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ABSTRACT

Stock trend prediction plays a central role in optimal investment decision-making,
and has attracted extensive research from both investors and institutions. Although
recent studies have employed graph structures to model the complex relationships
among financial entities, the corresponding models fail to efficiently capture se-
mantically rich edge features across heterogeneous entities, thereby limiting the
ability to fuse and align multimodal data such as market indicators, financial
events, and heterogeneous graph structures. Therefore, in this paper, we pro-
pose a Multimodal Edge-Enhanced Heterogeneous Graph Transformer with LLM-
driven Knowledge Graphs (MEHGT-LKG) for stock trend prediction. Specifi-
cally, we first fine-tune a large language model (LLM) by using instruction tuning
datasets to design a financial event-centric knowledge extraction agent (FinEX).
Subsequently, we encode the structured tuples generated from FinEX into finan-
cial event-centric knowledge graphs (FEKGs) and then construct multimodal het-
erogeneous graphs by incorporating multimodal information. Finally, we design
a Multimodal Edge-Enhanced Heterogeneous Graph Transformer (MEHGT) to
fully encode a series of semantically enriched multimodal heterogeneous graphs
spanning different time horizons. MEHGT models edge-level features through
type-specific encoders and integrates them into both multi-head attention and mes-
sage propagation, significantly enriching the representation of relational semantics
and target nodes. Extensive experimental results and trading simulations on mul-
tiple real-world datasets demonstrate the superior performance of the proposed
approach beyond other state-of-the-art models.

1 INTRODUCTION

The stock market is a core component of the financial system, providing capital allocation functions
for enterprises and investment opportunities for individuals. However, due to its high volatility,
complex influencing factors, and nonlinear dynamics, forecasting stock trends remains a challenging
and important research area.

Stock price fluctuations are typically driven by two major types of factors: intrinsic market signals
and external shocks from related financial entities. The former includes trading behaviors and tech-
nical indicators; the latter involves financial events, company announcements, and policy changes.
To better improve prediction accuracy and provide more informed investment decisions, integrat-
ing multimodal information and capturing complex market dynamics has become a key research
direction Cheng et al. (2022); Liu et al. (2024b); Sheng et al. (2024); Huang et al. (2024).

Among various multimodal representation approaches, knowledge graphs have attracted increasing
attention due to their ability to structurally represent relationships among financial events Zhao et al.
(2022); Wang et al. (2023). However, traditional knowledge graph construction methods rely on
predefined schemas and use deep learning models to extract entities and relations from financial
texts. These approaches are heavily dependent on fixed rules and templates, making it difficult to
capture the diverse and complex expression of financial events. Notably, with advances of Natural
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Language Processing (NLP), large language models (LLMs) have shown exceptional abilities in
semantic understanding, knowledge reasoning, and information extraction in many fields Wang et al.
(2024); Li & Sanna Passino (2024). Therefore, fine-tuning LLMs to extract key financial events
and structured tuples is crucial for constructing accurate and reliable financial event-driven graphs
(FEKGs).

To further learn expressive representations and model complex relationships from knowledge
graphs, graph-based learning has been increasingly applied to stock trend prediction owing to its
ability to capture the complex dependencies among entities Hsu et al. (2021); Li et al. (2024); Liao
et al. (2024). Heterogeneous Graph Neural Networks (HGNNs) as advanced variants of Graph
Neural Networks (GNNs), distinguish between node and edge types, enabling deeper modeling of
complex financial interactions. However, existing HGNNs often overlook encoding edge features,
which carry rich semantic information about financial events and capital flows Zhang et al. (2023);
Ma et al. (2024); Liu et al. (2024a). Thus, we propose a multimodal edge-enhanced Heterogeneous
Graph Transformer (MEHGT) that incorporates structured financial event tuples as edge features
into both attention calculation and message passing, enabling more effective integration of multi-
modal data and improving stock trend prediction.

In summary, to address these issues, we propose a Multimodal Edge-Enhanced Heterogeneous
Graph Transformer with LLM-driven Knowledge Graphs (MEHGT-LKG) for stock trend predic-
tion. Specifically, we first fine-tune LLM by using instruction datasets to design a financial event-
centric knowledge extraction agent (FinEX). Subsequently, we leverage FinEX to construct FEKGs
and build multimodal heterogeneous graphs by incorporating multimodal information with sliding
windows. Finally, we design MEHGT to encode edge features via type-specific encoders into at-
tention and message passing, enhancing relational semantics and target node representations within
multimodal heterogeneous graphs. The contributions are summarized as follows:

• We design the FinEX agent by finetuning LLM with instruction-based dataset. It gener-
ates financial events and structured tuples from financial texts accurately, supporting the
automatic construction of FEKGs.

