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Abstract

To adapt to changes in real-world data distributions, neural networks must update
their parameters. We argue that unit-level surprise should be useful for: (i) deter-
mining which few parameters should update to adapt quickly; and (ii) learning a
modularization such that few modules need be adapted to transfer. We empirically
validate (i) in simple settings and reflect on the challenges and opportunities of
realizing both (i) and (ii) in more general settings.

1 Introduction

Neural networks have achieved remarkable successes on problems with independent and identically-
distributed (IID) data [23]. However, real-world data is not IID—environmental conditions shift [8],
new tasks are encountered [27], and agents alter their behaviour [6]. Ideally, we would like our
networks to transfer or adapt quickly to such out-of-distribution (OOD) data [30].

Fast adaptation to OOD or shifted data is often achieved by updating only a few parameters—the
final layer of an ImageNet-pretrained network [13, 42], the batch-normalization layers [24, 34,
38], or specific mechanisms or modules [31, 15]. For a given problem or (expected) shift type, a
human usually decides: (i) which few parameters should be updated; and (ii) what architecture or
modularization will allow the network to be adapted by updating only a few parameters (e.g. Rebuffi
et al. [34] use residual adapters for domain adaptation). However, we often do not know what type of
shift will occur and thus how to decide (i) and (ii).

In this work we argue that unit-level surprise can help identify what has changed, and this in turn can
be used to: (i) infer which few parameters should be updated to adapt quickly by transferring past
knowledge; and (ii) learn an appropriate modularization such that very few modules need be adapted
to transfer. For (i), we propose the use of unit-level surprise—“This looks the same as before, no need
for me to update!”— along with modulatory update-in-progress signals—“This is being dealt with
by someone else, hold tight!”. These two additional pieces of information at the unit-level allow the
network to update only the appropriate parameters to facilitate fast adaptation. This idea is depicted
in Figure 1 and further motivated in Appendix A. For (ii), we propose to use the number of surprised
units as a proxy score for the number of parameters that need to be adapted to a given shift, which can
then be optimized to learn a modularization that changes sparsely and thus can be adapted quickly.

As a first step, we empirically validate the usefulness of unit-level surprise by focusing on use case
(i) above. Through experiments on shifted EMNIST [7] datasets, we show that unit-level surprise
can be used to create shift-dependent fine-tuning strategies that often align with our intuition about
which few parameters should update. We then critique these results, identifying several challenges
and opportunities for using unit-level surprise in more general settings where its full potential could
be unlocked. Despite such challenges, the “beauty” of unit-level surprise—its alignment with our
intuitions about how to handle OOD data, its seemingly strong signal for learning how to modularize
knowledge, and its relations to neuroscience concepts like metaplasticity [1, 2, 41] and the free-energy
principle [12]—convinces us that it should be better for realizing (i) and (ii) in more general settings.
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Shift Pattern Response

Low-level shift, 
e.g. new background or corruption

High-level shift,
e.g. unseen class

Units in early layers detect abnormal
input, i.e. are surprised. This propagates

Only units in later units are
surprised by their input 

Updating only the (weights of the) first
surprised units can restore normality

Updating only the (weights of the) first
surprised units can preserve structure

Figure 1: Unit-level surprise can help determine which few parameters should be updated. Purple
units are unsurprised, yellow surprised. Blue indicates the weights to be updated. Top row: A
low-level shift is noticed by units in the first layer (and all those that follow). By blocking those that
follow, units in the first layer prevent unnecessary updates in later layers. Bottom row: A high-level
shift is only noticed by units in later layers, so those in earlier layers don’t need to update.

2 Initial validation
In this section we provide an initial empirical validation of the usefulness of unit-level surprise by
showing how it can be used to determine which few parameters should be adapted to a given shift.

Experimental setup. We train a simple 5-layer network with 3 convolutional (conv) and 2 fully-
connected (FC) layers on 37 of the 47 classes in EMNIST [7]. We then adapt this network to new
data from 1 of 10 distribution shifts (see Appendix B.1) for which we expect it to be optimal to update
different parts of the network. In particular, we use 7 low-level shifts where we expect only the early
layers to need to adapt (e.g. new background) and 3 high-level shifts where we expect only the later
layers to need to adapt (e.g. held-out/unseen classes). Full experimental details are in Appendix B.2,
and code is available at https://github.com/cianeastwood/unit-level-surprise.

Calculating unit-level surprise. For each unit in a network we store the 1D distribution of its
activations under the training data, P (A), and compare this with the distribution of activations under a
shifted data distribution, Q(A). More specifically, we parameterize P (A) and Q(A) as softly-binned
histograms [40] and infer the parameters of these distributions from the training and shifted data
respectively. We then calculate the (Bayesian) surprise of a unit as s(A) = DKL(Q(A)||P (A)) [19].
We discuss this quantity in Appendix B.3 and how to calculate it from bin counts in Appendix B.4.
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Figure 2: Surprise patterns.

Surprise patterns. Together, a network’s surprise values
yield shift-dependent patterns. These patterns, shown in
Fig. 2, help us to understand the level of abstraction at
which a shift occurs. For example, when the colour of the
EMNIST characters is changed under the crystals shift
(see Fig. 4 in Appendix B.1), we intuitively expect the
low-level filters (e.g. black-and-white edge detectors) to
be surprised. Fig. 2a shows this to indeed be the case
with units in the first layer exhibiting high surprise. Natu-
rally, the abnormal activations which surprised these units
propagate through the rest of the network causing the suc-
ceeding units to also be surprised. In contrast, when the
network is presented with unseen classes, we intuitively
expect the low-level features to be unsurprised (similar
distribution of black-and-white edges) but the later layers
to be surprised (new combinations of low-level features).
Fig. 2b shows this to indeed be the case with units in the
later layers surprised while those in earlier layers are not.

