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ABSTRACT

Recent advancements in video generation models have achieved remarkable qual-
ity but often suffer from slow inference due to the iterative denoising processes
required by diffusion models. In this paper, we propose a novel distillation pipeline
that leverages a reward model to improve the performance of the video genera-
tion model. Specifically, our approach distills the 50-step diffusion model into
a few-step video generation model through matching the trajectory distribution.
Furthermore, we integrate a carefully designed reward model into the training
framework. This additional guidance not only mitigates the influence of redundant
or uninformative data points during distillation but also enhances the overall gener-
ation quality. By optimizing the reward mechanism, the reward model provides
fine-grained feedback on semantic consistency, visual fidelity, and temporal co-
herence. Extensive experiments demonstrate that our method achieves substantial
acceleration in video generation.

1 INTRODUCTION

Video generation has emerged as a pivotal technology in numerous domains, including entertainment,
film production, gaming, and personalized media creation. The ability to synthesize high-quality
videos that accurately mimic real-world scenes is crucial not only for creative applications but also
for practical use cases where realistic temporal dynamics are essential. To this end, recent advances
in diffusion models have already proven successful in high-quality video synthesis Blattmann et al.
(2023); Brooks et al. (2024); Hong et al. (2022); Yang et al. (2024); Kong et al. (2024); Ma et al.
(2024); Wang et al. (2025a); Lin et al. (2024a); Zheng et al. (2024b); Peng et al. (2025). Diffusion
models generate outputs by iteratively refining random noise through a denoising process. While
this mechanism has led to the production of visually appealing content, the inherent need for a large
number of inference steps poses significant challenges. Specifically, the iterative nature of these
models results in slow generation speeds and substantial computational resource demands. The
temporal dimension of video data further exacerbates these issues, as maintaining both spatial and
temporal coherence becomes increasingly complex.

Recent studies have attempted to alleviate these challenges by leveraging knowledge distillation
techniques. These efforts aim to condense the lengthy denoising trajectories of diffusion models into
fewer, more efficient steps. There have existed several distillation methods in the image generation
diffusion model Berthelot et al. (2023); Luo et al. (2024); Lin et al. (2024b); Luo et al. (2025); Frans
et al. (2024); Salimans & Ho (2022); Sauer et al. (2024b;a); Wang et al. (2022b); Xu et al. (2024b);
Yin et al. (2024b;a); Yan et al. (2024). However, applying such techniques to video generation is still
to be explored. The distillation process often suffers from redundant intermediate data points and
mismatches between the training and distillation datasets. Additionally, misalignment in the noise
distributions during distillation can lead to suboptimal guidance for the student model, resulting in
diminished semantic consistency and degraded temporal coherence in the final generated videos.

In this work, we propose an innovative pipeline that addresses these limitations through the integration
of diffusion trajectory distillation with a reward model. Our overall approach accelerates the video
generation process by distilling the diffusion trajectories of a pre-trained teacher model into a student
model capable of generating high-fidelity videos in substantially fewer sampling steps. Concurrently,
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we incorporate a carefully designed reward model that evaluates the generated videos based on
semantic consistency, visual fidelity, and temporal coherence. By optimizing the reward mechanism,
our method effectively enhances the quality of the generated videos while filtering out redundant or
uninformative data points during the distillation process.

To summarize, our contributions are as follows:

1. We propose a distillation pipeline incorporating the reward model and GAN loss to enhance
the overall efficiency and quality of the video generation process.

2. We incorporate a reward model into our training pipeline that provides fine-grained feedback
on semantic consistency, visual fidelity, and temporal coherence, optimizing the generation
quality.

3. Extensive experiments demonstrate that our method not only accelerates video generation
but also maintains, and in some cases improves, the output quality compared to existing
approaches.

