is
characterized by a measurable pointed DAG, a potentially unnormalized distribution over terminal
states X and learnable transition kernels on S (Definition 2). Realistically, its goal is to find an IGP
over S which, starting at s,, samples from X proportionally to a given positive function.

Definition 2 (GFlowNets [48]). A GFlowNet is a tuple (G,Pr,Pp,u) composed of a measurable
pointed DAG G, a o-finite measure ;@ < v, and o-finite Markov kernels Pr < k¢ and Pp < Ky,
respectively called forward and backward policies.

Training GFlowNets. In practice, we denote by pr, : S x S — R the density of P relative to k¢,
which we parameterize using a neural network with weigths 6. Similarly, we denote by pp the density
of Pg wrt ky. Our objective is, for a given target measure R < p on X with r = dR/q,, estimate the
6 for which the distribution over X" induced by Pr(s,, -) matches R, i.e., for every B € ¥,

n n R(B)
Enzo o p%) <soa51:n,5f)]lsn€BK«? (So>d51:n) = M

Importantly, the above sum contains only finitely many non-zero terms due to the finite absorption
property of . To ensure that pr, abides by this equation, Lahlou et al. [48] showed it suffices that
one of the next balance conditions are concomitantly satisfied by Pr and Pgp.

Definition 3 (Trajectory balance condition). For all n > 0 and p®"-almost surely Vsi., € S™,
Py (S0, S1m, 55) = T(Zg:)p%"(sn, Sn:1,50), W/ Zg denoting the target distribution’s partition function.
Definition 4 (Detailed balance condition). For an auxiliary parametric function u: & — R, and
pu®?%-almost surely on (s, s") € 82, u(s)pr,(s,s') = u(s')pp(s’, s) and u(z) = r(z) forx € X.

To enforce the trajectory balance (TB) or detailed balance (DB) conditions, we conventionally define
a stochastic optimization problem to minimize the expected log-squared difference between the left-
and right-hand sides of the corresponding condition under a probability measure £ supported on an
appropriate space [4, 15, 48, 49, 52, 55, 67]. For TB, e.g., we let £ be defined on YN with support
supp(u®™). Then, we estimate the GFlowNet’s parameters # by minimizing
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with 7 = s,.; and h = max{i: s; # sy} being the last non-final state’s index in 7. As denoted by
the subscript on Zy, using the TB loss incurs learning the target’s normalizing constant. While tuning
pp during training is also possible, the common practice is to keep it fixed.

Henceforth, we will consider the measurable space of trajectories (Ps,¥p), with Ps =

{(5,81,...,8n,8¢) € 8" x {s¢}: 0 < n < N — 1} and Ep as the o-algebra generated by

N+1
+ ¥®7_ For notational convenience, we use the same letters for representing the measures and

kernels of (S, X) and their natural product counterparts in (Ps, X p), which exist by Carathéodory
extension’s theorem [96]; for example, v(B) = v®*(B) for B = (By,...,B,) € ¥®" and
pr, (T|s0;0) is the density of PE"(s,,") for 7 = (s,,51,...,5n,sy) relatively to u®". In this
case, we will write 7 for a generic element of Ps and «x for its terminal state (which is unique by
Definition 1). For a comprehensive overview of GFlowNets, please refer to [48, 55].

GFlowNets and VI. GFlowNets can be interpreted as hierarchical variational models by framing
the forward policy pr,(T]s0;6) in (Ps,Xp) as a proposal to T(Zm)pg(ﬂx). Malkin et al. [56]
demonstrated that, for discrete target distributions, the TB loss in (1) aligns with the KL divergence
in terms of expected gradients. Extending this, our Proposition 1 establishes that this relationship
also holds for distributions over arbitrary topological spaces.

Proposition 1 (TB loss- and KL divergence gradients for topological spaces). Let Lrp(7;0) =
(log Zpry (7150:0)r(2)ps (v]2))* and pp(T) = T(w) (Sn—t:0]2) for T = (S0, ..., Sn—1, 2, 55). Then,

VoErpu(s,,) [L1B(T;0)] = 2V Dk [Pr|| Pl @)

where Dk 1.[pr, [|PB] = Ernpp(s,,.) 108 PFe (T150:0)/p ()] is the KL divergence between Pr and Pp.



This proposition shows that minimizing the on-policy TB loss is theoretically comparable to mini-
mizing the KL divergence between Pr and Pp in terms of convergence speed. Since the TB loss
requires estimating the intractable R(X), the KL divergence, which avoids this estimation, can
be a more suitable objective. Our experiments in Section 5 support this, with proofs provided in
Appendix C. Extending this result to general topological spaces broadens the scope of divergence
minimization strategies, extending guarantees for discrete spaces to continuous and mixed spaces.
This generalization aligns with advances in generalized Bayesian inference [45] and generalized VI
in function spaces [95], via optimization of generic divergences. We make the method theoretically
firm and potentially widely applicable by proving the equivalence in these broader contexts.

Variance reduction. A naive Monte Carlo estimator for the gradient in Equation 2 has high variance
[19], impacting the efficiency of stochastic gradient descent [97]. To mitigate this, we use control
variates—random variables with zero expectation added to reduce the estimator’s variance without
bias [63, 71]. This method, detailed in Section 4, significantly reduces noise in gradient estimates
and pragmatically improves training convergence, as shown in the experiments in Section 5.

3 Divergence measures for learning GFlowNets

This Section presents four different divergence measures for training GFlowNets and the accompany-
ing gradient estimators for stochastic optimization. Regardless of the learning objective, recall that
our goal is to estimate 6 by minimizing a discrepancy measure D between Pr and Pp that is globally
minimized if and only if Pr = Pg, i.e.,

0* = argmin D(Pp, Pg), 3)
6

in which Pp is typically fixed and Pp’s density p% is parameterized by 6.

3.1 Renyi-a and Tsallis-o divergences

Renyi-a [74] and Tsallis-« [91] are families of statistical divergences including, as limiting cases,
the widespread KL divergence (Section 3.2) [58]; see Definition 5. These divergences have been
successfully applied to both variational inference [51] and policy search for model-based reinforce-
ment learning [18]. Moreover, as we highlight in Section 5, their performance is competitive with,
and sometimes better than, traditional learning objectives for GFlowNets based on minimizing
log-squared differences between proposal and target distributions.

