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Abstract

Explainable transaction risk analysis is a chal-
lenge for traditional deep learning models,
which only predict suspicious transactions with-
out explanations. Current explainable methods
rely on hand-crafted rules and lack the ability to
automatically generate language-based expla-
nations. Large Language Models (LLMs) offer
promise due to their reasoning and text genera-
tion abilities but struggle with domain knowl-
edge and hallucinations, making risk analysis
difficult. Specifically, LLMs face: (1) insuf-
ficient adaptation to transaction data anal-
ysis, and (2) ineffective knowledge retrieval
methods that ignore the rich graph structure of
transaction data. To address these issues, we
propose the Dual Graph Retrieval-Augmented
Generation (Dual-gRAG) framework, which
utilizes dual retrieval: expert knowledge and
reasoning case retrieval. Expert knowledge
compensates for domain gaps, while reasoning
case retrieval provides step-wise analysis guid-
ance. We incorporate both graph-structured
features and semantic features into the retrieval
process to enhance the effectiveness of the re-
trieval. Extensive experiments show that Dual-
gRAG improves LLMs’ risk analysis capabili-
ties, achieving a 50% increase in different met-
rics.

1 Introduction

In the financial domain, transaction risk analy-
sis, particularly anti-money laundering (AML), is
a critical billion-dollar challenge (Altman et al.,
2023). Traditional rule-based approaches, while
offering clear and understandable decision-making
processes, face significant drawbacks. They require
extensive human labor and are increasingly inad-
equate due to the evolving techniques of money
laundering and the growing volume of data (Labib
et al., 2020a). Moreover, these rule-based systems
can be easily bypassed by new or unknown laun-
dering patterns (Chen and Tsourakakis, 2022). As
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Figure 1: Dual-gRAG enables LLMs to perform ex-
plainable transaction risk analysis more effectively. In
contrast, when LLMs analyze transaction risk directly,
the results may contain and

a result, deep learning technologies have gained
recognition in AML detection. However, these
models are often viewed as "black boxes," as they
lack transparency and fail to provide explanations
for their outcomes. This inability to generate natu-
ral language explanations significantly limits their
usability and practical value, as users must rely on
additional human effort to investigate and confirm
the reasons behind the suspicion of a transaction
(Kute et al., 2021).

Currently, researchers are striving to provide in-
terpretability for deep learning methods. For in-
stance, knowledge distillation techniques are used
to extract knowledge from black-box models into
transparent models, i.e., surrogate models, as a
form of post-hoc model explanation (Che et al.,
2015; Tan et al., 2017). However, these methods
generally fail to handle sequence data, i.e., trans-



action data. Other approaches (Zhang et al., 2022)
employ Monte Carlo Tree Search (MCTS) (Browne
et al., 2012) to generate a set of statistics from the
outputs of black-box models, subsequently com-
posed into logical rules with neural logic network.
Although such approach can distill sequence mod-
els into rule-based systems, it can only produce
explanations based on pre-defined rules rather than
intuitive language explanations.

Motivated by the growing capabilities of large
language models (LLMs) in text generation, reason-
ing, and real-world applications (Shang and Huang,
2024), LLMs are increasingly seen as a promis-
ing tool for explainable AML solutions. One key
advantage of LLMs in risk analysis is their abil-
ity to reason about new, previously unseen money
laundering patterns, which can compensate for the
limitations of traditional rule-based models. Their
reasoning capabilities can capture emerging risks
that rule-based systems may miss. Additionally,
LLMs excel in text generation, enabling them to
provide natural language explanations for flagged
transactions, thus addressing the practical limita-
tions of deep learning models in offering trans-
parency. Recent studies (Zhao et al., 2023) have
demonstrated the strong performance of LLMs in
natural language tasks, showcasing basic analyti-
cal and reasoning abilities. Preliminary research
has also explored LLMs in financial tasks like sen-
timent analysis and stock prediction (Koa et al.,
2024; Yang et al., 2023). However, their use specif-
ically in AML remains limited.

Despite the remarkable performance of LLMs
in language processing, they encounter significant
challenges in tackling transaction risk analysis (ex-
ample illustrated in Figure 1): (1) Deficiency in
transaction data analysis and reasoning. LL.Ms
are primarily designed for general natural language
tasks, not structured transaction data (Zhao et al.,
2023). This makes them ill-equipped to analyze
and reason about laundering risk behaviors in trans-
action data. (2) Unsuitable knowledge retrieval
methods. A challenge in using LLMs for risk anal-
ysis is their lack of domain-specific knowledge.
While the RAG (Lewis et al., 2020) algorithm was
proposed to address this, many RAG methods rely
on text-based similarity for retrieval (Gao et al.,
2023). These methods are inadequate for transac-
tion data, which not only contains semantic fea-
tures but also has a strong graph structure (Li et al.,
2023), making them unsuitable for risk analysis.

To address the aforementioned issues, we pro-

pose a novel framework, Dual Graph Retrieval
Augmented Generation (Dual-gRAG). This frame-
work features a dual retrieval approach from two
augmented knowledge bases: an expert knowl-
edge base and a reasoning case library. The ex-
pert knowledge base compensates for the lack of
domain-specific knowledge, while the case library
provides a step-by-step reasoning process for effec-
tive guidance. The retrieved reasoning cases serve
as reference examples for LLMs, providing step-
wise guidance to steer LLMs learn how to analyze
transaction data and achieve accurate results. Rele-
vant expert knowledge and similar representative
cases are combined with input transaction records
to enhance the reasoning capability of LLMs to gen-
erate reliable risk analysis. Specifically, we devise
graph retriever that incorporate the semantics of
transaction data as well as the structural patterns of
transactions. By integrating the semantic and graph
structure features of transaction data, we enhance
the effectiveness of retrieval augmentation, thereby
further improving LLMs’ analytical capabilities.
We conduct extensive experiments to demonstrate
Dual-gRAG’s effectiveness, showing an average
improvement of 50% for all LLMs.

