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Abstract

Monitoring the calving dynamics of the Antarctic
ice shelves is central to understanding a major driver
for the changes to ocean levels on our planet. Sev-
eral physical models have been proposed as calv-
ing laws, with varying predictive power. We pro-
pose an approach using Machine Learning (ML) to
identify key variables and parameters that may be
used in future models of the ice shelf calving dy-
namics. As part of an ongoing project, we have
trained a U-Net on samples from a set of Gaussian
Random Field (GRF)-represented Essential Climate
Variables (ECVs). Ablation studies establish a few
of the selected variables as having high correlation
with calving events, with an F1 score above 0.9. Our
first study site was the Larsen C Ice Shelf, on the
northwest part of the Weddell Sea, where in 2017
there was a massive calving event. We have found
strong correlations between the calving and the ice
velocity leading up to this event, which may be fur-
ther improved when accounting for basal melt rates
in the area.

1 Introduction

The Antarctic continent is covered by a sheet of ice,
known as the Antarctic Ice Sheet (AIS). Surrounding
the outlets of the AIS are a series of ice shelves which
are crucial indicators of the response of Antarctica
to a changing climate, as well as being a major
buttressing factor securing the grounded ice on the
Antarctic [1, 2]. Collapsing ice shelves, where the
whole shelf rapidly disappears, have a major effect
on changing both the dynamics of the grounded ice
as well as contributing to multitudes of downstream
effects [3]. Predicting large scale events remains
elusive to physics-based, process models, including
the prediction of calving events. As part of the Eu-
ropean Space Agency (ESA) project AI Forecasting
for Ice Shelf calving (AI4IS), we have used a com-
bined approach with a data cube of monthly GRF
representations and machine learning to predict calv-
ing events, with the aim of providing a data-driven
appRoach to forecasting ice shelf calving.
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Figure 1. Location of the study area, Larsen C. Shown
in red is the spatial data coverage over the ice-shelf.

Glaciers and ice shelves have been a field of study
since the latter part of the 18th century: from the
sliding dynamics of alpine glaciers under the force
of gravity to looking at mechanical tensor descrip-
tions of strain-fields, guided primarily by the search
for physical laws determining glacier and ice sheet
dynamics, and using numerical models to simulate
the physical models since the 1950s and onwards [4].
Since the beginning of the 21st century, we have
seen massive shedding of ice from the Antarctic ice
shelves. Findings from the IMBIE assessment [5]
report this shedding to be around 115 gigatonne per
annum (Gt/a) in the period 2017-2020, with a peak
discharge rate of 150 Gt/a in the prior 4-year pe-
riod. Physical laws have been proposed to describe
the process of calving [6] but, as noted by Wilner
et al. [7], the majority of the proposed physical laws
have remained unvalidated in the Antarctic.

In this paper we present the following contribu-
tions towards the study of calving dynamics in the
Antarctic:

e We show that Deep Learning, and specifically
U-Nets, can be used to predict calving events in
the AIS, with up to a year of lead time before
the event.

e We report on expert-in-the-loop validation,
where model predictions were presented along-
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side eXplainable AI (XAI) heatmaps that
showed model reliance on input variables, indi-
cating that our models align with the current
understanding of what are significant variables
for determining future calving events.

e To the best of our knowledge, the model findings
represent the first Deep Learning models to
successfully forecast calving events off the AIS.

1.1 Related Work

In recent years, there has been efforts to better
map the dynamics of the cryosphere by monitoring
changes over time [8], and tracking the changing
calving fronts [9, 10]. On the calving fronts there
has been a circumpolar effort using a HED-UNet
architecture by Baumhoer et al. [11], which has re-
sulted in a fairly large, publicly available dataset.
This was considered an option for automatic detec-
tion of label data, but ultimately was found to have
too many misalignment artifacts to be useful. Re-
cently there has also been increased efforts towards
benchmarking calving front locations algorithms [12,
13], which we take as an indicator that the detection
of calving front location will improve in the future.

