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Abstract

Efficient training of deep neural networks under data constraints relies on selecting
informative subsets, or coresets, that preserve model performance. Traditional
methods in libraries like DeepCore employ heuristics such as uncertainty sam-
pling or gradient diversity but often neglect adversarial vulnerabilities, leading to
suboptimal robustness against distribution shifts, corruptions, or manipulations
in unreliable data scenarios. To address this, we introduce a unified Adversarial
Sensitivity Scoring framework comprising three novel ranking techniques: Inverse
Sensitivity and Entropy Fusion (ISEF), Fast Gradient Sign Method with Composite
Scoring (FGSM-CS), and Perturbation Sensitivity Scoring (PSS), that harness
sparse adversarial perturbations to prioritize samples near decision boundaries. By
applying single-step Sparse FGSM attacks, our methods expose sample sensitivities
with minimal computational overhead. Evaluated on CIFAR-10 with ResNet-18,
our approaches consistently outperform the adversarial baseline DeepFool by up to
15.1% in extremely sparse data regimes (e.g., 1% for PSSyotom) and 15.1% in low
data regimes (e.g., 10% for FGSM-CSyoom), While achieving comparable results
to top DeepCore methods like Random and Forgetting in moderate data regimes.
Notably, bottom variants excel in sparse settings by retaining perturbation-resilient
samples, with top variants surpassing them after 20-30% boundaries. These gains,
realized via efficient single-step gradients, position our framework as a scalable,
deployable bridge between coreset selection and adversarial robustness, advancing
data-efficient learning.

1 Introduction and Related Work

As deep learning models grow in size and complexity, improving data efficiency and robustness
remains a fundamental challenge. One promising direction to address these challenges is coreset
selection, where a small, informative subset of training data is identified to reduce computational costs
while maintaining or even improving model performance|Shinde, [2025]]. Traditional approaches, such
as DeepCore |Guo et al|[2022], utilize heuristics and optimization techniques to select representative
samples, demonstrating success in data subset selection, continual learning|Castro et al.|[2018]],Shinde
and Sharma, and active learning (Gal et al.|[2017]]. These methods aim to emphasize sample diversity
and informativeness, thereby capturing the essential characteristics of the dataset. However, existing
coreset selection techniques often overlook adversarial vulnerabilities, leaving models susceptible to
unreliable data scenarios such as distribution shifts, corruptions, or strategic manipulations, as seen
in real-world applications like autonomous systems or social platforms Hardt et al.| [2016], Hassan
and Shindel

Recent advancements in adversarial machine learning have highlighted the vulnerability of deep
networks to small, sparse perturbations. Notably, the One Pixel Attack Su et al.|[2019]] demonstrated
that modifying even a single pixel can lead to misclassification, emphasizing the sensitivity of deep
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models near decision boundaries. This underscores the need to prioritize these regions, which are
critical for both learning efficiency and robustness. Our work extends this by using sparse adversarial
perturbations as a signal for coreset construction, explicitly targeting decision boundary samples to
enhance model reliability under adversarial conditions.

In addition, a few recent studies have explored the intersection of coreset selection and adversarial
robustness Mirzasoleiman et al.[[2020]. However, these studies either focus on improving robustness
without considering data efficiency or improve data efficiency without directly addressing adversarial
robustness. Our work bridges this gap by presenting a unified Adversarial Sensitivity Scoring
framework that leverages sparse adversarial perturbations to simultaneously enhance efficiency and
robustness, offering a principled approach to tackle coreset data challenges.

