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ABSTRACT

While adversarial training methods have resulted in significant improvements
in the deep neural nets’ robustness against norm-bounded adversarial perturba-
tions, their generalization performance from training samples to test data has been
shown to be considerably worse than standard empirical risk minimization meth-
ods. Several recent studies seek to connect the generalization behavior of adver-
sarially trained classifiers to various gradient-based min-max optimization algo-
rithms used for their training. In this work, we study the generalization perfor-
mance of adversarial training methods using the algorithmic stability framework.
Specifically, our goal is to compare the generalization performance of vanilla ad-
versarial training scheme fully optimizing the perturbations at every iteration vs.
the free adversarial training simultaneously optimizing the norm-bounded pertur-
bations and classifier parameters. Our proven generalization bounds indicate that
the free adversarial training method could enjoy a lower generalization gap be-
tween training and test samples due to the simultaneous nature of its min-max
optimization algorithm. We perform several numerical experiments to evaluate
the generalization performance of vanilla, fast, and free adversarial training meth-
ods. Our empirical findings also show the improved generalization performance of
the free adversarial training method and further demonstrate that the better gen-
eralization result could translate to greater robustness against black-box attack
schemes and higher transferability of the adversarial examples designed for free
adversarially trained neural networks.

1 INTRODUCTION

While deep neural networks (DNNs) have led to remarkable results in standard supervised learn-
ing tasks in computer vision and natural language processing, they are widely recognized to be
susceptible to minor adversarially-designed perturbations to their input data commonly regarded as
adversarial attacks (Szegedy et al., 2013; Goodfellow et al., 2014). Adversarial examples are typi-
cally designed by finding the worst-case norm-constrained perturbation that leads to the maximum
impact on the classification loss at an input data point. To combat norm-bounded adversarial at-
tacks, adversarial training (AT) methods (Madry et al., 2017) which learn a DNN classifier using
adversarially-perturbed training examples have been shown to significantly improve the robustness
of a DNN against norm-bounded adversarial attacks. Several variants of AT methods have been
developed in the machine learning community to accelerate and facilitate the application of AT
algorithms to large-scale machine learning problems (Shafahi et al., 2019; Wong et al., 2020).

While AT algorithms have achieved state-of-the-art robustness scores against standard norm-
bounded adversarial attacks, the generalization gap between their performance on training and test
data has been frequently observed to be significantly greater than the generalization error of DNNs
learned by standard empirical risk minimization (ERM) (Schmidt et al., 2018; Raghunathan et al.,
2019). To understand the significant generalization gap in adversarial training, several theoretical
and empirical studies have focused on the generalization properties of adversarially-trained models
(Yin et al., 2019; Rice et al., 2020). These studies have attempted to analyze the generalization error
in learning adversarially-robust models and reduce the generalization gap by applying explicit and
implicit regularization techniques such as early stopping and Lipshcitz regularization methods.
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Specifically, several recent works (Lei et al., 2021; Farnia & Ozdaglar, 2021; Xiao et al., 2022b) have
focused on the connections between the optimization and generalization behavior of adversarially-
trained models. Since adversarial training methods use adversarial training examples with the worst-
case norm-bounded perturbations, they are typically formulated as min-max optimization problems
where the classifier and adversarial perturbations are the minimization and maximization variables,
respectively. To solve the min-max optimization problem, the vanilla AT framework follows an itera-
tive algorithm where, at every iteration, the inner maximization problem is fully solved for designing
the optimal perturbations and subsequently, a single gradient update is applied to the DNN’s param-
eters. Therefore, the vanilla AT results in a non-simultaneous optimization of the minimization and
maximization variables of the underlying min-max problem. However, the theoretical generaliza-
tion error bounds in (Farnia & Ozdaglar, 2021; Lei et al., 2021) suggest that the non-simultaneous
optimization of the min and max variables in a min-max learning problem could lead to a greater
generalization gap. Therefore, a natural question is whether an adversarial training algorithm with
simultaneous optimization of the min and max problems can reduce the generalization gap.

In this work, we focus on a widely-used variant of adversarial training proposed by Shafahi et al.
(2019), adversarial training for free (free AT), and aim to analyze its generalization behavior com-
pared to the vanilla AT approach. While the vanilla AT follows a sequential optimization of the
DNN and perturbation variables, the Free AT approach simultaneously computes the gradient of
the two groups of variables at every round of applying the backpropagation algorithm to the multi-
layer DNN. We aim to demonstrate that the mentioned simultaneous optimization of the classifier
and adversarial examples in free AT could translate into a lower generalization error compared to
vanilla AT. To this end, we provide theoretical and numerical results to compare the generalization
properties of vanilla vs. free AT frameworks.