Research in the field has been hinting towards the
existence of universal calving laws [14], especially
when allowing for stochasticity within the models.
More extensive, full 3D physics models of calving
have been made for Greenland [15], which show
a reasonably close agreement between model and
observed calving behavior, demonstrating primarily
how our understanding of the physics has progressed.
However, there still remains a way to go, as seen in
systemic evaluations of calving models [16].

Meanwhile, in the Antarctic, efforts to model and
predict the calving has been made using a data
cube consisting of ECVs, and predicting calving
with Random Forests [17]. This approach is often
seen at early stages of spatiotemporal modelling,
where one may wish to identify pixelwise properties
that are indicative of some feature. The downside of
such approaches is the loss of contextual information.
Moncada [17] also indicated that the U-Net may be
more favourable to the desired modelling.

U-Nets have been increasingly used for spatiotem-
poral, physical models. Here it is of particular note
that standard U-Nets are comparable to physics
foundation models [18]. Additionally, Tai et al. [19]
have made progress towards formalising the math-
ematical explanation of the U-Net, showing that
one can interpret the U-Net as a one-step operator
splitting algorithm.
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Figure 2. Sentinel-1 (SAR) image from 12/07/2017 of
the A-68 iceberg calving event.

2 Method

This project has focused on the prediction of anoma-
lous or extreme dynamics on the AIS, combining
the use of a GRF-resampled data cube, and an ML
model for approximating the transitions from slices
of time to future states of known calving events on
the Larsen C site (see Figure 1).

The Global Climate Observing System (GCOS)
track collections of ECVs. Generally the ECVs con-
stitute a list of factors that are essential for modelling
and understanding the climate. Of these ECVs,
GCOS has isolated a subset that pertains to the
cryosphere in general, and to Antarctica specifically.
In this project we have used an enriched set of inputs
in addition to the ECVs that are commonly ascribed
to ice shelves, but we will in this paper refer to all
of the inputs as ECVs.

Our approach has been structured in these stages;

e Data Collection Data was collected and re-
processed into a GRF representation, and asso-
ciated with known calving events as an (input,
output) tuple.

e U-Net training A U-Net was trained to cor-
relate the different slices of the GRF-data cube
with calving events within a moving window of
future events.

e Significance analysis Ablation studies has
been used to identify the most significant con-
tributions from the GRF-datacube, establishing
the performance-metric correlation of each in-
put.

e X Al-based Saliency XAI was used to gen-
erate an input-saliency map, highlighting the
saliency of the inputs in a trained model.

e Validation & Verification Results of the ab-
lation studies have then verified by domain ex-
perts to ascertain the scientific validity of the
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Figure 3. 2D surface map of our data. Showing data
coverage (dark blue), training data (green) vs validation
data (red), and calving events within 2015-2020 (bright
areas). Calving events are here reproduced as vectorised
data from Qi et al. [20], without spatial alignment and
rasterisation.

predictions. Hold out validation data is used to
track model performance (see Figure 3).

2.1 Data Cube

A multivariate datacube was constructed comprising
various datasets relevant to ice sheet physics selected
to cover the years 2014-2022 inclusive. Our first
study-site was the Larsen C Ice Shelf, Figure 1,
which had a large calving event in July 2017, where
the approximately 1000 gigatonne (Gt) A-68 iceberg
calved from the main ice shelf (Figure 2).

The datasets listed in Table 1 have been fitted
and resampled to a GRF representation to stan-
dardise spatial resolution and fill data gaps. Not-
ing that the coursest original resolution was the
Wind Speed and direction (WS) at a resolution of
31 x 31[km]. Similarly both the Surface Mass Bal-
ance (SMB), and firn-related data were at a similarly
course original resolution of 27 x 27[km]. These were
therefore not expected to contain much information,
but act as support for higher resolution data. The
GRF was approximated at a set of irregular vertices
on a mesh, before it was regridded as a contigu-
ous surface of equal squares, i.e. as digital images.
Samples taken from GRF have some process-based
uncertainty, which was also produced as a gridded,
spatially distributed output, and which will be quan-
tified in the further analysis of the data cube, but
which we for the purposes of our predictions have
not taken into account.