In this work, we introduce a novel strategy that leverages sparse adversarial perturbations to identify
and prioritize training samples near the decision boundary, which are essential for both learning
informativeness and robustness. Specifically, we employ the Sparse Fast Gradient Sign Method
(Sparse FGSM) |Goodfellow et al.[[2014]], a variant of the Fast Gradient Sign Method (FGSM), which
generates adversarial examples by perturbing only a small subset of the input features (e.g., pixels).
This method produces minimally sparse yet highly informative perturbations that highlight samples
that are vulnerable to model changes and adversarial attacks, making them ideal candidates for robust
and data-efficient training in scenarios with corrupted or manipulated data|Hendrycks and Dietterich
[2019]. The effectiveness of this approach is grounded in recent work on adversarial sensitivity,
which shows that deep networks are particularly sensitive to small perturbations near the decision
boundary Madry et al.| [2017]]. By focusing on these perturbations, we can identify samples that are
both highly informative and critical for improving adversarial robustness (Wong et al.|[2020]].

In this direction, we propose three ranking schemes under our Adversarial Sensitivity Scoring
framework, systematically categorized by their sensitivity metrics, based on the behavior of samples
under Sparse FGSM attacks. We evaluate the performance of these schemes by selecting both the
top-ranked samples (those most vulnerable or near the decision boundary) and the bottom-ranked
samples (those least vulnerable, far from the boundary). We conduct extensive experiments on
CIFAR-10, varying the selection ratio from 0.1% to 90% of the data to assess the effectiveness of
our approach across different data budgets. Our results demonstrate the advantage of focusing on
the top samples, which result in substantial improvements in classification accuracy and adversarial
robustness, especially in low-data regimes.

We benchmark our method against existing coreset selection methods implemented in the DeepCore
library|Guo et al.|[2022], including DeepFool-based selection|Ducoffe and Precioso|[2018]]. In a range
of experimental settings, our Sparse Adversarial Ranking consistently outperforms the DeepFool-
based method and achieves performance comparable to the overall DeepCore library. In particular,
our approach demonstrates superior adversarial robustness while maintaining high computational
efficiency. This paper presents a novel framework for coreset selection that utilizes sparse adversarial
perturbations to identify vulnerable and informative samples, offering a scalable solution, with
potential applications in safety-critical domains.

The rest of the paper is organized as follows: Section 2] introduces the proposed architecture and
modeling pipeline, Section [3|outlines the dataset, preprocessing, and training setup, Section 4 reports
the experimental results, and Section E] concludes with future directions.

2 Method

To construct an informative coreset guided by adversarial sensitivity, we employ the Sparse Fast
Gradient Sign Method (Sparse FGSM) to perturb training images at varying levels of sparsity k.
From each class, we extract a subset of samples ranked using three distinct yet complementary
techniques within our unified Adversarial Sensitivity Scoring framework, systematically categorized
by their sensitivity metrics (entropy-based, composite vulnerability, and perturbation-shift), designed
to evaluate each sample’s adversarial vulnerability and overall contribution to model robustness,
thereby addressing unreliable data challenges such as distribution shifts and strategic manipulations
by prioritizing samples that expose model weaknesses.

We begin by training a Deep Neural Network on the CIFAR-10 dataset. To evaluate its robustness, we
apply Sparse FGSM, an adaptation of the classic Fast Gradient Sign Method (FGSM), which generates



adversarial examples by perturbing only a subset of pixels with the highest gradient magnitudes, as
inspired by sparse attack literature Dinh et al.|[2020]]. The perturbed images are fed into the trained
model to assess whether classification changes occur, indicating sensitivity to sparse adversarial noise
that mimics real-world corruptions. For each perturbation level k, we compute and store the resulting
class-wise probability distributions in a structured CSV format for subsequent analysis.

To investigate data efficiency and sample informativeness, we propose a novel ranking framework that
leverages these output distributions to guide coreset selection, building on prior coreset methods|Sener
and Savarese|[2017] while incorporating adversarial cues to enhance robustness. Unlike traditional
methods, our framework targets samples near decision boundaries to improve generalization, using
a pre-trained model to initialize selection, which can be adapted via transfer learning to mitigate
the need for full-dataset training. We then retrain the model using only the selected coreset and
compare its performance to a baseline trained on the full dataset to determine gains in generalization
and robustness. This pipeline provides a comprehensive framework for evaluating both adversarial
resilience and the role of informed sample selection in deep learning, offering reliable ML solutions
under unreliable data constraints.