The contributions of this paper are summarized
as follows:

* To the best of our knowledge, this is the first work
leveraging LLMs for textual explainable trans-
action risk analysis. Unlike existing methods
that only predict risk probability, our approach
can generate textual analysis, providing a more
applicable solution.

* We introduce a novel Dual-gRAG framework fea-
turing dual graph retrievers with semantic and
structure features of transaction data, addressing
LLMs’ inherent limitations.

» Extensive experiments show that our Dual-gRAG
framework improves risk analysis performance
by over 50% in precision and coverage across
various LLMs.

2 Related Work

2.1 Retrieval Augmented Generation

RAG refers to a methodology that enhances model
capability by integrating a retriever mechanism
that accesses an external knowledge base (Lewis
et al., 2020). When a query is submitted, the
retriever identifies relevant documents from the
knowledge base, which are then combined with the
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Figure 2: Overview of Dual-gRAG. It utilizes dual retrieval mechanisms, incorporating both relevant expert
knowledge and similar reasoning cases to enable explainable prediction.

query to form the input for the model (Lewis et al.,
2020; Borgeaud et al., 2021; Wang et al., 2023).
Subsequent advancements in this paradigm have
introduced iterative retrieval (Shao et al.; Jiang
et al., 2023), self-reflective retrieval (Asai et al.,
2023), and the integration of RAG with fine-tuning
methodologies. Initially confined to NLP tasks,
RAG has expanded to multi-modal settings, incor-
porating external knowledge such as code (Hayati
etal., 2018; Liu et al., 2023) and images (Yasunaga
et al., 2023; Xie et al., 2023; Chen et al., 2022).
Some have even explored graph-based RAG, us-
ing knowledge graphs (KGs) as external base for
retrival(Edge et al., 2024), or aligning query em-
beddings with code graph embeddings for retrieval
(Du et al., 2024).

However, these methods are tailored for textual
queries, which are transformed into text embed-
dings for retrieval (Gao et al., 2023). This makes
them unsuitable for risk analysis, where the input
containing both textual and graph features, which
our proposed method addresses by integrating a
graph retriever.

2.2 Transaction Risk Analysis

Rule-based detection methods remain the main-
stream choice in practice due to their clarity
and ease of understanding (Oeben et al., 2019).
However, they are easily bypassed by criminals,
prompting research into supervised machine learn-
ing methods like support vector machines (SVM)
(Raiter, 2021) and decision trees (DT) (Jullum et al.,
2020). While these methods can detect some risks,
they struggle to capture new money laundering pat-
terns (Labib et al., 2020b).

Deep learning methods have been explored to
address this limitation. Paule et al. (Ebberth et al.,
2016) use Auto-Encoders for anomaly detection,
while Han et al. (Han et al., 2018) apply deep
learning to enhance AML monitoring. Researchers
also leverage the graph structure of transaction data
for risk analysis, with Alarab et al. (Alarab et al.,
2020) and Weber et al. (Pareja et al., 2019) using
Graph Convolutional Networks (GCN) to detect
illicit transactions.

In parallel, efforts have been made to develop
interpretable risk analysis methods. Che et al. (Che
et al., 2015) employ knowledge distillation to ex-
plain black-box models, but struggle with sequen-
tial data. Zhang et al. (Zhang et al., 2022) extract-
ing logical rules from model outputs using MCTS.
However, these methods still rely on manually de-
fined rules, lacking intuitive textual explanations.

In summary, while rule-based and deep learning
models offer clarity or deeper insights, they fall
short in providing both reliability and interpretabil-
ity. Current explainable models only produce log-
ical rules, not user-friendly explanations, limiting
their practical application.

3 Methodology

In this section, we first formally define the task of
explainable risk analysis. Then, we present our
framework (shown in Figure 2). The Dual-gRAG
framework consists of two main components: Ex-
pert Knowledge Retrieval, which retrieves rele-
vant expert knowledge, and Reasoning Cases Re-
trieval, which retrieves step-by-step analysis cases
similar to the input transaction data. By utilizing
two retrievers to acquire domain knowledge and



step-wise analytical processes for risk analysis, we
enhance the large model’s risk analysis capabilities
through chain-of-thought prompting.

3.1 Task Description

In the field of risk analysis, it is essential to ana-
lyze extensive transaction data to identify potential
risk points. Traditional methods are limited to bi-
nary classification, indicating whether a transaction
record is suspected of risk, i.e., True or False, with-
out pinpointing the specific risk points.

The goal of this paper is to enable LLMs to
analyze transaction data and uncover the hidden
risk points. Formally, let 7 = {11,T5,...,T,}
represent the set of transaction records for a user
within a specific timespan, where each transac-
tion record 7; contains attributes such as time
and amount (see example in Figure 6). The in-
put to the model is 7, and the output is a trans-
action risk analysis report R = {'risk points’
P, Py, ..., Py; 'explanation’ : E}, where each
phrase P; corresponds to an estimated risk point, £
corresponds to an intuitive textual explanation of
the result. The detailed example refers to Figure 1.

3.2 Retrieval-augmented Framework

Our framework features a dual-retrieval approach,
integrating both domain knowledge and reason-
ing cases. This significantly differs from existing
RAG frameworks (Lewis et al., 2020) that primar-
ily address knowledge deficiencies. By incorpo-
rating step-by-step analysis details, the retrieved
reasoning cases enhance LLMs’ ability to evalu-
ate transaction risks effectively. Moreover, both
retrievers are graph-based, considering the seman-
tic and structural features of transaction records,
further distinguishing our method from current al-
gorithms that rely solely on the semantic features
of queries.

Since transaction data is inherently structured,
we start by converting the input transaction data
T = {T1,T5,...,T,} into a transaction graph
G(V, £), as shown in the left part of Figure 2. Each
transaction record 7; € 7 represents an interac-
tion between a source user u; and a target user
uj. We define V as the set of all users involved,
and £ = {(u;, u;)} denotes the set of interactions
between these users.