• Based on FEKGs, we construct multimodal heterogeneous graphs within a sliding time
window by integrating trading data, market indicators, and other relevant information.

• We propose MEHGT, which explicitly incorporates edge-level features into both the at-
tention computation and message passing process. By modeling financial relations and
actions, the model leverages multimodal data to capture entity associations and informa-
tion flow patterns, thereby enhancing stock trend prediction.

• To verify the superiority of the proposed model, extensive experiments are conducted with
the state-of-the-art baselines on multiple real stock datasets.

2 PROBLEM DEFINITION

We formulate the problem of predicting the trend of stocks for excess return as a classification task.
The objective of this research is to leverage constructed multimodal financial heterogeneous graphs
during w days to predict the rise or fall of the target stock at trading day t+ 1 (w denotes the actual
time window). We represent these dynamic heterogeneous graphs as G1:T = {G1, G2, . . . , GT }.
Each graph Gt = (Vt, Et, Rt) at time t contains five types of nodes: Vt = {V KS

t ∪ V OE
t ∪ V HK

t ∪
V F
t ∪ V L

t } and seven types of edges Et = {ECorr
t ∪ EHI

t ∪ ELong
t ∪ EShort

t ∪ ESRE
t ∪ EERS

t ∪
EKS

t ∪ EOE
t }. Meanwhile, Rt denotes seven types of relations corresponding to edges. We have

(u
r↔ v, u

r−→ v) ∈ Et, where r ∈ Rt is the relation type and {u, v} ∈ Vt. The input features of
graph during time window includes node attributes XV

t and edge attributes XE
t . Finally, let Y t+1 be

the predicted targets of a key stock at time t. Given the heterogeneous graph Gt, the node attributes
XV

t of the node set Vt, and the edge attributes XE
t of the edge set Et , the aim of our model is to

forecast the trend of a key stock in the next time point Ŷt+1(s), using the proposed MEHGT model
(denoted as fθ):

Ŷt+1(s) = fθ(Gt, X
V
t , XE

t ), (1)
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3 THE PROPOSED METHOD

The architecture of the proposed methodology, MEHGT-LKG is shown in Figure 1. It comprises
three main stages: fine-tuning LLM for knowledge extraction, multimodal heterogeneous graphs
construction, and designing MEHGT for graph learning and stock trend prediction.

Multimodal Edge-enhanced Heterogeneous Graph Transformer Neural Network (MEHGT)
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Figure 1: Graphical illustration of the proposed methodology MEHGT-LKG.

3.1 DESIGNING FINEX AGENT FOR KNOWLEDGE EXTRACTION

To extract financial events and structured tuples, we design an LLM Agent, namely FinEX.

High-quality instruction datasets are critical for LLM-based information extraction, yet remain
scarce in the financial domain. To address this, we construct an instruction dataset (in Figure 2)
by collecting financial news and company announcements, and use GPT tools to extract structured
financial events. Detailedly, guided by optimized prompts, ChatGPT-4 serves as a financial ana-
lyst, generating key events and structured tuples. These outputs are further refined by the Finance
Wizard Agent based on domain knowledge and validated by experts to ensure accuracy and com-
pleteness. Notably, the dataset preserves both triplets, such as ⟨ Kunlun Tech CO.,LTD — plans to
acquire — YOOZOO GAMES CO.,LTD ⟩ and event pairs like ⟨ CATL CO.,LTD — experiences
a severe explosion ⟩ allowing flexible representations for different event structures. By capturing
multi-entity relations and single-entity events, this dual-format design improves semantic precision
and completeness in extraction.
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Deploy
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{
        "instruction": "Assume you are a seasoned financial analyst. Extract from the text what you believe to be major events that
could significantly impact the stock market and the stock prices of listed companies. Present these events in the form of triples
(entity-action/relationship-entity) or pairs (entity-action/relationship) that can be used to construct a financial knowledge
graph.",

