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ABSTRACT

Existing deep metric learning approaches fall into three general categories: con-
trastive learning, average precision (AP) maximization, and classification. We
propose a novel alternative approach, contextual similarity optimization, inspired
by work in unsupervised metric learning. Contextual similarity is a discrete sim-
ilarity measure based on relationships between neighborhood sets, and is widely
used in the unsupervised setting as pseudo-supervision. Inspired by this success,
we propose a framework which optimizes a combination of contextual and cosine
similarities. Contextual similarity calculation involves several non-differentiable
operations, including the heaviside function and intersection of sets. We show
how to circumvent non-differentiability to explicitly optimize contextual similar-
ity, and we further incorporate appropriate similarity regularization to yield our
novel metric learning loss. The resulting loss function achieves state-of-the-art
Recall @ 1 accuracy on standard supervised image retrieval benchmarks when
combined with the standard contrastive loss.

1 INTRODUCTION

Supervised metric learning aims to learn a transformation from data to an embedding space, where
similar samples are close together and dis-similar samples are far apart. Three types of metric learn-
ing approaches currently exist: contrastive learning, average precision (AP) maximization, and clas-
sification. Contrastive losses roughly follow the idea proposed by Hadsell et al. (2006): minimize
the distance between positive pairs and maximize the distance between negative pairs. Alternatively,
approaches such as ProxyNCA (Movshovitz-Attias et al. (2017)) use a classification loss to optimize
a linear layer on top of the embedding. The linear layer and the embedding are trained jointly, and
the former is discarded. More recently, there is strong interest in average precision (AP) maxi-
mization. AP is a metric which takes into account the rank of samples relative to each other and
is non-differentiable. Several studies tackle this non-differentiability issue: Fast-AP (Cakir et al.
(2019)) uses a soft-binning approach; Smooth-AP (Brown et al. (2020)) and ROADMAP (Ramzi
et al. (2021)) use sigmoid-like functions to approximate the heaviside function used for ranking. In
the current work, we take a different approach to metric learning, using the notion of contextual
similarity from unsupervised metric learning (Zhong et al. (2017) and Kim et al. (2022)).

Unsupervised metric learning aims to learn a good representation without using labels. Most existing
work in this area focus on a semi-supervised pseudo-labeling approach. In particular, a teacher
model is used to guess the true similarity between unlabeled samples; the guess is then used as
artificial supervision for training a student model. Instead of directly using the cosine similarity
between teacher features as the pseudo-similarity label, most state-of-the-art methods rely on a
weighted combination of the cosine similarity and contextual similarity (Ge et al. (2020a), Ge et al.
(2020b), Kim et al. (2022)). Inspired by this success, we endeavor to explicitly optimize contextual
similarity.

The definition of contextual similarity varies. In the person re-ID literature, most papers use the
k-reciprocal re-rank distance proposed in Zhong et al. (2017). Contextual similarity is based on the
following intuition: (1) neighbors are likely to have the same label regardless of absolute similarity,
(2) two samples are likely to have the same label if they share the same neighbors, (3) reciprocal
relationships are important: sample i is likely to be similar to sample j if i is a neighbor of j and j
is a neighbor of i, (4) neighbors of neighbors can be treated as neighbors. These observations lead
directly to a rigorous definition of contextual similarity presented in Section 3.1. Existing supervised

1



Under review as a conference paper at ICLR 2023

metric learning approaches already implicitly minimize some notion of contextual similarity – this
is why contextual similarity works as a pseudo-label. We hypothesize that explicitly optimizing
contextual similarity boosts recall performance when combined with standard contrastive learning.

We use the term “context” to refer to the set of neighbors around a sample. Roughly speaking, the
contextual similarity between samples i and j is a fraction between 0 and 1 indicating the degree
of overlap between the contexts of i and j. We seek to minimize the contextual similarity between
samples with different labels, and vice versa. Clearly, this requires the contextual similarity to be
differentiable with respect to the embeddings. Contextual similarity is non-differentiable because it
involves manipulation of indicator functions, e.g. to calculate the intersection between contexts. We
find that existing tools to circumvent non-differentiability, such as using sigmoid approximations,
are insufficient for our problem. Therefore, we develop a novel optimization approach for contextual
similarity in Section 3.2.

We make two technical and one experimental contribution to the metric learning literature:
1. We derive a highly non-trivial differentiable contextual loss function.

2. We propose a simple but novel similarity regularizer which significantly improves the stan-
dard contrastive loss and may be of independent interest.

3. Our framework improves the Recall @ 1 performance significantly over the current state-
of-the-art across four diverse image retrieval benchmarks.