3.2.1 Expert Knowledge Retrieval

To build a high-quality knowledge base, we collect
many analysis reports from experts and synthesize
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Figure 3: Tllustration of Expert Knowledge Retrieval.
Expert knowledge is encoded into graphs representing
patterns. A detection engine determines if the input
graph matches these predefined patterns.

these into an expert knowledge base. Unlike other
NLP tasks (such as QA), the knowledge in transac-
tion risk analysis often exists in the form of “Rules”.
Therefore, the expert knowledge base Gynow We
constructed can also be referred to as a rule-base,
with specific examples provided in the Appendix
B.1. Given that the knowledge is predominantly in
the form of “Rules”, our expert knowledge retrieval
also adopts a detection engine trigger mechanism
similar to that used in rule-based models, as illus-
trated in Figure 3.

Give an input transaction graph GG derived from
T, expert knowledge retrieval follows a two-step
process: first, subgraph matching is performed to
detect if the input matches a known pattern graph
Ghpatiern € Gknow- then the attributes of the nodes
and edges in the triggered pattern are examined for
further verification. This approach ensures both
structural and semantic accuracy by first match-
ing the graph structure and then verifying feature
similarity, such as interaction time and transaction
amount.

Specifically, for “Cycling” subgraph matching,
we first adopt Louvain algorithm (Blondel et al.,
2008) to derive a set of communities subgraphs
of input as S = {S51,S59,...,Sn} where each
Si(Vi, &) C G denotes a subgraph and m is the
total number of subgraphs. Then, we perform a
one-by-one check between S; and G pagern to deter-
mine whether these two graphs are isomorphic, i.e.,
there exists a mapping f : V; — Vpattern, €nsuring
that V(u, v) € &, (f(u), f(v)) € Epattern. This pro-
cess yields a set of triggered patterns G’ C Ginow,
representing the retrieved expert knowledge. As
shown in Figure 3, parts of the input transaction
graph match the Fast-in-Fast-out and Cycling pat-
terns. We textualize these retrieved patterns to en-
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Figure 4: Illustration of Reasoning Cases Retrieval. We
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sure LLLMs can comprehend.

3.2.2 Reasoning Cases Retrieval

Similar to the expert knowledge, we construct a
set of reasoning cases Gease = {Gey,- -5 Gey, s
where each case G, represents a transaction graph
instance with a detailed textual analysis report ., .
These cases, collected from industrial platforms
and verified by experts, ensure a diverse and high-
quality set of reasoning processes. For detailed
examples please refer to Appendix B.2. Unlike ex-
pert knowledge patterns with fixed structures, these
cases exhibit diverse structures, making traditional
graph searching algorithms inapplicable. Thus, we
use neural retrieval techniques, encoding both in-
put and case graphs into latent embeddings and
matching via similarity, as shown in Figure 4.

Specifically, for the input graph G, we first lever-
age a pre-trained Language Model to generate ini-
tial node embeddings X for any u € V. As we
can convert record 7T; into plain text, an LM en-
coder can be leveraged to generate 7;’s representa-
tions as t; = LM(7;), then a node’s initial embed-
ding is computed as mean-pooling of related trans-
actional edges as x,, = Mean-Pooling({t;|u €
source/target users of 7;}). Then, the GNN further
captures the structural patterns of this transaction
graph, leading to refined node embedding matrix as
H = GNN(X, &). We further use a Read-Out func-
tion, i.e., Sum-Pooling, to obtain this transcation
graph’s embedding as hg = Sum-Pooling(H). As
all case graphs in the case library can be encoded
in the same way, the case library can be repre-
sented as Heye = {hgc1 ye vaCM} where M
refers to the number of available cases and hg,,
denotes the representation of the ¢-th case graph
G.,. We select the top-K most similar cases from
the case library to consisitue the retrival results, as
C'= Top-K¢, cgee Similarity(hg, he,, ).

This method ensures retrieval of the most con-
textually relevant cases by considering both the se-
mantic and structural features of the transaction
records. Note that such retrieval can be training-
free' as it leverages a pre-trained LM and a no-
parameter GNN, i.e., LightGCN (He et al., 2020).
The retrieved reasoning cases are incorporated into
the prompts as few-shot-COT examples for the
LLMs, steer them to perform chain-of-thought rea-
soning, thus enhancing their inferential capabilities
(Wei et al., 2022).

3.2.3 Input Construction

After completing the dual-retrieval process, we
combine three key elements to create comprehen-
sive inputs for LLMs: (1) Expert knowledge serves
as the foundational background for model infer-
ence. (2) Reasoning cases act as few-shot learning
examples to assist the model in analysis. (3) The in-
put transaction data is converted into plain text for
the model to analyze. For detailed prompt template
and examples, please refer to Appendix C.

4 Experiments

To facilitate explainable transaction risk analysis,
we construct a new transaction benchmark dataset:
RA-bench. Distinct from other anti-money laun-
dering datasets, our dataset not only includes com-
prehensive labels but also annotates the specific
money laundering patterns involved in anoma-
lous transactions. Detailed information about the
dataset can be found in Appendix A. We evaluate
the performance of Dual-gRAG on the RA-Bench
dataset. Our work aims to answer the following
three research questions:

* RQ1: How much improvement can the Dual-

gRAG framework bring to LLMs?

* RQ2: How do the two proposed retrieval com-
ponents contribute to the effectiveness of Dual-
gRAG?

* RQ3: How does the proposed graph retrieval

method perform against other retrieval methods?
Additionally, we conduct a practical application

validation in various data scenarios.
4.1 Experimental Settings

4.1.1 Baselines

To demonstrate the effectiveness of the Dual-gRAG
framework, we employ several traditional machine

"Further discussion please refer to Appendix D



learning models and classic large language models
as our baseline.
Traditional Machine Learning Baselines:

* LightGCN+SVM: This model uses Light GCN
to capture the structural information of the trans-
action graph, followed by pooling node embed-
dings for graph-level representation, which is
then classified by an SVM.

