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Abstract

Monitoring the calving dynamics of the Antarctic
ice shelves is central to understanding a major driver
for the changes to ocean levels on our planet. Sev-
eral physical models have been proposed as calv-
ing laws, with varying predictive power. We pro-
pose an approach using Machine Learning (ML) to
identify key variables and parameters that may be
used in future models of the ice shelf calving dy-
namics. As part of an ongoing project, we have
trained a U-Net on samples from a set of Gaussian
Random Field (GRF)-represented Essential Climate
Variables (ECVs). Ablation studies establish a few
of the selected variables as having high correlation
with calving events, with an F1 score above 0.9.
Our first study site is the Larsen C Ice Shelf, on
the northwest part of the Weddel Sea, where in
2017 there was a massive calving event. We have
found strong correlations between the changes in ice-
velocity leading up to this event, which are further
improved when accounting for basal melt rates in
the area.

1 Introduction

The Antarctic continent is covered by a sheet
of ice, known as the Antarctic Ice Sheet (AIS).
Surrounding the outlets of the AIS are a series
of ice shelves which are crucial indicators of the
response of Antarctica to a changing climate, as
well as being a major buttressing factor securing the
grounded ice on the Antarctic [1, 2]. Collapsing ice
shelves, where the whole shelf rapidly disappears,
have a major effect on changing both the dynamics
of the grounded ice as well as contributing to
multitudes of downstream effects [3]. Predicting
large scale events remains elusive to physics-based,
process models, including the prediction of calving
events. As part of a project, we have used a
combined approach with a data cube of monthly
GRF representations and machine learning to
predict calving events, with the aim of providing a
data-driven approach to forecasting ice shelf calving.

Glaciers and ice shelves have been a field of study
since the latter part of the 18th century: from
the sliding dynamics of alpine glaciers under the
force of gravity to looking at mechanical tensor
descriptions of strain-fields, guided primarily by the
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Figure 1. Overview of the two ice shelves selected as
study sites; Larsen C and Pine Island.

search for physical laws determining glacier and
ice sheet dynamics, and using numerical models to
simulate the physical models since the 1950s and
onwards [4]. Many have proposed physical laws to
describe the process of calving [5], but, as noted by
Wilner et al. [6], a majority of the proposed phys-
ical laws have remained unvalidated in the Antarctic.

Since the beginning of the 21st century, we have
seen massive shedding of ice from the Antarctic ice
shelves. Findings from the IMBIE assessment [7]
report this shedding to be around 115 gigatonne
per annum (Gt/a) in the period 2017-2020, with a
peak discharge rate of 150 Gt/a in the prior 4-year
period.

Following the standard definitions for general dy-
namical systems [8-10] we consider the physical
system of ice dynamics as a tuple (x, 7, f), where x
is the state space of all possible states, 7 is a set of
times, and f is the system’s dynamical map:

(1)

Fixing time, ¢, we can observe f as a time-dependent
map:

fixxT—=%

j}: X =X

which maps the transitions of states. Since the
nature of our available data was historical, the above
time-dependent map is assumed as a single path
through the dynamical system. This is stated as our
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set of samples:

{fi(@)|t €[0,...., T]} Cx, (2)

which is a subset of the set of all allowed states,
X, containing only the historical record of visited
states. Another modification of assumptions was
to account for stochasticity in our model of the
underlying dynamical system, where the dynamical
map is replaced with a tuple, (C, 7, T, p, A), replacing
the initial system states with the analogous system
configurations, C, which allows for mixed states, and
consisting of a probabilistic map, p,

p:x x7—10,1] CR,
a stochastic transition map, T,
I':*x7—=1[0,1 CR,

where I';;(t) = p(z; % t|lz; x 0) is the map of con-
ditional probabilities for the system to transition
into configuration x;, at time ¢, from configuration
x;, at time 0, following the definition of conditional
probabilities. Finally we also formally require an
algebra of random variables', A, which denotes a
commutative algebra of maps for each random vari-
able A € A
A:xx1 =R,

in which the values a,,(t) := A(z;,t) tracks the
magnitudes of the random variables.

In the mixed assumption of both historical and
probable future events, we have used ML to predict
the probability of some future state, p;(t'), given
information about the state f;(j), and propose that
what results is an approximation [11] of the tran-
sition map, I';;(t). What was therefore implicitly
approximated was the underlying dynamical system,
as a stochastic process, by an approximation that
assigns probabilities to future states of the actual
system. Both the general dynamical system and
the stochastic system were here assumed to be
models which contained causality. Specifically we
expected our data cube to contain approximate,
or noisy, samples from real, continuous causal chains.