2 LITERATURE REVIEW

Supervised Metric Learning There are three main approaches: (1) contrastive (2) classification
and (3) AP maximization. The contrastive loss was first proposed by Hadsell et al. (2006). The
triplet loss (Weinberger et al. (2005)) operates on triplets (a pair of positive samples with a negative
sample) instead of pairs and is competitive with the contrastive loss when combined with an effective
triplet sampling strategy (Wu et al. (2017)). While contrastive and triplet losses are well-known,
they remain the go-to method for metric learning and Musgrave et al. (2020a) show that they are
comparable in performance to many recent methods. Variations of the contrastive loss include the
lifted structure loss (Oh Song et al. (2016)) and multi-similarity loss (MS) (Wang et al. (2019)).
Standard classification methods can achieve state-of-the-art metric learning results when appropriate
tricks are used (Boudiaf et al. (2020), Zhai & Wu (2018), Teh et al. (2020)). AP maximization
methods learn to rank samples within a mini-batch correctly. The AP objective is non-differentiable
because of the heaviside used for ranking. As a workaround, Fast-AP uses soft-binning; Smooth-AP
uses a low-temperature sigmoid; ROADMAP uses an upper bound on the heaviside instead of an
approximation. Our work is distinct from all three categories while having similarities to learning
to rank (see Figure 2).
Unsupervised Metric Learning There is extensive interest in unsupervised and domain adaptive
metric learning, mainly in the context of person re-ID (see survey Ye et al. (2021)). Contextual
similarity is a cornerstone for most recent work in this area. Most unsupervised person re-ID papers
use the k-reciprocal re-rank distance, which is a weighted combination of Euclidean distance and
Jaccard distance between reciprocal-neighbor sets. Their formulation has three disadvantages: (1) it
operates on the entire dataset instead of a batch; (2) it involves a series of set expansion operations
which are hard to vectorize, much less make differentiable; (3) it is optimized for the person re-
ID application. More recently, STML (Kim et al. (2022)) propose an unsupervised metric learning
framework for image retrieval which uses a simpler batch-wise contextual similarity measure. We
mostly follow STML’s contextual similarity definition, with some minor tweaks. We emphasize that
all work cited above use contextual similarity as a pseudo-label for unsupervised learning, while our
work optimizes the contextual similarity in the supervised setting.

3 METHOD

This section is organized as follows: (1) We state the mathematical definition of contextual similar-
ity, which loosely follows Kim et al. (2022), then (2) we explain how to optimize the objective.
Notation Denote the normalized output of the embedding network as fi ∈ Rd. sij ∈ [−1, 1]
denotes the cosine similarity between the samples i and j (sij = ⟨fi, fj⟩). yij ∈ {0, 1} denotes
the true similarity between i and j. yij = 1 if samples i and j share the same label; otherwise,
yij = 0. We use uppercase letters to denote matrices, math script to denote sets, and lowercase
letters to denote scalars. i, j and p are reserved for sample indices.
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Figure 1: Method Overview. Our final framework consists of three loss terms. Lcontext pulls apart
the contexts of dis-similar samples and pushes together the contexts of similar samples. This is
illustrated on the left, where black triangles indicate samples with any label. See also analysis
in Section 4.2. Lreg is a regularizer that encourages utilization of the entire embedding space by
regularizing average similarities to a fixed value. Lcontrast is the standard contrastive loss.

3.1 CONTEXTUAL SIMILARITY DEFINITION

We compute the contextual similarity on a single batch, not the entire dataset. Two samples are
contextually similar if they share the same neighbors, i.e. the intersection of their k-neighbor sets
is large. Following this intuition, we calculate w̃ij , the preliminary contextual similarity between
samples i and j:

Nk+ϵ(i) = {j | sij ≤ sip + ϵ where p denotes the k-th closest neighbor of i} (1)

w̃ij =

{
|Nk+ϵ(i) ∩Nk+ϵ(j)| / |Nk+ϵ(i)| , if j ∈ Nk+ϵ(i)

0 , otherwise.
(2)

We include i in Nk+ϵ(i) (so if k = 2, then Nk+0(i) includes two elements: i and its closest neigh-
bor). Then, we use query expansion and symmeterize to obtain the final contextual similarity. Query
expansion (Arandjelović & Zisserman (2012)) is a standard evaluation-time trick in metric learning.
It boosts retrieval performance by retrieving neighbors of a sample’s neighbors. Analogously, we
adjust the contextual similarity by averaging w̃ij over the set of close reciprocal neighbors Rk/2(i).

Nk/2+ϵ(i) = {j | sij ≤ sip + ϵ where p denotes the k/2-th closest neighbor of i} (3)

Rk/2+ϵ(i) = {j | j ∈ Nk/2+ϵ(i) and i ∈ Nk/2+ϵ(j)} (4)

ŵij =
1

|Rk/2+ϵ(i)|
∑

p∈Rk/2+ϵ(i)

w̃pj , wij =
1

2
(ŵij + ŵji). (5)

Note that wij ∈ [0, 1] and only depend on the cosine similarities sij between embeddings. We want
to optimize the embeddings such that wij converges to yij . The value of k is not arbitrary; it must
be set to the number of samples per label in the mini-batch. For example, a standard metric learning
setup is to randomly sample 32 labels and then sample 4 images per label. In this case, we set k = 4.