* LightGCN+MLP: This model replaces the SVM
with an MLP to explore deep learning perfor-
mance in this task.

* GCN+MLP: Here, a trainable GCN replaces
LightGCN, and the GCN and MLP are co-trained
in an end-to-end framework for classification.

For all methods, transaction data is converted
into a transaction graph, and node features are ex-
tracted by language model as described in Section
3.2.2.

LLM Backbones:

* Llama3-8B-Instruct (Al@Meta, 2024), a pow-
erful large language model introduced by Meta.

¢ Qwen2.5-14B-Instruct (Bai et al., 2023), a
transformer-based decoder-only language model.

For all LLMs, we provide the same prompts
to eliminate performance deviations caused by
prompt differences.

4.1.2 Evaluation Metrics

We use GPT-4? to evaluate the results, mitigat-
ing the influence of human emotional bias (Koa
et al., 2024). The evaluation process consists of
two parts: (1) comparing the risk points identified
by the model with those in the ground truth labels,
and (2) assessing the quality of the explanations
generated by the model.

To provide a multi-dimensional view of the
LLM’s risk analysis capabilities, we employ three
evaluation metrics. Additionally, we introduce an-
other metric specifically for machine learning base-
lines to compare the performance of these methods
with that of LLMs in the risk analysis task. The
specific evaluation metrics are as follows:

* Coverage: Evaluate how many of the risk points
identified by the model overlap with the true risk
points.

2All experimental data has been strictly anonymized, en-
suring no risk of privacy leakage.

3For detailed evaluation method, please refer to Appendix
E

* Precision: Evaluate how many of the risk points
identified by the model are actually true risk
points.

* ROUGE: Evaluate the quality of the explana-
tions generated by the model, we use ROUGE-L
as the evaluation metric.

* Accuracy: Evaluate whether deep learning mod-
els or LLMs can correctly identify whether the
transaction record graph indicates potential risks.

4.1.3 Implementation Details

For reasoning case retrieval, we employ m3e
(Wang Yuxin, 2023) (an open-source massive
mixed embedding model) as our language model
encoder, top-K is 1. Furthermore, to investigate
the improvements that RAG combined with fine-
tuning can bring to explainable risk analysis tasks,
we utilize the Dual-gRAG framework to construct
an instruction fine-tuning dataset. Subsequently,
we use LoRA to fine-tune the Qwen2.5-14B on
two A100 GPUs with the learning rate of le-4 to
develop an LLM specifically focused on risk analy-
sis task: RA-GPT (Risk Analysis GPT).

4.2 Performance Comparison(RQ1)

For overall performance comparison, we provide
both quantitative results (Table 1) and qualitative
results (Figure 1).

4.2.1 Quantitative Results

In this section, we quantitatively evaluate the effec-
tiveness of the Dual-gRAG framework in explain-
able risk analysis task. Table 1 presents the results
across four different metrics relevant to the risk
analysis task.

Across the first two evaluation metrics, we ob-
serve that all LLMs perform better under the Dual-
gRAG framework compared to directly analyzing
the input data, have nearly a 50% improvement
in both metrics. This demonstrates that the Dual-
gRAG framework can reduce the generation of
irrelevant or incorrect analysis results by LLMs,
enhancing the coverage and precision of their out-
puts. Regarding the “ROUGE” score, which evalu-
ates the quality of the generated explanations, we
observe notable improvements in the Dual-gRAG
framework as well. The “ROUGE” scores for all
models show nearly a twofold improvement, indi-
cating that the Dual-gRAG framework significantly
enhances the quality of the model’s analysis and



Table 1: Overall Performance Comparison (RQ1). “Direct” refers to LLM’s direct inference (example illustrated in
Figure 1), and “Dual-gRAG” denotes the integration with our framework, which can consistently bring significant

improvement on all metrics.

Model Coverage % Precision % ROUGE %
ode
Direct  Dual-gRAG  Direct Dual-gRAG  Direct Dual-gRAG
Qwen2.5-14B 51.64 53.28 45.32 72.63 23.67 34.92
Llama3-8B 44.88 57.79 48.67 55.08 27.54 32.52
RA-GPT 47.95 62.09 44.32 66.45 2541 42.14
Model ‘ SVM LightGCN MLP LightGCN GCN Qwen2.5 -14B  RA-GPT
Accuracy | 0.65 0.70 0.72 0.93 0.97

explanations. This leads to more accurate and con-
cise explanations, thereby improving the overall
practicality of the model.

We observe that RA-GPT outperforms its base
model Qwen2.5-14B, suggesting that fine-tuning
can enhance the model’s performance in risk anal-
ysis tasks. In the “Direct” case, RA-GPT also
achieves a higher “ROUGE” score than Qwen2.5,
indicating that fine-tuning can also improve the
model’s reasoning ability. Under the Dual-gRAG
framework, the “ROUGE” score of RA-GPT fur-
ther increases, and the improvement is greater than
that from fine-tuning alone, demonstrating that the
Dual-gRAG framework provides a more significant
performance boost compared to fine-tuning.

Additionally, since machine learning models are
non-language models and cannot generate textual
analysis results, we only compare the money laun-
dering pattern classification accuracy. We observe
that, in the context of this paper, the performance of
LLMs significantly outperforms other deep learn-
ing models. This could be because, under the Dual-
gRAG framework, LLMs can explicitly learn the
knowledge of different money laundering patterns,
and then use their reasoning abilities, guided by ex-
amples, to analyze the potential money laundering
issues in the transaction graphs, thereby improving
the accuracy of the analysis.

4.2.2 Case Study

In addition to quantitative metrics, we explore how
the Dual-gRAG framework enhances the model’s
performance in risk analysis. For this, we select
an example from Qwen2.5’s output to demonstrate
the improvement, as shown in Figure 1.