Creating an update rule. Once units have been equipped
with the ability to calculate their surprise, how can we best
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Table 1: 5-shot accuracy when training single layers, all layers (SGD), using FlexTune [35], or using
a surprise-based update rule. L: low-level shifts (avg), H: high-level shifts (avg), All: all shifts (avg).

Conv1 Conv2 Conv3 FC1 FC2 SGD FlexTune Upd. Rule

L 82.7± 0.4 70.2± 1.2 61.4± 0.2 56.3± 0.2 51.5± 0.3 71.3± 2.1 82.7± 0.4 82.9± 0.5
H 0.0± 0.0 0.3± 0.5 25.4± 3.8 80.6± 4.6 94.5± 0.9 74.4± 5.2 94.5± 0.9 79.2± 4.2

All 57.9± 0.3 49.3± 0.8 50.6± 1.2 63.6± 1.2 64.4± 0.3 72.2± 2.9 86.3± 0.5 81.8± 1.2

Table 2: Accuracy for a varying number of samples-per-class, averaged over different shifts.

2 5 10 20 50 2000

SGD 60.0± 1.9 72.2± 2.9 78.9± 0.5 82.6± 0.2 86.1± 0.3 92.1± 0.1
FlexTune 82.6± 0.7 86.3± 0.5 87.8± 0.4 89.2± 0.2 90.4± 0.2 92.5± 0.0
Upd. Rule 66.3± 2.5 81.8± 1.2 86.2± 0.6 88.2± 0.4 89.7± 0.1 92.4± 0.0

make use of this? We investigate whether or not surprise can give us some indication of the specific
few units to update in order to adapt quickly to new data. In particular, we focus on few-shot learning
as updating (the parameters of) fewer units should improve sample-efficiency. We consider three
possible adaptation strategies or shift responses:

1. SGD. Ignore surprise patterns and use stochastic gradient descent (SGD) to update all parameters.
2. FlexTune [35]. Ignore surprise patterns and select the best individual layer to update using a

test-domain validation set. This serves as an upper-bound on single-layer performance.
3. Update rule based on unit-level surprise. Use a rule that determines whether or not a unit

should update based on surprise values.We design an update rule with the goal of leveraging
unit-level surprise to preserve structure by preventing unnecessary updates. This rule can be
summarised as “update only if: (i) you are surprised; and (ii) your parents are not”, with the key
insight being that surprised parents (units in the preceding layer that are connected to it) indicate
that the surprise-causing shift may be resolved in earlier layers. Here, (i) ensures that only affected
units update—“This looks the same as before, no need for me to update!”—while (ii) acts as a
modulatory update-in-progress signal from a unit’s parents—“This is being dealt with by someone
else, hold tight!”. We formally define this update rule in Appendix B.5.

Results. Table 1 gives the 5-shot results for training individual network layers and using each of our 3
responses. We see that low-level shifts are best dealt with by fine-tuning the first layer and high-level
shifts the last. This aligns with our intuition about which units should update and also with the
surprise patterns in Figure 2. Without a priori knowledge of the type of shift that will occur (choosing
Conv1 for low-level shifts, FC2 for high-level) or exhaustively searching over all possibilities using
an oracle-like test-domain validation set (FlexTune), we achieve the best average performance over
low- and high-level shifts with our surprise-based update rule—where units only update if they are
sufficiently surprised and their parents are not. These results show that it is not always optimal to
fine-tune only the later layers of a network (as also found in [35]) and demonstrate that unit-level
surprise can indeed help determine which few parameters should update to adapt quickly (i.e. with
few samples) to new data. Results for individual shifts are given in Appendix E.

We also evaluate each of these adaptation strategies or responses as a function of the number of
shifted samples that are available. As shown in Table 2, all strategies perform well using large
amounts of data (2000 samples-per-class). However, as the number of samples-per-class drops, it
becomes more important to update few parameters, and thus to choose the right strategy. With 5-50
samples-per-class, simple SGD (training all layers) is outperformed by both other strategies which
seek to maintain structure by selecting few units to update. While FlexTune consistently outperforms
the update rule (by a small margin), it requires training 5 different models on labelled test-domain
data (one per layer) in order to select the best layer to update.

Which units does SGD update? To visualize which parameters are updated we calculate “how far”
each unit’s input parameters are moved and use this to compare SGD and our update rule. Specifically,
we calculate the Euclidean distance between a parameter’s value before and after adaptation, then
average these distances layerwise to see which layers are being updated by each adaptation strategy.
Figures 3a & 3b show that SGD moves all layers of the network similarly and makes no distinction
between different types of shift. This confirms that a simple gradient signal is not sufficient to select
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Figure 3: Mean distance moved for units in each layer of a 5-layer CNN when using SGD and the
update rule for low (crystals background shift) and high (H1, 5 unseen classes) level shifts.

which few parameters should update to a given shift, explaining the results in Table 1. In contrast,
Figures 3c & 3d show that our update rule exhibits shift-specific behaviour which aligns with the
results in Table 1—moving early layers for low-level shifts and later layers for high-level shifts.