3.2 OPTIMIZATION

The definition in the previous sub-section clearly contains three discrete operations: (1) greater-
than, (2) logical-and, and (3) intersection. For optimization, we will deal extensively with indicator
matrices: we denote as 1N ∈ Rn×n the indicator matrix where 1N (i, j) = 1 if j ∈ N (i) for some
set N . We use ⊙ to denote element-wise multiplication.
Greater-than This is used in Eq. 1 and 3 and is equivalent to the non-differentiable heaviside
function θ. Our approach is to use the exact value of θ(·) in the forward pass and a constant positive
gradient α in the backward pass. A constant positive gradient is reasonable since θ is a (non-strictly)
increasing function.
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Figure 2: Illustration of Nk+ϵ optimization using the simplified loss function L1 in Eq. 18. Negative
samples which are in the set Nk+ϵ(i) are pushed away from i by a constant gradient. Positive
samples which are not in the set Nk+ϵ(i) are pulled closer. This behavior is analogous to the standard
contrastive loss: Lcontrast applies a constant gradient to pairs violating a fixed margin, while L1

applies a constant gradient to pairs violating the flexible margin defined by the k-th neighbor. k = 4
in the illustration.

Forward: θ(x) = 1 if x ≥ 0 ; 0 otherwise Backward:
∂θ(x)

∂x
= α. (6)

In Section 4.1 we show with a toy experiment that this approach is robust despite being somewhat
heuristic. In contrast, θ is traditionally approximated by a sigmoid (e.g. for AP approximation and
in Gated Recurrent Networks Cho et al. (2014) ):

θσ(x) =
1

1 + exp (x/τ)
. (7)

θσ trades off the quality of the approximation with the domain where gradients are non-zero. As
temperature τ decreases, θσ approaches θ, but gradient vanishes everywhere except in a small region
around the boundary. This behavior is not intuitive: it is undesirable to only have a large gradient
at the boundary. Some prior work (e.g. ROADMAP) side-step this issue by using an upper-bound
to the heaviside function (where the right side of the heaviside function increases linearly), which
solves the gradient issue at the expense of grossly over-estimating the true objective. In our case, this
is especially concerning since we will be multiplying together indicator functions. In Section 5.1,
we show that our approach in Eq. 6 achieves better empirical results than a sigmoid approximation.
Logical-and A logical-and is used explicitly in Eq. 4 and implicitly in Eq. 2 and 5. There are
two differentiable substitutes for logical-and: min and multiplication. Multiplication is smooth, but
has no gradient at the origin. min is logically consistent on the continuous domain [0,1], but the
gradient is not continuous when inputs are equal. We found experimentally that multiplication is the
best option, see row 5 of Table 3. A gradient of zero at the origin is desireable in the case of Eq. 4
and 5 (query expansion step). A work-around for the zero-gradient issue for Eq. 2 is presented in
the next sub-section.
Intersection The number of elements in the intersection in Eq. 2 is calculated using matrix multi-
plication. A sample p ∈ Nk+ϵ(i)∩Nk+ϵ(j) if p ∈ Nk+ϵ(i) and p ∈ Nk+ϵ(j). Using multiplication
for the logical-and, the number of elements in the intersection can be expressed compactly as a
function of the indicator matrices:

M+ = 1Nk+ϵ
1
⊺
Nk+ϵ

, where M+(i, j) = |Nk+ϵ(i) ∩Nk+ϵ(j)| . (8)

We are now ready to state the loss function by combining the definition of contextual similarity with
the optimization method.
3.3 LOSS

Our loss function straightforwardly combines the previous two sub-sections, with one exception for
the intersection calculation in Eq. 2. Optimizing the intersection with M+ tends to focus on pairs of
neighboring samples because using multiplication for logical-and zeros out the gradient when both
inputs are 0. This is problematic since the resulting embedding becomes clustered regardless of true
similarity (see Figure 4). We mitigate this problem by optimizing the intersection of the comple-
ments N c

k+ϵ(i) ∩ N c
k+ϵ(j) in addition to optimizing the original intersection in Eq. 2. c denotes

4



Under review as a conference paper at ICLR 2023

Figure 3: This figure justifies the non-standard approach of optimizing L1 (Eq. 18) by overriding
the gradient of θ. We generate synthetic 2-D data consisting of five concentric circles; each color
represents a label. We use a standard three layer MLP with ReLU activations to output a 2D em-
bedding. We train on increasingly noisy data and plot the resulting embeddings on clean data. We
only sample 4 points per label per batch (k = 4). L1 minimization results in reasonable embeddings
despite its simplicity.

the complement of a set. Maximizing the size of the intersection between two sets is equivalent
to maximizing the size of the intersection between their complements, and vice versa. This can be
trivially proven under the assumptions that the universal set is constant and that the size of both sets
is constant.

Let D ∈ Rn×n denote the matrix where D(i, j) ∈ [0, 4] is the squared Euclidean distance between
the normalized features of sample i and j. D(i, j) = 2− 2sij . sg denotes stop gradient.
Step 1 (Neighborhood Optimization):

1Nk+ϵ
(i, j) = θ(−D(i, j) + sg(D(i, p)) + ϵ) where p denotes the k-th closest neighbor of i. (9)

Step 2 (Optimizing Intersection of Neighborhoods):

W̃ =
1

2

(
M+

sg(|Nk+ϵ(i)|)
+

M−

sg(|N c
k+ϵ(i)|)

)
⊙ 1Nk+ϵ

where M+ = 1Nk+ϵ
1
⊺
Nk+ϵ

and M− = 1N c
k+ϵ

1
⊺
N c

k+ϵ
.

