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Abstract001

Monitoring the calving dynamics of the Antarctic002

ice shelves is central to understanding a major driver003

for the changes to ocean levels on our planet. Sev-004

eral physical models have been proposed as calv-005

ing laws, with varying predictive power. We pro-006

pose an approach using Machine Learning (ML) to007

identify key variables and parameters that may be008

used in future models of the ice shelf calving dy-009

namics. As part of an ongoing project, we have010

trained a U-Net on samples from a set of Gaussian011

Random Field (GRF)-represented Essential Climate012

Variables (ECVs). Ablation studies establish a few013

of the selected variables as having high correlation014

with calving events, with an F1 score above 0.9.015

Our first study site is the Larsen C Ice Shelf, on016

the northwest part of the Weddel Sea, where in017

2017 there was a massive calving event. We have018

found strong correlations between the changes in ice-019

velocity leading up to this event, which are further020

improved when accounting for basal melt rates in021

the area.022

1 Introduction023

The Antarctic continent is covered by a sheet024

of ice, known as the Antarctic Ice Sheet (AIS).025

Surrounding the outlets of the AIS are a series026

of ice shelves which are crucial indicators of the027

response of Antarctica to a changing climate, as028

well as being a major buttressing factor securing the029

grounded ice on the Antarctic [1, 2]. Collapsing ice030

shelves, where the whole shelf rapidly disappears,031

have a major effect on changing both the dynamics032

of the grounded ice as well as contributing to033

multitudes of downstream effects [3]. Predicting034

large scale events remains elusive to physics-based,035

process models, including the prediction of calving036

events. As part of a project, we have used a037

combined approach with a data cube of monthly038

GRF representations and machine learning to039

predict calving events, with the aim of providing a040

data-driven approach to forecasting ice shelf calving.041

042

Glaciers and ice shelves have been a field of study043

since the latter part of the 18th century: from044

the sliding dynamics of alpine glaciers under the045

force of gravity to looking at mechanical tensor046

descriptions of strain-fields, guided primarily by the047

Figure 1. Overview of the two ice shelves selected as
study sites; Larsen C and Pine Island.

search for physical laws determining glacier and 048

ice sheet dynamics, and using numerical models to 049

simulate the physical models since the 1950s and 050

onwards [4]. Many have proposed physical laws to 051

describe the process of calving [5], but, as noted by 052

Wilner et al. [6], a majority of the proposed phys- 053

ical laws have remained unvalidated in the Antarctic. 054

055

Since the beginning of the 21st century, we have 056

seen massive shedding of ice from the Antarctic ice 057

shelves. Findings from the IMBIE assessment [7] 058

report this shedding to be around 115 gigatonne 059

per annum (Gt/a) in the period 2017-2020, with a 060

peak discharge rate of 150 Gt/a in the prior 4-year 061

period. 062

063

Following the standard definitions for general dy- 064

namical systems [8–10] we consider the physical 065

system of ice dynamics as a tuple (χ, τ, f), where χ 066

is the state space of all possible states, τ is a set of 067

times, and f is the system’s dynamical map: 068

f : χ× τ → χ (1) 069

Fixing time, t, we can observe f as a time-dependent 070

map: 071

ft : χ → χ, 072

which maps the transitions of states. Since the 073

nature of our available data was historical, the above 074

time-dependent map is assumed as a single path 075

through the dynamical system. This is stated as our 076
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set of samples:077

