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Abstract
Explainable transaction risk analysis is a chal-001
lenge for traditional deep learning models,002
which only predict suspicious transactions with-003
out explanations. Current explainable methods004
rely on hand-crafted rules and lack the ability to005
automatically generate language-based expla-006
nations. Large Language Models (LLMs) offer007
promise due to their reasoning and text genera-008
tion abilities but struggle with domain knowl-009
edge and hallucinations, making risk analysis010
difficult. Specifically, LLMs face: (1) insuf-011
ficient adaptation to transaction data anal-012
ysis, and (2) ineffective knowledge retrieval013
methods that ignore the rich graph structure of014
transaction data. To address these issues, we015
propose the Dual Graph Retrieval-Augmented016
Generation (Dual-gRAG) framework, which017
utilizes dual retrieval: expert knowledge and018
reasoning case retrieval. Expert knowledge019
compensates for domain gaps, while reasoning020
case retrieval provides step-wise analysis guid-021
ance. We incorporate both graph-structured022
features and semantic features into the retrieval023
process to enhance the effectiveness of the re-024
trieval. Extensive experiments show that Dual-025
gRAG improves LLMs’ risk analysis capabili-026
ties, achieving a 50% increase in different met-027
rics.028

1 Introduction029

In the financial domain, transaction risk analy-030

sis, particularly anti-money laundering (AML), is031

a critical billion-dollar challenge (Altman et al.,032

2023). Traditional rule-based approaches, while033

offering clear and understandable decision-making034

processes, face significant drawbacks. They require035

extensive human labor and are increasingly inad-036

equate due to the evolving techniques of money037

laundering and the growing volume of data (Labib038

et al., 2020a). Moreover, these rule-based systems039

can be easily bypassed by new or unknown laun-040

dering patterns (Chen and Tsourakakis, 2022). As041

1. Task Prompt:

2. LLM Response:

Risk points: Multiple late-night transactions; Cycling money laundering
with large amounts; Diverse payment channels for large transactions; ...
Explanation:
Multiple transactions occurring in the early morning  may indicate ...

1. Task Prompt:

2. LLM Response:
Risk points: Cycling money laundering between u000 and u004 with
large amounts; Transactions with just minutes apart 
Explanation:
Circular transactions are observed between u000 and u004, which may...

Instruction: As a transaction risk analysis expert...
Retrieved Expert Knowledge: Cycling is the pattern...
Retrieved Reasoning Cases: Here are similar cases...
Transactions: ...

Dual-gRAG

Direct

Instruction:  As transaction risk analysis expert...
Transactions: ...

Figure 1: Dual-gRAG enables LLMs to perform ex-
plainable transaction risk analysis more effectively. In
contrast, when LLMs analyze transaction risk directly,
the results may contain incorrect conclusions and irrele-
vant findings.

a result, deep learning technologies have gained 042

recognition in AML detection. However, these 043

models are often viewed as "black boxes," as they 044

lack transparency and fail to provide explanations 045

for their outcomes. This inability to generate natu- 046

ral language explanations significantly limits their 047

usability and practical value, as users must rely on 048

additional human effort to investigate and confirm 049

the reasons behind the suspicion of a transaction 050

(Kute et al., 2021). 051

Currently, researchers are striving to provide in- 052

terpretability for deep learning methods. For in- 053

stance, knowledge distillation techniques are used 054

to extract knowledge from black-box models into 055

transparent models, i.e., surrogate models, as a 056

form of post-hoc model explanation (Che et al., 057

2015; Tan et al., 2017). However, these methods 058

generally fail to handle sequence data, i.e., trans- 059
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action data. Other approaches (Zhang et al., 2022)060