Definition 5 (Renyi-« and Tsallis-« divergences). Let o € R. Also, let pr, and pp be GFlowNet’s
forward and backward policies, respectively. Then, the Renyi-« divergence between Pr and Pp is

Ra(Prl|Pp) = —— log / PEy (7150) %P (7)1~ (50, 7).
Ps

a—1

Similarly, the Tsallis-« divergence between Pr and Pp is

To(PellP) = ([ pralriso a2 s(snndr) < 1))

From Definition 5, we see that both Renyi-a and Tsallis-a divergences transition from a mass-
covering to a mode-seeking behavior as « ranges from —oo to co. Regarding GFlowNet-training,
this flexibility suggests that R, and 7, are appropriate choices both, e.g., for carrying out Bayesian
inference [16] — where interest lies in obtaining an accurate approximation to a posterior distribution
—, and for combinatorial optimization [109] — where the goal is to find a few high-valued samples.
Additionally, the choice of o provides a mechanism for controlling which trajectories are preferentially
sampled during training, with larger values favoring the selection of trajectories leading to high-
probability terminal states, resembling the effect of e-greedy [55], thompson-sampling [73], local-
search [40], and forward-looking [65, 66] techniques for carrying out off-policy training of GFlowNets
[56].

To illustrate the effect of o on the learning dynamics of GFlowNets, we show in Figure | an early
stage of training to sample from a homogeneous mixture of Gaussian distributions by minimizing
Renyi-a divergence for different values of a; see Section 5.1 for details on this experiment. At this
stage, we note that the GFlowNet covers the target distribution’s modes but fails to separate them
when « is large and negative. In contrast, a large positive o causes the model to focus on a single



high-probability region. Therefore, the use of an intermediate value for & = 0.5 culminates in a
model that accurately approximates the target distribution. Also, our early experiments suggested
the persistence of such dependence on « for diverse learning tasks, with e = 0.5 leading to the best
results. Thus, we fix a = 0.5 throughout our experimental campaign.

Importantly, we need only the gradients of R, and 7, for solving
the optimization problem in Equation 3 and, in particular, learning 2 2
the target distribution’s normalizing constant is unnecessary, as we | 0
underline in the lemma below. This property distinguishes such
divergence measures from both TB and DB losses in Equation 1 and,
in principle, simplifies the training of GFlowNets. a=-20 Target

Lemma 1 (Gradients for R, and 7,). Let 0 be the param- ?*| | , .'_5: 2 :
eters of pr, in Definition 5 and, for 7 € Ps, g(1,0) = | ®
(pe(rl2)r(2)/pp, (T|so;0))1_a. The gradient of R, wrt 0 is

E[Vog(7,0) + g(7,0)Valogpr, (1|50 0)] Figure 1: Mode-seeking (o = 2)
(o — DE[g(r, )] " versus mass-covering (@ = —2)
behaviour in a-divergences.
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VoRa(pr,|lpB) =

the expectations are computed under Pr. Analogously, the gradient
of To, wrt 0 is

E[V ,9 + 79 Vol X 0;0
VeTa(ngHpB)g [Vog(7,0) 9((7'&_)1)9 ogpr,(T|s )]’

. .. C . e
in which = denotes equality up to a multiplicative constant.

Lemma 1 uses the REINFORCE method [97] to compute the gradients of both R, and 7, and we
implement Monte Carlo estimators to approximate the ensuing expectations based on a batch of
trajectories {71, ..., 7n } sampled during training [56]. Also, note that the function g is computed
outside the log domain and, therefore, particular care is required to avoid issues such as numerical
underflow of the unnormalized distribution [3, 87]. In our implementation, we sample an initial batch
of trajectories {7;}¥.; and compute the maximum of r among the sampled terminal states in log
space, i.e., log 7 = max; log r(x;). Then, we consider log 7(z) = logr(x) — log7 as the target’s
unnormalized log density. In Section 4, we will consider the design of variance reduction techniques
to decrease the noise level of gradient estimates and possibly speed up the learning process.

3.2 Kullback-Leibler divergence

The KL divergence [47] is a limiting member of the Renyi-« and Tsallis-« families of divergences,
derived when @ — 1 [70], and is the most widely deployed divergence measure in statistics and
machine learning. To conduct variational inference, one regularly considers both the forward and
reverse KL divergences, which we review in the definition below.

Definition 6 (Forward and reverse KL). The forward KL divergence between a target Pp and a
proposal Pr is Dk [Pg||Pr] = Erops(s;,) [logP5(T)/pp, (7]s0)]. Also, the reverse KL divergence
is defined by D, [PF| ‘PB] = ETNPF(SO,') [log PFy (Tlsn)/pB (7—)]

Remarkably, we cannot use a simple Monte Carlo estimator to approximate the forward KL due to

the presumed intractability of Pp (which depends directly on R). As a first approximation, we could
estimate Dy 1,[Pp||Pr| via importance sampling w/ Pr as a proposal distribution as in [56]:

pe(T) pe(7)
Pry(Tls0) PRy (T]S0) ]’

Di1[Ppl|Pr] = Ervpp O]
and subsequently implement a REINFORCE estimator to compute VoD [ Pg||Pr]. Nevertheless,
as we only need the divergence’s derivatives to perform SGD, we apply the importance weights
directly to the gradient estimator. We summarize this approach in the lemma below.

Lemma 2 (Gradients for the KL divergence). Let 0 be the parameters of Pr and s(1;0) =
log pr, (T]50; 0). Then, the gradient of Dy 1| Pr || Pg] relatively to 0 satisfies

st (T‘SO)

Dy1 [Pr||Ps] =E 10) +log — "~
VoDkr [Pr||Ps] r~Pr(soy) | Vos(T30) + ngB(T|:r)r(x)

Vos(7:0)
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Figure 2: Variance of the estimated gradients as a function of the trajectories’ batch size. Our
control variates greatly reduce the estimator’s variance, even for relatively small batch sizes.

Correspondingly, the gradient of D 1| Pg||Pr] wrt 0 is

Pry (7]50)

< _PE\T1S0)
pa(Tle)r(z)

VoDkL[PB||Pr] = —Erwpp(s,,) Vos(T;0)

Crucially, choosing an appropriate learning objective is an empirical question that one should consider
on a problem-by-problem basis — similar to the problem of selecting among Markov chain simulation
techniques [27]. In particular, a one-size-fits-all solution does not exist; see Section 5 for a thorough
experimental investigation. Independently of the chosen method, however, the Monte Carlo estimators
for the quantities outlined in Lemma 2 are of potentially high variance and may require a relatively
large number of trajectories to yield a reliable estimate of the gradients [97]. The following sections
demonstrate that variance reduction techniques alleviate this issue.