{ft(xi)|t ∈ [0, . . . , T ]} ⊂ χ, (2)078

which is a subset of the set of all allowed states,079

χ, containing only the historical record of visited080

states. Another modification of assumptions was081

to account for stochasticity in our model of the082

underlying dynamical system, where the dynamical083

map is replaced with a tuple, (C, τ,Γ, p,A), replacing084

the initial system states with the analogous system085

configurations, C, which allows for mixed states, and086

consisting of a probabilistic map, p,087

p : χ× τ → [0, 1] ⊂ R,088

a stochastic transition map, Γ,089

Γ : χ2 × τ → [0, 1] ⊂ R,090

where Γij(t) = p(xi × t|xj × 0) is the map of con-091

ditional probabilities for the system to transition092

into configuration xi, at time t, from configuration093

xj , at time 0, following the definition of conditional094

probabilities. Finally we also formally require an095

algebra of random variables1, A, which denotes a096

commutative algebra of maps for each random vari-097

able A ∈ A098

A : χ× τ → R,099

in which the values axi(t) := A(xi, t) tracks the100

magnitudes of the random variables.101

102

In the mixed assumption of both historical and103

probable future events, we have used ML to predict104

the probability of some future state, pi(t
′), given105

information about the state ft(j), and propose that106

what results is an approximation [11] of the tran-107

sition map, Γij(t). What was therefore implicitly108

approximated was the underlying dynamical system,109

as a stochastic process, by an approximation that110

assigns probabilities to future states of the actual111

system. Both the general dynamical system and112

the stochastic system were here assumed to be113

models which contained causality. Specifically we114

expected our data cube to contain approximate,115

or noisy, samples from real, continuous causal chains.116

117

This project has focused on the prediction118

of anomalous or extreme dynamics on the AIS,119

combining the use of a GRF-resampled data cube,120

and an ML model for approximating the transitions121

from slices of time to future states of known calving122

events on the Larsen C site (see figure 1).123

124

Deep learning methods are especially developed125

to identify and leverage correlations between the126

1This terminology simply states that our measurable vari-
ables, axi (t), when the system is in a given state or configu-
ration, xi, are to some extent not completely deterministic.

Figure 2. Sentinel-1 (SAR) image from 12/07/2017 of
the A-68 iceberg calving event.

input data and the output labels. Predictive models 127

make a claim that the correlations have a causal 128

relationship. To make such claims we must ensure 129

at least the following: firstly, that the events or 130

configurations are linked with a temporal offset 131

so that one event can be the cause of another. 132

Secondly, there must be a medium that permits the 133

effects of the first event to propagate to the second, 134

within that temporal offset. Finally, it should be 135

verified that the proposed causal chain of events is 136

rational, i.e. that we can map the proposed causal 137

chain to an applicable system of dynamics. This 138

final step can be as simple as an expert verification, 139

where a suitably knowledgeable person considers 140

whether the proposed link can be explained based 141

on our current understanding. 142

143

Under this paradigm, we can use ML to train 144

a suitable neural network to identify correlations 145

with future events across a cross-section of differ- 146

ent input-variables. The Global Climate Observing 147

System (GCOS) has assigned ECVs that pertain to 148

AIS. These ECVs constitute a list of factors that 149

are essential for modelling and understanding the 150

climate. Of these ECVs, GCOS has isolated a subset 151

that pertain to the cryosphere in general, and to 152

Antarctica specifically. In this project we have used 153

an enriched set of inputs in addition to the ECVs 154

that are commonly ascribed to ice shelves, but we 155

will in this paper refer to all of the inputs as ECVs. 156

It’s important to note that the ECVs are assumed 157

to have some level of correlation between them, 158

which we implicitly use in our predictions. Such 159

correlation would imply shared causality, which 160

essentially means there is a pullback from the 161

data-correlations to a common cause. We also 162

make use of ablation studies to isolate individual 163

ECVs, and identify whether these variables have 164

strong correlations to calving events. Isolated 165

variables in the ablations are then also explored 166

with eXplainable AI (XAI) to highlight the saliency 167
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of the inputs, as a further way to estimate the168