This project has focused on the prediction
of anomalous or extreme dynamics on the AIS,
combining the use of a GRF-resampled data cube,
and an ML model for approximating the transitions
from slices of time to future states of known calving
events on the Larsen C site (see figure 1).

Deep learning methods are especially developed
to identify and leverage correlations between the

1This terminology simply states that our measurable vari-
ables, agz, (t), when the system is in a given state or configu-
ration, z;, are to some extent not completely deterministic.
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Figure 2. Sentinel-1 (SAR) image from 12/07/2017 of
the A-68 iceberg calving event.

input data and the output labels. Predictive models
make a claim that the correlations have a causal
relationship. To make such claims we must ensure
at least the following: firstly, that the events or
configurations are linked with a temporal offset
so that one event can be the cause of another.
Secondly, there must be a medium that permits the
effects of the first event to propagate to the second,
within that temporal offset. Finally, it should be
verified that the proposed causal chain of events is
rational, i.e. that we can map the proposed causal
chain to an applicable system of dynamics. This
final step can be as simple as an expert verification,
where a suitably knowledgeable person considers
whether the proposed link can be explained based
on our current understanding.

Under this paradigm, we can use ML to train
a suitable neural network to identify correlations
with future events across a cross-section of differ-
ent input-variables. The Global Climate Observing
System (GCOS) has assigned ECVs that pertain to
ATS. These ECVs constitute a list of factors that
are essential for modelling and understanding the
climate. Of these ECVs, GCOS has isolated a subset
that pertain to the cryosphere in general, and to
Antarctica specifically. In this project we have used
an enriched set of inputs in addition to the ECVs
that are commonly ascribed to ice shelves, but we
will in this paper refer to all of the inputs as ECVs.

It’s important to note that the ECVs are assumed
to have some level of correlation between them,
which we implicitly use in our predictions. Such
correlation would imply shared causality, which
essentially means there is a pullback from the
data-correlations to a common cause. We also
make use of ablation studies to isolate individual
ECVs, and identify whether these variables have
strong correlations to calving events. Isolated
variables in the ablations are then also explored
with eXplainable AT (XAI) to highlight the saliency
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of the inputs, as a further way to estimate the
validity of the model predictions.

At the onset of this project a literature review
was performed to find if similar approaches had
been taken, but no such case could be found. What
is presented here is therefore “Terra Nova’, where
the findings of this project may help guide future
endeavours towards observations of the Antarctic.

2 Method

Our approach was structured in four stages;

e Data Collection Data was collected and re-
processed into a GRF representation, and asso-
ciated with known calving events as an (input,
output) tuple.

e U-Net training A U-Net was trained to cor-
relate the different slices of the GRF-data cube
with calving events within a moving window of
future events.

e Significance analysis Ablation studies has
been applied to identify the most significant
contributions from the GRF-datacube, estab-
lishing the performance-metric correlation of
each input. XAI will be used at a later stage
to highlight an input-saliency map.

e Validation & Verification Results of the ab-
lation studies have then verified by domain ex-
perts to ascertain the scientific validity of the
predictions. Hold out validation data is used to
track model performance (see figure 3).

2.1 Data Cube

A multivariate datacube was constructed comprising
various datasets relevant to ice sheet physics selected
to cover the years 2014-2022 inclusive. Our first
study-site was the Larsen C Ice Shelf, figure 1,
which had a large calving event in July 2017, where
the approximately 1000 gigatonne (Gt) A-68 iceberg
calved from the main ice shelf.

The datasets listed in table 1 have been fit-
ted and resampled to a GRF representation to
standardise spatial resolution and fill data gaps.
The GRF was approximated at a set of irregular
vertices on a mesh, before it was regridded as
a contiguous surface of equal squares, i.e. as
digital images. Samples taken from GRF have
some process-based uncertainty, which was also
produced as a gridded, spatially distributed
output, and which will be quantified in the further
analysis of the data cube, but which we for the pur-
poses of our predictions have not taken into account.
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Figure 3. 2D surface map of our data. Showing data
coverage (dark blue), training data (green) vs validation
data (red), and calving events within 2015-2020 (bright
areas). Calving events are here reproduced as vectorised
data from Qi et al. [12], without spatial alignment and
rasterisation.

Table 1. Table of datasets contained in the used ver-
sion of Data Cube. All data is resampled from original
resolution to 200 m resolution. The complete data cube
will be published on a later date.