2.1 Sparse FGSM Technique

To investigate model robustness against sparse adversarial perturbations that simulate localized
data corruptions in unreliable environments Modas et al.| [2019]], we adopt a variant of the Fast
Gradient Sign Method (FGSM) |Goodfellow et al.|[2014] known as Sparse FGSM, which aligns
with recent advances in efficient attack generation [Tramer et al.|[2017]]. Unlike the conventional
FGSM, which perturbs all input pixels, Sparse FGSM restricts modifications to a fixed number k of
pixels with the largest gradient magnitudes, thereby simulating more realistic and less perceptible
adversarial scenarios, such as those encountered in distribution-shifted or manipulated data|Hendrycks
et al|[2021]]. Formally, given an input 2 € R™, a true label y, and a loss function L(f(z),y), the
standard FGSM constructs an adversarial example as: 7% = x + ¢ - sign (V,L(f(x),y)), where €
is the perturbation budget and f(-) denotes the model’s predictive function. In Sparse FGSM, the
perturbation is instead applied only to a subset K C {1,2,...,n}, corresponding to the indices of
the top-k largest absolute gradient magnitudes:
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L otherwise.
This sparsity constraint introduces a more localized perturbation strategy, preserving most of the input
while targeting only the most influential dimensions, which intuitively reveals samples’ vulnerability
to minimal changes, enhancing coreset selection by prioritizing samples that strengthen decision
boundaries against strategic manipulations or corruptions [Hardt et al.[[2016]. In our experiments, we
evaluate the model’s behavior under varying levels of sparsity by selecting k € {1,4, 16,64}. These
values range from extremely sparse (k = 1) to moderately sparse (k = 64), enabling a fine-grained
analysis of the degradation in model performance under localized adversarial threats and providing
insights into why robustness degrades more sharply for certain classes..

2.2 Coreset Selection Techniques

Training modern deep neural networks on large datasets is computationally intensive and often
involves redundant or less informative samples. Coreset selection seeks to identify a representative
subset of the training data that maintains model performance while reducing training costFeldman
[2019]. However, in adversarial settings, traditional coreset methods may overlook the varying
robustness and uncertainty of individual samples, which are critical for enhancing generalization and
adversarial resilience.

To address this, we propose coreset selection strategies under our Adversarial Sensitivity Scoring
framework, systematically categorized into entropy-based (ISEF), composite vulnerability (FGSM-
CS), and perturbation-shift (PSS) metrics, leveraging each sample’s sensitivity to adversarial perturba-
tions alongside predictive uncertainty, enhancing robustness by selecting samples that fortify decision
boundaries against distribution shifts and manipulations/Madry et al.|[2017]. Our approaches integrate
metrics such as misclassification frequency, confidence drop, entropy, and perturbation-induced output
variation. Specifically, we develop three complementary ranking techniques: Inverse Sensitivity and



Entropy Fusion (ISEF), which balances perturbation sensitivity and entropy; FGSM-Based Composite
Scoring (FGSM-CS), which combines adversarial vulnerability, uncertainty, and robustness into a
weighted composite score; and Perturbation Sensitivity Score (PSS), which quantifies the cumulative
effect of localized pixel perturbations on model outputs, with the key motivation that these metrics
identify samples near adversarial frontiers, improving robustness and efficiency.

2.2.1 Inverse Sensitivity and Entropy Fusion (ISEF)

We propose a coreset selection strategy that ranks training samples using a composite score that
combines adversarial sensitivity and predictive uncertainty, motivated by the need to prioritize
samples near decision boundaries for better handling of distribution shifts. Each sample x is assigned
a composite score S(x) defined as:

S(x) = a - Siny, (%) + (1 — @) - Sen(x), )

where « € [0, 1] is a weighting parameter (set to a = 0.5 in our experiments), and Sigy, , Sent are the
min-max normalized versions of the following metrics. The inverse sensitivity score Siny, is defined
as 1 if misclassified on the clean input, ﬁ if misclassified at some k € {1,4, 16,64} where kuin
is the smallest perturbation level that causes misclassification, or 0 if correctly classified for all k&,
intuitively rewarding early misclassifications as indicators of inherent vulnerability. The entropy
score Sy is the Shannon entropy of the model’s softmax output on the clean input, computed as
— ZLC:1 pi logyo(p:), where p; is the predicted probability for class ¢, and C' is the number of classes,
capturing uncertainty that complements sensitivity for robust coreset selection.