        "input": "News: The AITO Wenjie M9 is set to be launched on December 26. This highly anticipated flagship model is
expected to reignite market interest in Huawei's automotive supply chain, following the success of the AITO Wenjie New M7.
'With the hot sales of the Wenjie series, related companies in the supply chain are likely to achieve higher sales revenue and
profits,' said Jiang Han, a senior researcher at Pangoal Institution, in an interview with Securities Daily. Pre-orders have already
exceeded 33,000 units. According to Seres Automobile, the blind order count for the AITO Wenjie M9 has surpassed 33,000. A
Seres Automobile representative also noted that this new model will be ensured for high-quality delivery by the company's
intelligent factory...",

        "output": "{\"events\": {\"event1\": {\"total\": \"Seres Co., Ltd. to launch the AITO Wenjie M9 on December 26", \"entity1\":
\"Seres Co., Ltd.\", \"relationship\": \"launch on December 26\", \"entity2\": \"AITO Wenjie M9\"}, \"event2\": {\"total\": \"Pre-
orders for the AITO Wenjie M9 exceed 33,000 units\", \"entity1\": \"AITO Wenjie M9\", \"relationship\": \"pre-orders exceed
33,000 units\"}, \"event3\": {\"total\": \"Bojun Technology Co., Ltd./Hengbo Shares Co., Ltd./Yachuang Electronics Co., Ltd. supply
parts for the AITO Wenjie M9\", \"entity1\": \"Bojun Technology Co., Ltd./Hengbo Shares Co., Ltd./Yachuang Electronics Co., Ltd.\",
\"relationship\": \"supply parts\", \"entity2\": \"AITO Wenjie M9\"}, \"event4\": {\"total\": \"Seres Co., Ltd. has deep collaboration
with Huawei Technologies Co., Ltd.\", \"entity1\": \"Seres Co., Ltd.\", \"relationship\": \"deep collaboration\", \"entity2\": \"Huawei
Technologies Co., Ltd.\"}}"
    },

{
        "instruction": "Assume you are a seasoned financial analyst. Extract from the text what
you believe to be major events that could significantly impact the stock market and the stock
prices of listed companies. Present these events in the form of triples (entity-
action/relationship-entity) or pairs (entity-action/relationship) that can be used to construct a
financial knowledge graph.",

        "input": "News: The AITO Wenjie M9 is set to be launched on December 26. This highly
anticipated flagship model is expected to reignite market interest in Huawei's automotive
supply chain, following the success of the AITO Wenjie New M7. 'With the hot sales of the
Wenjie series, related companies in the supply chain are likely to achieve higher sales revenue
and profits,' said Jiang Han, a senior researcher at Pangoal Institution, in an interview with
Securities Daily. Pre-orders have already exceeded 33,000 units. According to Seres
Automobile, the blind order count for the AITO Wenjie M9 has surpassed 33,000. A Seres
Automobile representative also noted that this new model will be ensured for high-quality
delivery by the company's intelligent factory...",

        "output": "{\"events\": {\"event1\": {\"total\": \"Seres Co., Ltd. to launch the AITO Wenjie
M9 on December 26", \"entity1\": \"Seres Co., Ltd.\", \"relationship\": \"launch on December
26\", \"entity2\": \"AITO Wenjie M9\"}, \"event2\": {\"total\": \"Pre-orders for the AITO Wenjie
M9 exceed 33,000 units\", \"entity1\": \"AITO Wenjie M9\", \"relationship\": \"pre-orders
exceed 33,000 units\"}, \"event3\": {\"total\": \"Bojun Technology Co., Ltd./Hengbo Shares Co.,
Ltd./Yachuang Electronics Co., Ltd. supply parts for the AITO Wenjie M9\", \"entity1\": \"Bojun
Technology Co., Ltd./Hengbo Shares Co., Ltd./Yachuang Electronics Co., Ltd.\", \"relationship\":
\"supply parts\", \"entity2\": \"AITO Wenjie M9\"}, \"event4\": {\"total\": \"Seres Co., Ltd. has
deep collaboration with Huawei Technologies Co., Ltd.\", \"entity1\": \"Seres Co., Ltd.\",
\"relationship\": \"deep collaboration\", \"entity2\": \"Huawei Technologies Co., Ltd.\"}}"
    },

Figure 2: The procedure of fine-tuning LLM to build the
FinEX Agent.