Dataset (source) Original Resolution
Ice Velocity [13] 200 x 200 m
Surface mass balance [14] 27 x 27 km

Firn thickness [15] 27 x 27 km

Firn air content [15] 27 x 27 km
Basal melt rate [16] 1000 x 1000 m
Wind speed and direction [17] 31 x 31 km

From this resampled datacube we then sampled
our input data, and paired the samples to the corre-
sponding targets from a 15 year calving dataset by
Qi et al. [12]. This calving dataset was rasterised to
the same resolution as our input data, and assigned
values with an indicator function over the majority
class in the corresponding vector data,

1- if calving at ¢
(3)

Leatuing (t) = {0— if not calving at ¢

To establish a future-prediction from these data,
the time at which the labels are sampled is offset
compared to the slice of the data cube. This was
determined using a sliding window of data that
was set to 3 months, e.g. to validate prediction in
July 2017 we provided data samples from April,
May, and June of 2017 as our 3-month lead-time
prediction?.  Testing, and figures shown here
(figures figs. 4 and 5) are from the month before
the validation data, i.e. for predictions of an event

2ditto for 6 and 9 month lead-time prediction.
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in July we test with samples from March. This
ensures the data used for prediction is at least 3
months before any recorded event in July. This was
also done to ensure against overfitting on data that
have relatively low resolution (see 1).

The data and labels were combined and gridded
with overlapping grids to provide the (input,
label) pairs which were randomly sampled by the
models during training. All data was sampled at
200m per pixel, which translates to an XY-bounding
box in the spatial domain of 1551 x 1651 pixels to
cover the first study-site of Larsen C.

All the data were split into Training or
Validation by intersection of a vectorised Area
Of Interest (AOI) (see figure 3), where the major
calving event of A-68 is roughly intersected to re-
serve % of its total area for validation. The splitting
of the ice-shelf remains the same throughout the
time-dimension, to ensure no potential learning of
the precursive configurations, or memorisation of
the outlines carries over from training to validation
data. The remaining ice-shelf is similarly split us-
ing vectorised areas, and masking areas that do not
intersect with the target AOI

2.2 Model and Parameters

Since we wanted to inspect the resulting predictions
from our network, we chose to use a U-Net [18]
model. These have a long standing, empirical
track-record classifying remote sensing data, and
consist of encoder, decoder, and a bottleneck, with
skip-connections to act as control-parameters for
the reconstructed image of delineated features
in the output map. Furthermore, as shown by
Tai et al. [19], U-Nets are effectively solving a
control problem. In our case, this means they
approximate the transition maps inherent to our
causal model, decoded as a probability-distribution
over calving events. Our U-Net was trained using
an AdamW optimiser [20], and following recent
recommendations from the study on hyperparamters
by Orvieto and Gower [21] we set §; = B2 = 0.9

We have used Focal Loss [22] as our target for
classification, with v = 3, to account for some of the
class imbalance. Sampling was performed from a
random grid, and our target metric was the macro-
averaged F1-score, which should avoid biasing the
metric towards the no-calving label. Each sample
also got a randomly applied augmentation, and
was rotated within +180°, and had a 50% chance
of being flipped along each of the horizontal and
vertical axes. The augmentations ensure a better
generalisation of the model, and artificially increase
the number of samples made available to the model.

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

2.3 Ablation & XAI

We have performed a set of ablations over the
available dataset, focused on identifying the
strength of the correlations between the available
input data from the data cube and the labels from
Qi et al. [12]. To do this we sliced the data cube
into its constitute parts, and trained U-Nets for
each variable in turn, under similar conditions.
The ablations were performed across a selection of
lead-times, divided into sections of 3-month periods,
and predictions evaluated on the final time-slice
that was not included in the training data. This
was done to ensure the data was representative
of the region trained on, but not included in the
training data.

Additionally, we performed an experiment using
the two most predictive subsets of the data: ice
velocity and basal melt (see figure 4). It should
be noted that the basal melt data is partially
dependent on the ice velocity data. Combination
of ablation and XATI is used to identify key input
variables. To establish the significance of the
different layers in the data cube, we divided
the dataset. For the ablations we start with
the individual ECVs, and measure the perfor-
mance of them per se. Consecutive experiments
look at the combination of variables within P(ECV).

Now that we identified the contribution of each
ECYV to the final performance, we will use guided
backprop, and a variation of GradCAM [23] to high-
light the area of the input that is most salient for
the predicted output. Verifying the areas the model
finds salient acts as a constraint on the applicable
mathematics that goes into considering whether the
model seems to cover existing theory, or if it may
be completely confused.