(10)

Step 3 (Query Expansion):

1Nk/2+ϵ
(i, j) = θ(−D(i, j) + sg(D(i, p)) + ϵ) where p denotes the k/2-th closest neighbor of i

(11)
1Rk/2+ϵ

= 1Nk/2+ϵ
⊙ 1

⊺
Nk/2+ϵ

(12)

Ŵ =
1Rk/2+ϵ

W̃

|Rk/2+ϵ(i)|
, W =

1

2

(
Ŵ + Ŵ ⊺

)
. (13)

Finally, we use the MSE loss to optimize wij := W (i, j) against the true similarity labels yij :

Lcontext =
1

n2

n2∑
i,j

(yij − wij)
2. (14)

Lcontext is the key to our framework and works reasonably on its own. However, it has two vulner-
abilities: (1) similar to learning to rank losses, Lcontext can be small even if the distance between
positive pairs is large, so long as there are no closer negative pairs (see Figure 2); (2) Lcontext tends
to converge to a solution where the average cosine similarity between all pairs is large, suggesting
that only a small portion of the available embedding space is utilized. In response to problem (1),
we add the standard contrastive loss (Hadsell et al. (2006)), which explicitly optimizes the cosine
similarity toward fixed margins δ+ and δ−. In response to problem (2), we add a non-standard but
straightforward similarity regularizer, which regularizes the average cosine similarity between all
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Figure 4: This figure justifies the M− term in Eq. 10. The left plot shows the distribution of
distances between pairs in normalized embedding space when we only optimize M+; the right plot
shows the same when we optimize both M− and M+. A uniformly distributed embedding space
has an average pair-wise distance of

√
2 because most directions are orthogonal in high dimensions.

This is indicated by the green distribution. Clearly, more of the embedding space is utilized when
we optimize both M− and M+.

pairs toward a fixed value s̃. Our final framework (Eq. 17) minimizes a weighted combination of
the three losses.

Lcontrast =

∑
i,j|yij=1(δ+ − sij)+∣∣{i, j|yij = 1 and δ+ − sij > 0}

∣∣ +
∑

i,j|yij=0(sij − δ−)+∣∣{i, j|yij = 0 and sij − δ− > 0}
∣∣ (15)

Lreg =

s̃− 1

n2

n2∑
i,j

sij

2

(16)

Lours = λLcontext + γLreg + (1− λ− γ)Lcontrast. (17)

Explanation of Hyperparameters α controls the magnitude of the heaviside gradient. ϵ is a
margin-like parameter for the neighborhood set. δ+ and δ− are the positive and negative margins
resp. for the contrastive loss. s̃ is the desired average cosine similarity between all pairs. λ and γ
control the relative weighting between the three losses.

4 ANALYSIS

The contextual similarity loss function Lcontext is highly non-trivial. In this section we demystify
each of the three steps using a toy experiment and gradient analysis.
4.1 STEP 1: NEIGHBORHOOD OPTIMIZATION

Consider the following simplified version of Lcontext :

L1 = LMSE(yij ,1Nk+ϵ
(i, j)). (18)

This is a valid loss function that works reasonably on its own (see Figure 3). During each iteration,
we sample a batch with exactly k samples from each label. Intuitively, L1 reaches a minimum of
zero when Nk+ϵ(i) includes only i and the k− 1 other samples with the same label, i.e. all samples
are correctly ranked. Using the gradient of θ(·) defined in Eq. 6, we see that negative samples which
are in Nk+ϵ(i) receive a gradient of magnitude α pushing it away from i, while positive samples
which are not in Nk+ϵ(i) receive a gradient of magnitude α pushing it toward i. See Figure 2.
4.2 STEP 2: OPTIMIZING INTERSECTION OF NEIGHBORHOODS

While λL1 + (1 − λ)Lcontrastive is a reasonable loss function already, row 1 of Table 3 shows that
L1 collapses without the contrastive loss (λ = 1). We propose that this is because L1 provides very
sparse gradients: ∂L1/∂sij = 0 for most (i, j) pairs. Consider the following more complicated
loss:

L2 = LMSE(yij , W̃ (i, j)). (19)

W̃ is defined in Eq. 10. W̃ (i, j) has two terms multiplied together element-wise. The 1Nk+ϵ
term

was already addressed in the previous sub-section, so we focus on the first term, which optimizes
the intersection between neighborhood sets M+. We offer a straight-forward intuition: Maximizing
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the intersection between the neighborhood sets of two samples is equivalent to pushing one sample
towards the context of the other sample and vice versa; minimizing the intersection is equivalent to
pulling apart the contexts of the two samples. We show this intuition by analyzing the gradient.

For simplicity, consider ϵ = 0, such that the normalization factors in Eq. 10 are equal to k. Further
consider a negative pair of samples i and j (yij = 0), where j is wrongly ranked w.r.t. i (i.e.
j ∈ Nk(i)). Following the loss function equations:

M+(i, j) = ⟨1Nk
(i),1Nk

(j)⟩ M−(i, j) = ⟨1c
Nk

(i),1c
Nk

(j)⟩

W̃ (i, j) =
1

2

(
1

k
M+(i, j) +

1

k
M−(i, j)

)
· 1Nk

(i, j)︸ ︷︷ ︸
=1

. (20)

W̃ (i, j) ∈ (0, 1] must be a non-zero positive number. Using the equation for L2, we see that the
gradient w.r.t. W̃ (i, j) must be positive because yij = 0. We are now ready for the backward pass.
For simplicity of notation, ∂W̃ (i, j) := gij > 0 denotes the gradient of the loss w.r.t. W̃ (i, j).