employ Monte Carlo Tree Search (MCTS) (Browne061

et al., 2012) to generate a set of statistics from the062

outputs of black-box models, subsequently com-063

posed into logical rules with neural logic network.064

Although such approach can distill sequence mod-065

els into rule-based systems, it can only produce066

explanations based on pre-defined rules rather than067

intuitive language explanations.068

Motivated by the growing capabilities of large069

language models (LLMs) in text generation, reason-070

ing, and real-world applications (Shang and Huang,071

2024), LLMs are increasingly seen as a promis-072

ing tool for explainable AML solutions. One key073

advantage of LLMs in risk analysis is their abil-074

ity to reason about new, previously unseen money075

laundering patterns, which can compensate for the076

limitations of traditional rule-based models. Their077

reasoning capabilities can capture emerging risks078

that rule-based systems may miss. Additionally,079

LLMs excel in text generation, enabling them to080

provide natural language explanations for flagged081

transactions, thus addressing the practical limita-082

tions of deep learning models in offering trans-083

parency. Recent studies (Zhao et al., 2023) have084

demonstrated the strong performance of LLMs in085

natural language tasks, showcasing basic analyti-086

cal and reasoning abilities. Preliminary research087

has also explored LLMs in financial tasks like sen-088

timent analysis and stock prediction (Koa et al.,089

2024; Yang et al., 2023). However, their use specif-090

ically in AML remains limited.091

Despite the remarkable performance of LLMs092

in language processing, they encounter significant093

challenges in tackling transaction risk analysis (ex-094

ample illustrated in Figure 1): (1) Deficiency in095

transaction data analysis and reasoning. LLMs096

are primarily designed for general natural language097

tasks, not structured transaction data (Zhao et al.,098

2023). This makes them ill-equipped to analyze099

and reason about laundering risk behaviors in trans-100

action data. (2) Unsuitable knowledge retrieval101

methods. A challenge in using LLMs for risk anal-102

ysis is their lack of domain-specific knowledge.103

While the RAG (Lewis et al., 2020) algorithm was104

proposed to address this, many RAG methods rely105

on text-based similarity for retrieval (Gao et al.,106

2023). These methods are inadequate for transac-107

tion data, which not only contains semantic fea-108

tures but also has a strong graph structure (Li et al.,109

2023), making them unsuitable for risk analysis.110

To address the aforementioned issues, we pro-111

pose a novel framework, Dual Graph Retrieval 112

Augmented Generation (Dual-gRAG). This frame- 113

work features a dual retrieval approach from two 114

augmented knowledge bases: an expert knowl- 115

edge base and a reasoning case library. The ex- 116

pert knowledge base compensates for the lack of 117

domain-specific knowledge, while the case library 118

provides a step-by-step reasoning process for effec- 119

tive guidance. The retrieved reasoning cases serve 120

as reference examples for LLMs, providing step- 121

wise guidance to steer LLMs learn how to analyze 122

transaction data and achieve accurate results. Rele- 123

vant expert knowledge and similar representative 124

cases are combined with input transaction records 125

to enhance the reasoning capability of LLMs to gen- 126

erate reliable risk analysis. Specifically, we devise 127

graph retriever that incorporate the semantics of 128

transaction data as well as the structural patterns of 129

transactions. By integrating the semantic and graph 130

structure features of transaction data, we enhance 131

the effectiveness of retrieval augmentation, thereby 132

further improving LLMs’ analytical capabilities. 133

We conduct extensive experiments to demonstrate 134

Dual-gRAG’s effectiveness, showing an average 135

improvement of 50% for all LLMs. 136

The contributions of this paper are summarized 137

as follows: 138

• To the best of our knowledge, this is the first work 139

leveraging LLMs for textual explainable trans- 140

action risk analysis. Unlike existing methods 141

that only predict risk probability, our approach 142

can generate textual analysis, providing a more 143

applicable solution. 144

• We introduce a novel Dual-gRAG framework fea- 145

turing dual graph retrievers with semantic and 146

structure features of transaction data, addressing 147

LLMs’ inherent limitations. 148

• Extensive experiments show that our Dual-gRAG 149

framework improves risk analysis performance 150

by over 50% in precision and coverage across 151

various LLMs. 152

2 Related Work 153

2.1 Retrieval Augmented Generation 154

RAG refers to a methodology that enhances model 155

capability by integrating a retriever mechanism 156

that accesses an external knowledge base (Lewis 157

et al., 2020). When a query is submitted, the 158

retriever identifies relevant documents from the 159

knowledge base, which are then combined with the 160
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Time Amount Source Target Detail

00:11 USD 5000 User1 User2 Transfer

····

00:12 USD 5000 User4 User1 Payment

10:15 USD 15 User5 User1 Transfer

Raw Transaction Data

Transaction
Graph

Expert Knowledge Retrieval

Fast in Fast out

Subgraph Detect Engine Expert Knowledge

Risk of cycling 
This pattern 
typical in short 
time interval and 
circular trading...
···

Cycling

···
Fast in Fast out

Reasoning Cases Retrieval
Case Matching Engine

This transaction instance 
corresponds to a 
cycling event due to the 
following reasons: 

Analysis Cases

This transaction 
instance corresponds 
to a cycling event
...

Instruction: Now you are a 
transaction risk analyst …

Retrieved Expert Knowledge:
Cycling is the pattern…

Retrieved Analysis Case: 
Here are similar cases …
 
Transaction Records: …

    LLM           

Prompt

Expert 
knowledge 

base

Output
Risk points: Cycling money 
laundering...

Figure 2: Overview of Dual-gRAG. It utilizes dual retrieval mechanisms, incorporating both relevant expert
knowledge and similar reasoning cases to enable explainable prediction.

query to form the input for the model (Lewis et al.,161

2020; Borgeaud et al., 2021; Wang et al., 2023).162

Subsequent advancements in this paradigm have163

introduced iterative retrieval (Shao et al.; Jiang164

et al., 2023), self-reflective retrieval (Asai et al.,165

2023), and the integration of RAG with fine-tuning166

methodologies. Initially confined to NLP tasks,167

RAG has expanded to multi-modal settings, incor-168

porating external knowledge such as code (Hayati169

et al., 2018; Liu et al., 2023) and images (Yasunaga170

et al., 2023; Xie et al., 2023; Chen et al., 2022).171

Some have even explored graph-based RAG, us-172

ing knowledge graphs (KGs) as external base for173

retrival(Edge et al., 2024), or aligning query em-174

beddings with code graph embeddings for retrieval175

(Du et al., 2024).176

However, these methods are tailored for textual177

queries, which are transformed into text embed-178

dings for retrieval (Gao et al., 2023). This makes179

them unsuitable for risk analysis, where the input180

containing both textual and graph features, which181

our proposed method addresses by integrating a182

graph retriever.183

2.2 Transaction Risk Analysis184

Rule-based detection methods remain the main-185

stream choice in practice due to their clarity186

and ease of understanding (Oeben et al., 2019).187

However, they are easily bypassed by criminals,188

prompting research into supervised machine learn-189

ing methods like support vector machines (SVM)190

(Raiter, 2021) and decision trees (DT) (Jullum et al.,191

2020). While these methods can detect some risks,192

they struggle to capture new money laundering pat-193

terns (Labib et al., 2020b).194

Deep learning methods have been explored to 195

address this limitation. Paule et al. (Ebberth et al., 196

2016) use Auto-Encoders for anomaly detection, 197

while Han et al. (Han et al., 2018) apply deep 198

learning to enhance AML monitoring. Researchers 199

also leverage the graph structure of transaction data 200

for risk analysis, with Alarab et al. (Alarab et al., 201

2020) and Weber et al. (Pareja et al., 2019) using 202

Graph Convolutional Networks (GCN) to detect 203

illicit transactions. 204

In parallel, efforts have been made to develop 205

interpretable risk analysis methods. Che et al. (Che 206

et al., 2015) employ knowledge distillation to ex- 207

plain black-box models, but struggle with sequen- 208

tial data. Zhang et al. (Zhang et al., 2022) extract- 209

ing logical rules from model outputs using MCTS. 210

However, these methods still rely on manually de- 211

fined rules, lacking intuitive textual explanations. 212

In summary, while rule-based and deep learning 213

models offer clarity or deeper insights, they fall 214

short in providing both reliability and interpretabil- 215

ity. Current explainable models only produce log- 216

ical rules, not user-friendly explanations, limiting 217

their practical application. 218

3 Methodology 219

In this section, we first formally define the task of 220

explainable risk analysis. Then, we present our 221

framework (shown in Figure 2). The Dual-gRAG 222

framework consists of two main components: Ex- 223

pert Knowledge Retrieval, which retrieves rele- 224

vant expert knowledge, and Reasoning Cases Re- 225

trieval, which retrieves step-by-step analysis cases 226

similar to the input transaction data. By utilizing 227

two retrievers to acquire domain knowledge and 228
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step-wise analytical processes for risk analysis, we229

enhance the large model’s risk analysis capabilities230

through chain-of-thought prompting.231

3.1 Task Description232

In the field of risk analysis, it is essential to ana-233

lyze extensive transaction data to identify potential234

risk points. Traditional methods are limited to bi-235

nary classification, indicating whether a transaction236

record is suspected of risk, i.e., True or False, with-237

out pinpointing the specific risk points.238

The goal of this paper is to enable LLMs to239

analyze transaction data and uncover the hidden240

risk points. Formally, let T = {T1, T2, . . . , Tn}241

represent the set of transaction records for a user242

within a specific timespan, where each transac-243

tion record Ti contains attributes such as time244

and amount (see example in Figure 6). The in-245

put to the model is T , and the output is a trans-246

action risk analysis report R = {′risk points′ :247

P1, P2, . . . , Pm; ′explanation′ : E}, where each248

phrase Pi corresponds to an estimated risk point, E249

corresponds to an intuitive textual explanation of250

the result. The detailed example refers to Figure 1.251

3.2 Retrieval-augmented Framework252

Our framework features a dual-retrieval approach,253

integrating both domain knowledge and reason-254

ing cases. This significantly differs from existing255

RAG frameworks (Lewis et al., 2020) that primar-256

ily address knowledge deficiencies. By incorpo-257

rating step-by-step analysis details, the retrieved258

reasoning cases enhance LLMs’ ability to evalu-259

ate transaction risks effectively. Moreover, both260

retrievers are graph-based, considering the seman-261

tic and structural features of transaction records,262

further distinguishing our method from current al-263

gorithms that rely solely on the semantic features264

of queries.265

Since transaction data is inherently structured,266

we start by converting the input transaction data267

T = {T1, T2, . . . , Tn} into a transaction graph268

G(V, E), as shown in the left part of Figure 2. Each269

transaction record Ti ∈ T represents an interac-270

tion between a source user ui and a target user271

uj . We define V as the set of all users involved,272

and E = {(ui, uj)} denotes the set of interactions273

between these users.274

3.2.1 Expert Knowledge Retrieval275

To build a high-quality knowledge base, we collect276

many analysis reports from experts and synthesize277

Input

...