2.4 Validation

Predictions for each of the ablation experiments
have been associated with their metric performance.
Data and predictions was then prepared for the en-
tire ice shelf, focusing primarily on the validation
area of Larsen C. The quality of the predictions was
then validated by domain experts from Centre of
Excellence in Environmental Data Science (CEEDS)
at Lancaster University (LU), who made a qualitia-
tive verification of whether the causal relationship
fits with our current understanding of glaciology.
This form of validation was considered a more ap-
propriate approach to the standard train-test split of
data primarily due to the limited amount of calving
events observed from Larsen C during the period of
available data. Secondly, since a stated goal of the
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P(Calving | Basal melt)
6 months prior to calving.

P(Calving | Ice Velocity)
6 months prior to calving.

P(Calving)

Bl <=0.1250

I 0.1250-0.2500
I 0.2500-0.3750
[ 0.3750 - 0.5000
777 0.5000 - 0.6250
[ 0.6250-0.7500

v [ 0.7500- 0.8750
[ 1>0.8750
P(Calving | BM & IV ) 0 25  50km
6 months prior to calving. —

Figure 4. Predicted correlations of the three most
performant subsets of data and the calving of the A-68
iceberg. Here we see predictions from a model trained
on basal melt, one trained on ice velocity, and a model
trained on the combined data of both basal melt and ice
velocity.

project was to identify clear links between the data
and the predictions of our ML approach, the valida-
tion of these causal predictions require some form of
human-expert-in-the-loop. This provides necessary
feedback to ensure that our models are more likely to
rely on real physical relationships rather than data
correlations that have no connection to the actual
dynamics of the system. Finally, in the continuation
of the project, we will be providing a GradCAM [23]-
based XAI saliency map over the multivariate data
cube. These are intended to inform domain experts
about the relative weight the ML model places on
the spatially distributed information of each channel.
The validation of these also require familiarity with
the inputs given to the model.

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

P(Calving | BM & IV )
3 months prior to calving.
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[ 0.2500-0.3750
[ 0.3750 - 0.5000
[ 0.5000 - 0.6250
[ 0.6250-0.7500
[7710.7500-0.8750

[ ]>0.8750
P(Calving | BM & IV ) 0 25 50 km
9 months prior to calving. —

Figure 5. When the model is predicting events further
into the future, we see a gradual increase in the uncer-
tainty of the label. It is here clear that a 3 month lead
time leads to a clear delineation of the calving when
compared to predictions from 6 months or 9 months
before.

3 Results

3.1 Ablation

Table 2 lists the Fl-scores of the different datasets
with their respective lead times. We can here see
that Ice Velocity (IV) both with and without the
Basal Melt (BM) have strong correlations to the
target labels. Note also that firn air content does
not seem to have any discernable correlation to the
calving events. Firn thickness has a slightly higher
correlation as judged by the maximal F1 score, but
this seems to be an artifact when looking at the
metric through time 6.

In figure 6, we can see the early effect of including
basal melt. The effect of including basal melt also
seems to help models training with ice velocity to
converge more rapidly, and at longer time scales
surpass the performance of models only trained on
ice velocity data.

Wind speed seems to have a higher than expected
correlation, and we see the models trained on wind
speed pick up more towards the later stages of train-
ing. However these models also seem to fluctuate
much, and when predicting on the test-data the cor-
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relation seems to disappear. For the maps presented
to expert validation, the model predictions did not
contain discernable or significant information. This
may therefore indicate a case of overfitting, where
the model associates the values of the wind speed
directly to the label rather than generalising, a hy-
pothesis further supported when considering the
original resolution of the wind speed data (table 1).

3.2 Validation

Predictions from ablated models have been presented
to domain experts from the polar science group
at LU associated with the CEEDS and Centre for
Polar Observation and Modelling (CPOM). Model
performance is assessed with reference to experience
with observed calving events and understanding of
the physics behind the calving process [6, 24].

The results on the variables with most predictive
power are consistent with an understanding of
the physics of ice shelf calving. Ice velocity, the
most significant predictor, has a direct relationship
with calving; for floating ice closer to the calving
front and further from the grounding line, high
variability in velocity over short distances suggests
it is associated with rifting, cracking, or other forms
of disturbance to otherwise smooth ice flow which
are significant in the process of icebergs detaching
from the shelf.