On the theory side, we leverage the algorithmic stability framework (Bousquet & Elisseeff, 2002;
Hardt et al., 2015) to derive generalization error bounds for free and vanilla adversarial training
methods. The shown generalization bounds suggest that in the nonconvex-nonconcave regime, the
free AT algorithm could enjoy a lower generalization gap than the vanilla AT, since it applies si-
multaneous gradient updates to the DNN’s and perturbations’ variables. We also develop a similar
generalization bound for the fast AT methodology (Goodfellow et al., 2014) which uses a single gra-
dient step to optimize the perturbations. Our theoretical results suggest a comparable generalization
bound between free and fast AT approaches.

Finally, we present the results of our numerical experiments to compare the generalization perfor-
mance of the vanilla, fast, and free AT methods over standard computer vision datasets and neural
network architectures. Our numerical results also suggest that the free AT method results in a con-
siderably lower generalization gap than the vanilla AT and relatively improves the generalization
performance over the fast AT algorithm. While the lower generalization error of free AT does not
lead to a significant improvement of the test accuracy under white-box PGD attacks, our empirical
results suggest that the networks trained by free AT result in a higher test accuracy under standard
black-box adversarial attacks. Furthermore, our numerical findings indicate that the adversarial per-
turbations designed for DNNs trained by free AT could transfer better to an unseen target neural net
classifier than those optimized for DNNs trained according to vanilla and fast AT. We can summarize
this work’s contributions as follows:

• Leveraging the algorithmic stability framework to analyze the generalization behavior of the free
AT algorithm,

• Providing a theoretical comparison of the generalization properties of the vanilla, fast, and free
AT methods,

• Numerically analyzing the generalization and test performance of the free vs. vanilla AT schemes
under white-box and black-box adversarial attacks.

2 RELATED WORK

Generalization in Adversarial Training: Since the discovery of adversarial examples (Szegedy
et al., 2013), a large body of works has focused on training robust DNNs against adversarial pertur-
bations (Goodfellow et al., 2014; Carlini & Wagner, 2017; Madry et al., 2017; Zhang et al., 2019).
Shafahi et al. (2019) proposed “free” adversarial training algorithm to update the neural net and
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adversarial perturbations simultaneously, and Wong et al. (2020) proposed “fast” algorithm, both
of which were originally aimed at reducing the computational cost of adversarial training. Com-
pared to standard training, the overfitting in adversarial training is shown to be significantly more
severe (Rice et al., 2020). A line of works analyzed adversarial generalization through the lens of
uniform convergence analysis such as via VC-dimension (Montasser et al., 2019; Attias et al., 2022)
and Rademacher complexity (Yin et al., 2019; Farnia et al., 2018; Awasthi et al., 2020; Xiao et al.,
2022a). Schmidt et al. (2018) proved tight bounds on the adversarially robust generalization error
showing that vanilla adversarial training requires more data for proper generalization than standard
training. Xing et al. (2022) studied the phase transition of generalization error from standard train-
ing to adversarial training. Also, the reference (Andriushchenko & Flammarion, 2020) discusses the
catastrophic overfitting in the Fast AT method.

Uniform Stability: Bousquet & Elisseeff (2002) developed the algorithmic stability framework to
analyze the generalization performance of learning algorithms. Hardt et al. (2015) further extended
the algorithmic stability approach to stochastic gradient-based optimization (SGD) methods. Bassily
et al. (2020); Lei (2023) analyzed the stability under non-smooth functions. Some recent works
applied the stability framework to study the generalization gap of adversarial training, while they
mostly assumed an oracle to obtain a perfect perturbation and focused on the stability of the training
process. Xing et al. (2021) analyzed the stability by shedding light on the non-smooth nature of
the adversarial loss. Xiao et al. (2022b) further investigated the stability bound by introducing a
notion of approximate smoothness. Based on this result, Xiao et al. (2022c) proposed a smoothed
version of SGDmax to improve the adversarial generalization. Xiao et al. (2023) utilized the stability
framework to improve the robustness of DNNs under various types of attacks.