4 Control variates for low-variance gradient estimation

Control variates. We first review the concept of a control variate. Let f: Ps — R be a real-valued
measurable function and assume that our goal is to estimate E, . [f(7)] according to a probability
measure ™ on X p (see Section 2 to recall the definitions). The variance of a naive Monte Carlo
estimator for this quantity is Var=(f(7))/n. On the other hand, consider a random variable (RV)
g: Ps — R positively correlated with f and with known expectation E[g(7)]. Then, the variance
of a naive Monte Carlo for E; [f(7) — a(g(7) — E[g(7)])] for a baseline a € R is

% [Var, (f(7)) —2aCovx (f(7), g(7)) + a*Var.(g())] , ®)

which is potentially smaller than %Varﬁ (f(7)) if the covariance between f and g is sufficiently large.
Under these conditions, we choose the value of a that minimizes Equation 5 [94], namely, a =
Covr (f(7):9(T)) [Var (g()). We then call the function g a control variate [63]. Also, although the quanti-
ties defining the best baseline a are generally unavailable in closed form, one commonly uses a batch-
based estimate of Cov,(f(7), g(7)) and Var,(g(7)); the incurred bias is generally negligible rela-
tively to the reduced variance [71, 79, 85]. For vector-valued RVs, we let a be a diagonal matrix and
exhibit, in the next proposition, the optimal baseline minimizing the covariance matrix’s trace.

Proposition 2 (Control variate for gradients). Let f,g: Ps — R? be vector-valued functions and
be a probability measure on Ps. Consider a baseline a € R and assume E[g(7)] = 0. Then,

. _Ex[g(n)" (f(1) = Ex[f(r)])]
argergln Tr Cov, [f(T) —a-g(T)]= E.[g(r)T9(r) .

Note that, when implementing the REINFORCE gradient estimator, the expectation we wish to
estimate may be generally written as Ep,. (s, .) [Vo f(7) + f(7)Vglog pr,(7)]. For the second term,
we use a leave-one-out estimator [85]; see below. For the first term, we use Vy log pr, as a control
variate, which satisfies Ep,(, .y [Vglogpr,(7|so;0)] = 0. Importantly, estimating the optimal
baseline a* in Proposition 2 cannot be done efficiently due to the non-linear dependence of the
corresponding Monte Carlo estimator on the sample-level gradients [2]; i.e., it cannot be represented
as a vector-Jacobian product, which is efficient to compute in reverse-mode automatic differentiation
(autodiff) frameworks [8, 69]. Consequently, we consider a linear approximation of both numerator
and denominator defining a* in Proposition 2, which may be interpreted as an instantiation of the



delta method [83, Sec. 7.1.3]. Then, given a batch {7y, ..., 7y} of trajectories, we instead use

(X0 Velogpr, (r), X0y Vof (ra) ) o

N 2
6+H§L;1Vebgmwﬁm‘

as the REINFORCE batch-based estimated baseline; (-, -) represents the inner product between
vectors. Intuitively, the numerator is roughly a linear approximation to the covariance between
Vo log pr, and Vy f under Pp. In contrast, the denominator approximately measures the variance of
Vylogpr,, and € > 0 is included to enhance numerical stability. As a consequence, for the reverse
KL divergence, Vo f(7) = Vylogpr,(7), @ ~ 1 and the term corresponding to the expectation
of Vg f(7) vanishes. We empirically find that this approach frequently reduces the variance of the
estimated gradients by a large margin (see Figure 2 above and Section 5 below).

Leave-one-out estimator. We now focus on obtaining a low-variance estimate of
Erpp(s,,)[f(T)Velogpr, (T)]. As an alternative to the estimator of Proposition 2, Shi et al.
[85] and Salimans and Knowles [82] proposed a sample-dependent baseline of the form a(r;) =
= Y i<n<nNomzi f () fori € {1,..., N}. The resulting estimator,

1 & 1 >
5 = N ; f(Tn) — m Z f(Tj) Vg IngFe(Tn)v

J=1,j#i
is unbiased for E [f (1) Vg log pr, (7)] due to the independence between 7; and 7; for ¢ # j. Strikingly,
§ can be swiftly computed with autodiff: if f = (f(7,,))_; and p = (log pF, (Tn))ﬁlzl, then

n=1

1 1
(SZVQN <Sg (f—]v_l(]-_]:)f>7p>7 (7)

with sg as the stop-gradient operation (e.g., lax.stop_gradient in JAX [8] and torch.detach in
PyTorch [69]). Importantly, these techniques incur a minimal computational overhead to the stochastic
optimization algorithms relative to the considerable reduction in variance they enact.

Relationship with previous works. Importantly, Malkin et al. [56] used & = =+ >, f(7) as
baseline and an importance-weighted aggregation to adjust for the off-policy sampling of trajectories,
introducing bias in the gradient estimates and relinquishing guarantees of the optimization procedure.
A learnable baseline independently trained to match b was also considered. This potentially entailed
the inaccurate conclusion that the TB and DB are superior to standard divergence-based objectives.
Indeed, the following section underlines that such divergence measures are sound and practical
learning objectives for GFlowNets for a range of tasks.

Illustration of the control variates’ effectiveness. We train the GFlowNets using increasingly larger
batches of {2%: i € [[5,10]]} trajectories with and without CVs. In this setting, Figure 2 showcases
the drastic reduction in the variance, represented by the covariance matrix’s trace, of the estimated
learning objectives’ gradients w.r.t. the model’s parameters promoted by the CVs. Impressively, as
we show in Figure 6, this approach significantly increases the efficiency of the underlying stochastic
optimization algorithm. See Section 5 and Appendix D for further details.

S Training GFlowNets with divergence measures

Our experiments serve two purposes. Firstly, we show in Section 5.2 that minimizing divergence-
based learning objectives leads to competitive and often better approximations than the alternatives
based on log-squared violations of the flow network’s balance. This underlines the effectiveness
of well-established divergence measures for training GFlowNets [56, 112]. Secondly, we highlight
in Section 5.3 that the reduction of variance enacted by our control variates critically accelerates the
convergence of GFlowNets. We consider widely adopted benchmark tasks from GFlowNet literature,
described in Section 5.1, contemplating both discrete and continuous target distributions. Please
refer to Appendix B and Appendix E for additional information on the experimental setup.

5.1 Generative tasks

Below, we provide a high-level characterization of the generative tasks used for synthetic data genera-
tion and training. For a more rigorous description in the light of Section 2, see Appendix B.
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Figure 3: Divergence-based learning objectives often lead to faster training than TB loss. Notably,
contrasting with the experiments of [56], there is no single best loss function always conducting to
the fastest convergence rate, and minimizing well-known divergence measures is often on par with
or better than minimizing the TB loss in terms of convergence speed. Results were averaged across
three different seeds. Also, we fix o« = 0.5 for both Tsallis-« and Renyi-« divergences.