Building on the constructed
instruction-based dataset, we
fine-tune Qwen model to design
FinEX agent. An overview of the
fine-tuning process is shown in
Figure 2. Each training sample
includes both the event description
and its corresponding structured
tuples, which effectively reduces
hallucination during large model rea-
soning and improves the reliability of
outputs. We choose Tongyi-Finance-
14B (TF-14B), a domain-specific
variant of Qwen-14B pre-trained
on extensive financial corpora, as
the base model Bai et al. (2023).
Fine-tuning is performed with LoRA
in the Llama-Factory framework
Zheng et al. (2024), updating a small
subset of parameters while keeping
the backbone frozen to greatly reduce
memory and computation costs. And training is performed with the DeepSpeed framework on
NVIDIA A100 GPUs, ensuring efficient handling of long instruction texts. Finally, FinEX supports
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accurate, large-scale extraction of key financial events and structured tuples from raw news and
announcements, providing essential inputs for constructing the financial event-centric knowledge
graphs (FEKGs).

3.2 MULTIMODAL HETEROGENEOUS GRAPHS CONSTRUCTION

Figure 3: The procedure of fine-tuning LLM to build the
FinEX Agent.

Financial event-centric knowledge
graphs are the foundation to build
multimodal Heterogeneous Graphs.
We leverage the FinEX Agent to pro-
cess financial news and announce-
ments from 2021 to 2024 about se-
lected stocks to construct FEKG. The
structured tuples include entities such
as companies, products, and key in-
dividuals, along with relations such
as mergers, investments, and short-
selling events. To ensure data quality,
entities and relationships were stan-
dardized to avoid duplication caused
by inconsistent naming.

Multimodal heterogeneous graphs
extend conventional heterogeneous
graphs by incorporating multimodal
sources. Additional node types, such
as Northbound Trading, margin financing, and securities lending, are introduced to represent key
financial activities. Edge types are enriched with stock co-movement correlations and capital flow
information to reflect long-short market dynamics. Finally, a temporal sequence of multimodal het-
erogeneous graphs is generated via sliding time windows. These graphs effectively capture intricate
financial interactions across modalities, laying a strong foundation for multimodal fusion, graph
learning, and trend prediction. The demo of the subgraph developed with Neo4j is shown in Figure
3

3.3 MEHGT FOR STOCK TREND PREDICTION

We design MEHGT to better capture relational patterns and information dynamics in financial mar-
kets. MEHGT explicitly integrates edge-level features into both the attention computation and mes-
sage passing process, and further conducts a more comprehensive and effective multimodal fusion
across both nodes and edges during graph representation learning. The overall architecture is illus-
trated in Figure. 4.
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Heterogeneous mutual attention: Given a target node t1 of type τ(t1) (i.e., key stock) and a
source node s ∈ N(t1) in a heterogeneous subgraph, we compute their attention via a multi-head
mechanism. To better capture relation semantics, edge features are incorporated through a type-
specific transformation and scaling function. Specifically, each target node t1 and its neighbor s are
transformed into a Query vector and a Key vector, respectively.

Qi(t1) = Q-Linearτ(t1)
(
H(l−1)[t1]

)
, (2)

Ki(s1) = K-Linearϕ(s1)
(
H(l−1)[s1]

)
, (3)

Ki(s2) = K-Linearϕ(s2)
(
H(l−1)[s2]

)
, (4)

where Q-Linearτ(t1), K-Linearτ(s1), and K-Linearτ(s2) represent the linear projection functions
for the Query and Key vectors. H(l) denotes the node embedding of the l-th layer, with H(0) being
the initial node embedding.

The similarity between Qi(t1) and Ki(s) is calculated as the attention weight between them:

ATT-headi(t1, e1, s2) =
(
Ki(s2)W

ATT
ϕ(e2)Qi(t1)

T
)

· µ(τ(t1), ϕ(e2), τ(s2))√
d

· f(Xedge[e2]) (5)

where WATT
ϕ(e2)

is the edge-based transformation matrix for capturing the semantic information of
different types of edges between t1 and s2, and f(Xedge[e2]) represents how the edge feature Xedge
influences the attention score. The edge feature Xedge[e1] is used to scale the attention weight with
the specific edge type, which helps refine the attention mechanism by considering financial relation-
ships and actions or short events from graphs. The representation of ATT − headi(tx, ey, sz) is
similar to the above.

Finally, the attention vectors between each node pair are obtained by concatenating the h attention
heads. Then, for each target node t, the attention vectors from all its neighboring nodes N(t) are
gathered:

Attention(s, e, t) = Softmax
∀s∈N(t)

(
∥

i∈[1,h]

ATT-headi(s, e, t)

)
, (6)

where ∥
i∈[1,h]

is the concatenating function.