2.2.2 FGSM-Based Composite Scoring (FGSM-CS)

To comprehensively assess model robustness under adversarial perturbations, we propose a composite
scoring mechanism that integrates multiple vulnerability indicators into a single metric. This approach
acknowledges that robustness cannot be adequately characterized by accuracy alone; it must also
reflect the model’s sensitivity to perturbations, predictive uncertainty, and consistency in maintaining
correct classifications under adversarial conditions.

The composite score .S is defined as a weighted combination of three components: adversarial
sensitivity (Saqy), uncertainty (Sync), and binary robustness (Syy) and computed as:

S = Wady * Sadv + Wune = Sunc + Wrob * Srob, 3
where the weights are empirically set as w,gy = 0.5, wype = 0.3, and wye, = 0.2, chosen to
emphasize sensitivity while balancing other factors for practical deployment. To compute S,qy, We
apply Sparse Fast Gradient Sign Method (FGSM) attacks with varying pixel-level perturbation sizes
k € {1,4,16,64}. Let p(©) denote the softmax output of the model on the clean input, and pF)
represent the output on the adversarially perturbed input with perturbation level k. The adversarial
sensitivity is then defined as:

Sav= Y, Hp(o) —p(k)Hl : )
ke{1,4,16,64)

where oy, is a decay weight (e.g., a = %) that emphasizes the model’s vulnerability to smaller
perturbations. The uncertainty component Sy, captures the maximum softmax entropy across the
clean and adversarial variants of the input:
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where p;  is the predicted probability of class 7 under perturbation level k, and C is the total number
of classes. Finally, the binary robustness indicator Sy, is defined as:

1, if 3k € {1,4,16,64} such that §*) # ye,
Srob = .
0, otherwise,

©)

where (%) is the predicted class label at perturbation level k, and gy is the ground-truth label.
A higher composite score S indicates greater model fragility, reflecting increased susceptibility to
adversarial perturbations, elevated predictive uncertainty, and reduced robustness in classification
consistency.



2.2.3 Perturbation Sensitivity Score (PSS)

In adversarial and robustness-aware training, it is crucial to identify inputs for which a model’s
predictions are highly sensitive to small, localized changes. These inputs often lie near the decision
boundary and can expose weaknesses in the model’s generalization capability under imperfect
data Biggio et al.|[2013]]. To quantify this sensitivity, we introduce the Perturbation Sensitivity Score
(PSS), a metric designed to measure how much a model’s output distribution shifts under sparse,
localized pixel perturbations.

To evaluate the sensitivity of images to localized pixel perturbations, let £ = {1, 4, 16,64} denote

the set of pixel perturbation sizes. For each image x;, and for each & € K, we apply a k-pixel

perturbation and compute the softmax output py(x;) € R from the classifier. Let po(z;) be the

original (unperturbed) softmax prediction. We define the Perturbation Sensitivity Score (PSS) for
image x; as:

1
PSS(z;) = [ E— ;) — pol(z 7
@) =3 gyt I ~mlel, ™

The score captures the cumulative change in class probabilities due to small, localized perturbations.
The log,(k + 1) term downweights the influence of large k, emphasizing sensitivity to minimal
perturbations. A higher PSS indicates that the image is more fragile under small changes and thus
likely resides near the decision boundary. These images are prioritized in the coreset due to their
potential to improve generalization during training.

3 Experimental Setup

The experiment was conducted on the Kaggle platform using an NVIDIA Tesla P100 GPU. We
evaluate model performance through adversarial robustness under various perturbation conditions
and coreset selection strategies.