Generalization in minimax learning frameworks: The generalization analysis of general mini-
max learning frameworks has been studied in several related works. Arora et al. (2017) established
a uniform convergence generalization bound in terms of the discriminator’s parameters in generative
adversarial networks (GANs). Zhang et al. (2017); Bai et al. (2018) characterized the generalizabil-
ity of GANs using the Rademacher complexity of the discriminator function space. Some work also
analyzed generalization in GANs from the algorithmic perspective. Farnia & Ozdaglar (2021); Lei
et al. (2021) compared the generalization of SGDA and SGDmax in minimax optimization problems
using algorithmic stability. Wu et al. (2019) studied generalization in GANs from the perspective of
differential privacy. Ozdaglar et al. (2022) proposed a new metric to evaluate the generalization of
minimax problems and studied the generalization behaviors of SGDA and SGDmax.

3 PRELIMINARIES

Suppose that labelled sample (x, y) is randomly drawn from some unknown distribution D. The
goal of adversarial training is to find a model fw with parameter w 2 W which minimizes the
population risk against the adversarial perturbation � from a feasible perturbation set �, defined as:

R(w) := E(x,y)⇠D


max
�2�

h(w, �;x, y)

�
,

where h(w, �;x, y) = Loss(fw(x + �), y) is the loss function in the supervised learning problem.
Since the learner does not have access to the underlying distribution D but only a dataset S =
{x1, x2, · · · , xn} of size n, we define the empirical adversarial risk as

RS(w) :=
1

n

nX

j=1

max
�2�

h(w, �;xj , yj).

The generalization adversarial risk Egen(w) of model parameter w is defined as the difference be-
tween population and empirical risk, i.e., Egen(w) := R(w)�RS(w). For a potentially randomized
algorithm A which takes a dataset S as input and outputs a random vector w = A(S), we can define
its expected generalization adversarial risk over the randomness of a training set S and stochastic
algorithm A, e.g. under mini-batch selection in stochastic gradient methods or random initialization
of the weights of a neural net classifier,

Egen(A) := ES,A

⇥
R(A(S))�RS(A(S))

⇤
.

Throughout the paper, unless specified otherwise, we use k · k to denote the L2 norm of vectors or
the Frobenius norm of matrices.

3



Under review as a conference paper at ICLR 2024

3.1 ADVERSARIAL TRAINING

In the field of adversarial training, the perturbation set � is usually an L2-norm or L1-norm
bounded ball of some small radius " (Szegedy et al., 2013; Goodfellow et al., 2014). To robus-
tify a neural network, the standard methodology AVanilla is to train the network with (approximately)
perfectly perturbed samples, both in practice (Madry et al., 2017; Rice et al., 2020) and in theory
analysis (Xing et al., 2021; Xiao et al., 2022b), which is formally defined as follows:

Algorithm 1 Vanilla Adversarial Training Algorithm AVanilla

1: Input: Training samples S, perturbation set �, learning rate of model weight ↵w, mini-batch
size b, number of iterations T

2: for step t 1, · · · , T do

3: Uniformly random mini-batch B ⇢ S of size b
4: Compute adversarial attack �j for all (xj , yj) 2 B: �j  argmax�̃2� h(w, �̃;xj , yj)
5: Update w with perturbed samples: w  w � ↵w

b

P
(xj ,yj)2B rwh(w, �j ;xj , yj)

6: end for

In practice, due to the non-convexity of neural networks, it is computationally intractable to compute
the best adversarial attack � = argmax�̃2� h(w, �̃;x), but the standard projected gradient descent
(PGD) attack (Madry et al., 2017) is widely believed to produce near-optimal attacks, by iteratively
projecting the gradientr�h(w, �;x) onto the set of extreme points of �, i.e.,

⇡�(g) := argmin
�̃2ExtremePoints(�)

kg � �̃k2, (1)

updating the attack � with the projected gradient ⇡�(r�h(w, �;x)) and some step size ↵� , and
projecting the update attack to the feasible set �, i.e,

P�(g) := argmin
�2�

kg � �k2. (2)

Despite the significant robustness gained from AVanilla, it demands high computational costs for
training. The “free” adversarial training algorithm AFree (Shafahi et al., 2019) is proposed to avoid
the overhead cost, by simultaneously updating the model weight parameter w when performing
PGD attacks. AFree is empirically observed to achieve comparable robustness to AVanilla, while it can
considerably reduce the training time (Shafahi et al., 2019; Wong et al., 2020).