From Figure 1, we see that while the LLM cor-
rectly identifies risk points in the transaction data,

Table 2: Ablation study of Dual-gRAG with Qwen2.5-
14B serving as the base LLM.

Method Coverage (%) Precision (%) ROUGE (%)
Prompt,);, .., 51.64 4532 23.67
Prompt, .., 46.31 74.34 33.36
Prompt,., 55.12 68.62 33.69
Prompt ), 53.28 72.63 34.92

it also generates incorrect (red) and irrelevant (or-
ange) content. With the Dual-gRAG framework,
the LLLM’s analysis becomes more precise, likely
due to the retrieved cases that helps the model focus
on the provided knowledge. The framework not
only improves accuracy but also identifies specific
money laundering users, such as the cycle between
u000 and u004 (see Figure 1). The step-by-step
reasoning rationale in the cases guides the LLM
to analyze potential risks thoroughly, resulting in
more detailed outcomes.

In contrast to traditional machine learning mod-
els with binary outputs, our results provide detailed
explanations for suspected transaction risks, offer-
ing high interpretability. Staff can easily verify the
identified risks during the validation phase.

4.3 Ablation Study (RQ2)

To assess the effectiveness of the Dual-gRAG
framework, we conduct an ablation experiments
to validate the contribution of each retrieval com-
ponent. The results are shown in Table 2.

We test different prompting methods, incorporat-
ing expert knowledge and reasoning cases, to eval-
uate performance improvements. The Qwen2.5-
14B model was used in frozen mode. The four
prompting methods were: Promptp,,..., (direct
risk analysis), Prompt,,, (expert knowledge
only), Prompt,,,. (reasoning cases only), and



Promptp,,,;-

From Table 2, we observe that Prompt,, . per-
forms well. While Promptg,, ., shows good pre-
cision, it has lower coverage than Promptp,,....
likely because expert knowledge reduces incorrect
risk points, improving precision. However, using
only expert knowledge limits the model’s inher-
ent knowledge, leading to reduced diversity in the
identified risk points, reducing coverage.

Prompt,,.. by providing detailed case guid-
ance, allows the LLM to infer more potential risk
points. However, due to the lack of correspond-
ing expert knowledge, the precision may decrease.
In contrast, Promptp,,,;, through the dual retrieval
method, achieves a good balance between coverage
and precision.

4.4 Retrieval Method Comparison (RQ3)

In this section, we examine the effectiveness of the
graph retriever within the Dual-gRAG framework.
Due to the low semantic similarity between the
input transaction data and expert knowledge, text
similarity cannot be used for expert knowledge re-
trieval. Thus, we use simple semantic information
(i.e., text similarity between transaction in the input
data and case library) for reasoning case retrieval.
Given that both the input and knowledge base in
our task scenario exhibit graph-structured featurese
also use the GRAG algorithm as a baseline graph
retrieval method (details on baseline selection are
in Appendix F). The results are shown in Table 3.

From Table 3, we see that LLM performance
with Simple-RAG decreases across all metrics com-
pared to Dual-gRAG. This indicates that relying
solely on text similarity reduces retrieval quality
and impacts risk analysis capabilities. Addition-
ally, we observe that the performance of GRAG
is suboptimal, likely because the GRAG method
does not adapt well to our task scenario. Its prun-
ing operation based on semantic information may
lead to the loss of key details (e.g., the removal of
a transaction related to a crime), which results in
degraded retrieval performance.

4.5 Practical Application Validation

Besides the RA-Bench dataset, we also collect a
risk analysis validation dataset, “Real-world”, from
real-world scenarios to validate the generalization
ability of the Dual-gRAG framework. In addi-
tion, we adopt the “IT-AML”(Altman et al., 2023)
dataset proposed by IBM as one of the validation
datasets.

Table 3: Comparison of Graph-Retrieval with Qwen2.5-
14B serving as the base LLM.

Method Coverage (%) Precision (%) ROUGE (%)
Direct 51.64 45.32 23.67
Simple-RAG 46.93 60.58 21.19
GRAG 45.70 57.77 22.36
Dual-gRAG 53.28 72.63 34.92

Table 4: Generalization validation of the Dual-gRAG
framework on different datasets with RA-GPT as the
base LLM.

Dataset Method Coverage (%) Precision (%) ROUGE (%)
Direct 47.95 44.32 25.41
RA-Bench 1 1ILeRAG 62.09 66.45 £2.14
Direct 34.01 36.56 22.32
TT-AML Dual-gRAG 26.64 41.94 25.42
Real-world Direct 40.38 30.43 17.13
W Dual-gRAG 4423 41.07 21.91

The generalization study results are shown in
Table 4. The Dual-gRAG framework improves the
performance of the LLM across different datasets,
indicating the strong generalization ability of the
Dual-gRAG framework, which is not limited to
a single dataset. Furthermore, we can observe
that RA-GPT performs similarly on both the RA-
Bench and Real-world datasets, suggesting that the
generated RA-Bench dataset is highly similar to
real-world data. The results from RA-Bench can
therefore be easily applied to real-world scenarios,
demonstrating a high degree of practicality.

5 Conclusion

In this study, we explore the task of explainable
transaction risk analysis, which was difficult to ad-
dress before the advent of generative models. We
identify two key challenges for this task: (1) Defi-
ciency in transaction data analysis and reasoning,
and (2) Incompatibility of existing RAG methods
with risk analysis scenarios. To tackle these issues,
we propose the Dual-gRAG framework, which em-
ploys dual-retrieval thought and graph retrieval
techniques to provide LLMs with the expert knowl-
edge and reasoning cases necessary for risk analy-
sis. Extensive experiments demonstrate that Dual-
gRAG significantly enhances the risk analysis capa-
bilities of LLMs across the three evaluation metrics,
with both retrieval components contributing to the
model’s performance improvement. Furthermore,
we show through experiments that the synthetic
dataset, RA-Bench, closely resembles real-world
scenarios, further enhancing the practicality of the
Dual-gRAG framework in real-world applications.