3.1 Dataset

The CIFAR-10 dataset consists of 60,000 color images uniformly distributed across 10 distinct object
categories: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Each image has a
size of 32x 32 pixels with 3 color channels (RGB). The dataset is split into 50,000 training images
and 10,000 test images, ensuring that the performance can be robustly evaluated.

3.2 Model Training Setup

Baseline Model. We begin by training a baseline ResNet-18 model on the CIFAR-10 training dataset.
All experiments adopt the ResNet-18 architecture, consistent with prior coreset work |Guo et al.
[2022], ensuring a fair baseline comparison. While other architectures may yield higher baseline
performance, our analysis focuses on generalizable insights, validated through extensive experiments
across varying data fractions and perturbation levels.

Model Training. For the CIFAR-10 experiments, we trained a ResNet-18 architecture using stochastic
gradient descent (SGD) with a batch size of 128, an initial learning rate of 0.1, momentum of 0.9, and
a weight decay of 5 x 10~%. The learning rate was scheduled with cosine annealing over 200 epochs.
Standard data augmentation techniques were applied, including random cropping with padding = 4
and horizontal flips, along with CIFAR-10 normalization (mean = (0.4914, 0.4822, 0.4465), std =
(0.2023, 0.1994, 0.2010)).

Adversarial Robustness Setup. To assess adversarial robustness, we generate Sparse FGSM
perturbations at varying sparsity levels k € {0,1,4,16,64}. Increasing values of k correspond
to progressively higher sparsity, simulating more localized adversarial attacks on the images. For
each sparsity level, we compute the predicted class probabilities of all training samples. These
probabilities, along with the corresponding predicted labels and confidence scores, are stored in CSV
files for subsequent analysis.

Model Training on the Coreset. We further evaluate performance by training models on selected
subsets (coresets) of the CIFAR-10 dataset. The subset sizes vary across fractions of the full dataset:



0.1%, 0.5%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, and 90%. Based on the ranking scores stored
in the CSV files, two types of coresets are constructed for each fraction: (1) Top-ranked subsets,
consisting of samples identified as highly vulnerable or uncertain, and (2) Bottom-ranked subsets,
consisting of samples deemed robust or confident. To ensure class balance and avoid selection bias,
the number of samples chosen from each class is capped proportionally.

3.3 Hyperparameter Settings

For the ISEF method, we set the balancing factor to @ = 0.5. For FGSM-CS, the weighting
parameters were chosen as wagy = 0.5, wype = 0.3, and wrep = 0.2. To evaluate adversarial
robustness under varying levels of perturbation, we applied Sparse FGSM with sparsity levels
k € {1,4,16,64}, corresponding to progressively stronger pixel perturbations.

We use classification accuracy as the primary evaluation metric to assess model performance. The
accuracy is evaluated across different perturbation levels to quantify adversarial robustness.

4 Results and Analysis

We assess performance across varying data fractions, focusing on both the top (samples most
vulnerable to adversarial attacks) and bottom (least sensitive) subsets, providing a unified view of
how our Adversarial Sensitivity Scoring framework outperforms by prioritizing critical samples.

4.1 Ablation Study

We conduct an extensive ablation study to evaluate the effectiveness of our proposed ranking tech-
niques: ISEF, FGSM-CS, and PSS, on CIFAR-10, using varying fractions of the training data from
0.1% to 90%. Table [T] summarizes the classification accuracy achieved by each method across
different data fractions, illustrating how adversarially-informed selection enhances model perfor-
mance, particularly in low-data regimes, by prioritizing samples that mitigate biases, label noise, and
vulnerabilities. The ablation results are integrated into the main comparison table to avoid redundancy,
focusing on our methods’ performance relative to DeepCore baselines.