∂M+(i, j) = ∂M−(i, j) =
1

2k
gij

∂1Nk
(i) =

1

2k
gij1Nk

(j) , ∂1Nk
(j) =

1

2k
gij1Nk

(i)

∂1c
Nk

(i) =
1

2k
gij1

c
Nk

(j) , ∂1c
Nk

(j) =
1

2k
gij1

c
Nk

(i).

(21)

Use the fact that 1N c
k
= 1− 1Nk

and ∂1Nk
= −∂1N c

k
and vice versa:{

∂1Nk
(i) =

gij
2k

(
1Nk

(j)− 1N c
k
(j)

)
=

gij
2k (21Nk

(j)− 1)

∂1Nk
(j) =

gij
2k

(
1Nk

(i)− 1N c
k
(i)

)
=

gij
2k (21Nk

(i)− 1) .
(22)

Going backward through θ(·) multiplies the gradient by −α (negative sign accounts for optimizing
distance instead of similarity):

∂D(i) = −αgij
2k

(21Nk
(j)− 1) and vice versa for ∂D(j). (23)

From the above equation, ∂D(i, p) < 0 when 1Nk
(j, p) = 1 and ∂D(i, p) > 0 when 1Nk

(j, p) = 0,
for all samples p in the batch. In words, we increase the distance between i and all samples in the
neighborhood of j, and we decrease the distance between i and all points outside the neighborhood
of j. Recall that we assumed i and j to be a negative pair, so it makes sense to pull i away from the
context of j in this fashion.

4.3 STEP 3: QUERY EXPANSION

Query expansion (QE) is an established trick for image retrieval Arandjelović & Zisserman (2012).
QE expands the neighborhood set by additionally retrieving the neighbors of very close neighbors.
In the unsupervised setting, QE refers to averaging the contextual similarity scores for samples in
the Rk/2+ϵ neighborhood (see Eq. 13); this leads to more robust pseudo-supervision. In our setting,
we have two reasons for using QE (Eq. 11 12 and 13): (1) averaging w̃ij with very close neighbors
could have the same effect as label smoothing and (2) the Nk/2+ϵ neighborhood is optimized by
Eq. 12 and 13. Empirically, QE is necessary to achieve the optimal performance of our framework,
since Lcontext achieves higher R@1 than L2 in Table 3.

5 EXPERIMENTS

Datasets We experiment on two small-scale and two large-scale datasets: Caltech-UCSD Birds
(CUB-200) (Wah et al. (2011)), Stanford Cars-196 (Krause et al. (2013)), Stanford Online Products
(SOP) (Oh Song et al. (2016)), and mini-iNaturalist-2021 (Van Horn et al. (2018)). CUB200 and
Cars196 are smaller fine-grain classification datasets with 200 and 196 unique labels, respectively.
SOP is a large-scale dataset with 120,053 product images from 22,634 classes. mini-iNaturalist-
2021 is a subset of the iNaturalist 2021 species classification competition dataset, with 50 images
each from 10,000 species. We are the first metric learning study to use this version of the iNaturalist
dataset, so we randomly withhold 5,000 species for testing and use the other 5,000 for training. We
will release our train-test split for reproducibility.
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Table 1: R@k Results. We use ResNet-50 with an embedding size of 512 for all experiments. † indi-
cates results reported by the original authors; we re-run all other baselines using the implementation
by Musgrave et al. (2020b). Standard deviations are based on three trials with the same train-test
split. We emphasize that our R@1 performance is at least two standard deviations better than the
next best baseline on all datasets. We are at least comparable to baselines on other R@k metrics.

CUB Cars

Method R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

Contrastive 68.5 ± 0.3 78.3 ± 0.1 86.0 ± 0.2 91.3 ± 0.1 85.4 ± 0.2 91.1 ± 0.3 94.6 ± 0.3 96.8 ± 0.1
Triplet 67.3 ± 0.2 77.9 ± 0.1 85.6 ± 0.2 91.2 ± 0.1 77.6 ± 1.3 85.4 ± 0.8 90.8 ± 0.7 94.1 ± 0.4
NtXent 65.7 ± 0.4 76.3 ± 0.2 84.3 ± 0.4 90.0 ± 0.4 79.0 ± 0.6 86.0 ± 0.3 91.0 ± 0.2 94.4 ± 0.3
MS 68.9 ± 0.5 78.5 ± 0.4 86.0 ± 0.6 91.4 ± 0.5 88.7 ± 0.4 93.0 ± 0.2 95.7 ± 0.1 97.3 ± 0.1
N-Softmax† 61.3 73.9 83.5 90.0 84.2 90.4 94.4 96.9
ProxyNCA++† 69.0 ± 0.8 79.8 ± 0.7 87.3 ± 0.7 92.7 ± 0.4 86.5 ± 0.4 92.5 ± 0.3 95.7 ± 0.2 97.7 ± 0.1
Fast-AP 63.3 ± 0.1 73.7 ± 0.4 82.2 ± 0.3 88.5 ± 0.2 81.1 ± 0.2 87.8 ± 0.4 92.2 ± 0.3 95.1 ± 0.3
Smooth-AP 66.5 ± 0.9 76.6 ± 0.5 84.8 ± 0.6 90.8 ± 0.4 74.7 ± 0.4 82.5 ± 0.7 88.0 ± 0.6 92.2 ± 0.2
ROADMAP 68.7 ± 0.5 78.3 ± 0.3 86.1 ± 0.3 91.1 ± 0.1 84.5 ± 0.5 90.3 ± 0.0 93.9 ± 0.0 96.2 ± 0.1
Ours 69.8 ± 0.2 79.8 ± 0.1 87.1 ± 0.1 92.3 ± 0.2 89.3 ± 0.0 93.7 ± 0.2 96.3 ± 0.1 97.8 ± 0.2