Heterogeneous message passing: A message operator is employed to pass messages between vari-
ous nodes such as stocks, financial entities, and stock markets. The multi-head message is computed
by the following process. The source node s2 is projected into a message vector using a linear
transformation:

MSG-headi(s2, e2, t1) = αi
s2→t1 ·

(
M-Lineariϕ(s2)H

(l−1)(s2)×WMSG
ϕ(e2)

)
, (7)

where the function M-Lineariϕ(vs)
is the linear projection function corresponding to the ith message

head, and WMSG
ϕ(es,t)

is the edge-type transformation matrix. The final step is to concatenate h message
headers to get the Message(s2, e2, t1) for each node pair:

Message(s2, e2, t1) = ∥
i∈[1,h]

MSG-headi(s2, e2, t1). (8)

The representation of MSG-headi(s1, e1, t1) and Message(s1, e1, t1) is similar to the aforemen-
tioned.

Target-specific aggregation: To update embedding of a key stock node t, this module uses multi-
headed attention and message passing to refine its representation from neighboring nodes.

H̃(l)[t] = ⊕∀s∈N(t)Attention(s, e, t) · Message(s, e, t). (9)

where H̃(l)[t] denotes the updated embedding of the target node, which aggregates the information
of all neighboring nodes. The updated embedding of the key stock node is projected to its type-
specific distribution:

H(l)[t] = A-Linearϕ(t)
(
σ(H̃(l)[t])

)
+H(l−1)[t], (10)
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where A-Linearϕ(t) is a type-aware linear projection, σ(·) denotes the nonlinear activation function.
The module incorporates the residual structure, where H(l−1)[t] is the node embedding of the target
node in the (l − 1)th layer.

(4) Target forecasting network and optimization: Given the learned representations of target
nodes from the MEHGT model, we employ a shallow neural network to predict stock trend. The
output is defined as:

Ŷs = softmax(NNf (WnH
(l)[t] + bn)), (11)

where NNf represents a shallow neural network with two fully connected layers, and Wn ∈ Rds×2,
bn ∈ R2 are the weight matrix and bias, respectively.

The model is trained with cross-entropy loss: dl is the number of target categories. In this work, we
set the dl = 2.

L≀∫∫ target = −
∑
s∈VT

dl∑
c=1

Ŷt+1(s) ln Ŷt+1(s), (12)

where Ŷt+1(s) is the ground-truth label of cth price movement category for stock s, which is marked
as 1 for the ”up” price movements, 0 for the ”down” movement, respectively. VT denotes the set of
target nodes.

Hence, after forecasting networks, MEHGT can effectively leverage the learned node representa-
tions from multimodal heterogeneous graph to predict stock trend.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

4.1.1 DATASETS.

We select stocks from CSI300 and CSI500 to construct datasets Duan et al. (2025); Zhou et al.
(2025), which include AI and renewable energy sectors. Data are collected from Wind (numerical)
and Eastmoney (textual), spanning Jan 5, 2021 – Mar 29. We split the datasets into mutually exclu-
sive training/validation/testing sets in the ratio of 7:2:1. Moreover, the original dataset, weights
of FinEX, code of MEHGT-LKG, and implementation details will be provided in our GitHub.
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Figure 5: The procedure of fine-tuning LLM to
build the FinEX Agent.

4.1.2 COMPARED METHODS.

To show the performance of our proposed
model, we compare MEHGT-LKG with SOTA
methods. We select the following models as the
baseline for comparison: (1) Time series mod-
eling methods : Informer Zhou et al. (2021),
TCN Bai et al. (2018), and CNN-LSTM Vidal
& Kristjanpoller (2020); (2) Graph-based mod-
eling methods: GAT Velickovic et al. (2018),
HGT Hu et al. (2020), MAC Ma et al. (2023),
and MDGNN Qian et al. (2024)

4.1.3 EVALUATION METRICS.

Following previous study Zeng et al. (2018);
Wadden et al. (2019), we use Precision, Re-
call, and F1 score for two NLP tasks (events
extraction and tuples extraction). And we se-
lect Accuracy (ACC), Matthew’s Correlation
Coefficient (MCC), precision, recall, F1 score
and Area Under Curve (AUC) to evaluate stock
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trend prediction performance, and choose Cumulative Return Rate (CRR), Maximum Drawdown
(MDD), and Sharpe Ratio (Sharpe) to assess the profitability Liu et al. (2024a); Ma et al. (2024).