4.1.1 Comparative Analysis: Different Data Regimes

Extremely Sparse Data Regimes (0.1% - 1%). At extremely sparse data fractions, PSSpotom
consistently outperforms other variants, e.g., achieving 33.3% at 0.5% and 40.6% at 1%. This
demonstrates its ability to identify near-decision-boundary samples that are sensitive to minimal
perturbations, emphasizing influential pixels that reveal intrinsic model fragility. ISEFyqom also
excels (19.9% at 0.1%, 38.4% at 1%), as its entropy-rich samples provide diverse, stable information,
aligning with data valuation strategies that prioritize robust coverage.

Low-to-Moderate Data Regimes (5% - 20%). In the low-to-moderate data regimes, FGSM-CSpottom
dominates, e.g., 75.9% at 10%, followed by ISEF,qom (75.0%). This underscores the effectiveness
of selecting non adversarial samples: the single-step gradient perturbation efficiently identifies
examples that offer strong learning signals without requiring expensive iterative attacks Ducoffe
and Precioso| [2018]], capturing multifaceted vulnerability through a composite score that blends
sensitivity, uncertainty, and robustness, preventing overfitting to noisy data.

Moderate-to-High Data Regimes (30% - 90%). For moderate-to-high data fractions, ISEF, fre-
quently matches or surpasses other methods (e.g., 93.3% at 40%, 95.4% at 90%). Across these higher
fractions, all methods converge above 94.7% accuracy, indicating that the influence of individual
sample selection diminishes with sufficient data.

4.1.2 Comparative Analysis: Top vs. Bottom Variants

Figure |1| and Table (1] highlight the nuanced trade-offs between top- and bottom-ranked variants
across varying dataset fractions. At very small fractions (e.g., 0.1%-1%), bottom variants such
as ISEFyoom and PSSporom clearly dominate, with PSSponom reaching 33.3% and 40.6% accuracy
at 0.5% and 1%. This trend suggests that low-entropy or “easy” samples provide a more stable
foundation for bootstrapping learning in severely data-limited regimes, as they reduce variance and
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Figure 1: Performance of top vs. bottom variants across data fractions on CIFAR-10 for ISEF,
FGSM-CS, and PSS, highlighting the transition where top variants overtake bottom variants around
20-30%, reflecting the shift from stable, entropy-rich samples to perturbation-sensitive samples.

Table 1: Classification accuracy (in %) of novel ranking techniques compared with DeepCore
library methods |Guo et al.|[2022] on CIFAR-10. Best, second, and third values in each column are
highlighted using green shades.

Method 0.1% 05% 1% 5% 10% 20% 30% 40% 50% 60% 90%
Random|Guo et al.|[2022] 21.0 30.8 36.7 6457 757 F87AT 902 921 933 940 952
CD|Agarwal et al.|[2020] 158 205 236 381 588 813 908 933 943 946 954
Herding |Welling|[2009] 202 273 348 510 635 741 80.1 852 83.0 89.8 946
k-Center Greedy |Sener and Savarese|[2017] 18.5 26.8 31.1 514 75.8 87.0 909 928 939 941 954
Least Confidence|Coleman et al.[[2019] 142 172 198 362 57.6 819 903 93.1 945 947 955
Entropy (Coleman et al.|[2019] 146 175 21.1 353 576 819 898 932 944 950 954
Margin |Coleman et al.|[2019] 172 217 282 434 599 81.7 909 93.0 943 948 955
Forgetting|Toneva et al.|[2018] 214 298 352 521 670 86.6 91,7 935 941 946 953
GraNd |Paul et al.|[[2021] 17.7 240 267 398 5277 782 91.2 [ 93.7 79456 950" 955
CalMargatina et al.|[2021] 227 331 378 60.0 71.8 809 86.0 875 894 91.6 947
Craig|Mirzasoleiman et al.|[2020] 225 270 31.7 452 602 79.6 884 90.8 933 942 955
GradMatch |Killamsetty et al.|[2021a] 174 256 30.8 472 615 799 874 904 929 932 937
Glister [Killamsetty et al.|[[2021b] 19.5 275 329 507 663 848 909 93.0 94.0 94.8 9556
FL [Iyer et al.|[2021] 223 31.6 389 60.8 747 856 914 932 939 945 955
" DeepFool|Ducoffe and Precioso|[2018] 176 224 276 426 608 830 900 931 941 948 95.5
ISEF,,, 145 198 246 399 603 828 907 933 943 [95.0 954
ISEFpott0om 199 294 384 628 750 846 881 89.6 91.0 91.7 947
FGSM-CS,, 122 205 249 496 745 866 910 930 93.6 944 952
FGSM-CSpottom 179 303 335 548 [759 862 886 90.1 92.1 927 950
PSSiop 183 240 256 474 640 821 905 926 943 947 953
PSShottom 16.6 | 333 40.6 622 732 852 873 89.1 904 92.1 947