3 Critique

While we achieved some promising results in carefully-designed settings, it remains unclear how
unit-level surprise should be used in more realistic settings to determine which few parameters to
update. Below we discuss the main challenges discovered during the initial idea validation above.

Networks are not sufficiently modular to show sparse surprise patterns. For the various shifts we
considered, networks did not exhibit sparse or modular surprise patterns—low-level shifts surprised
almost every unit in the network (Fig. 2a), while high-level shifts surprised all units in both FC layers
(Fig. 2b). This then affects the updates of our update rule, with single, entire layers being updated
rather than a modular selection of units (Fig. 3). We posit that such patterns of surprise occur because,
using standard training techniques, simple neural networks do not form modules or mechanisms that
change independently (and thus can be surprised independently). Moreover, we find ourselves asking
if it is ever possible to learn such modules or mechanisms that change sparsely (i.e. align with the
shifts in data distribution) without explicitly optimizing for it at training time over multiple shifts.

Parents and children may need to update. As discussed above, our update rule tends to update
single layers, and this can lead to sub-optimal solutions (e.g. updating only FC1 for high-level shifts).
We attribute this to the fact that surprised parent units tend to stay surprised, continually blocking
their children from updating. One solution would be to update P (A) with samples from Q(A) as
training progresses, for units that are being adapted. Intuitively, this would allow parent units to
gradually become less surprised by the new data, eventually freeing their children to also update.

Surprise may not be sufficient. As shown in Table 1 and Figure 3, the update rule does not always
select the “optimal” units to update (updating FC1 rather than FC2 for high-level shifts). This raises
some questions—is surprise alone sufficient to determine which units should update? What other
unit-level information may be required? Here we list some examples: (a) gradient magnitude—may
help us to update FC2 rather than FC1 to adapt to high-level shifts; (b) task importance [21, 43]—may
help in continual learning settings to best preserve performance on past tasks when adapting to new
ones; (c) parameter uncertainty—may help speed-up learning by only updating the parameters with
high uncertainty [3], akin to Bayesian optimization. Additionally, one can imagine shifts that are best
resolved at a mid- or high-level but cause changes to the low-level feature distributions—e.g. if we
occlude part of a digit, the low-level features (edges) should still be valid, we just need to update how
they combine to form the class label. However, the changed low-level feature distributions (some
edges are occluded) will surprise units in the early layers, causing them to update. Another similar
challenge is that of changing feature frequency. In particular, if we take the view of units as feature
detectors, where a specific unit is sensitive to a specific feature, then the activation distributions of
units will change if the features they detect occur with a different frequency (i.e. appear more or less
often). In this situation, a unit can show high surprise but we may not wish to update its parameters if
we still wish to detect this feature. One potential solution to these problems is to explore alternative
measures that distinguish between being more or less surprised than expected (see Appendix C).

Lack of interpretability makes validation difficult. Finally, it is difficult to come up with exper-
imental setups where we know what the “right” units to update are. This makes the design and
validation of update rules quite challenging. While we may hope for interpretable edges-parts-wholes
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feature hierarchies (see Figure 9 in Appendix E.1), this is often not the case. In fact, it can take as
little as a change in random seed to change the semantic meaning of features, and with it, the optimal
units to update. Work on unit-level interpretability [14, 29] may eventually help, but it is not currently
at a level to decide which units should update for a given shift.

4 Future work

As discussed above, creating a general update rule using unit-level surprise is challenging as: (i)
neural networks are not very modular by default; and (ii) surprise may not be sufficient to determine
“who” should update. Below we discuss two potential avenues to overcome these two challenges.

Learning modular structure with unit-level surprise. Recent work in causal discovery assumes
that the ground-truth data-generative process consists of independent mechanisms or modules, with
many modules expected to behave similarly across different tasks and environments [5, 31, 32, 36, 37].
Thus, if an appropriate modular representation of the world has been learned, very few modules
should need to be adapted in order to transfer [5, 15, 32, 37]. Bengio et al. [5] exploit this through
a meta-learning objective that uses adaptation speed to optimize the way in which knowledge is
represented or modularized. Here, adaptation speed is a proxy score for the number of modules
and parameters that need be adapted and ultimately for how well the learned modularization fits the
underlying causal dependencies. We believe surprise could provide an alternative proxy score (e.g.
the number2 of surprised units or groups of units) that is easier to meta-optimize (no inner-loop steps)
and arguably a more direct measure of the number of modules and parameters that need be adapted.

Learning optimizers to better utilize unit-level surprise. As discussed in the previous section,
unit-level surprise may not be sufficient for some shifts—further information may be required to
determine “who” should update. This makes it difficult to handcraft a general update rule as one must
specify how surprise should be used with this other information. In fact, even without additional
information, there is still an enormous space to be explored surrounding how best to use unit-level
surprise, e.g. setting the learning rate based on the surprise by using soft thresholding. One solution
is to learn an optimizer [4, 33], or the parameters of an update rule [25], across multiple shifts.
However, learned optimizers are notoriously difficult to train [28] and it can be difficult to beat the
heavily-tuned few-shot benchmarks against which they are often compared [16].