Subgrah Detect Engine

Fast in Fast out

Gather-Scatter

Detect Result

Retrieve

Retrieved Knowledge

...
...

Cycling

Timestamp 09-01 00:15
Amount 5000
Channel balance
Scene transfer

Timestamp 09-01 15:15
Amount 500
Channel balance
Scene transfer

Expert
Knowledge

Base

Fast in Fast out
1. Time interval is very
short. 
2. Amounts are equal. 
3. Transactions  amount
are the same.
→Risk of fast in and fast
out.

   
Cycling
1. Same funds are traded
continuously from the
initiator through a series
of intermediaries
2. Finally returns to the
initiator. 
3. The time interval is
short.
→Risk of cycling.

Figure 3: Illustration of Expert Knowledge Retrieval.
Expert knowledge is encoded into graphs representing
patterns. A detection engine determines if the input
graph matches these predefined patterns.

these into an expert knowledge base. Unlike other 278

NLP tasks (such as QA), the knowledge in transac- 279

tion risk analysis often exists in the form of “Rules”. 280

Therefore, the expert knowledge base Gknow we 281

constructed can also be referred to as a rule-base, 282

with specific examples provided in the Appendix 283

B.1. Given that the knowledge is predominantly in 284

the form of “Rules”, our expert knowledge retrieval 285

also adopts a detection engine trigger mechanism 286

similar to that used in rule-based models, as illus- 287

trated in Figure 3. 288

Give an input transaction graph G derived from 289

T , expert knowledge retrieval follows a two-step 290

process: first, subgraph matching is performed to 291

detect if the input matches a known pattern graph 292

Gpattern ∈ Gknow, then the attributes of the nodes 293

and edges in the triggered pattern are examined for 294

further verification. This approach ensures both 295

structural and semantic accuracy by first match- 296

ing the graph structure and then verifying feature 297

similarity, such as interaction time and transaction 298

amount. 299

Specifically, for “Cycling” subgraph matching, 300

we first adopt Louvain algorithm (Blondel et al., 301

2008) to derive a set of communities subgraphs 302

of input as S = {S1, S2, . . . , Sm} where each 303

Si(Vi, Ei) ⊆ G denotes a subgraph and m is the 304

total number of subgraphs. Then, we perform a 305

one-by-one check between Si and Gpattern to deter- 306

mine whether these two graphs are isomorphic, i.e., 307

there exists a mapping f : Vi → Vpattern, ensuring 308

that ∀(u, v) ∈ Ei, (f(u), f(v)) ∈ Epattern. This pro- 309

cess yields a set of triggered patterns G′ ⊆ Gknow, 310

representing the retrieved expert knowledge. As 311

shown in Figure 3, parts of the input transaction 312

graph match the Fast-in-Fast-out and Cycling pat- 313

terns. We textualize these retrieved patterns to en- 314
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Timestamp 09-01 00:15
Amount 15000
Channel balance
Scene transfer

Timestamp 09-01 00:15
Amount 15000
Channel balance
Scene transfer

LM 
Encoder

GNN 
Encoder

Pooling

Case LibrariesInput

Matching

Graph Encoder

Figure 4: Illustration of Reasoning Cases Retrieval. We
use an LM+GNN architecture to encode case and input
graphs, retrieving the most similar cases based on em-
bedding similarity.