6 Limitations

This paper aims to enable LLMs to perform risk
analysis on transaction data through dual retrieval,
thereby effectively identifying illicit trading activ-
ities. The main limitation of this study is the dif-
ficulty in collecting a large amount of real illicit
transaction data, which prevents us from deploying
Dual-gRAG on a large scale in real-world scenar-
ios for validation. Instead, we generate a synthetic
dataset, RA-Bench, from real data to validate our
results. In the future, we plan to collect more real-
world data to further validate the effectiveness of
the framework and apply it to practical scenarios
to enhance the framework’s practicality.

7 Ethics Statement

The “Real-world” data collected in this study
has been strictly anonymized, and the proposed
“RA-Bench” dataset is also synthesized from the
anonymized “Real-world” data. Therefore, con-
ducting experiments with these two datasets on
models like GPT-4 poses no risk of privacy leakage.
While the experiments in this paper demonstrate
that LLMs perform excellently in interpretable
financial risk analysis tasks, we emphasize that
all the analysis results are purely academic. Al-
though the conclusions derived from the “Real-
world” dataset are consistent with those obtained
from the synthetic dataset, further research and
validation are necessary before deploying LL.Ms
directly into real-world financial risk analysis sce-
narios.
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A Dataset Construction

To facilitate risk analysis research, many re-
searchers have made their risk analysis (e.g., AML)
datasets publicly available (Altman et al., 2023).
However, a common limitation of these datasets
is that they only indicate whether each transaction
is suspected of money laundering, without reveal-
ing the reasons for this suspicion. Therefore, such
datasets are suitable only for training deep learning
models but do not fit the scenario of this paper.

& & a» ~a
i i
(A) FiFo (B) Cycling (C) Scatter-Gather (D) Gather-Scatter

Figure 5: The four most common laundering patterns.

In this work, we construct a new Risk Analysis
Benchmark dataset, “RA-Bench”, that not only in-
cludes comprehensive laundering labels but also
specifies the suspected money laundering patterns
for each transaction. Given the distinct transac-
tion logic between laundering and normal transac-
tions, we generate them individually. Inspired by
Vadim Borisov’s GReaT data generation method
(Borisov et al., 2023), for normal data, due to its
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straightforward transaction logic, we utilize LLM
to simulate the trading behaviors of individuals in
the market, thereby generating normal transaction
data. However, the GReaT method generates each
record independently, making it incapable of pro-
ducing sequential data. To address this issue, we
ensure that when generating transaction data with
LLM, it simultaneously determines the time of the
next transaction. This approach enables the LLM
to generate serialized data, preserving the temporal
characteristics of transaction data and more accu-
rately simulating real-world transactions.

In money laundering cases, criminals often em-
ploy specific laundering patterns to carry out their
illegal activities. Therefore, we select the four most
common patterns (Altman et al., 2023): Fast in Fast
out (FiFo), Cycling, Scatter-Gather, and Gather-
Scatter (see Figure 5). Based on these four patterns
and the distribution of real transaction data, we uti-
lize a simulator adapted from AMLsim (Suzumura
and Kanezashi, 2021) to generate risky transaction
data and then integrate them into normal transac-
tion data after manual review.

Table 5: Details of RA-Bench dataset.

Statistics of RA-Bench

709k+
686
135

5067
711
129

# Transactions
# Fifo groups
# Scatter-gather groups

# Illegal transactions
# Cycling groups
# Gather-scatter groups

Example Records from RA-Bench

Time Amt User_id Target_id ‘ Pattern  Group_id
9/1 0:01 500 2151e55a normal -1

9/1 0:25 3300 f49dcb22  8af7060f loop 2784
9/1 2:38 9000 3444f58c  8bbae7bc fifo 546

The generated RA-Bench dataset closely resem-
bles the real data distribution and includes com-
prehensive labels for money laundering activities
along with labels for specific laundering patterns.
For specific distribution details, please refer to Ta-
ble 5. In the original RA-Bench dataset, for each
money laundering user, we extract their two-hop
transaction data and segment it by day, to obtain
a more comprehensive daily transaction network
that covers all possible illicit transactions for each
illegal user. Subsequently, we label each set of
extracted transaction data according to the ground
truth, resulting in multiple data groups ready for
model training and testing. For detailed example
of testing data group, please refer to Figure 6.

The reason we construct a synthetic dataset
is due to the difficulty in collecting real anti-
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Transaction data 1

Time Amt User_id Target_id E
2023-09-04 12:52:49  2000.0 49dcb22 fs653d5a H
E 2023-09-04 13:03:16  2000.0 dc5416¢d cd589cs3 H
E 2023-09-04 23:17:22  1000.0 ef23x25v c45¢59sc i
: 2023-09-04 23:48:51 1093.0 f26sav35 f19agd35 H

' [ Label: Integer transactions; circular money laundering

[ Label: Cycling money laundering

Knowledge: 1
1. Same funds are traded continuously from the initiator ‘
1| through a series of intermediaries

i| 2. Finally returns to the initiator.

3. The time interval is short.

b. , N
| Case data 1
E Time Amt User_id Target_id 3
'] 2023-09-10 00:02:49  5000.0 ©9dcb22  fs653dSa :
| 2023-09-1000:03:16 50000 fs653d5a  f49dcb22
'] 2023-09-10 13:48:51  5000.0 f26sav35  f19agd3s :

(" Case analysis:
Early morning transactions:

‘| - The timestamps of transaction numbers 0 and 1 indicate
'| that these transactions occurred in the early morning...
Cycle (fund circulation):
- Transaction numbers 0 and 1 form a short fund cycling
pattern: $5000.0 is paid from f49dcb22 to fs653d5a, and
| then fs653d5a paid back to f49dcb22...