Algorithm 2 Free Adversarial Training Algorithm AFree

1: Input: Training samples S, perturbation set �, step size of model weight ↵w, learning rate of
adversarial attack ↵� , free step m, mini-batch size b, number of iterations T

2: for step 1, · · · , T/m do

3: Uniformly random mini-batch B ⇢ S of size b
4: � := [�j ]{j:xj ,yj2B}  Uniform(�b)
5: for iteration i 1, · · · , m do

6: Compute weight gradient and attack gradient by backpropagation:
7: gw  

1
b

P
xj ,yj2B rwh(w, �j ;xj , yj), and g�  [r�h(w, �j ;xj , yj)]{j:xj ,yj2B}

8: Update w with mini-batch gradient descent: w  w � ↵wgw
9: Update � with projected gradient ascent: �  [P�(�j + ↵�⇡�(g�j))]{j:xj ,yj2B}

10: end for

11: end for

We also compare AVanilla and AFree with the “fast” adversarial training algorithm AFast (Wong et al.,
2020), which is a variant of the fast gradient sign method (FGSM) by Goodfellow et al. (2014).
Instead of computing a perfect perturbation, it applies only one projected gradient step with fine-
tuned step size from a randomly initialized point in �. It is also empirically observed to achieve
comparable robustness with fewer cost (Wong et al., 2020; Andriushchenko & Flammarion, 2020).
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Algorithm 3 Fast Adversarial Training Algorithm AFast

1: Input: Training samples X , perturbation set �, , learning rate of model weight ↵w, step size of
adversarial attack ↵̃� , mini-batch size b, number of iterations T

2: for step t 1, · · · , T do

3: Uniformly random mini-batch B ⇢ S of size b
4: Compute adversarial attack � with random start:
5: �̃ := [�̃j ]{j:xj ,yj2B}  Uniform(�b)

6: g�  [r�h(w, �̃j ;xj , yj)]{j:xj ,yj2B}

7: �  [P�(�̃j + ↵�⇡�(g�j))]{j:xj ,yj2B}
8: Update w with perturbed sample: w  w � ↵w

b

P
xj ,yj2B rwh(w, �j ;xj , yj)

9: end for

4 STABILITY AND GENERALIZATION IN ADVERSARIAL TRAINING

To bound the generalization adversarial risk, the notion of uniform stability with respect to the
adversarial loss is introduced (Bousquet & Elisseeff, 2002).
Definition 1. A randomized algorithm A is ✏-uniformly stable if for all datasets S, S0

2 D
n

such

that S and S0
differ in at most one example, we have

sup
x

EA


max
�2�

h(A(S), �;x)�max
�2�

h(A(S0), �;x)

�
 ✏. (3)

As Theorem 2.2 in Hardt et al. (2015), the generalization risk in expectation of a uniformly stable
algorithm can be bounded by the following theorem
Theorem 1. Assume that a randomized algorithm A is ✏-uniformly stable, then the expected gener-

alization risk satisfies

|Egen| = |ES,A[R(A(S))�RS(A(S))]|  ✏.

Proof. The proof can be found in Theorem 2.2 in Hardt et al. (2015) by replacing the loss function
with the adversarial loss max�2� h(w, �;x).

In order to study the uniform stability of adversarial training, we make the following assumptions
on the Lipschitzness and smoothness of the objective function. Our generalization results will hold
as long as Assumptions 1, 2 hold locally within an attack radius distance from the support set of X .
Assumption 1. h(w, �) is jointly L-Lipschitz in (w, �) and Lw-Lipschitz in w over W ⇥�, i.e., for

every w,w0
2W and �, �0 2 � we have

|h(w, �)� h(w0, �0)|2  L2
�
kw � w0

k
2 + k� � �0k2

�
, |h(w, �)� h(w0, �)|2  Lw

2
kw � w0

k
2.

Assumption 2. h(w, �) is continuously differentiable and �-smooth over W ⇥ �, i.e.,

[rwh(w, �),r�h(w, �)] is �-Lipschitz over W ⇥� and for every w,w0
2W , �, �0 2 � we have

krwh(w, �)�rwh(w
0, �0)k2 + kr�h(w, �)�r�h(w

0, �0)k2  �2
�
kw � w0

k
2 + k� � �0k2

�
.