SOP mini-iNaturalist

Method R@1 R@10 R@100 R@1 R@4 R@16 R@32

Contrastive 82.4 ± 0.0 91.9 ± 0.0 96.0 ± 0.0 43.5 ± 0.1 62.7 ± 0.1 77.6 ± 0.1 83.2 ± 0.1
Triplet 82.0 ± 0.0 92.5 ± 0.1 96.7 ± 0.0 35.4 ± 0.1 56.5 ± 0.1 74.7 ± 0.1 81.7 ± 0.1
NtXent 79.7 ± 0.2 90.8 ± 0.0 96.1 ± 0.0 40.8 ± 0.1 61.6 ± 0.1 78.0 ± 0.0 83.9 ± 0.0
MS 81.4 ± 0.0 91.4 ± 0.0 96.1 ± 0.1 44.9 ± 0.1 63.9 ± 0.1 78.4 ± 0.1 83.9 ± 0.1
N-Softmax† 78.2 90.6 96.2 – – – –
ProxyNCA++† 80.7 ± 0.5 92.0 ± 0.3 96.7 ± 0.1 – – – –
Fast-AP 80.3 ± 0.1 91.0 ± 0.1 96.0 ± 0.0 35.6 ± 0.2 55.8 ± 0.1 72.8 ± 0.0 79.3 ± 0.0
Smooth-AP 82.0 ± 0.0 92.6 ± 0.0 96.9 ± 0.0 42.7 ± 0.0 63.3 ± 0.0 79.0 ± 0.0 84.7 ± 0.0
ROADMAP 83.1 ± 0.1 92.6 ± 0.0 96.6 ± 0.0 45.9 ± 0.1 65.8 ± 0.0 80.4 ± 0.1 85.7 ± 0.0
Ours 83.3 ± 0.0 92.9 ± 0.1 96.7 ± 0.0 46.2 ± 0.0 65.8 ± 0.1 80.2 ± 0.1 85.4 ± 0.1

Baselines We choose a representative set of baselines for comparison in Table 1. Refer to Sections
1 and 2 for citations. Contrastive and triplet losses are the accepted standard in the field. Multi-
similarity (MS) is a popular pair-wise similarity loss. From classification-inspired methods, we
compare against Normalized-Softmax (N-Softmax) (Zhai & Wu (2018)) and ProxyNCA++ (Teh
et al. (2020)). From AP maximization methods, we compare against Fast-AP, Smooth-AP, and
ROADMAP. For fair comparison, we re-run baselines using the same setup, with the same learning
rates and schedules. We use the published optimal values for any internal hyperparameters. We
were unable to match the published performances for ProxyNCA++ and N-Softmax, so we use the
published R@k values for these two baselines.

Hyperparameters and Setup We use hyperparameter values that are approximately optimal across
all datasets. λ = 0.4, γ = 0.1, α = 10.0, ϵ = 0.05, k = 4, δ+ = 0.75, δ− = 0.6, s̃ = 0.25. We
follow the same training procedure as ROADMAP, but with a slightly faster learning-rate schedule
for time efficiency. We use Adam with a learning-rate schedule that multiplies the learning rate by
0.3 at Epochs 15, 30, and 45. We train for 80 epochs. We report results on the model with the best
test R@1 metric, as is standard in the literature. We use an initial learning rate of 8 × 10−5 on
CUB, 0.00016 on Cars, 4× 10−5 on SOP, and 8× 10−5 on iNaturalist. We use a batch size of 256
for iNaturalist and 128 for other datasets; the larger batch size is necessary to achieve reasonable
performance on iNaturalist. We use a 4 per class sampler. For CUB and Cars, we use random
sampling (sample 32 classes at random, then sample 4 images per class). For SOP and iNaturalist,
we use hierarchical sampling (Cakir et al. (2019)), following prior work. We use an embedding size
of 512 and ResNet-50 with a linear embedding layer. Following prior work, we use layer-norm and
max-pooling on the smaller CUB and Cars datasets. We always freeze batch-norm.

Performance Metrics We report Recall @ k for select k in Table 1. R@k is the percentage of test
samples where at least one of the k closest neighbors have the same label. We report the average
and standard deviations across three trials with the same train-test split.