Figure 7: Example of the two Retrieval Base.

money laundering data, which requires a significant
amount of effort to gather and validate the quality
of the data. First, suspicious illicit transactions
need to be identified from a large amount of trans-
action data. Then, considerable human resources
are required to verify whether these cases are ille-
gal, which is necessary to obtain a valid illicit case.
If a large-scale real transaction dataset were to be
collected, it would incur incalculable labor costs
and raise numerous privacy protection concerns.
Therefore, this paper chose to start from a small
amount of real transaction data and synthesize a
high-quality transaction dataset, “RA-Bench”, for
research purposes.

B Retrieval Knowledge Base

B.1 Expert Knowledge Base

From the collected analysis reports, we extract crit-
ical expert knowledge related to risk analysis. This
encompasses not only the textual descriptions of
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the four money laundering patterns previously dis-
cussed but also three additional common risk in-
dicators (e.g., multiple transactions during early
hours and sudden large transactions). As men-
tioned earlier, in transaction risk analysis tasks,
expert knowledge is often represented in the form
of rules. Therefore, our expert knowledge base
is more like a rule base, such as the textual de-
scriptions of the four money laundering patterns.
However, as we have discussed, a major limitation
of rule-based models is their vulnerability to being
circumvented by criminals. To address this, we
have added three common risk indicators in addi-
tion to the four typical money laundering patterns,
aiming to combine the reasoning ability of LLMs
with these common risk analysis insights to capture
potential new risk points, thereby compensating for
the limitations of rule-based models. After thor-
ough manual review, we integrate the knowledge
associated with these seven risk points into our ex-
pert knowledge base. For specific examples of the
knowledge base, please refer to Figure 7 (a).

For example, a high-risk transaction pattern is
the “Cycling” mode, where transaction records
form a closed loop. Mathematically, this can be
described as: a source user u; transfers money to
a target user ug, then ug makes a new transaction
with us, and after several intermediary transactions,
a user uy, transfers it back to the initial user uq.
This cycle pattern is represented as a graph Geycle
with a node set representing distinct users Veycle =
{v1,...,v}, and edges forming a cycle Egyele =
{(v1,v2),..., (vg,v1)}. Similarly, we can encode
a variety of transaction patterns in graph format,
resulting in a graph-formatted expert knowledge
base Ginow = {chcle; G'Fast-in-Fast-out> G'Scatter - - ~}’
where each Gpaiern represents a graph encoding a
distinct pattern of a high-risk laundering mode. II-
lustrative examples of these patterns are shown in
Figure 3.

B.2 Reasoning Case Library

After aggregating a substantial number of historical
analysis cases from industrial platforms, we metic-
ulously filter and select representative cases that
encompass diverse combinations of risk indicators
to ensure the comprehensive diversity of the case
library. Subsequently, domain experts rigorously
examine these cases to validate the accuracy of the
analysis results and processes, further refining the
analytical procedures embedded within each case.
Through extensive and systematic validation, we



(] Prompt
## Notes

early morning"

small;...

fs653d5a, and then fs653d5a paid back to f49dcb22...
Transactions:

(&

Instruction: As a transaction risk analysis expert, please combine your own anti-money laundering experience with the risk analysis knowledge
provided below and previous reasoning cases to list the suspected money laundering risk points involved in provided transaction data.

- Please only give an json output, don't generate other content, the output format is: {"risk points": "xxx",
- If there are multiple risk points, please list them one by one and separate them with ";". Such as "circular transactions; multiple transactions in the

- If there is no money laundering risk, then output {"risk points": "No money laundering risk", "risk explanation": "None"}.
Retrieved Expert Knowledge: Cycling is the pattern that the same amount of funds is traded continuously from the initiator through a series of
different intermediaries and finally returns to the initiator, the entire process ensures that the amount of funds is the same and the time interval is

Retrieved Reasoning Cases: Here is a similar historical case for your reference

Case data: Time\tAmount\t...\tuser_id\tTarget id\n2023-09-02 01:49:59\t1000.0\t...\t f49dcb22\tfs653d5a\n...
Case analysis: Cycle (fund circulation): Transaction numbers 0 and 1 form a short fund cycling pattern: $5000.0 is paid from f49dcb22 to

Time\tAmount\tuser_id\tTarget id\n2023-09-02 01:49:59\t1000.0\tu027\tu010\n2023-09-02 01:50:20\t2500.0\tu027\tu008\n...

~

"on "o "on

risk explanation": "xxxx"}

Figure 8: Example of the prompt we used in this study.

( Prompt

Example 1:

Output: {
"Coverage": 2/3,
"Precision": 2/2

Example 2:

Answer: "Transactions in the early morning; Complaints of telecom fraud"

Output: {

"Coverage": 1.5/3,
"Precision": 1.5/2

d

Evaluate quality of the answer based on a reference. Both the reference and the answer include several statements seperated by ";". Compute two metrics ("Coverage"
and "Precision") based on following rules: For each statement in the reference, if it is expressed by the answer, add 1 mark. If it is partially expressed by the answer, add
0.5 mark. "Coverage" is caculated as the sum of marks divided by the number of statements in reference. "Precision" is caculated as the sum of marks divided by the
number of statements in answer. Summary "Coverage" and "Precision" value of the answer in json format.

Reference: "There was a surge in transactions on June 10; frequent transfers of thousands of funds from others; fraud complaints received"

Answer: "Transactions surged on June 10; | received multiple transfers of thousands of funds from others."