5 Conclusion

In this work we provided a preliminary validation of the usefulness of unit-level surprise in neural
networks. In particular, we showed that it can be useful for analysing where dataset shifts are
noticed in a network and for devising shift-dependent fine-tuning strategies. We also discussed
some of the “beauty” that makes us believe that unit-level surprise should be useful in more general
settings—it often aligns with our intuitions about how to handle OOD data, it seems a strong signal
for learning how to modularize knowledge such that only a few modules are surprised (and thus
need be adapted), and it has several neuroscience relations such as metaplasticity and the free-energy
principle. However, in formally specifying how to use unit-level surprise in simple settings, we
encountered several challenges that made us wary of tackling the more complicated settings in which
its full potential could be realized.
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A Example to further motivate surprise

Imagine you are given a network which has been trained to classify different Ford car models outdoors
(in green pastures), and asked to classify pictures of these same models indoors (in a showroom).
Intuitively, most of the learned function is still valid so only a small number of parameters need to be
tweaked, requiring only a small number of indoor examples to do so. Perhaps tweaking parameters
in the first layer would be sufficient, re-extracting the same features from e.g. the darker pixels of
indoor images as were previously extracted from the outdoor images. Similarly, if you were asked
to classify pictures of Fiat cars, you may expect that only a small number of parameters need to
be adapted (likely in later layers this time), perhaps adjusting the (conceptual) wheel and mirror
detectors for the smaller wheels and more rounded mirrors of Fiats. However, as we discuss in
Section 2, minimizing a standard loss function (e.g. cross-entropy) with stochastic gradient descent
(SGD) does not result in such intuitive updates—all of the network’s parameters are updated and
learnt structure is unnecessarily destroyed. These gradients tell us which parameters can reduce the
error, but not which parameters should reduce the error in order to maximally-transfer knowledge
and thus speed-up learning. Doing so requires additional information—such as unit-level surprise.

B Implementation details

B.1 Data

Figure 4: EMNIST-DA shifts. Figure adopted from [9].

Our networks are trained using the 47-class EMNIST dataset [7] (“identity” shift in Figure 4). We
use 2000 samples per class from the training split with the remaining 400 forming a validation set,
we report results on the separate test set also containing 400 examples per class.

We adapt to 10 new data distributions—7 low-level shifts from EMNIST-DA [9] and 3 high-level
label shifts. From the 14 EMNIST-DA shifts depicted in Figure 4, we chose 7 shifts that adversely
affect accuracy (without adaptation) and intuitively affect the early convolutional filters: crystals, fog,
gaussian blur, grass, impulse noise, sky and stripe. To create the 3 label shifts, we train our networks
on only the first 37 classes of EMNIST and then choose 5 of the 10 unseen classes three times from the
range [38, 47] to arrive at: H1:[38, 39, 40, 41, 42], H2:[43, 44, 45, 46, 47], and H3:[38, 40, 42, 44, 46].

To evaluate sample efficiency we run experiments with varying amounts of data, we experiment with
using 2, 5, 10, 20 and 50 samples per class as well as using all the data (2000 samples per class). The
full results of these experiments are given in Appendix E.

B.2 Experimental setup

Table 3 provides the architectural details of the simple 5-layer convolutional neural network (CNN)
that we use. During pre-training we use dropout between the layers, for adaptation we do not as it
unnecessarily complicates the propagation of surprise and makes little difference to the final results.

During pre-training and adaptation we use a batch size of 256. We pre-train for 150 epochs with
a learning rate of 0.01. Due to using small amount of data, during adaptation we train with early
stopping for a maximum of 100 epochs using a patience of 10. We use a learning rate of 0.1 for all
experiments except for when fine-tuning all layers simultaneously which requires a learning rate
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of 0.01 to prevent divergence. We optimize using stochastic gradient descent with momentum set
to 0.9. For experiments using our update rule the thresholds α and β in Equation 3 are set to 0.01.
Experiments are run over 3 seeds from which we report a mean and one standard deviation.

Table 3: Architecture of the CNN used. For conv. layers, the weights-shape is: num. input channels
× num. output channels × filter height × filter width.

Layer Weights-Shape Stride Padding Activation Dropout Prob.
Conv 3× 64× 5× 5 2 2 ReLU 0.1

Conv 64× 128× 3× 3 2 2 ReLU 0.3

Conv 128× 256× 3× 3 2 2 ReLU 0.5

FC 6400× 128 N/A N/A ReLU 0.5

FC 128× 47 N/A N/A Softmax 0

B.3 Measuring unit-level surprise

A single unit in a feed-forward neural network outputs an activation a = g(wTh+ b), where h is the
hidden unit activations of the previous layer, w the learned weight vector, b the learned bias and g some
non-linearity. During training a unit can store a distribution P (A) which captures the distribution
that its activation can take. A unit is surprised by new data if the activation distribution changes,
i.e. P (A) 6= Q(A), where Q(A) is the distribution of the unit’s activations under the new data. We
quantify surprise using the KL-divergence from P (A) to Q(A), i.e. s(A) = DKL(Q(A)||P (A)) [19,
26].3

The surprisal (or information content) of an event X = x, with X ∼ P (X), is given by log(1/P (x)).
Intuitively, this quantity represents how “surprised” we are to see X = x, with unlikely events
having high surprisal. Surprise itself is a somewhat overloaded term but can be used to describe the
entropy, H(X) = −

∑
P (x) logP (x), that is the expected surprisal. If we now receive a sample of

a different random variable Y = y, Y ∼ Q(Y ), but we have assumed as a prior that we are receiving
samples from P (X), the amount of additional surprisal we receive on account of our assumption
is log(1/P (X = y)) − log(1/Q(Y = y)). The expected value of this quantity over Q is the KL-
Divergence DKL(Q||P ) [22], which is the expected surprisal of receiving samples from Q when we
have assumed the distribution to be P . We can also interpret DKL(Q||P ) = H(Q,P )−H(Q) as
the expected extra message-length per datum that must be communicated if a code that is optimal for
P is used to communicate Q, compared to a code that is optimal for Q. We have seen this quantity
referred to as Bayesian surprise, information gain, asymmetric surprise or simply surprise [10, 19].
Throughout this work we refer to this quantity as surprise for simplicity.