Discussion Our R@1 results are at least two standard deviations better than the best baseline across
all datasets. Our results are especially good on CUB and Cars, where we achieve R@1 gains of 0.8%
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Table 2: Ablation Results 1. We experiment with removing one or two of the three loss terms.
Overall, all three losses are necessary to achieve the best R@1 results. Reasonable results are also
achieved with just Lreg and Lcontrast. We emphasize that both Lcontext and Lreg are our contributions.

Lcontext Lreg Lcontrast λ γ CUB R@1 Cars R@1 SOP R@1 iNat. R@1

✓ ✓ 0.45 0 66.2 ± 0.5 87.9 ± 0.5 82.88 20.54
✓ ✓ 0.8 0.2 70.4 ± 0.6 82.8 ± 0.9 81.65 31.78

✓ ✓ 0 0.17 69.6 ± 0.4 88.5 ± 0.4 83.34 44.19
✓ 1 0 70.3 ± 0.4 76.8 ± 1.0 81.91 21.63
✓ ✓ ✓ 0.4 0.1 69.8 ± 0.3 89.2 ± 0.2 83.28 46.20

Table 3: Ablation Results 2. Here, we experiment with variations of Lcontext, both by itself (λ = 1)
and regularized by a small amount of contrastive loss (λ = 0.8). We exhaustively test various ways
to simplify or modify the contextual loss presented in Eq. 9 - 14. On the SOP dataset, we show that
all of the modifications to Lcontext decrease R@1.

SOP R@1
Ablation (γ = 0) λ = 0.8 λ = 1.0 Explanation

λL1 +(1− λ)Lcontrast 83.13 41.99 Eq. 18 (step 1 only)
λL1,σ +(1− λ)Lcontrast 79.20 75.61 Eq. 18 but using θσ in Eq. 7
λL2 +(1− λ)Lcontrast 82.39 81.05 Eq. 19 (skip step 3)
W̃ = 1Nk+ϵ

(skip step 2) 82.74 81.74
λLcontext,min +(1− λ)Lcontrast 66.57 – Use min instead of ⊙ for logical-and
λLcontext,σ +(1− λ)Lcontrast 82.39 77.84 Use θσ for all steps
λLcontext,M+

+(1− λ)Lcontrast 82.31 80.72 Remove M− term from Eq. 10
No stop gradient in Eq. 10 73.03 –
λLcontext +(1− λ)Lcontrast 83.20 82.04 Final results without Lreg

and 0.6 %, resp. We achieve more modest R@1 gains of 0.2% and 0.3% on SOP and iNaturalist,
resp. We note that these gains are significant because the standard deviation is relatively small. We
also note that while ProxyNCA++ and MS are the best baselines on CUB and Cars, ROADMAP is
the best baseline on SOP and iNaturalist. Our method is the best across all datasets, suggesting that
it is more versatile.

5.1 ABLATION RESULTS

Table 2 shows R@1 on all datasets with one or two of the three losses removed. This table shows
that in general, the best R@1 performance is achieved by a combination of the three losses in our
framework. A combination of only Lreg and Lcontrast achieves better performance than Lcontrast alone
across all datasets (see first row of Table 1). The last row of Table 2 shows that adding Lcontext
achieves 0.7% and 2% R@1 gains on Cars and iNaturalist, resp. These observations show that both
of our contributions (Lreg and Lcontext) are necessary to achieve sate-of-the-art performance.

In Table 3, we evaluate the contribution of each step in the calculation of Lcontext. These experiments
focus on dissecting Lcontext, so we set γ = 0 (no similarity regularizer) and λ = 0.8 or 1.0. Overall,
all of the modifications tested in Table 3 decrease the performance of Lcontext in terms of R@1. In
particular: row 1 shows that including only step 1 leads to a collapsed representation when λ = 1.0;
rows 3 and 4 show that steps 3 and 2 of the loss calculation are necessary; row 7 shows that the M−
term in Eq. 10 is necessary; rows 2 and 6 show that our approach to optimizing θ in Eq. 6 is better
than using a sigmoid. We defer hyperparameter tuning results to the Appendix.

6 CONCLUSION
In this work we propose a novel supervised metric learning loss based on contextual similarity
optimization. Our contextual loss improves the R@1 performance significantly over the current
state-of-the-art on four diverse benchmarks, when regularized by the contrastive loss and a simi-
larity regularizer. As our core technical contribution, we propose a highly non-trivial framework
to optimize the contextual similarity, overcoming several non-differentiability issues. Namely, we
show that the heaviside function can be effectively optimized by setting a positive gradient in the
backward pass, and the intersection between sets can be optimized by indicator matrix multiplica-
tion. We carefully justify our framework by analyzing the gradient of the loss and with an exhaustive
ablation study.
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ETHICS STATEMENT

We note that metric learning can be applied to controversial problems such as person re-identification
and face re-identification. Our work is mainly foundational, so does not contribute directly to these
applications. We also limit our experimentation to the image retrieval aspect of metric learning.