We clarify that the Lipschitzness and smoothness assumptions are common practice in the uni-
form stability analysis (Hardt et al., 2015; Xing et al., 2021; Farnia & Ozdaglar, 2021; Xiao et al.,
2022b). In practice, although ReLU activation function is non-smooth, recent works (Du et al.,
2019; Allen-Zhu et al., 2019) showed that the loss function of over-parameterized neural networks
is semi-smooth; also, another line of works (Xie et al., 2020; Singla et al., 2021) suggest that re-
placing ReLU with smooth activation functions can strengthen adversarial training; and some works
(Fazlyab et al., 2019; Shi et al., 2022) attempt to compute the Lipschitz constant of neural networks.

5 STABILITY-BASED GENERALIZATION BOUNDS FOR FREE AT

In this section, we provide generalization bounds on vanilla, fast, and free adversarial training al-
gorithms. While previous works mainly focus on theoretically analyzing the stability behaviors of
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vanilla adversarial training under the scenario that h(w, �;x) is convex in w (Xing et al., 2021; Xiao
et al., 2022b), or h(w, �;x) is concave or even strongly-concave in �(Lei et al., 2021; Farnia &
Ozdaglar, 2021; Yang et al., 2022; Ozdaglar et al., 2022), our analysis focuses on the nonconvex-
nonconcave scenario: without assumptions on the convexity of h(w, �;x) in w or concavity of
h(w, �;x) in �. We defer the proof of Theorems 2 and 4 to the Appendix A.1 and A.2. Throughout
the proof, we assume that Assumptions 1 and 2 hold.
Theorem 2 (Stability generalization bound of AVanilla). Assume that h(w, �) satisfies Assumptions 1

and 2 and is bounded in [0, 1], and the perturbation set is an L2-norm ball of some constant radius

", i.e., � = {� : ||�||  "}. Suppose that we run AVanilla in Algorithm 1 for T steps with vanishing

step size ↵w,t  c/t. Letting constant �Vanilla := �c, then

Egen(AVanilla) 
b

n

✓
1 +

1

�Vanilla

◆✓
2Lwc

b
("�n+ L)

◆ 1
�

Vanilla
+1

T
�

Vanilla

�
Vanilla

+1 . (4)

By equation 4, we have the following asymptotic bound on Egen(AVanilla) with respect to T and n

Egen(AVanilla) = O

✓
T

�Vanilla
�Vanilla+1 /n

�Vanilla
�Vanilla+1

◆
. (5)

This bound suggests that the vanilla adversarial training algorithm could lead to large generalization

gaps, because for any T = ⌦(n), the bound T
�Vanilla

�Vanilla+1 /n
�Vanilla

�Vanilla+1 = ⌦(1) is non-vanishing even when
we are given infinity samples. This implication is also confirmed by the following lower bound from
the work of Xing et al. (2021) and Xiao et al. (2022b):
Theorem 3 (Lower bound on stability; Theorem 1 in Xing et al. (2021), Theorem 5.2 in Xiao et al.
(2022b)). Suppose � = {� : ||�||  "}. Assume w(S) is the output of running AVanilla on the

dataset S with mini-batch size b = 1 and constant step size ↵w  1/� for T steps. There exist some

loss function h(w, �;x) which is differentiable and convex with respect to w, some constant " > 0,

and some datasets S and S0
that differ in only one sample, such that

E[||w(S)� w(S0)||] � ⌦

✓
p

T +
T

n

◆
. (6)

This lower bound indicates that AVanilla could lack stability when the attack radius " = ⌦(1), hence
the algorithm may result in significant generalization error from the stability perspective. Note that
the lower bound in equation 6 is not inconsistent with Theorem 2, in which the step-size is assumed
to be vanishing ↵w,t  c/t and thus the lower bound is not directly applicable under that assumption.
However, this constant generalization gap could be reduced by free adversarial training.
Theorem 4 (Stability generalization bound of AFree). Assume that h(w, �) satisfies Assumptions 1

and 2 and is bounded in [0, 1], and the perturbation set is an L2-norm ball of some constant radius