It is important to note that the ECVs are as-
sumed to have some level of correlation between
them, which we implicitly use in our predictions.

Table 1. Table of datasets contained in the used ver-
sion of Data Cube. All data is resampled from original
resolution to 200 m resolution. The complete data cube
will be published on a later date.

Dataset (source) Original Resolution
Ice Velocity (IV) [21] 200 x 200 m
SMB [22] 97 x 27 km

Firn thickness [23] 27 x 27 km

Firn air content [23] 27 x 27 km
Basal Melt (BM) [24] 1000 x 1000 m
WS [25] 31 x 31 km

Such correlation would imply shared causality, which
essentially means there is a pullback from the data-
correlations to a common cause. We also make use
of ablation studies to isolate individual ECVs, and
identify whether these variables have strong corre-
lations to calving events. Isolated variables in the
ablations were also explored with XAI to highlight
the saliency of the available inputs, estimate the
validity of the model predictions.

In Table 1 we denote the included datasets avail-
able on the datacube at the time of the experiments.
All datasets have been harmonised to a shared grid,
with a shared resolution of 200-meter spatially, and
a 1 month temporal resolution. The datacube was
coupled with a corresponding 15 year calving dataset
by Qi et al. [20]. This calving dataset was rasterised
to the same resolution as our input data, and as-
signed values with an indicator function over the
majority class in the corresponding vector data,

1- if calving at t

]-calm'ng (t) = { (1)

0- if not calving at ¢

To get prediction from the data, the time at which
the labels are sampled were offset to the samples of
the data cube. This was determined using a sliding
window of data containing 3 months of input data,
e.g. to validate prediction in July 2017 we provided
data samples from April, May, and June of 2017
as our 3-month lead-time prediction'. Testing, and
Figures shown here (Figures 6(a) and 6(b)) are from
the month before the training and validation data
(shown in Figure 4(a)), i.e. to predict an event in
July we use test data from March. This strategy
was selected to avoid the potential for hash-table
overfitting error, where some models may learn an
effective look-up table on low resolution data (see
Table 1).

2.2 Sampling, preprocessing, and

Augmentation

The data and labels were combined and gridded
with overlapping grids to create the (input, label)

1ditto for 6 and 9 month lead-time prediction.



pairs which were randomly sampled by the models
during training. All data was sampled at 200m per
pixel, which translates to an XY-bounding box in
the spatial domain of 1551 x 1651 pixels to cover the
first study-site of Larsen C. Each training sample
was targeted at 256 x 256 pixels. A Train/Test split
was made based on two different sampling strategies
(Figure 4), where a given “Lead Time’-parameter
designated the temporal inclusion parameter for
the data. Experiments were performed with either
sampling strategy, showing little difference in perfor-
mance. The numbers in Table 3 are from the “lead
time™-strategy (Figure 4(a)).

All the data were split into Training or
Validation by intersection of a vectorised Area
Of Interest (AOI) (see Figure 3), where the major
calving event of A-68 is roughly intersected to re-
serve % of its total area for validation. The splitting
of the ice-shelf remains the same throughout the
time-dimension, to ensure no potential learning of
the precursive configurations, or memorisation of
the outlines carries over from training to validation
data. The remaining ice-shelf is similarly split us-
ing vectorised areas, and masking areas that do not
intersect with the target AOL

Given the relatively low amount of valid calving
events, we employed a stack of random augmenta-
tions. For this the sample sizes of the training sam-
ples was scaled up by a factor of ~ v/2 to 364 x 364,
in order to account for full rotational freedom with-
out losing information when clipping to the target
shape. These samples were then rotated by a ran-
dom angle up to £45°. After rotation samples were
randomly flipped along both horizontal and vertical
axes, with a probability of 0.5, before being cropped
to the target input shape of 256 x 256. This was
done to improve generalisation, and to increase the
amount of training samples.