sure LLMs can comprehend.315

3.2.2 Reasoning Cases Retrieval316

Similar to the expert knowledge, we construct a317

set of reasoning cases Gcase = {Gc1 , . . . , GcM },318

where each case Gci represents a transaction graph319

instance with a detailed textual analysis report tci .320

These cases, collected from industrial platforms321

and verified by experts, ensure a diverse and high-322

quality set of reasoning processes. For detailed323

examples please refer to Appendix B.2. Unlike ex-324

pert knowledge patterns with fixed structures, these325

cases exhibit diverse structures, making traditional326

graph searching algorithms inapplicable. Thus, we327

use neural retrieval techniques, encoding both in-328

put and case graphs into latent embeddings and329

matching via similarity, as shown in Figure 4.330

Specifically, for the input graph G, we first lever-331

age a pre-trained Language Model to generate ini-332

tial node embeddings X for any u ∈ V . As we333

can convert record Ti into plain text, an LM en-334

coder can be leveraged to generate Ti’s representa-335

tions as ti = LM(Ti), then a node’s initial embed-336

ding is computed as mean-pooling of related trans-337

actional edges as xu = Mean-Pooling({ti|u ∈338

source/target users of Ti}). Then, the GNN further339

captures the structural patterns of this transaction340

graph, leading to refined node embedding matrix as341

H = GNN(X, E). We further use a Read-Out func-342

tion, i.e., Sum-Pooling, to obtain this transcation343

graph’s embedding as hG = Sum-Pooling(H). As344

all case graphs in the case library can be encoded345

in the same way, the case library can be repre-346

sented as Hcase = {hGc1
, . . . ,hGcM

} where M347

refers to the number of available cases and hGci
348

denotes the representation of the i-th case graph349

Gci . We select the top-K most similar cases from350

the case library to consisitue the retrival results, as351

C′ = Top-KGci∈Gcase
Similarity(hG,hGci

).352

This method ensures retrieval of the most con- 353

textually relevant cases by considering both the se- 354

mantic and structural features of the transaction 355

records. Note that such retrieval can be training- 356

free1 as it leverages a pre-trained LM and a no- 357

parameter GNN, i.e., LightGCN (He et al., 2020). 358

The retrieved reasoning cases are incorporated into 359

the prompts as few-shot-COT examples for the 360

LLMs, steer them to perform chain-of-thought rea- 361

soning, thus enhancing their inferential capabilities 362

(Wei et al., 2022). 363

3.2.3 Input Construction 364

After completing the dual-retrieval process, we 365

combine three key elements to create comprehen- 366

sive inputs for LLMs: (1) Expert knowledge serves 367

as the foundational background for model infer- 368

ence. (2) Reasoning cases act as few-shot learning 369

examples to assist the model in analysis. (3) The in- 370

put transaction data is converted into plain text for 371

the model to analyze. For detailed prompt template 372

and examples, please refer to Appendix C. 373

4 Experiments 374

To facilitate explainable transaction risk analysis, 375

we construct a new transaction benchmark dataset: 376

RA-bench. Distinct from other anti-money laun- 377

dering datasets, our dataset not only includes com- 378

prehensive labels but also annotates the specific 379

money laundering patterns involved in anoma- 380

lous transactions. Detailed information about the 381

dataset can be found in Appendix A. We evaluate 382

the performance of Dual-gRAG on the RA-Bench 383

dataset. Our work aims to answer the following 384

three research questions: 385

• RQ1: How much improvement can the Dual- 386

gRAG framework bring to LLMs? 387

• RQ2: How do the two proposed retrieval com- 388

ponents contribute to the effectiveness of Dual- 389

gRAG? 390

• RQ3: How does the proposed graph retrieval 391

method perform against other retrieval methods? 392

Additionally, we conduct a practical application 393

validation in various data scenarios. 394

4.1 Experimental Settings 395

4.1.1 Baselines 396

To demonstrate the effectiveness of the Dual-gRAG 397

framework, we employ several traditional machine 398

1Further discussion please refer to Appendix D
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learning models and classic large language models399

as our baseline.400

Traditional Machine Learning Baselines:401

• LightGCN+SVM: This model uses LightGCN402

to capture the structural information of the trans-403

action graph, followed by pooling node embed-404

dings for graph-level representation, which is405

then classified by an SVM.406

• LightGCN+MLP: This model replaces the SVM407

with an MLP to explore deep learning perfor-408

mance in this task.409

• GCN+MLP: Here, a trainable GCN replaces410

LightGCN, and the GCN and MLP are co-trained411

in an end-to-end framework for classification.412

For all methods, transaction data is converted413

into a transaction graph, and node features are ex-414

tracted by language model as described in Section415

3.2.2.416

LLM Backbones:417

• Llama3-8B-Instruct (AI@Meta, 2024), a pow-418

erful large language model introduced by Meta.419

• Qwen2.5-14B-Instruct (Bai et al., 2023), a420

transformer-based decoder-only language model.421

For all LLMs, we provide the same prompts422

to eliminate performance deviations caused by423

prompt differences.424

4.1.2 Evaluation Metrics425

We use GPT-42 to evaluate the results, mitigat-426

ing the influence of human emotional bias (Koa427

et al., 2024). The evaluation process consists of428

two parts: (1) comparing the risk points identified429

by the model with those in the ground truth labels3,430

and (2) assessing the quality of the explanations431

generated by the model.432

To provide a multi-dimensional view of the433

LLM’s risk analysis capabilities, we employ three434

evaluation metrics. Additionally, we introduce an-435

other metric specifically for machine learning base-436

lines to compare the performance of these methods437

with that of LLMs in the risk analysis task. The438

specific evaluation metrics are as follows:439

• Coverage: Evaluate how many of the risk points440

identified by the model overlap with the true risk441

points.442

2All experimental data has been strictly anonymized, en-
suring no risk of privacy leakage.

3For detailed evaluation method, please refer to Appendix
E

• Precision: Evaluate how many of the risk points 443

identified by the model are actually true risk 444

points. 445

• ROUGE: Evaluate the quality of the explana- 446

tions generated by the model, we use ROUGE-L 447

as the evaluation metric. 448

• Accuracy: Evaluate whether deep learning mod- 449

els or LLMs can correctly identify whether the 450

transaction record graph indicates potential risks. 451

4.1.3 Implementation Details 452

For reasoning case retrieval, we employ m3e 453

(Wang Yuxin, 2023) (an open-source massive 454

mixed embedding model) as our language model 455

encoder, top-K is 1. Furthermore, to investigate 456

the improvements that RAG combined with fine- 457

tuning can bring to explainable risk analysis tasks, 458

we utilize the Dual-gRAG framework to construct 459

an instruction fine-tuning dataset. Subsequently, 460

we use LoRA to fine-tune the Qwen2.5-14B on 461

two A100 GPUs with the learning rate of 1e-4 to 462

develop an LLM specifically focused on risk analy- 463

sis task: RA-GPT (Risk Analysis GPT). 464

4.2 Performance Comparison(RQ1) 465

For overall performance comparison, we provide 466

both quantitative results (Table 1) and qualitative 467

results (Figure 1). 468

4.2.1 Quantitative Results 469

In this section, we quantitatively evaluate the effec- 470

tiveness of the Dual-gRAG framework in explain- 471

able risk analysis task. Table 1 presents the results 472

across four different metrics relevant to the risk 473

analysis task. 474

Across the first two evaluation metrics, we ob- 475

serve that all LLMs perform better under the Dual- 476

gRAG framework compared to directly analyzing 477

the input data, have nearly a 50% improvement 478

in both metrics. This demonstrates that the Dual- 479

gRAG framework can reduce the generation of 480

irrelevant or incorrect analysis results by LLMs, 481

enhancing the coverage and precision of their out- 482

puts. Regarding the “ROUGE” score, which evalu- 483

ates the quality of the generated explanations, we 484

observe notable improvements in the Dual-gRAG 485

framework as well. The “ROUGE” scores for all 486

models show nearly a twofold improvement, indi- 487

cating that the Dual-gRAG framework significantly 488

enhances the quality of the model’s analysis and 489
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Table 1: Overall Performance Comparison (RQ1). “Direct” refers to LLM’s direct inference (example illustrated in
Figure 1), and “Dual-gRAG” denotes the integration with our framework, which can consistently bring significant
improvement on all metrics.

Model
Coverage %

Direct Dual-gRAG

Precision %

Direct Dual-gRAG

ROUGE %

Direct Dual-gRAG

Qwen2.5-14B 51.64 53.28 45.32 72.63 23.67 34.92
Llama3-8B 44.88 57.79 48.67 55.08 27.54 32.52
RA-GPT 47.95 62.09 44.32 66.45 25.41 42.14

Model SVMLightGCN MLPLightGCN GCN Qwen2.5-14B RA-GPT

Accuracy 0.65 0.70 0.72 0.93 0.97

explanations. This leads to more accurate and con-490

cise explanations, thereby improving the overall491

practicality of the model.492

We observe that RA-GPT outperforms its base493

model Qwen2.5-14B, suggesting that fine-tuning494

can enhance the model’s performance in risk anal-495

ysis tasks. In the “Direct” case, RA-GPT also496

achieves a higher “ROUGE” score than Qwen2.5,497

indicating that fine-tuning can also improve the498

model’s reasoning ability. Under the Dual-gRAG499

framework, the “ROUGE” score of RA-GPT fur-500

ther increases, and the improvement is greater than501

that from fine-tuning alone, demonstrating that the502

Dual-gRAG framework provides a more significant503

performance boost compared to fine-tuning.504

Additionally, since machine learning models are505

non-language models and cannot generate textual506

analysis results, we only compare the money laun-507

dering pattern classification accuracy. We observe508

that, in the context of this paper, the performance of509

LLMs significantly outperforms other deep learn-510

ing models. This could be because, under the Dual-511

gRAG framework, LLMs can explicitly learn the512

knowledge of different money laundering patterns,513

and then use their reasoning abilities, guided by ex-514

amples, to analyze the potential money laundering515

issues in the transaction graphs, thereby improving516

the accuracy of the analysis.517

4.2.2 Case Study518

In addition to quantitative metrics, we explore how519

the Dual-gRAG framework enhances the model’s520

performance in risk analysis. For this, we select521

an example from Qwen2.5’s output to demonstrate522

the improvement, as shown in Figure 1.523

From Figure 1, we see that while the LLM cor-524

rectly identifies risk points in the transaction data,525

Table 2: Ablation study of Dual-gRAG with Qwen2.5-
14B serving as the base LLM.