validity of the model predictions.169

170

At the onset of this project a literature review171

was performed to find if similar approaches had172

been taken, but no such case could be found. What173

is presented here is therefore “Terra Nova”, where174

the findings of this project may help guide future175

endeavours towards observations of the Antarctic.176

2 Method177

Our approach was structured in four stages;178

• Data Collection Data was collected and re-179

processed into a GRF representation, and asso-180

ciated with known calving events as an (input,181

output) tuple.182

• U-Net training A U-Net was trained to cor-183

relate the different slices of the GRF-data cube184

with calving events within a moving window of185

future events.186

• Significance analysis Ablation studies has187

been applied to identify the most significant188

contributions from the GRF-datacube, estab-189

lishing the performance-metric correlation of190

each input. XAI will be used at a later stage191

to highlight an input-saliency map.192

• Validation & Verification Results of the ab-193

lation studies have then verified by domain ex-194

perts to ascertain the scientific validity of the195

predictions. Hold out validation data is used to196

track model performance (see figure 3).197

2.1 Data Cube198

A multivariate datacube was constructed comprising199

various datasets relevant to ice sheet physics selected200

to cover the years 2014-2022 inclusive. Our first201

study-site was the Larsen C Ice Shelf, figure 1,202

which had a large calving event in July 2017, where203

the approximately 1000 gigatonne (Gt) A-68 iceberg204

calved from the main ice shelf.205

The datasets listed in table 1 have been fit-206

ted and resampled to a GRF representation to207

standardise spatial resolution and fill data gaps.208

The GRF was approximated at a set of irregular209

vertices on a mesh, before it was regridded as210

a contiguous surface of equal squares, i.e. as211

digital images. Samples taken from GRF have212

some process-based uncertainty, which was also213

produced as a gridded, spatially distributed214

output, and which will be quantified in the further215

analysis of the data cube, but which we for the pur-216

poses of our predictions have not taken into account.217

218

Figure 3. 2D surface map of our data. Showing data
coverage (dark blue), training data (green) vs validation
data (red), and calving events within 2015-2020 (bright
areas). Calving events are here reproduced as vectorised
data from Qi et al. [12], without spatial alignment and
rasterisation.

Table 1. Table of datasets contained in the used ver-
sion of Data Cube. All data is resampled from original
resolution to 200 m resolution. The complete data cube
will be published on a later date.

Dataset (source) Original Resolution
Ice Velocity [13] 200× 200 m
Surface mass balance [14] 27× 27 km
Firn thickness [15] 27× 27 km
Firn air content [15] 27× 27 km
Basal melt rate [16] 1000× 1000 m
Wind speed and direction [17] 31× 31 km

From this resampled datacube we then sampled 219

our input data, and paired the samples to the corre- 220

sponding targets from a 15 year calving dataset by 221

Qi et al. [12]. This calving dataset was rasterised to 222

the same resolution as our input data, and assigned 223

values with an indicator function over the majority 224

class in the corresponding vector data, 225

1calving(t) =

{
1 - if calving at t

0 - if not calving at t
(3) 226

To establish a future-prediction from these data, 227

the time at which the labels are sampled is offset 228

compared to the slice of the data cube. This was 229

determined using a sliding window of data that 230

was set to 3 months, e.g. to validate prediction in 231

July 2017 we provided data samples from April, 232

May, and June of 2017 as our 3-month lead-time 233

prediction2. Testing, and figures shown here 234

(figures figs. 4 and 5) are from the month before 235

the validation data, i.e. for predictions of an event 236

2ditto for 6 and 9 month lead-time prediction.
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in July we test with samples from March. This237