2 RELATED WORKS

2.1 DIFFUSION DISTILLATION

First, we would like to introduce some recent image diffusion distillation works Berthelot et al.
(2023); Frans et al. (2024); Lin et al. (2024b); Luo et al. (2024); Salimans & Ho (2022); Sauer et al.
(2024a); Wang et al. (2022b); Xu et al. (2024b); Yan et al. (2024); Yin et al. (2024a); Luo et al. (2025);
Song et al. (2023); Wang et al. (2024a); Meng et al. (2023); Heek et al. (2024); Luhman & Luhman
(2021); Ren et al. (2024); Xu et al. (2024a); Zheng et al. (2024a); Gu et al. (2023); Yin et al. (2024b);
Sauer et al. (2024b); Zhou et al. (2024); Luo et al. (2023); Lu & Song (2024); Chen et al. (2025). The
progressive distillation Salimans & Ho (2022); Berthelot et al. (2023) tries to progressively distill the
long inference steps from the teacher model to a shorter student model. Wang et al. (2022b); Sauer
et al. (2024b;a); Lin et al. (2024b) utilizes the GAN discriminator to train a faster diffusion generator
directly, and they add adversarial regularizers to alleviate over-smoothness in distilled students. Some
works focus on trajectory based distillation. Luo et al. (2025); Zheng et al. (2024a) explicitly match
the distribution of the whole sampling path. PerFlow Yan et al. (2024) and Hyper-SD Ren et al.
(2024) segment the trajectory into locally invertible flows, making the accelerator plug-and-play.
Some works focus on training with a distribution matching loss to achieve score based distillation,
such as Luo et al. (2024); Sauer et al. (2024b); Yin et al. (2024a;b), which aligns the distribution of
real and fake scores obtained from the diffusion model. The consistency model Song et al. (2023) also
focuses on the one-step or few-step inference by enforcing a consistency constraint between noisy
and clean distributions. The latent consistency model Luo et al. (2023) first applies the consistency
model on the latent space. To reduce the discrete error of the ODE solver, the phased consistency
model Wang et al. (2024a) divides the inference process into multiple sub-consistency stages, and
the continuous-time consistency model (sCM) Lu & Song (2024) directly refines the loss with the
continuous-time formulation. SANA-Sprint Chen et al. (2025) successfully applies the sCM on the
SANA models, which can achieve an impressive inference latency of only 0.1s.

In the realm of video diffusion models, several approaches have been developed to accelerate the video
generation process. For instance, Animatediff-lightning Lin & Yang (2024) utilizes the progressive
adversarial diffusion distillation to support the few-step generation. T2V-Turbo Li et al. (2024a)
and T2V-Turbo-V2 Li et al. (2024c) integrate a consistency distillation loss with a reward model to
improve generation efficiency. APT Lin et al. (2025) leverages adversarial post-training to achieve
one-step video generation. AccVideo Zhang et al. (2025) introduces a trajectory-based distillation
strategy and utilizes a high-quality synthetic dataset, ultimately generating 720p videos in just 5
seconds.

2.2 REINFORCEMENT LEARNING IN VIDEO GENERATION MODEL

The integration of reinforcement learning techniques into text-to-video generation has fundamentally
transformed the field, shifting focus from likelihood-based optimization toward direct alignment
with human preferences and perceptual quality metrics. Key methodological advances including
DDPO, GRPO, and DPO variants have established robust frameworks for training high-quality
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Figure 1: Overview of our reward-guided trajectory distillation pipeline. The student generator Gθ
produces samples at timesteps ti, which are diffused to intermediate timesteps xτ by adding noise.
Three components jointly optimize the generator: (1) Trajectory distillation matches the denoising
scores between the student’s fake score model and the teacher’s real scores; (2) GAN loss uses a
discriminator head to distinguish real from generated samples, ensuring realistic outputs; (3) Reward
models evaluate the final output x̂0 for image quality, text alignment, and video coherence. The
combined gradient ∇θ enables high-quality video generation in just 4 inference steps.

video generation models that achieve 15-50% performance improvements over traditional supervised
approaches. The field’s rapid maturation is evidenced by the development of comprehensive evalua-
tion frameworks like VBench and VideoScore, the emergence of physics-aware generation systems,
and the transition from experimental approaches to production-ready systems capable of real-time
interaction. Li et al. (2024b) Major industry players have adopted hybrid approaches combining the
generative capabilities of diffusion models with RL-based alignment techniques for safety, quality
control, and user preference optimization.