Set generation [3, 34, 65, 66]. A state s corresponds to a set of size up to a given .S and the terminal
states X" are sets of size S; a transition corresponds to adding an element from a deposit D to s. The
IGP starts at an empty set, and the log-reward of az € X'is ) ;. f(d) forafixed f: D — R.

Autoregressive sequence generation [32, 55]. Similarly, a state is a seq. s of max size S and a termi-
nal state is a seq. ended by an end-of-sequence token; a transition appends d € D to s. The IGP starts
with an empty sequence and, for x € X, logr(z) = Zi:l...|m| g(2) f (x;) for functions f, g.

Bayesian phylogenetic inference (BPI) [111]. A state s is a forest composed of binary trees with
labeled leaves and unlabelled internal nodes, and a transition amounts to joining the roots of two trees
to a newly added node. Then, s is terminal when it is a single connected tree — called a phylogenetic
tree. Finally, given a dataset of nucleotide sequences, the reward function is the unnormalized
posterior over trees induced by J&C69’s mutation model [37] and a uniform prior.

Hypergrid navigation [3, 55, 56, 66]. A state s € {0,..., H — 1}% is a component of a H-sized
and d-dimensional Euclidean grid. The IGP starts at 0 and, if we let §; be the i-th line of the identity
matrix and A(s) = {J;: ¢ € {1,...,d} Amax;(s+;); < H}, atransition either adds a § € A(s)
to s or stops at s. We use Malkin et al. [55, Section 5.1]’s reward function with R, = 1073,

Bayesian structure learning [15, 16]. A state s is a DAG representing a Bayesian network; a
transition either adds an edge to s or stops the IGP. Similarly to Deleu et al. [15], we ensure the added
edges preserve the state’s acyclicity. The reward function is defined as the maximum likelihood of the
linear Gaussian structural model induced by the current state based on a fixed i.i.d. data set.

Mixture of Gaussians (GMs) [48, 110]. The IGP starts at 0 € R? and proceeds by sequentially
substituting each coordinate with a sample from a real-valued distribution. For a K-component GM,
the reward of x € R? is defined as Y, _ ap N (x|, Sk) with a, > 0and >, ax = 1.

Banana-shaped distribution [57, 76]. We use the same IGP implemented for a bi-dimensional GM.
For z € R?, we set 7(x) to a normal likelihood defined on a quadratic function of x, see Equation 8
in the supplement. We use HMC samples as ground truth to gauge performance on this task.

5.2 Assessing convergence speed

Next, we provide evidence that minimizing divergence-based objectives frequently leads to faster
convergence than minimizing the standard TB loss [55].

Experimental setup. We compare the convergence speed in terms of the rate of decrease of a
measure of distributional error when using different learning objectives for a GFlowNet trained to
sample from each of the distributions described in Section 5.1. For discrete distributions, we adopt
the evaluation protocols of previous works [3, 54, 55, 66] and compute the L distance between the
learned pr(x; 0) and target r(x), namely, >, [pr(z;0) — 7(2)/z|. To approximate pr, we use a
Monte Carlo estimate of pr(x;60) = E.p,(4,.) [Pre(TIs0:0)/pp(r|x)]. For continuous distributions,
we echo [48, 110] and compute Jensen-Shannon’s divergence between Pr(z;6) and R(z):

D]S[PT”R] = 1/2 (DKL[PTHM] + DKL[RHM]) = EP [IOgPT(“C)/m(w)] + ER [log T(-T)/Zm(m)] s
x~Pr T~
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Figure 4: Average reward for the K highest scoring samples (top-K) and Number of Modes found
during training for the tasks of sequence design, set generation, hypergrid and DAG environments.
With the only exception of the hypergrid task, the minimization of divergence-based measures leads to
similar and often faster discovery of high-valued states relatively to their balance-based counterparts.

Tsallis-cv Renyi-a Reverse KL Forward KL Target
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25 2.5

—25 0.0 25
Figure 5: Learned distributions for the banana-shaped target. Tsallis-a, Renyi-« and for. KL
leads to a better model than TB and Rev. KL, which behave similarly — as predicted by Proposition 1.

with M (B) = 1/2(Pr(B) + R(B)/R(x)) being the averaged measure of Pr and R and m its
corresponding density relatively to the reference measure p. Remarkably, for the GMs distri-
bution, we can directly sample from the target to estimate D, [R||M], and the autoregressive
nature of the generative process ensures that pr(x) = pg,(7|s,) for the unique trajectory
7 starting at s, and finishing at . Hence, we get an unbiased estimate of Dy, [Pr||M].
Finally, let X; be the first ¢ terminal states encountered during training and {x(l), . ,x(k)}
be an descending ordering of X; according to r. Then, we select a threshold 7 € R and an
integer K to report NoM(X;) = |{r(z): r(z) > 7 Ax € X;}|, called number of modes, and
TopK(X¢) = AVG ({r(z(;): 1 < i < K}), referred to as top-K average reward. Both NoM and
TopK are metrics of substantial interest in the GFlowNet literature [3, 55, 56, 64, 65].

Results. Figure 3 shows that the procedure min-

imizing dlvergence based measures accelerates  Taple 1: Divergence minimization achieves better

th_e training convergence of GFlowNer, \.Nhereas than or similar accuracy compared to enforcing
Figure 5 (for the banana-shaped distribution) TR,

and Table 1 highlight that we obtain a more ac-

curate model with a fix compute budget. The dif- - ‘ . 2];P 1| Soeglglences \ . 0576‘5 \ . 3GlMS
. . . . . . +0.04 . +0.06 . +0.00 . +0.08
f.erence between learnlng ObJCCtheS 18 nOt Statls- ReV. KL 0.21*‘).[)] 0.16+(1.(D(i 0.03‘#\'1'('[1 0.31*(7.1}‘]
tically significant for the BPI task. Also, we may  For. KL | 0.22:0.01 | 0.23+0.12 | 0.0320.00 | 0.09-0.10
attribute the superior performance of reverse KL Ren}{l-a 0.22+0.03 | 0.23+0.10 | 0.03+0.00 | 0.19+0.13
Tsallis-«v | 0.21+0.04 | 0.22+0.09 | 0.03+0.00 | 0.21+0.11

compared to the forward in the sequence genera-
tion task to the high variance of the importance-
sampling-based gradient estimates. Indeed, the observed differences disappear when we increase the
batch of trajectories to reduce the estimator’s variance (see Figure 8 in Appendix D). In conclusion,
our empirical results based on experiments testing diverse generative settings and expanding prior
art [48, 56, 112], shows that training methods based on minimizing f-divergence VI objectives with
adequate CVs implemented are practical and effective in many tasks. Correlatively, Figure 4 supports
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Figure 6: Learning curves for different objective functions in the task of set generation. The
reduced variance of the gradient estimates notably increases training stability and speed.

the fact that minimizing divergence-based objectives frequently implies better coverage of the target’s
high-probability regions; the only exception is the (extremely sparse) hypergrid task [55].