"Analysis": "The first statement "Transaction surge on June 10' is expressed by 'Transaction surge on June 10 in the answer. Add 1 mark. The second statement
'Frequently received transfers of thousands of yuan from others' is expressed by 'Received transfers of thousands of yuan from others many times' in the answer. Add 1
mark. The third statement 'Received fraud complaints' is not mentioned in the answer. Add 0 mark. The total marks are 2. The number of statements in reference is 3,
thereby Coverage is computed as 2/3. The number of statements in Answer is 2, thereby Coverage is computed as 2/2.",

Reference: "Received transfers of thousands of yuan from others in the early morning and then purchased Yu'ebao; fast in and out; received complaints of telecom fraud"

"Analysis": "The first The statement 'l bought Yu'ebao after receiving a transfer of 1,000 yuan from others in the early morning' is partially expressed in the answer as
‘trading in the early morning'. Add 0.5 mark. The second statement 'quick in and quick out' is not mentioned in the answer, Add 0 mark. The third statement 'received
complaints about telecom fraud' is fully expressed in the answer as 'complained of telecom fraud'. Add 1 mark. The total marks are 1.5. The number of statements in
reference is 3, thereby Coverage is computed as 1.5/3. The number of statements in Answer is 2, thereby Coverage is computed as 1.5/2.",

~

Figure 9: The prompt we used for GPT4 evaluation.

guarantee that the case library is not only diverse
but also of exceptional quality. For specific exam-
ples of the case library, please refer to Figure 7

(b).
C Prompt template

In this paper, the expert knowledge and reasoning
cases obtained through the dual-retrieval mecha-
nism play distinct yet complementary roles during
model inference. Expert knowledge acts as foun-
dational background information, enriching LLMs
with comprehensive domain knowledge that under-
pins their risk analysis capabilities. Meanwhile,
the reasoning cases, which detail step-by-step ana-
lytical processes, function as few-shot learning ex-
amples, offering LL.Ms reference material that sig-
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nificantly enhances their inferential capabilities in
performing risk analysis tasks. For detailed prompt
templates, please refer to Figure 1. Additionally,
we provide a simplified example to illustrate our
prompt, as shown in Figure 8.

D Choice of GNN-Encoder

In this paper, we adopt the non-parametric Light-
GCN as our GNN Encoder model to enhance the
practicality and generalization of our model. This
is because, if we had used a parametric GNN En-
coder model (such as the GCN model), changes in
the case library or input dataset could require re-
training the model for the new dataset and case
library. However, with a non-parametric GNN
model, we can directly transfer the model to new



data scenarios since it does not require retraining.

Furthermore, during the early exploration phase,
we also test parametric models. However, after
trying multiple GNN models, we conclude that the
improvement provided by parametric GNNs is not
significant enough to warrant switching to them.
Therefore, we decide to use the non-parametric
model as the GNN Encoder, further enhancing the
generalization and practicality of the Dual-gRAG
framework.

E Evaluation Method

We leverage GPT-4 to evaluate the results to mit-
igate the interference from human emotion, the
prompt used for evaluation can be found in Fig-
ure 9. The scoring process involves comparing the
model’s identified risk points against those in the
ground truth label, a full match earning 1 point,
partial similarity 0.5 points, and no match O points.
The final score is the total of all risk points in the
model’s output. A specific example can be seen in
Figure 10.

Aimed at presenting the model’s risk analysis
capabilities, we design two evaluation metrics in-
tended to assess the model’s strengths and effec-
tiveness from multiple dimensions. The specific
evaluation metrics are as follows.

* Coverage: We aspire for the model’s outcomes
to encompass all potential risks involved in the
given set of transactions as comprehensively as
possible. A higher degree of coverage indicates
a greater capability of the model in risk analysis.
The calculation of coverage involves dividing the
total score by the number of risk points identified
in expert reports.

* Precision: In addition to aiming for the model
to comprehensively cover all risks, we also desire
for the model’s output to be more precise. Higher
precision means the model is less likely to output
irrelevant risk points. The calculation method for
precision is dividing the total score by the number
of risk points identified in the model’s results.

F Baseline Selection

To further demonstrate the effectiveness of the
Dual-gRAG framework, we also identify compa-
rable graph retrieval algorithms. However, most
existing graph RAG algorithms focus on retriev-
ing corresponding content from a graph database
based on a textual query (Peng et al., 2024). Many
Graph RAG algorithms begin by identifying a node
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Label: QOutput:

Multiple Mlllﬁple'
transactions .transactmns
in the early in the‘early
morning morning

Cycling

v

Cycling vs laundering
laundering -

laundering

Scatter-gather

laundering Multiple integer

transactions

Score: 2.5  Coverage: 2.5/3  Precision: 2.5/4

Figure 10: Example of scoring for the evaluation met-
rics.

in a graph database (such as a knowledge graph)
that corresponds to the entity of the input query,
then expanding to paths or subgraphs in the graph.
The retrieved content (paths, subgraphs) is then
converted into text and provided to the LLM as
retrieved knowledge. This “question entity” to
“knowledge base node” correspondence does not
exist in our task scenario, and thus cannot be ap-
plied to our problem. Furthermore, their inputs do
not exhibit any graph-structured features, making
them incompatible with our task scenario.

Therefore, we adapt GRAG as our baseline, as it
can convert a subgraph (similar to our transaction
records) into graph embeddings, enabling us to
perform case retrieval by computing the similarity
of embeddings.

G Efficiency Discussion

In the financial transaction risk analysis scenario,
an important issue that needs to be addressed is
the efficiency of the model. The complexity of
our framework is not high. The expert knowledge
retrieval module relies on a traditional subgraph
matching strategy, with complexity scaling linearly
with the number of patterns. For case retrieval, the
graph convolution complexity also scales linearly
with the number of edges, as we utilize LightGCN,
and each graph is relatively small, maintaining high
efficiency. Therefore, the overall complexity of our
retrieval framework remains O(V + £). Therefore,
our computational efficiency is also quite high. Ad-
ditionally, our analysis scenario involves analyzing
the transaction data network of a user within a sin-
gle day, focusing on 1-hop or 2-hop transactions.
Therefore, the transaction network to be analyzed
is not particularly large, which means that the re-



trieval and analysis time will not be excessively
long. Furthermore, when business staff use LLMs
for risk analysis, the LLM can directly inform the
staff about the transaction risks associated with a
user. The staff only need to perform simple valida-
tion, without the need to analyze the specific risk
points associated with the user as in the past. This
improves the efficiency of transaction risk analysis
and reduces the manual labor costs involved.
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