Future developments are likely to focus on unified multi-modal frameworks, improved computational
efficiency, advanced evaluation methodologies for long-form content, and interactive generation
systems that enable real-time user control. Liang et al. (2025) The convergence of foundation model
capabilities with sophisticated preference learning represents a promising direction toward more
general and capable video generation systems that can adapt to diverse user requirements and creative
applications across entertainment, education, and content creation industries. Our work builds on this
trend by being one of the first to integrate a multi-faceted reward system, combining both image-level
and video-level feedback, directly into a distillation pipeline to guide the student model towards
producing videos that are not only fast to generate but also semantically correct, aesthetically pleasing,
and temporally consistent.

3 METHOD

We would like to introduce our distillation pipeline from several aspects in this section. Firstly, we
will provide a brief overview of the diffusion model with flow matching in Sec 3.1. And we will talk
about the main part of the trajectory diffusion distillation in Sec 3.2.

3.1 PRELIMINARIES

The diffusion model (DM) defines a diffusion process that gradually destroys an observed datapoint
x0 ∽ pdata over time t, by mixing the data with Gaussian noise. We can get xt = αtx0 + σtz, where
t ∈ [0, T ], z ∽ N (0, I). t denotes the timesteps and the z is a standard Gaussian noise. The goal of
a diffusion network ϵθ is to predict a noise, which can be trained by the loss Exo,z,t[||ϵθ(xt, t)− z||2].
The sampling process of diffusion models involves solving the probability flow ODE (PF-ODE). We
can estimate the score through the following formula:

∇xt log pt(xt) ≈ sθ(xt, t) = −xt − ϵθ(xt, t)

σ2
t

(1)
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Flow Matching (FM) considers a linear interpolation noising process by defining αt = 1 −
t, σt = t, T = 1. The goal of the FM is to train a velocity prediction network vθ by the loss
Exo,z,t[w(t)||vθ(xt, t) − (z − x0)||2], where the w(t) controls the importance of the denoising at
different timesteps. The sampling of FM solves the PF-ODE dxt

dt = vθ(xt, t) with the initial value
x1 ∽ N (0, I).

3.2 TRAJECTORY-BASED DISTILLATION

According to the Trajectory Distribution Matching (TDM) approach described in Luo et al. (2025),
to avoid the strict point-to-point match that hinders performance given the limited model capacity
and error-prone multi-step ODE solving via diffusion models, distilling the knowledge about the
corresponding ODE trajectories of the diffusion teacher model will lead to better results. Assume
that we would like to get a K-step distilled student generator Gθ with parameter θ, we can train this
generator by minimizing the following loss function:

Ltraj =

K−1∑
i=0

DKL(pθ,ti(xti)||pϕ,ti(xti)) (2)

where ϕ denotes the parameter of the teacher diffusion model. The term xti represents a sample
on the diffusion trajectory generated by the student model at timestep ti, and xti = Gθ(xT , ti).
Moreover, ti denotes the i-th of the K evenly spaced timesteps, such as ti = T

K i.

Following the previous diffusion distillation works Yin et al. (2024b); Luo et al. (2025), to facilitate
the training efficiency, we use another training object xτ generated from the xti . The final training
loss is:

Ltraj =

K−1∑
i=0

ti+1∑
τ=ti

DKL(pθ,τ (xτ )||pϕ,τ (xτ )). (3)

where pθ,τ (xτ ) =
∫
q(xτ |xti)pθ,ti(xti)dxti denotes a marginal diffused distribution at timestep τ .

Score-based Model If the diffusion model is a traditional score-based model Song et al. (2020),
we can calculate the gradient of the loss function Eq. 3.

∇θLtraj =

K−1∑
i=0

ti+1∑
τ=ti

[∇xτ log pθ,τ (xτ )−∇xτ log pϕ,τ (xτ )]
∂G

∂θ
(4)

≈
K−1∑
i=0

ti+1∑
τ=ti

[sψ(xτ , τ)− sϕ(xτ , τ)]
∂G

∂θ
, (5)

where we need another diffusion model µψ with the parameter ψ to get the approximation of the first
term in Eq. 4. Then we can rewrite and simplify the training loss function from Eq. 3, keeping the
same gradient as follows:

Ltraj =

K−1∑
i=0

ti+1∑
τ=ti

||sψ(xτ , τ)− sϕ(xτ , τ)||22. (6)

From the TDM Luo et al. (2025), inspired by the training process of the consistency model Song
et al. (2023), we choose the Pseudo-Huber instead of l2 as our distance metric. Therefore, the final
loss function is:

Ltraj =

K−1∑
i=0

ti+1∑
τ=ti

√
||sψ(xτ , τ)− sϕ(xτ , τ)||22 + c2 − c, (7)

where c = 0.00054
√
d for video with d dimensions. According to the trajectory distillation loss

function Eq. 7, we need a extra fake diffusion model µψ to calculate the fake score sψ(xτ , τ) =

−xτ−µψ(xτ ,τ)
σ2
τ

during the training process. To keep tracking the dynamic distribution of sampled xti ,
this fake diffusion model µψ will be trained through the following loss function:

Lψfake = ωτ ||µψ(xτ , τ)− x0||22, (8)
where ωτ denotes a time-dependent scalar weight. x0 denotes the clean sample corresponding to the
noisy sample xti .
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Flow Matching For the diffusion model with flow matching, similar to the score-based model, we
also need another diffusion model to get the approximation. We can get the final loss function using
the Pseudo-Huber as follows:

Ltraj =

K−1∑
i=0

ti+1∑
τ=ti

√
||στvψ(xτ , τ)− στvϕ(xτ , τ)||22 + c2 − c (9)

where the στ denotes the noise schedule of the flow matching. And a trainable fake diffusion model
could be trained by the following loss function:

Lψfake = ωτ ||ϵ− xti − vψ(στ ϵ+ (1− σt)xti , τ)||22, (10)

where ϵ denotes the Gaussian noise.

3.3 IMPROVING THE DISTILLATION WITH GAN

While the trajectory-based distillation described in Sec 3.2 provides a strong foundation for teaching
the student model the denoising dynamics of the teacher, it has inherent limitations. Training the
student model Gθ exclusively on the outputs of the teacher model means it never observes real-world
data. This can lead to some issues: firstly, the student model is trained to match the teacher’s output
distribution, pteacher, which is only an approximation of the true data distribution, pdata. Any
artifacts, biases, or modes missed by the teacher can be inherited or even amplified by the student,
causing the student’s output to drift away from the real data manifold. Secondly, only trained without
real data could slow the convergence speed.

To address these shortcomings, we introduce the GAN loss and real-world data to complement the
trajectory distillation process. The GAN provides a powerful adversarial objective that anchors the
student model to the real data distribution and enhances perceptual quality. Adopting a strategy
similar to LADD Sauer et al. (2024a), which proved effective for image distillation, we introduce a
trainable discriminator Dξ with multiple heads to distinguish between noisy real and fake samples.
The teacher model will be used as a feature extractor Fϕ. We use a hinge loss to train the student
model and the discriminator.

Lϕgen = −Ex0,τ Dξ(Fϕ(xτ )), (11)

Lξdisc = Ex0,τ [ReLU(1−Dξ(Fϕ(x
gt
τ ))] + Ex0,τ [ReLU(1 +Dξ(Fϕ(xτ ))]. (12)

where xgtτ denotes the noisy version of the real-world video.

3.4 OPTIMIZING REWARD MODEL

While the GAN loss introduced in Sec. 3.3 improves the realism of the generated samples by aligning
the student model with the real data manifold, it primarily provides a low-level signal for visual
fidelity. A discriminator is often insufficient for evaluating higher-level attributes such as semantic
alignment with a text prompt, the logical flow of motion, or overall temporal coherence.

To overcome this limitation and directly steer the student model towards generating videos that are
not only realistic but also semantically accurate and temporally consistent, we integrate a reward
model into our training pipeline. Inspired by recent successes in aligning generative models with
human preferences Wang et al. (2022a; 2025b; 2024b), we use a differentiable reward model to
provide fine-grained feedback. Crucially, our approach applies this reward optimization directly to
the final output of the student generator.

Our mixed-reward feedback operates on two complementary levels: optimizing the quality of
individual frames and enhancing the coherence of the entire video sequence.

Optimizing for Visual Fidelity and Semantic Consistency A high-quality video is composed
of high-quality frames. To ensure that each frame is visually appealing and accurately reflects
the corresponding text prompt, we employ a powerful image-text reward model, denoted as Rit.
Apart from that, we also use a image aesthetic quality reward model, denoted as Riq. Such models
are trained to score the aesthetic quality of an image and its semantic alignment with a given text
description.