B.4 Calculating surprise from bin counts

After pre-training we parameterize activation distributions with softly-binned histograms. To calculate
P (A) we run one further forward-pass of the network over the training data and bin the activations
using the same procedure as in [9], with 10 bins, which outputs 10 normalized bin counts πp

1 , . . . π
p
10

for each unit. πp
i represents the probability a falls into bin i and

∑10
i=1 π

p
i = 1. The blue curves in

Fig. 5 depict examples of such distributions. These distributions can be considered as representing
the “normal” activation values of a unit, i.e. the values it expects to take on.

We then receive some data from a new distribution, possibly the same as the pre-training data
distribution, which is fed into the network. During adaptation we can parameterize Q(A) in the same
way as P (A), using a batch of this new data (Fig. 5–orange curves) to calculate normalized bin counts
πq
1, . . . π

q
10 which change as the network learns. The surprise for a unit can then be calculated as

s(A) = DKL

(
Q(A; {πq

i }
10
i=1) || P (A; {πp

i }
10
i=1)

)
=

10∑
i=1

πq
i log

πq
i

πp
i

. (1)

3For convolutions, when creating P (A) and Q(A) we take each spatial location of a feature map to be one
sample of the activation, a.
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Figure 5: Examples of our histogram parameterizations of P (A), in blue, andQ(A), in orange. When
new data is received, the activation distribution changes. From left to right, the surprise values s(A)
are approximately 0.1, 0.2, 0.3, 0.4.

B.5 A surprise-based update rule

Let pi denote the surprise of “parent” unit i in layer l, cj the surprise of “child” unit j in layer l + 1,
and wij the weight that connects parent unit i with child unit j. This setup is depicted in Fig. 6 below.

p1

p2

p3

c1
w11

w21
w31

Figure 6: Update rule schematic. The highlighted weights update only if the aggregate parent surprise
p̄1 is below some threshold β and the child surprise c1 is above some threshold α.

For child unit j, we calculate its aggregate parent surprise p̄j as a weighted average of its parent
surprises. More specifically, we calculate

p̄j =
∑
i

|wij |∑
k |wkj |

· pi , (2)

where the normalized weight value |wij |∑
k |wkj | ensures comparable scaling across units in a layer. We

then use this to create an update rule where the input weights of child j are updated if and only if
child j is surprised (i.e. cj is above some threshold α) but its parents are not (i.e. p̄ is below some
threshold β). In particular, we create the following update rule:

wij := wij − I[cj > α]I[p̄j < β] · η∇wij
L, (3)

where I[cj > α] is an indicator function that is 1 when cj > α and 0 otherwise, I[p̄j < β] is similarly
defined, η the learning rate, and L the loss function (cross-entropy in our case). I[cj > α] ensures
that only surprised units update, and can be compared with metaplasticity4 in the brain. I[p̄j < β]
prevents/blocks simultaneous changes in later units who may also surprised by their input, and can be
compared with neuromodulation5 in the brain.

4The modification of a neuron’s future capacity for learning as a function of recent synaptic history [1, 2].
Believed to regulate the plasticity mechanisms themselves in order to generate adaptive behaviour [11, 17, 39, 41].

5Neuromodulators are neurotransmitters which, instead of conveying excitation or inhibition, change the
properties of other neurons or synapses [20].
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C Alternative surprise measures

Imagine a unit or feature detector with a bi-modal activation distribution where the modes roughly
represent on (detected) and off (not detected). Perhaps such a unit being off more often in the new
data (as when part of an image is occluded, discussed in Section 3) is not a good signal to update. To
differentiate this situation from e.g. the unit being on more often in the new data, we can define a new
measure which we call the surprise increase (SI):

SI = H(Q,P )−H(P ), (4)

where H(P ) is the entropy of P and H(Q,P ) is the cross-entropy of P relative to Q. Unlike the
KL-divergence, SI can be negative. SI is negative (i.e. a surprise decrease) when an event that is
already quite likely under P becomes even more likely under Q—as shown in Figure 7a. This could
be an interesting alternative surprise measurement as it can distinguish between surprise increases
and decreases.

(a) Surprise decrease (b) Surprise increase

Figure 7: SI illustration. P is blue, Q is orange. For fixed P , SI depends only on H(Q,P ).
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D Does batch normalization solve the problem?

Batch normalization (BN, 18) standardizes activation distributions across batches, bringing P (A) and
Q(A) closer together. This naturally raises the question as to whether or not BN solves the problem
of differing unit-level distributions, thus removing the need for unit-level surprise. We investigate
this below.