Method Coverage (%) Precision (%) ROUGE (%)
PromptDirect 51.64 45.32 23.67
PromptKnow 46.31 74.34 33.36
PromptCase 55.12 68.62 33.69
PromptDual 53.28 72.63 34.92

it also generates incorrect (red) and irrelevant (or- 526

ange) content. With the Dual-gRAG framework, 527

the LLM’s analysis becomes more precise, likely 528

due to the retrieved cases that helps the model focus 529

on the provided knowledge. The framework not 530

only improves accuracy but also identifies specific 531

money laundering users, such as the cycle between 532

u000 and u004 (see Figure 1). The step-by-step 533

reasoning rationale in the cases guides the LLM 534

to analyze potential risks thoroughly, resulting in 535

more detailed outcomes. 536

In contrast to traditional machine learning mod- 537

els with binary outputs, our results provide detailed 538

explanations for suspected transaction risks, offer- 539

ing high interpretability. Staff can easily verify the 540

identified risks during the validation phase. 541

4.3 Ablation Study (RQ2) 542

To assess the effectiveness of the Dual-gRAG 543

framework, we conduct an ablation experiments 544

to validate the contribution of each retrieval com- 545

ponent. The results are shown in Table 2. 546

We test different prompting methods, incorporat- 547

ing expert knowledge and reasoning cases, to eval- 548

uate performance improvements. The Qwen2.5- 549

14B model was used in frozen mode. The four 550

prompting methods were: PromptDirect (direct 551

risk analysis), PromptKnow (expert knowledge 552

only), PromptCase (reasoning cases only), and 553

7



PromptDual.554

From Table 2, we observe that PromptCase per-555

forms well. While PromptKnow shows good pre-556

cision, it has lower coverage than PromptDirect,557

likely because expert knowledge reduces incorrect558

risk points, improving precision. However, using559

only expert knowledge limits the model’s inher-560

ent knowledge, leading to reduced diversity in the561

identified risk points, reducing coverage.562

PromptCase, by providing detailed case guid-563

ance, allows the LLM to infer more potential risk564

points. However, due to the lack of correspond-565

ing expert knowledge, the precision may decrease.566

In contrast, PromptDual, through the dual retrieval567

method, achieves a good balance between coverage568

and precision.569

4.4 Retrieval Method Comparison (RQ3)570

In this section, we examine the effectiveness of the571

graph retriever within the Dual-gRAG framework.572

Due to the low semantic similarity between the573

input transaction data and expert knowledge, text574

similarity cannot be used for expert knowledge re-575

trieval. Thus, we use simple semantic information576

(i.e., text similarity between transaction in the input577

data and case library) for reasoning case retrieval.578

Given that both the input and knowledge base in579

our task scenario exhibit graph-structured featurese580

also use the GRAG algorithm as a baseline graph581

retrieval method (details on baseline selection are582

in Appendix F). The results are shown in Table 3.583

From Table 3, we see that LLM performance584

with Simple-RAG decreases across all metrics com-585

pared to Dual-gRAG. This indicates that relying586

solely on text similarity reduces retrieval quality587

and impacts risk analysis capabilities. Addition-588

ally, we observe that the performance of GRAG589

is suboptimal, likely because the GRAG method590

does not adapt well to our task scenario. Its prun-591

ing operation based on semantic information may592

lead to the loss of key details (e.g., the removal of593

a transaction related to a crime), which results in594

degraded retrieval performance.595

4.5 Practical Application Validation596

Besides the RA-Bench dataset, we also collect a597

risk analysis validation dataset, “Real-world”, from598

real-world scenarios to validate the generalization599

ability of the Dual-gRAG framework. In addi-600

tion, we adopt the “IT-AML”(Altman et al., 2023)601

dataset proposed by IBM as one of the validation602

datasets.603

Table 3: Comparison of Graph-Retrieval with Qwen2.5-
14B serving as the base LLM.

Method Coverage (%) Precision (%) ROUGE (%)
Direct 51.64 45.32 23.67
Simple-RAG 46.93 60.58 21.19
GRAG 45.70 57.77 22.36
Dual-gRAG 53.28 72.63 34.92

Table 4: Generalization validation of the Dual-gRAG
framework on different datasets with RA-GPT as the
base LLM.

Dataset Method Coverage (%) Precision (%) ROUGE (%)

RA-Bench
Direct
Dual-gRAG

47.95
62.09

44.32
66.45

25.41
42.14

IT-AML
Direct
Dual-gRAG

34.01
26.64

36.56
41.94

22.32
25.42

Real-world
Direct
Dual-gRAG

40.38
44.23

30.43
41.07

17.13
21.91

The generalization study results are shown in 604

Table 4. The Dual-gRAG framework improves the 605

performance of the LLM across different datasets, 606

indicating the strong generalization ability of the 607

Dual-gRAG framework, which is not limited to 608

a single dataset. Furthermore, we can observe 609

that RA-GPT performs similarly on both the RA- 610

Bench and Real-world datasets, suggesting that the 611

generated RA-Bench dataset is highly similar to 612

real-world data. The results from RA-Bench can 613

therefore be easily applied to real-world scenarios, 614

demonstrating a high degree of practicality. 615

5 Conclusion 616

In this study, we explore the task of explainable 617

transaction risk analysis, which was difficult to ad- 618

dress before the advent of generative models. We 619

identify two key challenges for this task: (1) Defi- 620

ciency in transaction data analysis and reasoning, 621

and (2) Incompatibility of existing RAG methods 622

with risk analysis scenarios. To tackle these issues, 623

we propose the Dual-gRAG framework, which em- 624

ploys dual-retrieval thought and graph retrieval 625

techniques to provide LLMs with the expert knowl- 626

edge and reasoning cases necessary for risk analy- 627

sis. Extensive experiments demonstrate that Dual- 628

gRAG significantly enhances the risk analysis capa- 629

bilities of LLMs across the three evaluation metrics, 630

with both retrieval components contributing to the 631

model’s performance improvement. Furthermore, 632

we show through experiments that the synthetic 633

dataset, RA-Bench, closely resembles real-world 634

scenarios, further enhancing the practicality of the 635

Dual-gRAG framework in real-world applications. 636
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6 Limitations637