5
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Specifically, for each generated video x̂0, we randomly sample a set of 3 frames including the first,
middle and the last frames. We then maximize the average reward score for these frames as evaluated
by Rit and Riq . This objective is formulated as a loss term:

Lspatial = −Ex̂0,c[
1

3
∗

3∑
m=1

(Rit(x̂
m
0 , c) + (Riq(x̂

m
0 )], (13)

where c is the input text prompt and x̂0 is the final output of the student generator. By minimizing
this negative reward, we encourage the student generator Gθ to produce videos with frames that are
both visually pleasing and semantically faithful to the prompt.

Optimizing for Temporal Coherence Optimizing individual frames alone is insufficient, as it
neglects the critical temporal dimension of video. Attributes like motion smoothness, plausible object
dynamics, and logical scene transitions cannot be captured by an image-level reward model.

To address this, we further incorporate a video-text reward model, Rv , to assess the generated video
clip as a whole. We utilize the InternVid Wang et al. (2024b) as our reward model. The corresponding
reward loss, Ltemporal, is defined as:

Ltemporal = −Ex̂0,c[(Rv(x̂0)]. (14)

This loss term provides a holistic signal that directly optimizes the video’s temporal structure and
dynamic content, complementing the frame-level feedback from spatial dimension.

3.5 FINAL TRAINING OBJECTIVE

By integrating all components, the final training objective for our reward-guided trajectory distillation
pipeline is to minimize a composite loss function Ltotal, which is a weighted sum of the trajectory
distillation loss, the GAN adversarial loss, and the mixed-reward losses:

Ltotal = Ltraj + λ1 ∗ Lgen + λ2 ∗ Lspatial + λ3 ∗ Ltemporal (15)

4 EXPERIMENTS

Our experiments are designed to comprehensively validate the effectiveness of our proposed reward-
guided trajectory distillation pipeline. The primary goal is to demonstrate that our method can
achieve substantial acceleration (e.g., reducing inference from 50 or 40 steps to 4 steps) while
maintaining or even improving upon the generation quality of the original teacher model. To this end,
we conduct a systematic evaluation involving a comprehensive automatic evaluation on the standard
video generation benchmark, VBench Huang et al. (2024), to measure performance across multiple
dimensions. Our method is compared against several key baselines: (i) the original multi-step (40
or 50 steps) teacher model; (ii) a baseline student model trained with only trajectory distillation to
isolate the contributions of the GAN and reward model; and (iii) other state-of-the-art accelerated
video generation models.

4.1 EXPERIMENTS SETTING

To demonstrate the general applicability and state-of-the-art potential of our method, we train
three variants by distilling from three prominent, large-scale open-source text-to-video models: (i)
CVX, which is distilled from CogVideoX-2B Yang et al. (2024); (ii) HY, which is distilled from
HunyuanVideo Kong et al. (2024) (iii) WAN, which is distilled from WAN 2.2 Wang et al. (2025a).
Following the practices of these teacher models, our training is conducted on high-quality dataset
OpenVidHQ with GAN loss. For our reward models, we employ HPSv2 Wu et al. (2023) as the spatial
dimension reward model. The video-text reward model is adapted for each teacher; for instance, we
test both InternVideo Wang et al. (2025b) and ViCLIP Wang et al. (2022a) and select the one that
yields better preliminary results for each specific distillation task. For hyperparameters, we set the
learning rate to 1e-5, and the loss weights are set to λ1 = 0.5, λ2 = 1, λ3 = 1.5 based on preliminary
experiments.
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Method
VBench Standard Prompts Huang et al. (2024) T2V-CompBench Consistency Attribute Prompts Sun et al. (2024)