Do the same surprise patterns exist? Figure 8 shows the ideal situation for BN, where the BN
statistics are (re)calculated using the new data distribution before we calculate surprise. Compared to
Figure 2, the magnitude of the surprise is indeed lessened as BN standardizes P (A) and Q(A), but it
does not make units unsurprised. Moreover, we still see the same patterns of surprise in the early
layers for low-level shifts and in the later layers for high-level shifts.

Is an adaptative strategy still best? As shown in Table 4, it is indeed still best to employ an
adaptive update strategy to train specific layers for specific shifts, e.g. use FlexTune [35] to select
Conv1 & BN1 for low-level shifts and FC2 for high-level shifts. This further confirms that BN alone
does not solve the problem of changes in activation distribution, as selective adaptation strategies are
still superior to updating all layers with SGD. In Table 4 we also show that, if we only use the BN
statistics without any training (AdaBN, 24), or only update the BN parameters and statistics on the
new data (labelled “BN params”), performance is poor compared to the other strategies.

Conv1 Conv2 Conv3 FC1 FC2

0.00

0.02

0.04

0.06

0.08

0.10

(a) Low-level shift (crystals bckgr.)

Conv1 Conv2 Conv3 FC1 FC2

0.00

0.02

0.04

0.06

0.08

0.10

(b) High-level shift (unseen classes)

Figure 8: Network surprise patterns after updating the BN statistics on the new data.

Table 4: 5-shot accuracy with BN. L: low-level shifts average, H: high-level shifts average. Zero-shot
shows accuracy before adaptation. AdaBN [24] updates the BN statistics on the new data. “BN
params” updates only the BN parameters and statistics. For all other methods/rows, only the layers
listed are permitted to update.

L H

Zero-Shot 22.1± 0.2 0.0± 0.0
AdaBN [24] 50.7± 0.4 0.0± 0.0
BN params 66.0± 1.3 0.0± 0.0
Conv1, BN1 78.9± 0.8 0.0± 0.0
Conv2, BN2 67.9± 1.5 0.0± 0.0
Conv3, BN3 60.4± 0.7 0.3± 0.3
FC1, BN4 56.4± 0.5 68.9± 1.7
FC2 52.7± 0.6 95.4± 0.5
FC1, BN4, FC2 55.8± 0.8 94.6± 0.9
All (SGD) 76.7± 0.8 90.7± 2.3

13



E Further Results

E.1 Max-activating patches

Figure 9 shows the maximum-activating image patches on the EMNIST-DA [9] grass shift for selected
units in each layer. Note that we do not have a perfect edges-parts-wholes hierarchy—the receptive
field of Conv2 seems too large as it almost sees the entire image (can be a “whole” rather than a part).

(a) Conv 1

(b) Conv 2

(c) Conv 3

Figure 9: Max-activating patches for different units on the EMNIST-DA grass shift.
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E.2 Per-shift Results

What follows is tables of full results for each shift at each number of shots, these are provided for
completeness with no further analysis.

Table 5: 2-shot accuracy across shifts: training different layers of a CNN

Conv1 Conv2 Conv3 FC1 FC2 FC1 + FC2

H1 0.0± 0.0 0.0± 0.1 7.2± 4.9 65.3± 14.1 95.2± 1.4 77.8± 1.4
H2 0.0± 0.0 0.0± 0.0 5.0± 0.8 45.7± 8.8 80.5± 5.4 71.4± 4.2
H3 0.0± 0.0 0.0± 0.0 10.8± 7.3 49.4± 4.3 92.9± 2.3 81.4± 5.7
Crystals 69.9± 4.9 52.1± 0.9 51.0± 0.9 50.0± 0.6 47.8± 0.7 49.6± 1.1
Fog 86.5± 3.2 84.5± 0.4 84.0± 0.5 82.3± 0.8 78.8± 1.2 81.6± 0.4
Gauss. Blur 82.7± 0.3 80.4± 2.0 79.0± 0.3 74.9± 0.6 71.5± 1.0 74.1± 1.9
Grass 81.4± 0.8 21.6± 7.2 8.1± 0.7 7.3± 0.6 7.2± 0.5 7.7± 0.5
Imp. Noise 87.4± 0.9 86.0± 0.2 83.4± 1.4 83.2± 0.9 80.7± 0.6 81.9± 1.4
Sky 74.4± 3.9 54.4± 0.5 33.2± 2.8 18.4± 0.7 13.7± 2.7 18.4± 3.3
Stripe 74.3± 0.9 58.2± 4.8 58.2± 1.4 45.7± 2.1 36.7± 1.0 47.9± 2.6

Avg High 0.0± 0.0 0.0± 0.0 7.7± 4.0 53.5± 3.4 89.6± 1.5 76.9± 2.9
Avg Low 79.5± 1.3 62.4± 2.1 56.7± 0.5 51.7± 0.6 48.1± 0.5 51.6± 0.7
Avg All 55.7± 0.9 43.7± 1.5 42.0± 1.4 52.2± 0.8 60.5± 0.3 59.2± 0.9

Table 6: 2-shot accuracy across shifts: comparison of different responses. Zero-shot is the accuracy
before any updates are performed.