ensures the data used for prediction is at least 3238

months before any recorded event in July. This was239

also done to ensure against overfitting on data that240

have relatively low resolution (see 1).241

242

The data and labels were combined and gridded243

with overlapping grids to provide the (input,244

label) pairs which were randomly sampled by the245

models during training. All data was sampled at246

200m per pixel, which translates to an XY-bounding247

box in the spatial domain of 1551× 1651 pixels to248

cover the first study-site of Larsen C.249

250

All the data were split into Training or251

Validation by intersection of a vectorised Area252

Of Interest (AOI) (see figure 3), where the major253

calving event of A-68 is roughly intersected to re-254

serve 1
3 of its total area for validation. The splitting255

of the ice-shelf remains the same throughout the256

time-dimension, to ensure no potential learning of257

the precursive configurations, or memorisation of258

the outlines carries over from training to validation259

data. The remaining ice-shelf is similarly split us-260

ing vectorised areas, and masking areas that do not261

intersect with the target AOI262

2.2 Model and Parameters263

Since we wanted to inspect the resulting predictions264

from our network, we chose to use a U-Net [18]265

model. These have a long standing, empirical266

track-record classifying remote sensing data, and267

consist of encoder, decoder, and a bottleneck, with268

skip-connections to act as control-parameters for269

the reconstructed image of delineated features270

in the output map. Furthermore, as shown by271

Tai et al. [19], U-Nets are effectively solving a272

control problem. In our case, this means they273

approximate the transition maps inherent to our274

causal model, decoded as a probability-distribution275

over calving events. Our U-Net was trained using276

an AdamW optimiser [20], and following recent277

recommendations from the study on hyperparamters278

by Orvieto and Gower [21] we set β1 = β2 = 0.9279

280

We have used Focal Loss [22] as our target for281

classification, with γ = 3, to account for some of the282

class imbalance. Sampling was performed from a283

random grid, and our target metric was the macro-284

averaged F1-score, which should avoid biasing the285

metric towards the no-calving label. Each sample286

also got a randomly applied augmentation, and287

was rotated within ±180◦, and had a 50% chance288

of being flipped along each of the horizontal and289

vertical axes. The augmentations ensure a better290

generalisation of the model, and artificially increase291

the number of samples made available to the model.292

293

2.3 Ablation & XAI 294

We have performed a set of ablations over the 295

available dataset, focused on identifying the 296

strength of the correlations between the available 297

input data from the data cube and the labels from 298

Qi et al. [12]. To do this we sliced the data cube 299

into its constitute parts, and trained U-Nets for 300

each variable in turn, under similar conditions. 301

The ablations were performed across a selection of 302

lead-times, divided into sections of 3-month periods, 303

and predictions evaluated on the final time-slice 304

that was not included in the training data. This 305

was done to ensure the data was representative 306

of the region trained on, but not included in the 307

training data. 308

309

Additionally, we performed an experiment using 310

the two most predictive subsets of the data: ice 311

velocity and basal melt (see figure 4). It should 312

be noted that the basal melt data is partially 313

dependent on the ice velocity data. Combination 314

of ablation and XAI is used to identify key input 315

variables. To establish the significance of the 316

different layers in the data cube, we divided 317

the dataset. For the ablations we start with 318

the individual ECVs, and measure the perfor- 319

mance of them per se. Consecutive experiments 320

look at the combination of variables within P(ECV). 321

322

Now that we identified the contribution of each 323

ECV to the final performance, we will use guided 324

backprop, and a variation of GradCAM [23] to high- 325

light the area of the input that is most salient for 326

the predicted output. Verifying the areas the model 327

finds salient acts as a constraint on the applicable 328

mathematics that goes into considering whether the 329

model seems to cover existing theory, or if it may 330

be completely confused. 331

2.4 Validation 332

Predictions for each of the ablation experiments 333

have been associated with their metric performance. 334

Data and predictions was then prepared for the en- 335

tire ice shelf, focusing primarily on the validation 336

area of Larsen C. The quality of the predictions was 337

then validated by domain experts from Centre of 338

Excellence in Environmental Data Science (CEEDS) 339

at Lancaster University (LU), who made a qualitia- 340

tive verification of whether the causal relationship 341

fits with our current understanding of glaciology. 342

This form of validation was considered a more ap- 343

propriate approach to the standard train-test split of 344

data primarily due to the limited amount of calving 345

events observed from Larsen C during the period of 346

available data. Secondly, since a stated goal of the 347
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Figure 4. Predicted correlations of the three most
performant subsets of data and the calving of the A-68
iceberg. Here we see predictions from a model trained
on basal melt, one trained on ice velocity, and a model
trained on the combined data of both basal melt and ice
velocity.