4.2 COMPARISON RESULTS OF NLP MODELS

We conduct experiments on a manually annotated news dataset to evaluate FinEX agent in event and
tuple extraction by comparing it with baselines including Paddle-UIE (0.5B ), Qwen3-plus (235B),
and ChatGPT-4o (200B). The results are shown in Figure 5.

FinEX outperforms all baselines in both tasks. It reaches precision scores of 0.9820 and 0.9613,
respectively, and reaches F1 score of 0.9268 and 0.8782. This may be attributed to fine-tuning
the LLM with instruction data, which significantly enhances its capacity to comprehend lengthy
financial news and announcements deeply, accurately extract key financial events, and generate
structured tuples in JSON format aligned with standard requirements for constructing knowledge
graphs. ChatGPT-4o and Qwen3-plus, though competitive, occasionally generate malformed or
redundant JSON outputs. Paddle-UIE struggles with long, unstructured financial texts due to its
schema-constrained decoding, leading to low performance.

All LLM-based models show strong extraction ability due to their language understanding and gen-
eralization. FinEX, with only 14B parameters, offers high performance and fast inference, making
it suitable for deployment. We will open-source FinEX with full pipelines.

4.3 MAIN COMPARISON RESULTS

We compare MEHGT-LKG with a range of state-of-the-art baselines, including time-series models
and graph-based models. As shown in Table 1, MEHGT-LKG consistently achieves superior perfor-
mance across all datasets, with notable MCC scores of 0.3718 on Inspur, 0.3681 on IFLYTEK, and
0.3337 on Sungrow.

Compared with time-series methods, our model significantly outperforms them, as these meth-
ods focus on single-stock sequences and fail to capture inter-stock dependencies. Among graph-
based models, MAC leverages sentiment features via a GCN framework, but has weak expressive
power due to simplistic feature aggregation. HGT demonstrates stronger performance by employ-
ing type-aware multi-head attention over heterogeneous graphs. MEHGT-LKG builds upon this by
further injecting edge-level features into the attention calculation and message-passing processes,
enhancing its capacity to model complex financial relations. MDGNN benefits from dynamic multi-
relational modeling with Transformers, but lacks multimodal integration, particularly of financial
events.Overall, compared with the baselines, our method has the following advantages.

• We design FinEX by finetuning an LLM to accurately extract structured tuples of financial
events, enabling the construction of FEKGs with rich domain-specific semantics.

• We construct multimodal heterogeneous graphs within a sliding time window by integrating
trading data, market indicators, and other relevant information.

• The MEHGT model explicitly incorporates edge-level features into both the attention com-
putation and the message passing process, enabling deeper multimodal fusion and enhanc-
ing stock trend prediction performance.

4.4 MARKET TRADING SIMULATION

To further evaluate the profitability of our method, we conduct an investment simulation. Figure 6
presents the cumulative return curves on six representative stocks during the backtesting. MEHGT-
LKG outperforms all baselines, remaining the highest equity curve throughout the trading period
under bullish and bearish conditions. Especially, on Zhongji Innolight, it attains a CRR of 274.49%
and on Inspur, it attains 104.50%. And MDGNN also exhibits competitive performance.

Detailedly, MEHGT-LKG achieves the highest return among all baseline models, and consistently
delivers positive returns throughout the entire backtesting period. Notably, on upward-trending
stocks (e.g., Zhongji Innolight), MEHGT-LKG captures strong buy signals driven by accurate trend
prediction and achieves a remarkable cumulative return. Meanwhile, for stocks experiencing down-
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Table 1: Prediction performance of different methods across selected stock datasets (The results on
other datasets are shown in the Appendix).

Methods
Inspur (000977) CATL (300750)