Zero-shot SGD FlexTune Upd. Rule

H1 0.0± 0.0 56.7± 4.2 95.2± 1.4 33.8± 21.4
H2 0.0± 0.0 51.9± 5.7 80.5± 5.4 34.3± 11.2
H3 0.0± 0.0 57.6± 5.3 92.9± 2.3 41.4± 9.4
Crystals 46.3± 0.4 55.3± 1.3 69.9± 4.9 68.5± 5.4
Fog 78.4± 0.4 83.6± 1.2 87.1± 2.3 86.6± 3.2
Gauss. Blur 60.4± 2.1 81.2± 0.6 82.7± 0.3 81.8± 1.8
Grass 5.8± 0.2 20.1± 12.0 81.4± 0.8 81.4± 0.8
Imp. Noise 76.9± 0.9 87.9± 0.2 87.4± 0.9 87.7± 0.5
Sky 4.1± 0.5 35.2± 4.9 74.4± 3.9 74.4± 3.9
Stripe 16.3± 1.1 70.0± 1.4 74.3± 0.9 72.8± 2.1

Avg High 0.0± 0.0 55.4± 1.4 89.6± 1.5 36.5± 6.7
Avg Low 41.2± 0.3 61.9± 2.4 79.6± 1.2 79.0± 1.1
Avg All 28.8± 0.2 60.0± 1.9 82.6± 0.7 66.3± 2.5
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Table 7: 5-shot accuracy across shifts: training different layers of a CNN

Conv1 Conv2 Conv3 FC1 FC2 FC1 + FC2

H1 0.0± 0.0 0.1± 0.1 29.8± 8.2 82.8± 7.3 96.4± 1.0 91.9± 2.0
H2 0.0± 0.0 0.5± 0.9 26.1± 6.2 76.7± 6.6 91.3± 1.5 86.2± 3.8
H3 0.0± 0.0 0.3± 0.4 20.3± 6.1 82.3± 5.3 96.0± 0.6 93.0± 2.8
Crystals 78.1± 1.7 57.5± 0.9 52.3± 0.8 51.5± 0.5 49.2± 0.8 51.4± 0.6
Fog 89.6± 0.3 86.5± 0.7 84.8± 0.5 83.1± 0.6 81.3± 0.6 82.6± 0.6
Gauss. Blur 84.0± 0.4 82.5± 0.7 81.7± 0.6 78.3± 0.9 75.9± 0.5 78.1± 0.4
Grass 82.0± 2.2 41.7± 7.4 10.3± 1.3 8.4± 0.9 7.3± 0.5 9.4± 0.4
Imp. Noise 88.6± 0.3 86.8± 0.1 85.7± 0.3 84.3± 0.9 81.5± 0.4 83.9± 0.4
Sky 79.6± 0.7 65.9± 0.5 44.3± 1.9 27.9± 1.8 18.3± 2.4 28.8± 1.2
Stripe 77.1± 1.8 70.9± 2.6 70.6± 0.6 60.4± 1.6 47.0± 1.3 60.9± 2.5

Avg High 0.0± 0.0 0.3± 0.5 25.4± 3.8 80.6± 4.6 94.5± 0.9 90.4± 1.1
Avg Low 82.7± 0.4 70.2± 1.2 61.4± 0.2 56.3± 0.2 51.5± 0.3 56.4± 0.3
Avg All 57.9± 0.3 49.3± 0.8 50.6± 1.2 63.6± 1.2 64.4± 0.3 66.6± 0.1

Table 8: 5-shot accuracy across shifts: comparison of different responses. Zero-shot is the accuracy
before any updates are performed.

Zero-shot SGD FlexTune Upd. Rule

H1 0.0± 0.0 68.0± 13.8 96.4± 1.0 80.3± 4.8
H2 0.0± 0.0 78.0± 2.0 91.3± 1.5 77.3± 7.2
H3 0.0± 0.0 77.1± 5.0 96.0± 0.6 79.9± 9.1
Crystals 46.3± 0.4 57.5± 3.8 78.1± 1.7 77.0± 3.4
Fog 78.4± 0.4 86.3± 0.2 89.6± 0.3 89.6± 0.3
Gauss. Blur 60.4± 2.1 84.3± 0.7 84.0± 0.4 83.9± 0.3
Grass 5.8± 0.2 50.9± 6.8 82.0± 2.2 82.3± 2.6
Imp. Noise 76.9± 0.9 88.3± 0.1 88.6± 0.3 87.6± 0.3
Sky 4.1± 0.5 56.6± 4.7 79.6± 0.7 80.8± 0.9
Stripe 16.3± 1.1 75.4± 1.0 77.1± 1.8 79.3± 0.8

Avg High 0.0± 0.0 74.4± 5.2 94.5± 0.9 79.2± 4.2
Avg Low 41.2± 0.3 71.3± 2.1 82.7± 0.4 82.9± 0.5
Avg All 28.8± 0.2 72.2± 2.9 86.3± 0.5 81.8± 1.2
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Table 9: 10-shot accuracy across shifts: training different layers of a CNN