This paper aims to enable LLMs to perform risk638

analysis on transaction data through dual retrieval,639

thereby effectively identifying illicit trading activ-640

ities. The main limitation of this study is the dif-641

ficulty in collecting a large amount of real illicit642

transaction data, which prevents us from deploying643

Dual-gRAG on a large scale in real-world scenar-644

ios for validation. Instead, we generate a synthetic645

dataset, RA-Bench, from real data to validate our646

results. In the future, we plan to collect more real-647

world data to further validate the effectiveness of648

the framework and apply it to practical scenarios649

to enhance the framework’s practicality.650

7 Ethics Statement651

The “Real-world” data collected in this study652

has been strictly anonymized, and the proposed653

“RA-Bench” dataset is also synthesized from the654

anonymized “Real-world” data. Therefore, con-655

ducting experiments with these two datasets on656

models like GPT-4 poses no risk of privacy leakage.657

While the experiments in this paper demonstrate658

that LLMs perform excellently in interpretable659

financial risk analysis tasks, we emphasize that660

all the analysis results are purely academic. Al-661

though the conclusions derived from the “Real-662

world” dataset are consistent with those obtained663

from the synthetic dataset, further research and664

validation are necessary before deploying LLMs665

directly into real-world financial risk analysis sce-666

narios.667
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A Dataset Construction874

To facilitate risk analysis research, many re-875

searchers have made their risk analysis (e.g., AML)876

datasets publicly available (Altman et al., 2023).877

However, a common limitation of these datasets878

is that they only indicate whether each transaction879

is suspected of money laundering, without reveal-880

ing the reasons for this suspicion. Therefore, such881

datasets are suitable only for training deep learning882

models but do not fit the scenario of this paper.

(A) FiFo (B) Cycling (C) Scatter-Gather (D) Gather-Scatter

Figure 5: The four most common laundering patterns.

883
In this work, we construct a new Risk Analysis884

Benchmark dataset, “RA-Bench”, that not only in-885

cludes comprehensive laundering labels but also886

specifies the suspected money laundering patterns887

for each transaction. Given the distinct transac-888

tion logic between laundering and normal transac-889

tions, we generate them individually. Inspired by890

Vadim Borisov’s GReaT data generation method891

(Borisov et al., 2023), for normal data, due to its892

straightforward transaction logic, we utilize LLM 893

to simulate the trading behaviors of individuals in 894

the market, thereby generating normal transaction 895

data. However, the GReaT method generates each 896

record independently, making it incapable of pro- 897

ducing sequential data. To address this issue, we 898

ensure that when generating transaction data with 899

LLM, it simultaneously determines the time of the 900

next transaction. This approach enables the LLM 901

to generate serialized data, preserving the temporal 902

characteristics of transaction data and more accu- 903

rately simulating real-world transactions. 904

In money laundering cases, criminals often em- 905

ploy specific laundering patterns to carry out their 906

illegal activities. Therefore, we select the four most 907

common patterns (Altman et al., 2023): Fast in Fast 908

out (FiFo), Cycling, Scatter-Gather, and Gather- 909

Scatter (see Figure 5). Based on these four patterns 910

and the distribution of real transaction data, we uti- 911

lize a simulator adapted from AMLsim (Suzumura 912

and Kanezashi, 2021) to generate risky transaction 913

data and then integrate them into normal transac- 914

tion data after manual review. 915

Table 5: Details of RA-Bench dataset.

Statistics of RA-Bench

# Transactions 709k+ # Illegal transactions 5067
# Fifo groups 686 # Cycling groups 711
# Scatter-gather groups 135 # Gather-scatter groups 129

Example Records from RA-Bench
Time Amt ... User_id Target_id Pattern Group_id

9/1 0:01 500 ... 2151e55a normal -1
9/1 0:25 3300 ... f49dcb22 8af7060f loop 2784
9/1 2:38 9000 ... 3444f58c 8b6ae7bc fifo 546

The generated RA-Bench dataset closely resem- 916

bles the real data distribution and includes com- 917

prehensive labels for money laundering activities 918

along with labels for specific laundering patterns. 919

For specific distribution details, please refer to Ta- 920

ble 5. In the original RA-Bench dataset, for each 921

money laundering user, we extract their two-hop 922

transaction data and segment it by day, to obtain 923

a more comprehensive daily transaction network 924

that covers all possible illicit transactions for each 925

illegal user. Subsequently, we label each set of 926

extracted transaction data according to the ground 927

truth, resulting in multiple data groups ready for 928

model training and testing. For detailed example 929

of testing data group, please refer to Figure 6. 930

The reason we construct a synthetic dataset 931

is due to the difficulty in collecting real anti- 932
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Label
Multiple transactions in the early morning;
Fast in Fast out laundering

Direct
Multiple transactions in the early morning;
Fast in Fast out laundering;
Frequent large-amount transactions;
Multiple transfers in a short period of time

RCRA
Multiple transactions in the early morning;
Fast in Fast out laundering risk

Transaction data
Time Amt ... User_id Target_id
2023-09-04 12:52:49 2000.0 ... f49dcb22 fs653d5a
2023-09-04 13:03:16 2000.0 ... dc5416cd cd589cs3
...
2023-09-04 23:17:22 1000.0 ... ef23x25v c45c59sc
2023-09-04 23:48:51 1093.0 ... f26sav35 f19agd35

Label:  Integer transactions; circular money laundering

Label:  Cycling money laundering

Knowledge:
1. Same funds are traded continuously from the initiator
through a series of intermediaries
2. Finally returns to the initiator.
3. The time interval is short.

a.

b.
Case data
Time Amt ... User_id Target_id
2023-09-10 00:02:49 5000.0 ... f49dcb22 fs653d5a
2023-09-10 00:03:16 5000.0 ... fs653d5a f49dcb22
...
2023-09-10 13:48:51 5000.0 ... f26sav35 f19agd35

Case analysis:
Early morning transactions:
- The timestamps of transaction numbers 0 and 1 indicate
that these transactions occurred in the early morning...
Cycle (fund circulation):
- Transaction numbers 0 and 1 form a short fund cycling
pattern: $5000.0  is paid from f49dcb22 to fs653d5a, and
then fs653d5a paid back to f49dcb22...

Figure 6: Example of the extracted data groups.