REPRODUCIBILITY STATEMENT

We will release code publicly on GitHub. Our main results are reproducible by running the code.
Instructions on how to run the code will be provided in a README file. We include details on
hardware requirements in the Appendix.
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A APPENDIX

A.1 CODE AND ENVIRONMENT

We include code with our submission. We run experiments on 1 V100 GPU with 16 GB of memory.
The CUB and Cars experiments take under one hour. The SOP and iNaturalist experiments take
4 hours and 6 hours, respectively. Some of our code is borrowed from ROADMAP. For faster
experimentation, we use mixed precision floating point. Experiments take more than 12 hours on
P100 GPUs, partially because mixed precision arithmetic does not appear to speed-up experiments
as much on P100 GPUs compared to on V100 GPUs.

A.2 MINOR EXPERIMENTAL DETAILS

Augmentation On CUB, Cars and SOP, we use random resized crop with default parameters to crop
the image to 256 × 256 pixels. We horizontally flip the image with 50% probability. For testing, we
resize the image to 288 pixels, then center crop to 256 pixels. On iNaturalist, we random resize crop
to 224 × 224 pixels, then flip horizontally with 50% probability. We use a smaller image size on
iNaturalist so that the larger batch size can fit in the 16 GB of GPU memory. For testing, we resize
the image to 256 pixels then center crop to 224 pixels.

Sampling We use a batch size of 128 on CUB, Cars and SOP. We use a batch size of 256 on
iNaturalist. On all datasets, we train for 80 epochs. An epoch is defined as 15, 30, 655, and 576
batches for CUB, Cars, SOP, and iNaturalist respectively. On CUB and Cars, we use a random 4 per
class sampler. On SOP and iNaturalist, we use a balanced hierarchical sampling strategy, since there
are super-labels. In particular, half of each batch is randomly sampled from one super-label, and the
other half is randomly sampled from another super-label. In order to sample in a balanced manner
(to prevent over-emphasis of uncommon super-labels), we arrange all samples in the training dataset
into half-batches with same super-labels at the beginning of each epoch. We then form batches by
pairing up half-batches in a round-robin fashion.

Hyperparameters We use the same set of hyperparameters for all experiments. We present SOP
R@1 results for various hyperparameter values in Figure 6. In Figure 5, we show the R@1 result on
CUB and Cars for varying λ when γ = 0. We compare this result against ROADMAP with varying
λ. ROADMAP is a recent state-of-the-art metric learning method, which uses a λ hyperparameter to
balance between an AP loss and the contrastive loss. We show that even if λ and learning rates are
tuned for ROADMAP on CUB and Cars, our method still achieves higher R@1 when the optimal λ
and learning rates are chosen.

Loss Plot Figure 7 plots the contextual loss and test R@1 over the course of training on SOP, with
varying λ. γ = 0. These plots show that the loss decreases over the course of training; in general, a
lower contextual loss corresponds to a higher test R@1. This result suggests that the contextual loss
is a reasonable objective for image retrieval.

Note on Contrastive Loss The contrastive loss has two margin parameters δ− and δ+. The optimal
values for δ+, the positive margin, is different depending on the value of γ (how much similarity
regularization is used). For the “contrastive” results in row 1 of Table 1, we use δ− = 0.6 and
δ+ = 0.9. For our results where γ = 0.1, we set δ− = 0.6 and δ+ = 0.75. We find this tighter
positive margin to be optimal under similarity regularization. However, we note that δ+ = 0.75 is
likely to be too small when only the contrastive loss is used, since positive pairs are not encouraged
to be more similar than a cosine similarity of 0.75.

Note on Stop Gradient Note that we detach the normalization factors in Eq. 10. This is necessary
because optimizing the size of the neighborhood is undesirable. On the contrary, we do not detach
the normalization factor in Eq. 13. This is intentional even if somewhat un-intuitive. We show in
Figure 9 that detaching |Rk/2+ϵ(i)| in Eq. 13 increases R@1 on SOP when λ is high, but decreases
R@1 in all other scenarios.
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Figure 5: Comparison of our method to ROADMAP with varying λ. γ = 0. The orange lines show
R@1 of our method with varying λ and learning rates. The purple lines show R@1 of ROADMAP
with varying λ and learning rates. λ = 0 corresponds to the contrastive loss. Optimal performance
of our method is always better than ROADMAP on CUB and Cars.

Figure 6: Hyperparameter tuning on SOP. We experiment with various values for ϵ, γ and s̃. The
R@1 values are similar for the different hyperparameter choices.

Figure 7: Plot of contextual similarity loss Lcontext with varying λ. Each color is a different λ. Results
are on the SOP dataset. Observe that the contrastive loss implicitly minimizes the contextual loss
(blue line). Also observe that in general, a lower contextual loss corresponds to a higher test R@1.
This shows that our loss function is a reasonable objective. Note that the plot on the left plots Lcontext,
not the complete training loss. γ = 0.
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Figure 8: Ablation results on CUB and Cars. The blue line represents test R@1 of our framework
for varying λ with γ = 0. The other colors represent various modifications or simplifications of
the loss function (reference Table 3 and Section 4 for full description). We perform each ablation
experiment with varying λ since the optimal λ is not constant across all experiments. Clearly, the
modified versions of Lcontext are sub-optimal.

Figure 9: Investigating the effect of detaching |Rk/2+ϵ(i)| in Eq. 13. The blue line shows R@1 of
our framework with varying λ. γ = 0. The orange line shows R@1 after detaching |Rk/2+ϵ(i)|.
Overall, detaching this normalization factor is undesirable.
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