", i.e., � = {� : ||�||  "}. Suppose that we run AFree in Algorithm 2 for T/m steps with vanishing

step size ↵w,t  c/mt and constant step size ↵� . If the norm of gradient r�h(w, �;x) is lower

bounded by 1/ for some constant  > 0 with probability 1 during the training process, letting

constant �Free := �c(1 + �c/m+ ↵�" �)m�1
, then

Egen(AFree) 
b

n

✓
1 +

1

�Free

◆✓
2LLw

b�
�Free

◆ 1
�Free+1

✓
T

m

◆ �Free

�Free+1

. (7)

Remark 1. Theorem 4 indicates how the simultaneous updates influence the generalization of ad-

versarial training. From equation 7, we have the following asymptotic bound on Egen(AFree) with

respect to T and n

Egen(AFree) = O

⇣
T

�Free

�Free+1 /n
⌘
. (8)

Therefore, by controlling the step size ↵� of the maximization step, we can bound the coefficient

�Free and thus control the generalization gap of AFree, where a lower ↵� can result in a smaller

generalization gap.

Comparing equation 8 with equation 5 suggests that for any T = O(n), AFree can generalize better
than AVanilla, since

T
�Free

�Free+1 /n

T
�Vanilla

�Vanilla+1 /n
�Vanilla

�Vanilla+1

=

✓
T

n

◆ 1
�Vanilla+1

✓
1

T

◆ 1
�Free+1

= O

⇣
1/T

1
�Free+1

⌘
.
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(a) Robust train/test error and generalization gap against L2-norm attack.

(b) Robust train/test error and generalization gap against L1-norm attack.

Figure 1: Learning curves of different algorithms for a ResNet18 model adversarially trained against
L2 and L1 attacks on CIFAR-10. The free curves are scaled horizontally by a factor of m.

Furthermore, when T = O(n), equation 8 gives Egen(AFree) = O

⇣
1/n

1
�Free+1

⌘
, which implies that

the generalization gap of AFree can be bounded given enough samples. If the number of iterations T
is fixed, one can see that the generalization gap of AFree has a faster convergence to 0 than AVanilla.
Therefore, neural nets trained by the free adversarial algorithm could generalize better than the
vanilla adversarially-trained networks due to their improved algorithmic stability. Our theoretical
results also echo the conclusion in Schmidt et al. (2018) that adversarially robust generalization
requires more data, since �Free increases with respect to ". We also provide theoretical analysis for
the fast adversarial training algorithm AFast in Appendix A.3.

6 NUMERICAL RESULTS

In this section, we evaluate the generalization performance of vanilla, fast, and free adversarial
training algorithms in a series of numerical experiments. We first demonstrate the overfitting issue
in vanilla adversarial training and show that free or fast algorithms can considerably reduce the
generalization gap. We demonstrate that the smaller generalization gap could translate into greater
robustness against score-based and transferred black-box attacks. To examine the advantages of free
AT, we also study the generalization gap for different numbers of training samples.

Experiment Settings: We conduct our experiments on datasets CIFAR-10, CIFAR-100 (Krizhevsky
& Hinton, 2009), Tiny-ImageNet (Le & Yang, 2015), and SVHN (Netzer et al., 2011). Following
the standard setting in Madry et al. (2017), we use ResNet18 (He et al., 2016) for CIFAR-10 and
CIFAR-100, ResNet50 for Tiny-ImageNet, and VGG19 (Simonyan & Zisserman, 2014) for SVHN
to validate our results on a diverse selection of network architectures. For vanilla adversarial training
algorithm, since the inner optimization task max�2� h(w, �;x) is computationally intractable for
neural networks which are generally non-concave, we apply standard projected gradient descent
(PGD) attacks (Madry et al., 2017) as a surrogate adversary. For free and fast algorithms, we adopt
AFree and AFast defined in Algorithms 2 and 3, following Shafahi et al. (2019); Wong et al. (2020).
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Table 1: Robust generalization performance of different algorithms for a ResNet18 model adversar-
ially trained against L2-norm and L1-norm attacks on CIFAR-10. We run five independent trials
and report the mean and standard deviation of the robust accuracy on training and testing datasets.

L2-norm attack L1-norm attack
Results (%) Vanilla Fast Free Vanilla Fast Free
Train Acc. 100.0± 0.0 89.6± 0.2 86.5± 0.2 95.0± 0.3 81.3± 0.4 63.6± 0.3
Test Acc. 65.5± 0.2 59.8± 0.4 65.7± 0.4 43.8± 0.1 39.1± 0.2 46.4± 0.3
Gen. Gap 34.5± 0.2 29.8± 0.2 20.8± 0.4 51.2± 0.3 42.2± 0.4 17.2± 0.2

Figure 2: Robust accuracy of ResNet18 models adversarially trained by vanilla, fast, and free algo-
rithms against square attack on CIFAR-10. The left figure applies L2 attacks of radius ranging from
64 to 192, and the right figure applies L1 attacks of radius ranging from 1 to 9.