Label
Multiple transactions in the early morning;
Fast in Fast out laundering

Direct
Multiple transactions in the early morning;
Fast in Fast out laundering;
Frequent large-amount transactions;
Multiple transfers in a short period of time

RCRA
Multiple transactions in the early morning;
Fast in Fast out laundering risk

Transaction data
Time Amt ... User_id Target_id
2023-09-04 12:52:49 2000.0 ... f49dcb22 fs653d5a
2023-09-04 13:03:16 2000.0 ... dc5416cd cd589cs3
...
2023-09-04 23:17:22 1000.0 ... ef23x25v c45c59sc
2023-09-04 23:48:51 1093.0 ... f26sav35 f19agd35

Label:  Integer transactions; circular money laundering

Label:  Cycling money laundering

Knowledge:
1. Same funds are traded continuously from the initiator
through a series of intermediaries
2. Finally returns to the initiator.
3. The time interval is short.

a.

b.
Case data
Time Amt ... User_id Target_id
2023-09-10 00:02:49 5000.0 ... f49dcb22 fs653d5a
2023-09-10 00:03:16 5000.0 ... fs653d5a f49dcb22
...
2023-09-10 13:48:51 5000.0 ... f26sav35 f19agd35

Case analysis:
Early morning transactions:
- The timestamps of transaction numbers 0 and 1 indicate
that these transactions occurred in the early morning...
Cycle (fund circulation):
- Transaction numbers 0 and 1 form a short fund cycling
pattern: $5000.0  is paid from f49dcb22 to fs653d5a, and
then fs653d5a paid back to f49dcb22...

Figure 7: Example of the two Retrieval Base.

money laundering data, which requires a significant933

amount of effort to gather and validate the quality934

of the data. First, suspicious illicit transactions935

need to be identified from a large amount of trans-936

action data. Then, considerable human resources937

are required to verify whether these cases are ille-938

gal, which is necessary to obtain a valid illicit case.939

If a large-scale real transaction dataset were to be940

collected, it would incur incalculable labor costs941

and raise numerous privacy protection concerns.942

Therefore, this paper chose to start from a small943

amount of real transaction data and synthesize a944

high-quality transaction dataset, “RA-Bench”, for945

research purposes.946

B Retrieval Knowledge Base947

B.1 Expert Knowledge Base948

From the collected analysis reports, we extract crit-949

ical expert knowledge related to risk analysis. This950

encompasses not only the textual descriptions of951

the four money laundering patterns previously dis- 952

cussed but also three additional common risk in- 953

dicators (e.g., multiple transactions during early 954

hours and sudden large transactions). As men- 955

tioned earlier, in transaction risk analysis tasks, 956

expert knowledge is often represented in the form 957

of rules. Therefore, our expert knowledge base 958

is more like a rule base, such as the textual de- 959

scriptions of the four money laundering patterns. 960

However, as we have discussed, a major limitation 961

of rule-based models is their vulnerability to being 962

circumvented by criminals. To address this, we 963

have added three common risk indicators in addi- 964

tion to the four typical money laundering patterns, 965

aiming to combine the reasoning ability of LLMs 966

with these common risk analysis insights to capture 967

potential new risk points, thereby compensating for 968

the limitations of rule-based models. After thor- 969

ough manual review, we integrate the knowledge 970

associated with these seven risk points into our ex- 971

pert knowledge base. For specific examples of the 972

knowledge base, please refer to Figure 7 (a). 973

For example, a high-risk transaction pattern is 974

the “Cycling” mode, where transaction records 975

form a closed loop. Mathematically, this can be 976

described as: a source user u1 transfers money to 977

a target user u2, then u2 makes a new transaction 978

with u3, and after several intermediary transactions, 979

a user uk transfers it back to the initial user u1. 980

This cycle pattern is represented as a graph Gcycle 981

with a node set representing distinct users Vcycle = 982

{v1, ..., vk}, and edges forming a cycle Ecycle = 983

{(v1, v2), . . . , (vk, v1)}. Similarly, we can encode 984

a variety of transaction patterns in graph format, 985

resulting in a graph-formatted expert knowledge 986

base Gknow = {Gcycle, GFast-in-Fast-out, GScatter, . . .}, 987

where each Gpattern represents a graph encoding a 988

distinct pattern of a high-risk laundering mode. Il- 989

lustrative examples of these patterns are shown in 990

Figure 3. 991

B.2 Reasoning Case Library 992

After aggregating a substantial number of historical 993

analysis cases from industrial platforms, we metic- 994

ulously filter and select representative cases that 995

encompass diverse combinations of risk indicators 996

to ensure the comprehensive diversity of the case 997

library. Subsequently, domain experts rigorously 998

examine these cases to validate the accuracy of the 999

analysis results and processes, further refining the 1000

analytical procedures embedded within each case. 1001

Through extensive and systematic validation, we 1002
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Prompt
Instruction: As a transaction risk analysis expert, please combine your own anti-money laundering experience with the risk analysis knowledge
provided below and previous reasoning cases to list the suspected money laundering risk points involved in provided transaction data.
## Notes
- Please only give an json output, don't generate other content, the output format is: {"risk points": "xxx", "risk explanation": "xxxx"}
- If there are multiple risk points, please list them one by one and separate them with ";". Such as "circular transactions; multiple transactions in the
early morning"
- If there is no money laundering risk, then output {"risk points": "No money laundering risk", "risk explanation": "None"}. 
Retrieved Expert Knowledge: Cycling is the pattern that the same amount of funds is traded continuously from the initiator through a series of
different intermediaries and finally returns to the initiator, the entire process ensures that the amount of funds is the same and the time interval is
small;...
Retrieved Reasoning Cases: Here is a similar historical case for your reference
Case data：Time\tAmount\t...\tuser_id\tTarget_id\n2023-09-02 01:49:59\t1000.0\t...\t f49dcb22\tfs653d5a\n...
Case analysis：Cycle (fund circulation): Transaction numbers 0 and 1 form a short fund cycling pattern: $5000.0 is paid from f49dcb22 to
fs653d5a, and then fs653d5a paid back to f49dcb22...
Transactions:
Time\tAmount\tuser_id\tTarget_id\n2023-09-02 01:49:59\t1000.0\tu027\tu010\n2023-09-02 01:50:20\t2500.0\tu027\tu008\n...

Figure 8: Example of the prompt we used in this study.

Evaluate quality of the answer based on a reference. Both the reference and the answer include several statements seperated by ";". Compute two metrics ("Coverage"
and "Precision") based on following rules: For each statement in the reference, if it is expressed by the answer, add 1 mark. If it is partially expressed by the answer, add
0.5 mark. "Coverage" is caculated as the sum of marks divided by the number of statements in reference. "Precision" is caculated as the sum of marks divided by the
number of statements in answer. Summary "Coverage" and "Precision" value of the answer in json format. 

Example 1: 
Reference: "There was a surge in transactions on June 10; frequent transfers of thousands of funds from others; fraud complaints received" 

Answer: "Transactions surged on June 10; I received multiple transfers of thousands of funds from others." 