5.3 Reducing the variance of the estimated gradients

Figure 2 demonstrates that implementing CVs for the REINFORCE estimator reduces the noise level
of gradient estimates significantly. This reduction in variance also accelerates training convergence.
To illustrate this, we use the same experimental setup from Section 5.2 and analyze the learning
curves for each divergence measure with and without control variates.

Results. Figure 6 shows that the implemented gradient reduction techniques significantly enhance
the learning stability of GFlowNets and drastically accelerate training convergence when minimizing
the reverse KL divergence. Our results indicate that well-designed CVs for gradient estimation can
greatly benefit GFlowNets training. Notably, similar improvements have been observed in the context
of Langevin dynamics simulations [22, 31, 44] and policy gradient methods for RL [68, 100].

6 Conclusions, limitations and broader impact

Discussion. We showed in a comprehensive range of experiments that divergence measures common
in VI — forward KL, reverse KL, Renyi-«, and Tsallis-o« — are effective learning objectives for
training GFlowNets, performing competitively with or better than their balance-based counterparts.
To achieve this, the introduction of efficacious control variates for low-variance gradient estimation of
the divergence-based objectives was crucial, which is a key distinction between our work an prior art
[55, 112]. Additionally, we developed the theoretical connection between GFlowNets and VI beyond
the setting of finitely supported measures, establishing results for arbitrary topological spaces.

Limitations. Albeit comprehensive and on par with the wider literature, our empirical evaluation
was performed on problems of relatively small size due to the intractability of probing a GFlowNet’s
distributional accuracy on very large state spaces. That said, we acknowledge that an assessment
on the domains of natural language processing [30] and drug discovery [3] based on context-specific
metrics would strengthen our conclusions; we leave these tasks to future endeavors. Similarly, while
we observed promising results for & = 0.5, there might be different choices of « that, depending
on the application, might strike a better explore-exploit tradeoff and incur faster convergence. Thus,
thoroughly exploring different o might be especially useful to practitioners.

Broader impact. Overall, our work highlights the potential of the once-dismissed VI-inspired
schemes for training GFNs, paving the way for further research towards improving the GFlowNets by
drawing inspiration from the VI literature. For instance, one could develop x-divergence-based losses
for GFNs [19], combine GFNs with MCMC using Ruiz and Titsias [81]’s divergence, or employ an
objective similar to that of importance-weighted autoencoders [10]. Finally, although an e-greedy
off-policy sampling scheme can be easily incorporated into a divergence-minimizing algorithm
through an importance-sampling correction, it remains elusive whether this would be possible for
more sophisticated sampling techniques such as replay buffer [15] and local search [40].
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A Related works

Generative Flow Networks. GFlowNets [3, 4] were initially proposed as a reinforcement learning
algorithm for finding diverse high-valued states in a discrete environment by sampling from a
distribution induced by a reward function. Shortly after, they were extended to sample from complex
distributions in arbitrary topological spaces [48]. Remarkably, this family of models was successfully
applied to problems as diverse as structure learning and causal discovery [13, 15, 16], discrete
probabilistic modeling and graphical models [24, 29, 107, 108], combinatorial optimization and
stochastic control [109, 110], drug discovery [3, 33, 62], design of biological sequences [32], natural
language processing [30], and aerial scene classification [23]. Concomitantly to these advances,
there is a growing literature concerned with the development of more efficient training algorithms
for GFlowNets [4, 40, 55, 84] — primarily drawing inspiration from existing techniques in the
reinforcement learning literature [60, 65, 66, 87]. In the same spirit, Tiapkin et al. [87] showed it is
possible to frame GFlowNets as an entropy-regularized reinforcement learning. In a study closely
related to ours, Malkin et al. [56] proved the equivalence between GFlowNets and hierarchical
variational inference (HVI) for discrete distributions; however, when training GFlowNets using
divergence-based methods from the VI literature, the authors found no improvement relatively to
the traditional flow-matching objectives. Thus, extending beyond discrete distributions, this work
provides a definitive analysis of training GFlowNets by directly optimizing a set of divergences
typically employed in variational inference training, given a clear context and conditions for effective
use of divergence objectives for efficient learning procedures applied on GFlowNets models.

Reinforcement Learning as Inference. Reinforcement Learning (RL) has been studied as a form
of probabilistic inference extensively, generating relevant insights in the literature, and alternatively
referred to as control as inference. Todorov [88] demonstrates a duality between estimation and
optimal control, establishing conditions where estimation algorithms could applied for control
problems. Kappen et al. [38] demonstrated that optimal control problems could be framed as
inference problems in graphical models, providing a unified perspective for solving control tasks.
Levine [50] presents a complete and modern RL formulation, linking with VI in particular. Rudner
et al. [80] integrates even further RL with VI methods, demonstrating the conceptual and algorithmic
gains of leveraging outcome-driven RL with variational inference to optimize policy distributions.
Developing further, Toussaint and Storkey [89] applies approximate probabilistic inference methods
to solve Markov Decision Processes (MDPs) with discrete and continuous states. The approach
also aligns with model-based RL techniques, such as PILCO, which utilizes probabilistic models to
enhance data efficiency in policy search [14]. Recent work by Deleu et al. [17] positions discrete
probabilistic inference as a control problem in multi-path environments, highlighting the synergy
between control theory and probabilistic modeling in the context of GFlowNets. This body of works
relates to the approach presented in this paper, comparing optimization of trajectory balance and
flow-matching losses related to sequential decisions modeled by the GFlowNet with f-divergence
measures minimization procedures — related to approximated variational inference and generalized
posterior inference [36, 45, 51, 92, 95].