facilitate class separability early in training. As the dataset fraction grows, however, the advantage
shifts toward the top-ranked variants. ISEF,,, surpasses ISEFpom beyond 20%, ultimately peaking
at 95.0% at 60% and 95.4% at 90%, emphasizing the importance of “hard” decision-boundary
samples for refining classification performance once a stable backbone is established. Similarly,
FGSM-CS,,, demonstrates consistent superiority in moderate regimes (20%-30%), attaining 86.6%
at 20% and 91.0% at 30%, which highlights the efficiency of targeting adversarially vulnerable points
that uncertainty-only methods often overlook.

Finally, in high data regimes (50%—-90%), PSSop outperforms PSSpoom, reaching 95.3% at 90%. This
inversion underscores that perturbation-informed scoring not only accelerates learning in moderate
regimes. Collectively, these results indicate a two-phase dynamic: bottom variants help bootstrap
robust representations in scarce-data settings, while top variants progressively dominate as sample
diversity increases and the decision boundary requires sharper refinement.

4.2 Comparison with Existing Work

To evaluate the efficacy of our proposed novel ranking schemes: ISEF, FGSM-CS, and PSS, which
leverage sparse adversarial perturbations for coreset selection, we adopt the experimental setup
from the baseline DeepCore library |Guo et al.|[2022], employing a ResNet-18 architecture trained
on CIFAR-10. Table |l reports the test accuracies across varying data fractions, with the last six



rows highlighting our methods. These results demonstrate that our adversarial-informed approaches
excel in identifying informative samples, particularly in low-data regimes, by prioritizing those that
expose model vulnerabilities and mitigate biases or corruptions. In contrast to traditional methods
in DeepCore, which often rely on uncertainty sampling (e.g., Entropy, Margin) or gradient-based
diversity (e.g., GraNd, GradMatch), our techniques integrate perturbation sensitivity to favor samples
that are “hard” under small corruptions. This not only enhances generalization but also reduces
computational demands, as our methods avoid iterative optimizations per sample.

4.2.1 Comparison under Different Data Regimes

We dissect the performance across data regimes to provide granular insights, revealing how our
methods’ strengths manifest as data availability changes.

Extremely Sparse Data Regimes (0.1%—-1%). In highly constrained settings, where only a minus-
cule fraction of data is selected, our methods shine by focusing on perturbation-sensitive samples
that capture core model uncertainties. For instance, at 0.1%, Cal [Margatina et al.|[2021]] leads with
22.7%, followed closely by Craig (22.5%) and FL (22.3%), but ISEFpqom achieves a competitive
19.9% while outperforming methods like Entropy (14.6%) and Margin (17.2%). By 0.5% and 1%,
PSShotom surges to the top with 33.3% and 40.6%, surpassing Cal (33.1%) and FL (38.9%). This
superiority stems from PSS’s emphasis on samples with maximal perturbation-induced score shifts,
which intuitively selects points critical for rapid convergence in data-scarce scenarios, addressing
challenges like label noise or strategic manipulations.