Output: { 
  "Analysis": "The first statement 'Transaction surge on June 10' is expressed by 'Transaction surge on June 10' in the answer. Add 1 mark. The second statement
'Frequently received transfers of thousands of yuan from others' is expressed by 'Received transfers of thousands of yuan from others many times' in the answer. Add 1
mark. The third statement 'Received fraud complaints' is not mentioned in the answer. Add 0 mark. The total marks are 2. The number of statements in reference is 3,
thereby Coverage is computed as 2/3. The number of statements in Answer is 2, thereby Coverage is computed as 2/2.",
  "Coverage": 2/3,
  "Precision": 2/2
}

Example 2:
Reference: "Received transfers of thousands of yuan from others in the early morning and then purchased Yu'ebao; fast in and out; received complaints of telecom fraud"

Answer: "Transactions in the early morning; Complaints of telecom fraud"

Output: {
  "Analysis": "The first The statement 'I bought Yu'ebao after receiving a transfer of 1,000 yuan from others in the early morning' is partially expressed in the answer as
'trading in the early morning'. Add 0.5 mark. The second statement 'quick in and quick out' is not mentioned in the answer, Add 0 mark. The third statement 'received
complaints about telecom fraud' is fully expressed in the answer as 'complained of telecom fraud'. Add 1 mark. The total marks are 1.5. The number of statements in
reference is 3, thereby Coverage is computed as 1.5/3. The number of statements in Answer is 2, thereby Coverage is computed as 1.5/2.",
  "Coverage": 1.5/3,
  "Precision": 1.5/2
}

Prompt

Figure 9: The prompt we used for GPT4 evaluation.

guarantee that the case library is not only diverse1003

but also of exceptional quality. For specific exam-1004

ples of the case library, please refer to Figure 71005

(b).1006

C Prompt template1007

In this paper, the expert knowledge and reasoning1008

cases obtained through the dual-retrieval mecha-1009

nism play distinct yet complementary roles during1010

model inference. Expert knowledge acts as foun-1011

dational background information, enriching LLMs1012

with comprehensive domain knowledge that under-1013

pins their risk analysis capabilities. Meanwhile,1014

the reasoning cases, which detail step-by-step ana-1015

lytical processes, function as few-shot learning ex-1016

amples, offering LLMs reference material that sig-1017

nificantly enhances their inferential capabilities in 1018

performing risk analysis tasks. For detailed prompt 1019

templates, please refer to Figure 1. Additionally, 1020

we provide a simplified example to illustrate our 1021

prompt, as shown in Figure 8. 1022

D Choice of GNN-Encoder 1023

In this paper, we adopt the non-parametric Light- 1024

GCN as our GNN Encoder model to enhance the 1025

practicality and generalization of our model. This 1026

is because, if we had used a parametric GNN En- 1027

coder model (such as the GCN model), changes in 1028

the case library or input dataset could require re- 1029

training the model for the new dataset and case 1030

library. However, with a non-parametric GNN 1031

model, we can directly transfer the model to new 1032
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data scenarios since it does not require retraining.1033

Furthermore, during the early exploration phase,1034

we also test parametric models. However, after1035

trying multiple GNN models, we conclude that the1036

improvement provided by parametric GNNs is not1037

significant enough to warrant switching to them.1038

Therefore, we decide to use the non-parametric1039

model as the GNN Encoder, further enhancing the1040

generalization and practicality of the Dual-gRAG1041

framework.1042

E Evaluation Method1043

We leverage GPT-4 to evaluate the results to mit-1044

igate the interference from human emotion, the1045

prompt used for evaluation can be found in Fig-1046

ure 9. The scoring process involves comparing the1047

model’s identified risk points against those in the1048

ground truth label, a full match earning 1 point,1049

partial similarity 0.5 points, and no match 0 points.1050

The final score is the total of all risk points in the1051

model’s output. A specific example can be seen in1052

Figure 10.1053

Aimed at presenting the model’s risk analysis1054

capabilities, we design two evaluation metrics in-1055

tended to assess the model’s strengths and effec-1056

tiveness from multiple dimensions. The specific1057

evaluation metrics are as follows.1058

• Coverage: We aspire for the model’s outcomes1059

to encompass all potential risks involved in the1060

given set of transactions as comprehensively as1061

possible. A higher degree of coverage indicates1062

a greater capability of the model in risk analysis.1063

The calculation of coverage involves dividing the1064

total score by the number of risk points identified1065

in expert reports.1066

• Precision: In addition to aiming for the model1067

to comprehensively cover all risks, we also desire1068

for the model’s output to be more precise. Higher1069

precision means the model is less likely to output1070

irrelevant risk points. The calculation method for1071

precision is dividing the total score by the number1072

of risk points identified in the model’s results.1073

F Baseline Selection1074

To further demonstrate the effectiveness of the1075

Dual-gRAG framework, we also identify compa-1076

rable graph retrieval algorithms. However, most1077

existing graph RAG algorithms focus on retriev-1078

ing corresponding content from a graph database1079

based on a textual query (Peng et al., 2024). Many1080

Graph RAG algorithms begin by identifying a node1081

Multiple
transactions
in the early
morning

Label: 

Score: 2.5      Coverage: 2.5/3      Precision: 2.5/4

VS

Multiple
transactions
in the early
morning

Output: 

Cycling
laundering

Scatter-gather
laundering

Cycling
laundering

Scatter
laundering
Multiple integer
transactions

Figure 10: Example of scoring for the evaluation met-
rics.

in a graph database (such as a knowledge graph) 1082

that corresponds to the entity of the input query, 1083

then expanding to paths or subgraphs in the graph. 1084

The retrieved content (paths, subgraphs) is then 1085

converted into text and provided to the LLM as 1086

retrieved knowledge. This “question entity” to 1087

“knowledge base node” correspondence does not 1088

exist in our task scenario, and thus cannot be ap- 1089

plied to our problem. Furthermore, their inputs do 1090

not exhibit any graph-structured features, making 1091

them incompatible with our task scenario. 1092

Therefore, we adapt GRAG as our baseline, as it 1093

can convert a subgraph (similar to our transaction 1094

records) into graph embeddings, enabling us to 1095

perform case retrieval by computing the similarity 1096

of embeddings. 1097

G Efficiency Discussion 1098

In the financial transaction risk analysis scenario, 1099

an important issue that needs to be addressed is 1100

the efficiency of the model. The complexity of 1101

our framework is not high. The expert knowledge 1102

retrieval module relies on a traditional subgraph 1103

matching strategy, with complexity scaling linearly 1104

with the number of patterns. For case retrieval, the 1105

graph convolution complexity also scales linearly 1106

with the number of edges, as we utilize LightGCN, 1107

and each graph is relatively small, maintaining high 1108

efficiency. Therefore, the overall complexity of our 1109

retrieval framework remains O(V + E). Therefore, 1110

our computational efficiency is also quite high. Ad- 1111

ditionally, our analysis scenario involves analyzing 1112

the transaction data network of a user within a sin- 1113

gle day, focusing on 1-hop or 2-hop transactions. 1114

Therefore, the transaction network to be analyzed 1115

is not particularly large, which means that the re- 1116
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trieval and analysis time will not be excessively1117

long. Furthermore, when business staff use LLMs1118

for risk analysis, the LLM can directly inform the1119

staff about the transaction risks associated with a1120

user. The staff only need to perform simple valida-1121

tion, without the need to analyze the specific risk1122

points associated with the user as in the past. This1123

improves the efficiency of transaction risk analysis1124

and reduces the manual labor costs involved.1125
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