Divergence measures and gradient reduction for VI. Approximate inference via variational
inference (VI) methods [6, 7, 36, 92] initially relied on message passing and coordinate ascent methods
to minimize the KL divergence of an unnormalized distribution and a proposal in a parameterized
tractable family of distributions. Despite the initial generality of the optimization perspective, the
concrete implementation of algorithms often requires specialized update equations and learning
objectives for specific classes of models. On the other hand, the development of algorithms and
software for automatic differentiation [2] and stochastic gradient estimators [59] unlocked the
potential application of generic gradient-based optimization algorithms in inference and learning
tasks for a comprehensive class of models. Seminal works such as Black-Box VI (BBVI) [71], using
the REINFORCE/score function estimator, and Automatic Differentiation VI (ADVI) [46], using
reparameterization and change-of-variables, demonstrated practical algorithms for Bayesian inference
in generic models, including models combining classical statistical modeling with neural networks.
Overall, Mohamed et al. [59] explain the development of the main gradient estimators: the score
function [11, 71, 97, 103], and the pathwise gradient estimator, also known as the parametrization
trick [42, 43, 75]. The vanilla REINFORCE/score function estimator has notoriously high variance
[11, 71,77, 97], which prompted a body of work exploring variance reduction techniques. In the
original BBVI proposal, Ranganath et al. [71] explored Rao-Blackwellization, combining iterated
conditional expectations and control variates, using the score function estimator (given its zero
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expectation) as a control variate. Subsequent works have continued to refine these techniques;
Liu et al. [53] uses Rao-Blackwellized stochastic gradients for discrete distributions, while Kim
et al. [39] and Wang et al. [93] explored joint control variates and provable linear convergence
in BBVI. Additionally, Domke [21] and Domke [20] provided smoothness and gradient variance
guarantees, further enhancing the robustness of score function estimator for VI methods. Our work
demonstrates that effective variance reduction techniques applied to a f-divergence minimization
training can significantly enhance the convergence speed and stability of the procedure. In theory
and practice, we observed high compatibility between our results of variance-reduced f-divergence
GFlowNets training and the body of work of variance-reduced score-function estimators for VI.
Furthermore, by showing that these techniques apply to a broad class of models and optimization
objectives, including continuous and mixed structured supports, we move GFlowNets’ f-divergence
minimization training closer to recent notions of generalized Bayesian inference and generalized
VI[45] and variational inference in function spaces [95] — with the common thread of casting posterior
inference as an optimization problem guided by some divergence measure. This generalization can
enable applications of GFlowNets to a diverse range of machine learning tasks, enhancing their
versatility and practical relevance.
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B Detailed description of the generative tasks

Set generation [3, 34, 65, 66]. S contains the sets of size up to N with elements extracted from a
fixed deposit D of size D > N and s, = (). For s € S with |s| < N, (s, -) is a counting measure
supported at (the o-algebra induced by) {s U {d}: d € D\ s}; for [s| = N, ry(s,-) = ds,. Then,
X ={s € S:|s| = N}. Similarly, xp(s,)’s supportis {s \ {d}: d € D} for s # s,. We define
the unnormalized target’s density by logr(z) = >_ ., f(d) for a fixed function f: D — R. We
parameterize pr(s, -) as a deep set [105] and fix pp(s, -) as a uniform density for s € S.

Autoregressive sequence generation [32, 55]. A sequence s in D™, for any K > n, is bijectively
associated to an element of D X [K] by s — {(s;,m): 1 <m <n}U{(L,m): K >m>n};
1 is a token denoting the sequence’s end. In this context, we let S C P(D x [N + 1]) be the
set of sequences of size up to N, i.e.,if s € Sand (L,n+ 1) € s, then (d,m) € siffd = L
forn < m < N + 1 and there is v € (D U {L})" such that (v,,, m) € s for m < n; the initial
state is s, = (). For conciseness, we write d ¢ s, meaning that (d,7) ¢ s for every i. Next,
kf(s,-) is the counting measure supported at {s U {(d,|s| +1)}: d € DU{L}}if |s| < N and
L ¢syat{sU{(L,N+1)}}if |s|] = N;and at {s;} otherwise. Thus, ¥ = {s € S: L € s}.
Also, ky(s,-) is supported at {s \ {(d,|s|)}: d € D}, which has a single element corresponding
to the removal of the element of s of the largest index. On the other hand, the target’s density is
logr(2) = X (4.i)ex: azr f(d)g(i) for functions f,g: D — R. We employ an MLP to parameterize

pr(s,-).

Bayesian phylogenetic inference (BPI) [111]. A (rooted) phylogeny is a complete binary tree
with labeled leaves and weighted edges; each leaf corresponds to a biological species, and the
edges’ weights are a measurement of evolutionary time. Formally, we let 13 be the set of ob-
served biological species and Vg be the set of |B] + 1 unobserved species. Next, we repre-
sent a phylogeny over B as a weighted directed tree Gg = (B U Vg, Eg,wp) with edges E
featured with a weight assignment wg; we denote its root by r(G). Under these conditions,

we define § = {Ule Gr,: Uy Fr =BAGr, isa tree} as the set of forests built upon phy-
logenetic trees over disjoint subsets of B; | | represents a disjoint union of non-empty sets and
50 = Upep Gyoy is the forest composed of singleton trees Gy Also, we define the amalga-
mation of phylogenies Gz, and Gz, A(GF,,Gz,), as the tree obtained by joining their roots
r(GF,) and 7(G£,) to a new node r(Gz, U Gx,), with a corresponding extension of the edges’

weights. In contrast, the dissolution of a tree Gr, R(Gx), returns the union of the two sub-
trees obtained by removing r(Gr) from Gx. Then, ks(s,-) is the counting measure supported

at {Ui.il,k#,j Gr UA(Gr,Gz): (irj) € [K]?, i #j} with s = UK Gr, and K > 2; if
s = Gg, kf(s,") = ds,. Hence, X' is the set of phylogenies over B. Likewise, #y(s, -)’s support is
{UkK:Lk,# Gr, UR(Gg,): i € [K]Ar(GF,) ¢ B} for s = Ji_, G, and K < |B|. Finally, the
unnormalized target is the posterior distribution defined by JC69’s mutation model [37] given a data
set of genome sequences of the species in 3. More specifically, we let the prior be a uniform distribu-
tion and compute the model-induced likelihood function by the efficient Felsenstein’s algorithm [25].

We assume the edges’ weights are constant. See [101] for further details. We parameterize pp (s, -)
with GIN [99] and fix pg (s, -) as an uniform distribution.

Mixture of Gaussians [48, 110]. The training of GFlowNets in continuous spaces is challenging,
and the problem of designing highly expressive models in this setting is still unaddressed [16, 48].
However, as we show in Section 5.2, divergence-based measures seem to be very effective learning
objectives for autoregressive sampling of a sparse mixture of Gaussians. For a d-dimensional
Gaussian distribution, S = {{(0,0), (z;,7): 1 <i<n},:n <d, x € R"} C {(0,0)}UPRx[d])
and s, = (0,0); note S is isomorphic to R%. Also, for s = {(z;,4)}" 1, (s, ") is Lebesgue’s
measure at {s U (z,n +1): x € R} if n < d and ky(s,-) = J,, otherwise. In particular, X =
{s € §: max(, ;)es i = d}. Moreover, xy(s,-) is a measure on {s \ (z,]s]): = € R}, which is
isomorphic to R, which is a singleton. We define the target’s density with a homogeneous mixture of
Gaussian distributions, & S | AV/(u;, 0%1) with ; € R%. We similarly define Pr (s, -) as a mixture
of one-dimensional Gaussians with mean and variance learned via an MLP [48].
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Banana distribution. [57, 76] We consider sampling from the banana distribution, defined by

1B o 1) ®

Given its geometry and shape, this distribution is a common baseline in the approximate Bayesian
inference literature [90, 104, 106]. This task is identical to sampling from a mixture of Gaussian
distributions, except for the different target density specified by the model in Equation (8). Also, we
rely on the implementation Hamiltonian Monte Carlo (HMC) [5, 61] provided by Stan [12] to obtain
accurate samples from (8).