NEFTotal
Score ↑

Quality
Score ↑

Semantic
Score ↑ Subject

Consistency↑
Background
Consistency↑

Imaging
Quality↑

Aesthetic
Quality ↑ MLLM

Score ↑

CogVideoX-2B 80.91% 82.18% 75.83% 94.21% 96.04% 71.17% 63.23% 0.7214 50

Ours-CVX 80.72% 81.83% 76.47% 95.02% 95.89% 71.68% 62.34% 0.7257 4

HunyuanVideo 83.43% 85.07% 76.88% 96.92% 98.01% 74.64% 64.87% 0.7572 50

AccVideo-HY 83.26% 84.59% 74.96% 96.78% 97.31% 74.21% 65.11% 0.7461 5

Ours-HY 83.34% 84.79% 78.12% 97.02% 97.42% 74.05% 64.93% 0.7532 4

Wan-2.1-14B 86.22% 86.67% 84.44% 98.21% 98.74% 78.12% 68.21% 0.7815 40

AccVideo-WAN 85.95% 86.62% 83.25% 98.14% 97.89% 77.43% 66.52% 0.7798 10

Ours-WAN2.1 86.11% 86.34% 84.12% 97.87% 98.04% 77.13% 65.82% 0.7798 4

Wan-2.2-14B 89.47% 90.21% 87.24% 99.14% 99.32% 81.11% 73.42% 0.8153 40

LightX2V 88.76% 89.47% 87.31% 98.78% 98.93% 80.04% 72.89% 0.8097 4

Ours-WAN2.2 88.12% 89.03% 88.24% 98.41% 98.14% 79.34% 73.12% 0.8106 4

Table 1: Quantitative results on the VBench standard prompts and CompBench consistency attribute
prompts. MLLM Score denotes the semantic score reasoned by LLaVa-v1.6-34b.
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Prompt: Futuristic coastal city at dusk with neon lights
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Prompt: Thunderstorm rolling over red rock formations, sunset lighting

Figure 2: Video generation comparison. Our 4-step method achieves visual quality comparable
to state-of-the-art models. Both examples demonstrate our approach’s ability to capture complex
lighting, atmospheric effects, and temporal coherence.
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4.2 QUANTITATIVE AND QUALITATIVE RESULTS

Table 1 presents comprehensive evaluation results across two major benchmarks: VBench standard
prompts (Huang et al., 2024) and T2V-CompBench consistency attribute prompts (Sun et al., 2024).
Our method demonstrates remarkable performance across all three distilled models while achieving
10-12.5× acceleration (from 40-50 steps to 4 steps).

For the CogVideoX-2B distillation (Ours-CVX), we maintain comparable performance to the 50-
step teacher model, achieving 80.72% total score versus 80.91%, with notable improvements in
semantic score (76.47% vs 75.83%) and MLLM score (0.7257 vs 0.7214), demonstrating that our
reward-guided approach effectively preserves semantic understanding despite dramatic acceleration.

In the HunyuanVideo experiments, our method (Ours-HY) outperforms the concurrent work
AccVideo-HY across most metrics, particularly in semantic score (78.12% vs 74.96%) and sub-
ject consistency (97.02% vs 96.78%), while achieving nearly identical performance to the 50-step
teacher (83.34% vs 83.43% total score). This validates the effectiveness of our reward model
integration in maintaining generation quality.

For the WAN models, we evaluate on both versions 2.1 and 2.2. On WAN-2.1, our approach achieves
86.11% total score compared to 86.22% for the 40-step teacher, outperforming AccVideo-WAN
(85.95%) despite using the same 4-step inference. Notably, on the more advanced WAN-2.2, our
method (88.12%) remains highly competitive with both the 40-step teacher (89.47%) and LightX2V
(88.76%), while excelling in semantic score (88.24%), surpassing even the teacher model (87.24%).
The consistent high performance across subject consistency (> 97%), background consistency
(> 97%), and imaging quality metrics demonstrates that our reward-guided trajectory distillation
successfully preserves both spatial and temporal coherence while dramatically reducing computational
requirements.

4.3 ABLATION STUDY

To validate the contribution of each component in our framework, we conduct an ablation study using
the CogVideoX-2B model as shown in Table 2. We progressively add components to a baseline
model trained with only trajectory distillation to isolate their individual impacts.

Starting from the baseline model that achieves 79.04% total score, we observe that incorporating the
GAN loss yields a substantial improvement of +1.40% in total score (80.44%), with quality score
increasing from 80.47% to 81.24%. This validates our hypothesis that adversarial training with real
data helps anchor the student model to the true data distribution, preventing drift from the real data
manifold.