Robust Overfitting during Training Process: We applied L2-norm attack of radius " = 128/255
and L1-norm attack of radius " = 8/255 to adversarially train ResNet18 models on CIFAR-10. For
the vanilla algorithm, we used a PGD adversary with 10 iterations and step-size "/4. For the fast
algorithm, we used step-size ↵̃� = "/2 for the L2-norm attack and ↵̃� = " for the L1-norm attack.
For the free algorithm, we applied the learning rate of adversarial attack ↵� = " with free step
m = 4. The other implementation details are deferred to Appendix B.1. We trained the models for
200 epochs and after every epoch, we tested the models’ robust accuracy against a PGD adversary
and evaluated the generalization gap. The numerical results are presented in Table 1. Also, the
training curves are plotted in Figure 1.

Based on the empirical results, we observe the significant overfitting in the robust accuracy of the
vanilla adversarial training: the generalization gap is above 30% against L2 attack and 50% against
L1 attack. On the other hand, the free AT algorithm has less severe overfitting and reduced the
generalization gap to 20%. Although the free AT algorithm applies a weaker adversary, it achieves
comparable robustness on test samples to the vanilla AT algorithm against the PGD attacks by low-
ering the generalization gap. Additional numerical results for different numbers of free AT steps and
on other datasets are provided in Appendix B.1.

Robustness Evaluation Against Black-box Attacks: To study the consequences of the general-
ization behavior of the free AT algorithm, we evaluated the robustness of the adversarially-trained
networks against black-box attack schemes where the attacker does not have access to the parame-
ters of the target models (Bhagoji et al., 2018). We applied the square attack (Andriushchenko et al.,
2020), a score-based methodology via random search, to examine networks adversarially trained by
the discussed algorithms as shown in Figure 2. We also used adversarial examples transferred from
other independently trained robust models as shown in Figure 3. More experiments on different
datasets are provided in Appendix B.2.

We extensively observe the improvements of the free algorithm compared to the vanilla algorithm
against different black-box attacks, which suggests that its robustness is not gained from gradient-
masking (Athalye et al., 2018) but rather attributed to the smaller generalization gap.
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Figure 3: Robust accuracy against transferred attacks designed for another independently trained
robust model. The left figure applies L2 attacks and the right figure applies L1 attacks.

Generalization Gap for Different Numbers of Training Samples: To examine our theoretical
results in Theorems 2 and 4, we evaluated the robust generalization loss with respect to different
numbers of training samples n. We randomly sampled a subset from the CIFAR-10 training dataset
of size n 2 {10000, 20000, 30000, 40000, 50000}, and adversarially trained ResNet18 models on
the subset for a fixed number of iterations. As shown in Figure 4, the generalization gap of free AT is
notably decreasing faster than vanilla AT with respect to n, which is consistent with our theoretical
analysis. More experimental results are discussed in the Appendix B.3.

(a) L2-norm-based Adversarial Trainig (b) L1-norm-based Adversarial Training

Figure 4: Adversarial generalization gap of ResNet18 models adversarially trained by vanilla, fast,
and free algorithm for a fixed number of steps on a subset of CIFAR-10.

7 CONCLUSION

In this work, we studied the role of min-max optimization algorithms in the generalization perfor-
mance of adversarial training methods. We focused on the widely-used free adversarial training
method and, leveraging the algorithmic stability framework we compared its generalization behav-
ior with that of vanilla adversarial training. Our generalization bounds suggest that not only can the
free AT approach lead to a faster optimization compared to the vanilla AT, but also it can result in a
lower generalization gap between the performance on training and test data. We note that our the-
oretical conclusions are based on the upper-bounds following from the algorithmic stability-based
generalization analysis, and an interesting topic for future study is to prove a similar result for the
actual generalization gap under simple linear or shallow neural net classifiers. Another future direc-
tion could be to extend our theoretical analysis of the simultaneous optimization updates to other
adversarial training methods such as TRADES (Zhang et al., 2019) and ALP (Kannan et al., 2018).
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