A similar description may be utilized for the hypergrid and structure learning domains.
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C Proofs

We will consider the measurable space of trajectories (Ps, X p), with Ps = {(s,81,...,8n,5f) €

8"t x {sf}: 0 <n < N —1} and Tp as the o-algebra generated by UN+1 ¥®"_ For notational
convenience, we use the same letters for representing the measures and kernels of (S, X) and their
natural product counterparts in (Ps, X p), which exist by Carathéodory extension’s theorem [96];
for example, v(B) = v®™(B) for B = (By,...,B,) € ¥®" and pr,(7|s,;0) is the density of
P2 (5,,-) for 7 = (80,81, - - ., 8, s7) relatively to 4®™. In this case, we will write 7 for a generic
element of Pgs and x for its terminal state (which is unique by Definition 1).

C.1 Proof of Proposition 1

We will show that the gradient of the expected on-policy TB loss matches the gradient of the KL
divergence between the forward and backward policies. Firstly, note that

T|S0; 6
VoDrL[Pr||PB] = VoEr pu(s,,) {log pF(|)]
pe(7)

=V / log 2ET1500) 4 p )
T PB (T)

:Vg/logwpp(ﬂso;ﬁ)dnf(so,dﬂ
T pB(T)

— /Vg log piF(ﬂso;e)PF(so,dT)
T pB(T)

pF(T|So;9)
+ | log—/————=V So;0)dKf(so,d
[ 108 PTG s 0)de (5, )

by Leibniz’s rule for integrals and the product rule for derivatives. Then, since Vyf(0) =
f(0)V log f(0) for any differentiable function f: 6 — f(6),

Vo¢Dxkr [Pr||Ps]
Pr(T]30) }
——Vy 1 o

p5(7) 9logpr(7|s,)
= E [log ]L(ﬂso)

Vo lo T|S0) | ;
TPr(50,7) pe(r) ’ epe(r] ﬁ

= E )[VelogpF(TISo)Jrlog

T~PF (50,

©))

we omitted the dependency of Pr (and of pp thereof) on the parameters 6 for conciseness. On the

other hand,
Pr(T]5036)

VoLlrp(r;0) =2 (log p—

by the chain rule for derivatives. Thus,
Erpp(s,,)VoLrp(T;0) = 2VoDi L[Pr||PB], (1)

ensuring that the equivalence between Lrp and Dy, in terms of expected gradients holds in a
context broader than that of finitely supported distributions [56].

) Vo logpr(T) (10)

C.2 Proof of Lemma 1

Henceforth, we will recurrently refer to the score estimator for gradients of expectations [97],
namely,

Vo E  [fo(n)]=_E  [Vafo(r)+ fo(T)Vologpr(r]so; 0)], (12)

T~Pp(0,") T~Pp (80,")

which can be derived using the arguments of the preceding section. In this context, the Renyi-a’s
divergence satisfies
v9E7~PF(sU7-) [g(T7 9)]

(Oé - 1)ET~PF(SO,~)9(T7 9) ’
with g(7;0) = (P&l (@)/pp(r]s,:0)' " and a # 1; similarly, the Tsallis-o’s divergence abides
by

VoRo(Pr||Pp) =

VoTo(Pr||PB) = VB pp(sy,)9(T,0)]. (13)

R
(@-1)
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The statement then follows by substituting VoE, . p,. (s, .. [g(7, )] with the corresponding score
estimator given by Equation (12).

C.3 Proof of Lemma 2

Forward KL divergence. The gradient of Dy [ Pg||Pr] is straightforwardly obtained through the
application of Leibniz’s rule for integrals,

VoDrr|[Pp||Pr] = —E;ps(s;,) [Vologpr(Tse; 0)]
since the averaging distribution P do not depend on the varying parameters . However, as we
compute Monte Carlo averages over samples of Pr, we apply an importance reweighting scheme [63,
Chapter 9] to the previous expectation to infer that, up to a positive multiplicative constant,

pa(r|z)r(z )V log pp (7|0 9):| ’

pF(T|SO7 )

with £ denoting equality up to a positive multiplicative constant. We emphasize that most modern
stochastic gradient methods for optimization, such as Adam [41] and RMSProp [28], remain un-
changed when we multiply the estimated gradients by a fixed quantity; thus, we may harmlessly
compute gradients up to multiplicative constants.

Vo¢Dk 1| Psl||Pr] < —ErnPp(so,) {

Reverse KL divergence. We verified in Equation (9) that

7|8,
VoDi 1 Prl|Ps] = Erpp(o,) {log pgé('))vgsa(ﬂ} .
Since pp(7) = pp(7|z)"@)/z and B, p,(s,,.)Vose(T) = 0, the quantity VoD 1[Pr||Pp] may be
rewritten as |
So

VoDkL|Pr||Pp] = Erupp(s,,) [log
+ET~PF(9 [( )VGSQ( )}

= (0] 71)}?( | O) So(T
= Eoerie o8 T Vo)

in which z is the terminal state corresponding to the trajectory 7. Thus proving the statement in
Lemma 2.

Vos (1)

C.4 Proof of Proposition 2

We will derive an expression for the optimal baseline of a vector-valued control variate. For this, let f
be the averaged function and g: 7 — ¢(7) be the control variate. Assume, without loss of generality,
that E,.[g] = 0 for the averaging distribution 7 over the space of trajectories. In this case, the optimal
baseline for the control variate a* is found by
a* = argmin Tr (Cov, . [f(7) —a - g(7)]) . (14)
acR
Thus,

a* = argmin Tr( —2a - Cove[f(7),9(T)] + aQCov,r(g(T))>7
a€R
which is a convex optimization problem solved by

o = Tr(Covalf(7), 9(7)])
Tr (Covr[g(T

15)

Exlg(r)Tg(r)] 7
in which we used the circular property of the trace. This equation exactly matches the result in Propo-
sition 2. In practice, we use g(7) = Vg log pr (1) for both the reverse KL- and a-divergences, render-
ing a baseline a* that depends non-linearly on the sample gradients and is hence difficult to compute
in a GPU-powered autodiff framework efficiently. We thus use Equation (6) to estimate a*.
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Figure 7: Learning curves for a GFlowNet trained by minimizing the TB loss. The curves’
smoothness highlights the low variance of the optimization steps incurred by the stochastic gradients
of L1, which do not use a score function estimator.