Basal melt as the second most significant
predictor has a major impact on ice shelf thickness,
with significant thinning of the shelf making calving
easier. It is not surprising that the other variables
used do not appear to have major predictive power.
They have a less direct impact on the calving
process, so despite likely having some information
to impart about ice shelf stability it is not expected
that any of these datasets individually allows for
confident prediction of imminent calving. Surface
mass balance is not the dominant factor in mass
changes for Antarctic ice shelves, with basal melt
and calving much larger sources of mass loss.
Changes in firn thickness and firn air content are
also indications of surface processes and are not ex-
pected to have a large impact on overall flow. Wind
speed may have some direct and indirect impact on
ice shelf calving, but the coarse resolution of the
input dataset and the fact that wind speed varia-
tions aren’t likely to be localised to areas prone to
calving explains the relative lack of predictive utility.

The spatial predictions of calving location (fig-
ure 5) matches well with the geometry of the A-68
calving event. The closer contours in the southern
part of the domain (right of figure 5), suggesting
higher confidence in the location, are consistent with
the way the calving event played out, with the sepa-
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Table 2. Highest validation Fl-score vs lead time.
Overall highest F1-scores per lead time highlighted in
bold.

Lead time

3 months | 6 months | 9 months

Subset

v 0.938 0.936 0.919
BM 0.843 0.793 0.715
IV + BM 0.938 0.938 0.927
Wind Speed (WS) 0.780 0.739 0.753
Surface Mass Balance (SMB) 0.687 0.490 0.492
firn air content 0.482 0.471 0.477
firn air thickness 0.483 0.669 0.749

Validation F1Score 3 Months Lead Time
i @ RACMO ® Fim Air @ Firn Thickne Basal Melt

Validation F1Score 6 Months Lead Time
ind ® RACMO @ Firn Air ® Fim Thickness ® B

Validation F1Score 9 Months Lead Time
® RACMO @ Firn Air ® Firn Thickne: P

Figure 6. Validation F1 scores for the different abla-
tions and lead times. Note that though the ice velocity
converges at a higher level ~ 0.93 the basal melt con-
tributes more in the earlier steps. The combination of
ice velocity and basal melt reaches the highest overall
peak at = 0.938, performing at parity or better than the
ice velocity alone.

ration beginning in this area and propagating north
(left of figure 5).

4 Conclusion

In this work we show that a U-Net can be used for
predicting future events, acting as an approximation
of the temporal transition map. While these
predictions are now at a stage that shows clear
correlations, it still remains to move this work into
a more dynamic study site, namely Pine Island.
It should also be noted that the correlations are
currently statistical correlations, and not founded
strongly in physical theory. A further review of
proposed physical models for the calving dynamics
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of the AIS can be made on the basis of these
correlational models, where clear correlations such
as the ice velocity are more closely considered.

We have found that our models can train to a
high degree of correlation for long-reaching causal
chains, as measured by the F1 scores for lead-time
data. The question of generalisability remains open,
with the model currently only being validated for a
relatively stable ice sheet. Further modifications to
the experiment design may provide more insight,
and we are considering a change from the lead-time
approach into a windowed gap-based approach.

Confirmation that the model performance remains
consistent with current understandings of the physics
of ice shelf calving is promising. This indicates that
our central hypothesis of approximating dynamical
systems remains unfalsified, and that we in the con-
tinuation of the work may be able to approximate
the more active dynamics of Pine Island.

5 Future Work

Currently data is being collected for a second study
site over Pine Island, which is a more dynamic
ice shelf than Larsen C. We will here work with a
similar GRF resampled data cube of ECVs. For the
work on Pine Island we expect to perform similar
ablation studies, and we will also investigate the
transferability of the current models, as well as the
inverse, i.e. training new models on Pine Island,
and then transferring them back to Larsen C to
compare with our current findings.

We expect that our currently trained models will
be transferable, and we will seek to answer ques-
tions regarding performance vs generalisation on the
domain of calving prediction.
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«s A Appendix: Figures

sa2 A.1 3 month predictions
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Figure A.1. 3 month; basal melt, ice velocity & basal

melt, ice velocity.
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Figure A.2. 3 month; firn air, firn thickness, surface
mass balance, wind speed
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sss A.2 6 month predictions
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Figure A.3. 6 month; basal melt, ice velocity & basal
melt, ice velocity.
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Figure A.4. 6 month; firn air, firn thickness, surface
mass balance, wind speed
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sss A.3 9 month predictions
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Figure A.5. 9 month; basal melt, ice velocity & basal
melt, ice velocity.
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Figure A.6. 9 month; firn air, firn thickness, surface
mass balance, wind speed
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