project was to identify clear links between the data348

and the predictions of our ML approach, the valida-349

tion of these causal predictions require some form of350

human-expert-in-the-loop. This provides necessary351

feedback to ensure that our models are more likely to352

rely on real physical relationships rather than data353

correlations that have no connection to the actual354

dynamics of the system. Finally, in the continuation355

of the project, we will be providing a GradCAM [23]-356

based XAI saliency map over the multivariate data357

cube. These are intended to inform domain experts358

about the relative weight the ML model places on359

the spatially distributed information of each channel.360

The validation of these also require familiarity with361

the inputs given to the model.362

Figure 5. When the model is predicting events further
into the future, we see a gradual increase in the uncer-
tainty of the label. It is here clear that a 3 month lead
time leads to a clear delineation of the calving when
compared to predictions from 6 months or 9 months
before.

3 Results 363

3.1 Ablation 364

Table 2 lists the F1-scores of the different datasets 365

with their respective lead times. We can here see 366

that Ice Velocity (IV) both with and without the 367

Basal Melt (BM) have strong correlations to the 368

target labels. Note also that firn air content does 369

not seem to have any discernable correlation to the 370

calving events. Firn thickness has a slightly higher 371

correlation as judged by the maximal F1 score, but 372

this seems to be an artifact when looking at the 373

metric through time 6. 374

In figure 6, we can see the early effect of including 375

basal melt. The effect of including basal melt also 376

seems to help models training with ice velocity to 377

converge more rapidly, and at longer time scales 378

surpass the performance of models only trained on 379

ice velocity data. 380

381

Wind speed seems to have a higher than expected 382

correlation, and we see the models trained on wind 383

speed pick up more towards the later stages of train- 384

ing. However these models also seem to fluctuate 385

much, and when predicting on the test-data the cor- 386
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relation seems to disappear. For the maps presented387