ACC MCC Precision Recall F1 AUC ACC MCC Precision Recall F1 AUC

Time-series models
Informer 0.6104 0.2195 0.6154 0.5333 0.5714 0.5894 0.6104 0.2372 0.5357 0.6818 0.6000 0.5808
TCN 0.5844 0.1669 0.5846 0.5067 0.5429 0.5515 0.5909 0.1800 0.5200 0.5909 0.5532 0.5913
CNN-LSTM 0.6234 0.2462 0.6349 0.5333 0.5797 0.6645 0.5455 0.1913 0.4828 0.8485 0.6154 0.5248
Graph-based models
GAT 0.6169 0.2865 0.5690 0.8800 0.6911 0.6019 0.6234 0.2439 0.5541 0.6212 0.5857 0.5754
HGT 0.6169 0.2630 0.5755 0.8133 0.6740 0.5516 0.6364 0.2737 0.5658 0.6515 0.6056 0.6030
MAC 0.6039 0.2171 0.5761 0.7067 0.6347 0.5954 0.6234 0.2104 0.5833 0.4242 0.4912 0.5559
MDGNN 0.6299 0.2605 0.6500 0.5200 0.5778 0.6226 0.6558 0.2960 0.6000 0.5909 0.5954 0.6288
MEHGT-LKG (ours) 0.6234 0.3718 0.6883 0.7713 0.7184 0.6322 0.6039 0.2748 0.5243 0.8182 0.6391 0.6307

IFLYTEK (002230) EVE (300014)

Time-series models
Informer 0.5779 0.1962 0.5288 0.7746 0.6286 0.5280 0.6429 0.2517 0.4769 0.5962 0.5299 0.5850
TCN 0.5974 0.1883 0.5652 0.5493 0.5571 0.5305 0.5909 0.1922 0.4286 0.6346 0.5116 0.5786
CNN-LSTM 0.6234 0.2438 0.5890 0.6056 0.5972 0.5843 0.5260 0.2302 0.4054 0.8654 0.5521 0.5754
Graph-based models
GAT 0.6234 0.2456 0.5867 0.6197 0.6027 0.6129 0.6039 0.2567 0.4471 0.7308 0.5547 0.6655
HGT 0.6104 0.2544 0.5556 0.7746 0.6471 0.6359 0.6494 0.2858 0.4857 0.6538 0.5574 0.6158
MAC 0.6234 0.2382 0.6000 0.5493 0.5735 0.5959 0.4545 0.2350 0.3806 0.9808 0.5484 0.5430
MDGNN 0.6299 0.2562 0.6842 0.5662 0.5771 0.5418 0.6169 0.2383 0.4533 0.6538 0.5354 0.5911
MEHGT-LKG (ours) 0.6818 0.3681 0.6375 0.7183 0.6755 0.6930 0.6883 0.3166 0.5357 0.5769 0.5556 0.6640

Zhongji Innolight (300308) Sungrow (300274)

Time-series models
Informer 0.6558 0.3155 0.6857 0.6076 0.6443 0.6297 0.6234 0.2489 0.5584 0.6418 0.5972 0.5891
TCN 0.6169 0.2369 0.6000 0.7595 0.6704 0.5690 0.5974 0.1810 0.5373 0.5373 0.5373 0.5963
CNN-LSTM 0.5779 0.1538 0.5795 0.6456 0.6108 0.4928 0.6234 0.2874 0.5474 0.7761 0.6420 0.6056
Graph-based models
GAT 0.6104 0.2217 0.5979 0.7342 0.6591 0.6175 0.6494 0.3085 0.5802 0.7015 0.6351 0.6447
HGT 0.6169 0.3076 0.5758 0.9620 0.7204 0.6046 0.6558 0.2910 0.6207 0.5373 0.5760 0.5656
MAC 0.5974 0.2342 0.7073 0.3671 0.4833 0.5332 0.6169 0.2144 0.5645 0.5224 0.5426 0.5805
MDGNN 0.6364 0.2992 0.7255 0.4684 0.5692 0.6117 0.6039 0.2665 0.5294 0.8060 0.6391 0.5656
MEHGT-LKG (ours) 0.6688 0.3375 0.6591 0.7324 0.6946 0.6485 0.6753 0.3337 0.6393 0.5821 0.6094 0.6523

ward trends (e.g., CATL), the model generates timely exit signals and flexibly adjusts positions,
resulting in a solid and positive return.
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(a) Inspur (000097)
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(c) Zhongji Innolight (300308)
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(d) CATL (300750)
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Figure 6: Simulated trading performance of all models during backtesting.

4.5 ABLATION STUDY

In this section, several ablation experiments are performed to examine the effectiveness of each
component of MEHGT-LKG.

As shown in Table 2, MEHGT-LKG model achieves the best performance. The method removing
financial text data performs worse, verifying that structured tuples extracted from financial texts
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enrich graph semantics and enhance trend prediction. Notably, the variant without edge features
performs comparably to the one w/o financial text data, as the edge features in MEHGT-LKG are
primarily constructed from event-centric financial text. And the variant w/o numerical indicators
underperforms, confirming that market indicators and trading features serve as essential signals for
stock-level inference.
Table 2: Comparison results of ablation analysis across selected stock datasets (The results on other
datasets are shown in the Appendix).