2.3 Model and Parameters

We have used an attention U-Net [26, 27| archi-
tecture for our model. U-Nets generally produce
readable maps as outputs, and their spatiotemporal
properties are well supported, as is evident by them
serving as a baseline for comparison in physics foun-
dation models [18]. Derivatives of the U-Net also has
a long standing, empirical track-record classifying
remote sensing data, and consist of an encoder, a de-
coder, and a bottleneck, with skip-connections to act
as control-parameters for the reconstructed image of
delineated features in the output map. Furthermore,
as shown by Tai et al. [19], U-Nets are effectively solv-
ing a control problem. In our case, this means they
approximate the transition maps inherent to our
causal model, decoded as a probability-distribution
over calving events. Our U-Net was trained using
an AdamW optimiser 28], and following recent rec-
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(a) Lead time based sampling strategy. Example shown
for 6 month lead time, using a 3 month window for
validation. Inclusion of training data for the full period
was intended to provide some lifting. Limiting the
validation data to the first 3 months of the available
lead time was intended to ensure model selection trends
towards further reaching prediction within the lead time

window.
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(b) Gap time based sampling strategy. Similar ap-
proach as lead time, using only the first 3 month win-
dow for the targeted prediction lead times.

Figure 4. Time-wise sampling strategy for data, with 6
month lead example. Colours correspond to the spatial
AOI split in Figure 3. On the right showing the month
containing a calving event, and on the left showing the
temporal segregation of the test data. Resulting images
from models run on test data are collected in Appendix A

ommendations from the study on hyperparamters
by Orvieto and Gower [29] we set 81 = B2 = 0.9.
We have used Focal Loss [30] as our target for
classification, with v = 3, to account for some of
the class imbalance, and our target metric was the
macro-averaged F1-score, which should avoid biasing
the metric towards the no-calving label. We used
weighting in favour of calving in both the random
grid-sampler and the loss function, with a class-
weight of 2 : 1. For ease of reference see Table 2.

2.4 Ablation & XAI

We have performed a set of ablations over the avail-
able dataset, focused on identifying the strength of
the correlations between the available input data
from the data cube and the labels from Qi et al. [20].
To do this we sliced the data cube into its consti-
tute parts, and trained U-Nets for each variable in
turn, under similar conditions. The ablations were
performed across a selection of lead-times, divided
into sections of 3-month periods, and predictions
evaluated on the final time-slice that was not in-
cluded in the training data. This was done to ensure
the data was representative of the region trained on,
but not included in the training data. Early results
indicated that IV had the strongest correlation with
calving, followed by BM.

Therefore, we performed an additional experiment
using a combination of the two most predictive sub-
sets of the data: IV and BM (Figure 6(a)). It should



Table 2. Attention U-Net[27] trained with AdamW,
model parameter summary:

Model
Model Attention U-Net
Activation ReLU
Encoder Blocks 5
Base channels 16
Output channels 2

Optimizer

Algorithm AdamW [28]
Learning Rate 0.001
b1 0.9
B2 0.9
Weight Decay 0.1

Loss
Loss Function Focal Loss [30]
¥ 3
classes (no-calving,

calving)

class weights [1,2]
reduction mean

Data Augmentation

Input-shape 364 x 364
Rotation 6 € [0,+45°)
P(Horiz flip) 0.5
P(Vert.flip) 0.5

Center Clip 256 x 256

here be noted that the basal melt data is partially
dependent on the ice velocity data. Combination
of ablation and XAI was used to identify key input
variables. To establish the significance of the differ-
ent layers in the data cube, we divided the dataset.
For the ablations we started with the individual
ECVs, and measured the performance. Consecutive
experiments looked at the combination of variables
within P(ECV), of which we here report only on
the best performing combination and the individual
subsets.