to expert validation, the model predictions did not388

contain discernable or significant information. This389

may therefore indicate a case of overfitting, where390

the model associates the values of the wind speed391

directly to the label rather than generalising, a hy-392

pothesis further supported when considering the393

original resolution of the wind speed data (table 1).394

3.2 Validation395

Predictions from ablated models have been presented396

to domain experts from the polar science group397

at LU associated with the CEEDS and Centre for398

Polar Observation and Modelling (CPOM). Model399

performance is assessed with reference to experience400

with observed calving events and understanding of401

the physics behind the calving process [6, 24].402

The results on the variables with most predictive403

power are consistent with an understanding of404

the physics of ice shelf calving. Ice velocity, the405

most significant predictor, has a direct relationship406

with calving; for floating ice closer to the calving407

front and further from the grounding line, high408

variability in velocity over short distances suggests409

it is associated with rifting, cracking, or other forms410

of disturbance to otherwise smooth ice flow which411

are significant in the process of icebergs detaching412

from the shelf.413

414

Basal melt as the second most significant415

predictor has a major impact on ice shelf thickness,416

with significant thinning of the shelf making calving417

easier. It is not surprising that the other variables418

used do not appear to have major predictive power.419

They have a less direct impact on the calving420

process, so despite likely having some information421

to impart about ice shelf stability it is not expected422

that any of these datasets individually allows for423

confident prediction of imminent calving. Surface424

mass balance is not the dominant factor in mass425

changes for Antarctic ice shelves, with basal melt426

and calving much larger sources of mass loss.427

Changes in firn thickness and firn air content are428

also indications of surface processes and are not ex-429

pected to have a large impact on overall flow. Wind430

speed may have some direct and indirect impact on431

ice shelf calving, but the coarse resolution of the432

input dataset and the fact that wind speed varia-433

tions aren’t likely to be localised to areas prone to434

calving explains the relative lack of predictive utility.435

436

The spatial predictions of calving location (fig-437

ure 5) matches well with the geometry of the A-68438

calving event. The closer contours in the southern439

part of the domain (right of figure 5), suggesting440

higher confidence in the location, are consistent with441

the way the calving event played out, with the sepa-442

Table 2. Highest validation F1-score vs lead time.
Overall highest F1-scores per lead time highlighted in
bold.

Subset
Lead time 3 months 6 months 9 months

IV 0.938 0.936 0.919
BM 0.843 0.793 0.715
IV + BM 0.938 0.938 0.927
Wind Speed (WS) 0.780 0.739 0.753
Surface Mass Balance (SMB) 0.687 0.490 0.492
firn air content 0.482 0.471 0.477
firn air thickness 0.483 0.669 0.749

Figure 6. Validation F1 scores for the different abla-
tions and lead times. Note that though the ice velocity
converges at a higher level ≈ 0.93 the basal melt con-
tributes more in the earlier steps. The combination of
ice velocity and basal melt reaches the highest overall
peak at ≈ 0.938, performing at parity or better than the
ice velocity alone.

ration beginning in this area and propagating north 443

(left of figure 5). 444

445

4 Conclusion 446

In this work we show that a U-Net can be used for 447

predicting future events, acting as an approximation 448

of the temporal transition map. While these 449

predictions are now at a stage that shows clear 450

correlations, it still remains to move this work into 451

a more dynamic study site, namely Pine Island. 452

It should also be noted that the correlations are 453

currently statistical correlations, and not founded 454

strongly in physical theory. A further review of 455

proposed physical models for the calving dynamics 456
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of the AIS can be made on the basis of these457

correlational models, where clear correlations such458

as the ice velocity are more closely considered.459

460

We have found that our models can train to a461

high degree of correlation for long-reaching causal462

chains, as measured by the F1 scores for lead-time463

data. The question of generalisability remains open,464

with the model currently only being validated for a465

relatively stable ice sheet. Further modifications to466

the experiment design may provide more insight,467

and we are considering a change from the lead-time468

approach into a windowed gap-based approach.469

470

Confirmation that the model performance remains471

consistent with current understandings of the physics472

of ice shelf calving is promising. This indicates that473

our central hypothesis of approximating dynamical474

systems remains unfalsified, and that we in the con-475

tinuation of the work may be able to approximate476

the more active dynamics of Pine Island.477

5 Future Work478

Currently data is being collected for a second study479

site over Pine Island, which is a more dynamic480

ice shelf than Larsen C. We will here work with a481

similar GRF resampled data cube of ECVs. For the482

work on Pine Island we expect to perform similar483

ablation studies, and we will also investigate the484

transferability of the current models, as well as the485

inverse, i.e. training new models on Pine Island,486

and then transferring them back to Larsen C to487

compare with our current findings.488

489

We expect that our currently trained models will490

be transferable, and we will seek to answer ques-491

tions regarding performance vs generalisation on the492

domain of calving prediction.493
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A Appendix: Figures643

A.1 3 month predictions644

Figure A.1. 3 month; basal melt, ice velocity & basal
melt, ice velocity.

Figure A.2. 3 month; firn air, firn thickness, surface
mass balance, wind speed
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A.2 6 month predictions645

Figure A.3. 6 month; basal melt, ice velocity & basal
melt, ice velocity.

Figure A.4. 6 month; firn air, firn thickness, surface
mass balance, wind speed
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A.3 9 month predictions646

Figure A.5. 9 month; basal melt, ice velocity & basal
melt, ice velocity.

Figure A.6. 9 month; firn air, firn thickness, surface
mass balance, wind speed
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