Methods
Inspur (000977) CATL (300750)

ACC MCC Precision Recall F1 AUC ACC MCC Precision Recall F1 AUC

w/o events 0.6169 0.2328 0.6250 0.5333 0.5755 0.5967 0.6104 0.2728 0.5306 0.7879 0.6341 0.6121
w/o edge feats 0.6175 0.2570 0.6270 0.5500 0.5860 0.6175 0.6227 0.2744 0.5608 0.7734 0.6502 0.6286
w/o indicators 0.6364 0.2757 0.6145 0.6800 0.6456 0.6409 0.6104 0.2614 0.5319 0.7576 0.6250 0.5989
MEHGT-LKG 0.6234 0.3718 0.6883 0.7713 0.7184 0.6322 0.6039 0.2748 0.5243 0.8182 0.6391 0.6307

IFLYTEK (002230) EVE (300014)

w/o events 0.6364 0.2893 0.5843 0.7324 0.6500 0.6302 0.6688 0.2492 0.5102 0.4808 0.4950 0.6110
w/o edge feats 0.6287 0.2799 0.5724 0.7269 0.6405 0.6186 0.6457 0.2601 0.5187 0.4995 0.5089 0.6222
w/o indicators 0.6169 0.2546 0.5652 0.7324 0.6380 0.5817 0.6623 0.2595 0.5000 0.5385 0.5185 0.6283
MEHGT-LKG 0.6818 0.3681 0.6375 0.7183 0.6755 0.6930 0.6883 0.3166 0.5357 0.5769 0.5556 0.6640

Zhongji Innolight (300308) Sungrow (300274)

w/o events 0.6494 0.3136 0.7119 0.5316 0.6087 0.6508 0.6429 0.3307 0.5625 0.8060 0.6626 0.6174
w/o edge feats 0.6589 0.3351 0.7204 0.5562 0.6277 0.6625 0.6234 0.2873 0.5512 0.7815 0.6465 0.6159
w/o indicators 0.6299 0.2615 0.6146 0.7468 0.6743 0.6518 0.6299 0.2710 0.5610 0.6866 0.6174 0.6021
MEHGT-LKG 0.6688 0.3375 0.6591 0.7324 0.6946 0.6485 0.6753 0.3337 0.6393 0.5821 0.6094 0.6523

4.6 HYPERPARAMETER ANALYSIS

Figure 7: Hyperparameter analysis based on Sankey graph.

We use Sankey diagram to analyze
the impact of key layer hyperparam-
eters in MEHGT-LKG (Figure. 7).
The analysis covers the hidden di-
mensions of three MEHGT layers
and one Linear layer. Each path de-
notes a specific hyperparameter com-
bination, with darkness indicating the
MCC performance.

The best combina-
tion—128–128–64–16—achieves the
highest MCC of 0.372, suggesting a
balanced architecture with good learning and classification abilities. In contrast, over-parameterized
settings (e.g., 256–128–128–16, MCC=0.218) and under-parameterized ones (e.g., 64–32–32–8,
MCC=0.240) perform worse, likely due to overfitting and limited representation capacity, respec-
tively. Additionally, configurations with sharp reductions between layers (e.g., 256–32–32–32,
256–32–32–16, and 256–32–32–8) also perform poorly, possibly because abrupt dimensional drops
hinder the model’s ability to extract high-level features effectively.

5 CONCLUSION

In this work, we propose MEHGT-LKG for stock trend prediction. By fine-tuning Qwen with cus-
tom instruction datasets, we design a financial event-centric knowledge extraction agent (FinEX),
and build financial event-centric knowledge graphs. Then, with sliding windows, these graphs are
integrated with numerical indicators from multiple sources to form a sequence of multimodal het-
erogeneous graphs. Finally, we design MEHGT to learn a series of semantically enriched multi-
modal heterogeneous graphs spanning different time horizons. MEHGT models edge-level features
through type-specific encoders and integrates them into both multi-head attention and message prop-
agation, significantly enriching the representation of relational semantics and target nodes. In the
future, we plan to integrate MEHGT-LKG with reinforcement learning frameworks to enable end-
to-end portfolio-level trading.
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