After we identified the contribution of each ECV
to the final performance, we have used guided back-
prop, and a variation of GradCAM |[31] to highlight
the area of the input that is most salient for the
predicted output (Figure 5). Verifying the areas
the model finds salient acts as a constraint on the
applicable mathematics that goes into considering
whether the model seems to cover existing theory,
or if it may be completely confused.

2.5 Validation

For each ablation experiment, the model predictions,
metrics and data were prepared for the entire ice
shelf, focusing primarily on the validation area of
Larsen C. The quality of the predictions was then
validated by domain experts from Centre of Excel-

Ice velocity v

0 1

Figure 5. Cropped detail image from a XAI saliency
map generated for a model trained with IV and BM as
inputs. Note also the delineation close to the boundary
of the calving area. Full version of image is included in
Appendix B

lence in Environmental Data Science (CEEDS) at
Lancaster University (LU), who made a qualitiative
verification of whether the causal relationship fits
with our current understanding of glaciology.

This form of validation was considered a more ap-
propriate approach to the standard train-test split of
data primarily due to the limited amount of calving
events observed from Larsen C during the period of
available data. Secondly, since a stated goal of the
project was to identify clear links between the data
and the predictions of our ML approach, the valida-
tion of these causal predictions require some form of
human-expert-in-the-loop. This provides necessary
feedback to ensure that our models are more likely to
rely on real physical relationships rather than data
correlations that have no connection to the actual
dynamics of the system. Finally, we have provided
a GradCAM |[31]-based XAI saliency map over the
multivariate data cube (example in Figure 5). These
were intended to inform domain experts about the
relative weight the ML model places on the spatially
distributed information of each channel. The valida-
tion of these also require familiarity with the inputs
given to the model.

3 Results

3.1 Ablation

Table 3 lists the Fl-scores of the ablation experi-
ments with different datasets along with their re-
spective lead times. We found that IV both with
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(b) Predictions with varied lead-time.

Figure 6. Differences in predictions. Figure 6(a) shows the predictions from models trained on subsets of
the available data; basal melt rate, ice velocity, and a combination of basal melt and ice velocity, respectively.
Figure 6(b) shows the effect of temporality, with the models given a 3, 6, or 9 month lead time of data.

and without the BM have strong correlations to the
target labels (shown in Figure 6(a) and Figure 6(b)).
No predictive power was found with the firn air
content. Firn thickness showed some promise as a
potential supporting variable, but had unreliable
predictions on the test set. Similarly we identified
the SMB to be a potential candidate for supporting
variables, but ultimately not as useful as the BM
for supporting models that make use of IV.

WS seemed to correlate more than expected with
the calving, both on training and validation data,
but the higher F1-scores reported only emerged to-
wards the end of the trainings. When predicting
on the test-data the correlations seemed to fully
disappeared. For the Test-maps presented to expert
validation, the model predictions did not contain
discernable or significant information. This may
therefore have been case of overfitting, where the
model associates the values of the wind speed di-
rectly to the label rather than generalising; a hypoth-
esis further supported when considering the original
resolution of the wind speed data (Table 1).

3.2 Validation

Predictions from ablated models have been presented
to domain experts from the polar science group
at LU associated with the CEEDS and Centre for

Polar Observation and Modelling (CPOM). Model
performance is assessed with reference to experience
with observed calving events and understanding of
the physics behind the calving process [7, 32].

The results on the variables with most predictive
power were found to be consistent with an under-
standing of the physics of ice shelf calving. Ice
velocity, the most significant predictor, has a direct
relationship with calving; for floating ice closer to
the calving front and further from the grounding
line, high variability in velocity over short distances
suggests it is associated with rifting, cracking, or
other forms of disturbance to otherwise smooth ice
flow which are significant in the process of icebergs
detaching from the shelf.