Target

a= -5 a=-1 a=0.5 a=5.0

Figure 9: Additional illustration of the effect of o when learning GFlowNets by minimizing the
Renyi-a divergence in the hypergrid environment. For such a sparse target distribution, a large
and negative value of « (left) is beneficial to ensure that all modes are appropriately covered by the
learned distribution. In contrast, the mode-seeking behavior induced by a large value of « entails
the collapse of the model in a single mode (right).

D Additional experiments

Gradient variance for flow-network-based objectives. Figure 7 shows the learning curve for the
TB loss in each of the generative tasks. Notoriously, it underlines the low variance of the optimization
steps — which, contrarily to their divergence-based counterparts, do not rely on a score function
estimator — and suggests that the design of control variates for estimating the gradients of these
objectives would not be significantly helpful. Also, the gradient of L7 depends non-linearly on the
score function log pr and, consequently, it is unclear how to implement computationally efficient
variance reduction techniques in this case.

Forward KL for sequence generation. Figure 3 shows that ‘ Sequences
alternative approaches in terms of convergence speed outperformed 2 LB 14k
a GFlowNet trained to minimize the forward KL. One possible ]1:; i
cause of this underperformance is the high variance induced by the - — Teallis-a
underlying importance sampling estimator. To verify this, we re-run = — TB

the corresponding experiments, increasing the size of the batch of

trajectories for the forward KL estimator to 1024. Figure 8 presents k—
the experiment’s results, with an increased batch size corresponding 0% 2000

to an estimator of smaller variance that accelerates the GFlowNet’s Epochs

training convergence. More broadly, this suggests that the design of
GFlowNet-specific variance reduction techniques, which we leave to  Figure 8: Results for sequence
future endeavors, may further improve this family of models. generation with larger batches.

Influence of o on the learning of GFlowNets. As mentioned earlier, divergence-based measures
fall short compared to their balance-based counterparts for the hypergrid navigation task. For this
extremely sparse problem, the benefits from off-policy exploration during training seem to supersede
the statistical efficiency enacted by the minimization of divergences, which fail to properly cover the
high-probability regions of the target distribution. In this scenario, Figure 9 suggests that this issue
can be mildly circumvented by choosing a sufficiently negative « for the Renyi-« divergences, thereby
imposing a mass-covering behavior to the learned model. However, these results should be substan-
tiated by further experimental analysis to be conclusive. Currently, we would suggest a practitioner
to stick to the balance-based objectives when dealing with very sparse target distributions.
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E Experimental details

The following paragraph provides further implementation details. Regarding open access to the code,
we will make the code public upon acceptance.

Shared configurations. For every generative task, we used the Adam optimizer [41] to carry out
the stochastic optimization, employing a learning rate of 10~! for log Zy when minimizing L7 5
and 1072 for the remaining parameters, following previous works [48, 55, 56, 66]. We polynomially
annealed the learning rate towards O along training, similarly to [86]. Also, we use LeakyReLU [98]
as the non-linear activation function of all implemented neural networks.

Set generation. We implement an MLP of 2 64-dimensional layers to parameterize the policy’s logits
log pr(s, ). We train the model for 512 epochs with a batch of 128 trajectories for estimating the
gradients. Also, we let D = 32 and N = 16 be the source’s and set’s sizes, respectively.

Autoregressive sequence generation. We parameterize the logits of the forward policy with a MLP
of 2 64-dimensional layers; we pad the sequences to account for their variable sizes. We respectively
consider D = 8 and N = 6 for the source’s and sequence’s sizes. To approximate the gradients, we
rely on a batch of 128 sequences.

Bayesian phylogenetic inference. We parameterize the logits of the forward policy with a 2-layer
GIN [99] with a 64-dimensional latent embedding, which is linearly projected to log pr. Moreover,
we simulated the JC69 model [37] to obtain 25-sized sequences of nucleotides for each of the 7
observed species, setting A = 0.3 for the instantaneous mutation rate; see [101] for an introduction
to computational phylogenetics and molecular evolution. To estimate the gradients, we relied on
batches of 64 trajectories.

Hypergrid navigation. We consider a H = 12 for Figure 3 and Figure 4 and H = 9 for Figure 9. In
both cases, d = 2 and R, = 1072; see [55, Section 5.1]. To parameterize the policy, we used a 2-layer
256-dimensional MLP with ReLU activations. We trained the models for 10000 epochs.

Bayesian structure learning. We simulated a 100-sized 5-variable data set X from a randomly
parameterized linear Gaussian structural model based on a fixed Bayesian network. We implemented
a 2-layer 256-dimensional MLP with ReLU activations for the policy network, which received the
flattened adjacency matrix of the current state as input. Training lasted for 4000 epochs.

Mixture of Gaussian distributions. We consider a mixture of 9 2-dimensional Gaussian distributions
centered at p1;; = (i, j) for 0 < i, j < 2, each of which having an isotropic variance of 107'; see
Figure 1. We use an MLP of 2 64-dimensional layers to parameterize the forward policy.

Banana-shaped distribution. The model is specified by Equation (8). We also consider an MLP of
2 64-dimensional layers to parameterize the forward policy.
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Justification: The middle paragraph in Section 6 discusses limitations, including the potential
impact of different o values and the need for further exploration in this area.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The statements of the propositions and lemma include the assumptions, as well
as in the notations and definitions presented in Section 4, and proofs provided in Appendix C.

Guidelines:
» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Details are provided in Section 5, Appendix B and Appendix E.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Provided in a zip file during the review period, with the plan for public release
once the paper is made public.

Guidelines:
* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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Justification: Section 5 in the main text presents information about the experiments with full
details provided in Appendix B and Appendix E, and supplemented zip-file with the code.

Guidelines:
* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Plots count on error bars and tables count on standard deviation.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: First paragraph of Appendix E.
Guidelines:
* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
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0.

10.

11.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our submission follow the NeurIPS ethical guidelines.
Guidelines:
* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide a perspective on broader impacts in Section 6, but do not foresee
any direct negative societal impact.

Guidelines:
* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: We do not foresee any direct risk stemming from our work.
Guidelines:
» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: All code was made by the authors
Guidelines:
» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets.
Guidelines:
» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

15.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No experiments with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No experiments with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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