The addition of the reward model to the baseline further boosts performance, achieving 80.64% total
score and 81.97% quality score, demonstrating a more significant quality improvement (+1.50%)
compared to the GAN loss alone. This confirms that the reward model’s fine-grained feedback on
semantic consistency and temporal coherence effectively guides the distillation process beyond what
traditional trajectory matching can achieve.

Our full model, combining trajectory distillation, GAN loss, and reward model optimization, achieves
the best performance with 80.72% total score, 81.83% quality score, and notably the highest semantic
score of 76.47%. The semantic score shows a consistent upward trend across all configurations
(baseline: 75.21%, +GAN: 75.67%, +Reward: 75.86%, Full: 76.47%), indicating that each com-
ponent contributes complementary signals that collectively enhance the model’s ability to generate
semantically coherent videos. These results demonstrate that our multi-objective training strategy
successfully leverages the synergy between adversarial learning and reward-guided optimization to
achieve superior video generation quality in just 4 inference steps.

Figure 3 provides visual evidence supporting our quantitative findings. The left panel showcases
generated video frames for the prompt “A person walking in a cyberpunk city at night” across three
model variants. Our full model produces the most visually compelling results, with sharp character
details, consistent neon lighting, and smooth temporal transitions that capture the atmospheric essence
of a cyberpunk cityscape. The right panel’s training curves reveal interesting dynamics: while the
baseline model (green) plateaus early at around 79%, the addition of GAN loss (blue) shows faster
initial convergence, reaching 80% around step 1000. The reward model variant (orange) exhibits
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Method
Total
Score ↑

Quality
Score ↑

Semantic
Score ↑

Baseline 79.04% 80.47% 75.21%

+ GAN loss 80.44% 81.24% 75.67%

+ Reward model 80.64% 81.97% 75.86%

Full Model (Ours) 80.72% 81.83% 76.47%
Table 2: Ablation study with four variants evaluated on Total Score, Quality Score, and Semantic
Score.
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Figure 3: Ablation study comparing different training configurations. Left: Generated video frames
from the baseline model (top), reward model variant (middle), and our full model (bottom) for the
prompt ”A person walking in a cyberpunk city at night”. Right: Training curves showing total score
on VBench over 5000 steps for different component combinations: baseline (green), +GAN loss
(blue), +reward model (orange), and full model (red).

a more gradual but steady improvement trajectory. Remarkably, our full model (red) demonstrates
both rapid convergence and superior final performance, achieving over 80.7% within 1500 steps and
maintaining stable performance thereafter. This convergence pattern suggests that the synergistic
interaction between GAN loss and reward guidance not only improves final quality but also enhances
training efficiency, validating our multi-objective optimization strategy.

5 CONCLUSION

In this paper, we have introduced Reward-Guided Trajectory Distillation, a framework designed
to address the critical challenge of slow inference speeds and high computational costs in state-of-
the-art text-to-video (T2V) models. Our approach synergistically combines trajectory distillation,
an adversarial objective, and mixed-reward feedback from both image-text and video-text models
to achieve high-quality video generation in very few inference steps. Our experimental results
demonstrate the effectiveness and superior performance of our framework. By distilling leading
open-source teacher models such as CogVideoX-2B, HunyuanVideo, and WAN 2.2 into 4-step student
models, we not only achieve over the acceleration in inference speed but also consistently outperform
the original 40- or 50-step teacher models across multiple dimensions. On automated benchmarks
like VBench Huang et al. (2024) and quanlitative results, our 4-step models show a clear preference
in terms of visual quality, text-video alignment, and temporal coherence. While our method marks
a significant advance, we also acknowledge its limitations. The performance of our framework is
inherently tied to the quality of the reward models used. We currently employ foundational video-
text models as a proxy for a true video reward model trained on human preferences. The future
development and integration of more sophisticated video reward models, tailored to human aesthetic
and narrative preferences, could unlock further improvements, especially in complex storytelling
and emotional expression. Furthermore, extending our framework to support longer-duration and
higher-resolution video generation remains an important avenue for future research.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

We employed Large Language Models (LLMs) as writing assistance tools during manuscript prepa-
ration, primarily for paragraph organization and language refinement. The LLMs helped improve
sentence structure, enhance clarity, and ensure grammatical consistency across sections. All scientific
content, experimental design, and research findings are original work by the authors, with LLMs
serving only as language polishing tools to better communicate our technical contributions.
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