Basal melt as the second most significant predic-
tor has a major impact on ice shelf thickness, with
significant thinning of the shelf making calving eas-
ier. It is not surprising that the other variables used
do not appear to have major predictive power. They
have a less direct impact on the calving process, so
despite likely having some information to impart
about ice shelf stability it is not expected that any
of these datasets individually allows for confident
prediction of imminent calving. Surface mass bal-
ance is not the dominant factor in mass changes for
Antarctic ice shelves, with basal melt and calving
much larger sources of mass loss. Changes in firn



Table 3. Highest validation F1-score mean vs lead time.
Highest F1l-scores per lead time highlighted in bold.
Values reported are the Mean (M) of highest F1-scores

and their respective Standard Deviation (SD).

Lead time
Subset 3 months 6 months
v 0.951 £ 0.015 0.936 £ 0.0043
BM 0.865 + 0.0097 0.822 4+ 0.024
IV + BM 0.941 +0.0036 | 0.937 + 0.0025
SMB 0.605 £0.11 0.622 £ 0.18
WS 0.786 £ 0.02 0.739 £ 0.02
firn thickness 0.550 0.1 0.596 + 0.14
firn air content 0.491 4+ 0.005 0.486 4 0.009

Lead time
Subset 9 months 12 months
v 0.927 +0.0085 | 0.945 + 0.0073
BM 0.785 + 0.04 0.794 + 0.0086
IV + BM 0.926 + 0.0019 0.928 + 0.0032
SMB 0.488 + 0.0065 0.506 + 0.011
WS 0.749 + 0.009 0.778 £ 0.01
firn thickness 0.623 = 0.14 0.630 & 0.01
firn air content 0.487 £ 0.006 0.487 £ 0.0005

thickness and firn air content are also indications
of surface processes and are not expected to have a
large impact on overall flow. Wind speed may have
some direct and indirect impact on ice shelf calving,
but the coarse resolution of the input dataset and
the fact that wind speed variations aren’t likely to
be localised to areas prone to calving explains the
relative lack of predictive utility.

The spatial predictions of calving location (Fig-
ure 6(b)) matches well with the geometry of the A-68
calving event. The closer contours in the southern
part of the domain (right of Figure 6(b)), suggest-
ing higher confidence in the location, are consistent
with the way the calving event played out, with the
separation beginning in this area and propagating
north (left of Figure 6(b)).

4 Conclusion

In this work we have shown that a U-Net can be
used for predicting future events, acting as an ap-
proximation of the temporal transition map. While
these predictions are now at a stage that shows clear
correlations, it still remains to see how well they will
perform on more rapid ice shelves. It should also be
noted that the correlations are currently statistical
correlations, and not strongly founded in physical
theory. A further review of proposed physical mod-
els for the calving dynamics of the AIS can be made
on the basis of these correlational models, where
clear correlations such as the ice velocity are more
closely considered.

We have found that our models can train to a
high degree of correlation for long-reaching causal

chains, as measured by the F1 scores for lead-time
data. The question of generalisability remains open,
with the model currently only being validated for
a relatively stable ice sheet. Further modifications
to the experiment design may provide more insight,
and we are considering a change from the lead-time
approach into a windowed gap-based approach.

Confirmation that the model performance remains
consistent with current understandings of the physics
of ice shelf calving is promising. This indicates the
models used here may be good approximations to
the current physical models for ice shelf dynamics.
Future work will extend this work to encompass
larger areas of the Antarctic, exploring possibili-
ties of using transfer learning between different ice
shelves, as well as more dynamic and faster flowing
shelves.
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A Appendix: Figures

A.1 3 month predictions
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A.2 6 month predictions
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A.3 9 month predictions
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