Low-to-Moderate Data Regimes (5%-20%). As data fractions increase, the benefits of adversarial
ranking become more pronounced, with our methods often ranking among the top performers. At 5%,
Random surprisingly leads with 64.5%, but ISEF,ottom (62.8%) and PSSpottom (62.2%) closely follow,
outperforming sophisticated methods like GraNd (39.8%) and Cal (60.0%). By 10%, FGSM-CSpottom
achieves the highest accuracy of 75.9%, edging out k-Center Greedy (75.8%) and Random (75.7%),
while ISEFyq0m (75.0%) and FGSM-CS,, (74.5%) remain competitive. At 20%, Random again tops
at 87.1%, but our methods like FGSM-CS,,,, and Forgetting tie at 86.6%, demonstrating robustness.
The FGSM-CS’s composite scoring integrates gradient norms with uncertainty, selecting diverse
subsets that counteract overfitting to noisy or biased data, outperforming diversity-based approaches
like Herding (74.1%) by focusing on adversarial frontiers.

Moderate-to-High Data Regimes (30%-90%). In regimes with ample data, performance saturates
across methods, as larger coresets inherently capture sufficient representation. Forgetting leads at
30% with 91.7%, but FL (91.4%) and GraNd (91.2%) are close, with FGSM-CS,, at 91.0%. From
40% onward, GraNd dominates (e.g., 93.7% at 40%, 94.6% at 50%), yet our methods like ISEF;,
(95.0% at 60%) match or exceed Entropy (95.0% at 60%). At 90%, Glister achieves 95.6%, but
several of our variants reach 95.0%-95.4%. This convergence suggests that adversarial cues provide
limited advantage with abundant data, but our methods’ efficiency persists, offering comparable
accuracy with lower selection costs.

4.3 Comparison with DeepFool [Ducoffe and Precioso|[2018]

DeepFool, an iterative adversarial method that computes minimal perturbations to fool the model,
serves as a natural baseline for our sparse perturbation-based approaches. Table T|reveals consistent
advantages for our methods, especially in sparse regimes. At 0.1%, ISEFoom (19.9%) outperforms
DeepFool (17.6%); by 0.5% and 1%, PSSpotom (33.3%, 40.6%) significantly exceeds DeepFool
(22.4%, 27.6%). In low regimes, FGSM-CSyotom at 10% (75.9%) surpasses DeepFool’s 60.8%,
highlighting how single-step gradients in FGSM-CS efficiently approximate boundary distances,
capturing vulnerable samples. Overall, while our approaches do not uniformly dominate the top
DeepCore performers, they achieve comparable or superior results in sparse regimes and consistently
outperform DeepFool, underscoring their practical value. These gains arise from our ranking schemes’
ability to prioritize samples based on perturbation magnitude and direction, fostering coresets resilient
to distribution shifts. Moreover, our approaches are lighter, avoiding per-sample loops, and thus
remain suitable for large-scale or continual learning. While accuracies converge in high regimes (e.g.,
both reach 95.5% at 90%), our methods’ edge in efficiency and low-data performance positions them
as a scalable bridge between adversarial robustness and coreset selection.



5 Conclusion and Future Work

We have proposed a novel sparse adversarial ranking framework for data selection that efficiently
identifies decision-boundary samples using single-step perturbations. This framework offers several
advantages over traditional iterative methods, such as DeepFool, by achieving higher accuracy with
fewer data points and significantly reducing computational costs. Notably, our experiments demon-
strate that the PSSpottom and ISEFygom ranking strategies consistently outperform other approaches
in extremely sparse and low-data regimes. These methods highlight the importance of targeting
critical examples rather than relying on full datasets, enabling robust and data-efficient training that
directly addresses unreliable data challenges like distribution shifts and strategic manipulations. By
focusing on curating critical samples rather than compressing entire datasets, our approach allows
for robust and data-efficient training. This is particularly advantageous in resource-constrained
environments, where access to computational power or storage is limited. However, performance
may vary with complex datasets or architectures, warranting further exploration.

Future Work could focus on further extending this framework by integrating additional adversarial
perturbation techniques. Additionally, exploring this method’s efficacy on larger, more complex
datasets, such as those used in real-world applications like autonomous driving or medical imag-
ing, would help assess its scalability. These extensions would help solidify the practicality and
generalizability of the proposed approach, paving the way for broader adoption in real-world Al
systems.
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