Conv1 Conv2 Conv3 FC1 FC2 FC1 + FC2

H1 0.0± 0.0 0.5± 0.8 50.1± 5.1 91.3± 2.0 96.1± 0.8 94.5± 0.6
H2 0.0± 0.0 0.9± 0.8 45.7± 8.8 88.5± 1.7 92.8± 0.3 89.0± 2.2
H3 0.0± 0.0 0.3± 0.4 46.6± 16.0 89.7± 5.3 95.0± 1.1 92.8± 1.8
Crystals 80.5± 1.5 59.9± 3.1 54.4± 0.1 52.6± 0.7 50.6± 0.8 52.6± 0.8
Fog 90.1± 0.1 87.8± 0.5 85.6± 0.3 84.1± 0.2 82.1± 1.3 84.3± 0.4
Gauss. Blur 85.0± 0.4 83.9± 1.1 82.6± 0.4 81.4± 0.9 77.9± 2.3 80.7± 0.8
Grass 83.8± 0.9 57.1± 3.2 15.1± 0.8 10.0± 0.9 7.8± 0.1 11.2± 1.0
Imp. Noise 89.1± 0.0 87.2± 0.4 86.0± 0.3 84.7± 0.6 82.7± 0.1 84.5± 0.2
Sky 83.3± 1.5 71.4± 1.0 52.5± 0.5 36.7± 1.2 24.5± 2.4 38.0± 0.2
Stripe 82.4± 0.7 76.1± 2.8 76.1± 1.1 69.2± 0.2 56.8± 0.8 68.1± 1.8

Avg High 0.0± 0.0 0.6± 0.6 47.5± 6.4 89.8± 1.2 94.6± 0.6 92.1± 0.5
Avg Low 84.9± 0.3 74.8± 1.3 64.6± 0.2 59.8± 0.4 54.6± 0.5 59.9± 0.4
Avg All 59.4± 0.2 52.5± 0.8 59.5± 1.8 68.8± 0.5 66.6± 0.4 69.6± 0.4

Table 10: 10-shot accuracy across shifts: comparison of different responses. Zero-shot is the accuracy
before any updates are performed.

Zero-shot SGD FlexTune Upd. Rule

H1 0.0± 0.0 84.8± 0.5 96.1± 0.8 90.4± 3.0
H2 0.0± 0.0 79.9± 1.7 92.8± 0.3 88.3± 2.0
H3 0.0± 0.0 87.1± 2.7 95.0± 1.1 89.7± 5.1
Crystals 46.3± 0.4 61.2± 1.6 80.5± 1.5 79.8± 0.9
Fog 78.4± 0.4 87.4± 0.2 90.1± 0.1 90.1± 0.1
Gauss. Blur 60.4± 2.1 85.7± 0.6 85.0± 0.4 85.3± 1.0
Grass 5.8± 0.2 69.2± 2.4 83.8± 0.9 84.3± 1.3
Imp. Noise 76.9± 0.9 88.2± 0.4 89.1± 0.0 88.0± 0.2
Sky 4.1± 0.5 66.8± 1.1 83.3± 1.5 83.4± 1.5
Stripe 16.3± 1.1 78.8± 1.1 82.4± 0.7 82.5± 0.9

Avg High 0.0± 0.0 84.0± 0.5 94.6± 0.6 89.5± 1.2
Avg Low 41.2± 0.3 76.8± 0.7 84.9± 0.3 84.8± 0.5
Avg All 28.8± 0.2 78.9± 0.5 87.8± 0.4 86.2± 0.6
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Table 11: 20-shot accuracy across shifts: training different layers of a CNN

Conv1 Conv2 Conv3 FC1 FC2 FC1 + FC2

H1 0.0± 0.0 2.1± 3.4 66.4± 8.9 95.7± 0.9 97.2± 0.7 95.1± 0.6
H2 0.0± 0.0 5.6± 0.9 64.9± 8.7 90.3± 1.5 94.8± 0.6 91.6± 1.1
H3 0.0± 0.0 9.5± 1.3 69.3± 6.2 93.5± 2.2 96.1± 1.0 95.3± 0.9
Crystals 83.7± 0.5 65.6± 2.3 56.7± 0.2 54.6± 0.3 51.5± 0.7 54.6± 0.4
Fog 90.4± 0.4 88.4± 0.1 86.1± 1.0 85.2± 0.2 84.0± 0.3 85.1± 0.2
Gauss. Blur 86.6± 0.4 85.0± 1.4 83.4± 0.6 82.2± 0.8 81.0± 0.9 82.3± 1.1
Grass 85.6± 1.0 67.6± 2.8 20.7± 1.8 13.4± 1.0 8.3± 0.3 14.1± 0.9
Imp. Noise 89.1± 0.6 87.7± 0.2 86.6± 0.2 85.2± 0.5 83.7± 0.5 84.9± 0.2
Sky 84.8± 1.0 76.3± 0.7 59.5± 0.4 45.1± 1.5 31.7± 0.7 47.0± 0.7
Stripe 83.9± 1.3 79.7± 2.0 78.9± 0.9 74.7± 0.2 62.2± 0.9 75.3± 0.3

Avg High 0.0± 0.0 5.7± 0.8 66.8± 2.9 93.2± 1.2 96.1± 0.3 94.0± 0.2
Avg Low 86.3± 0.3 78.6± 1.1 67.4± 0.2 62.9± 0.3 57.5± 0.4 63.3± 0.3
Avg All 60.4± 0.2 56.7± 0.9 67.3± 0.8 72.0± 0.5 69.0± 0.4 72.5± 0.3

Table 12: 20-shot accuracy across shifts: comparison of different responses. Zero-shot is the accuracy
before any updates are performed.

Zero-shot SGD FlexTune Upd. Rule

H1 0.0± 0.0 89.3± 1.6 97.2± 0.7 95.5± 1.2
H2 0.0± 0.0 85.4± 3.1 94.8± 0.6 89.9± 1.4
H3 0.0± 0.0 90.3± 0.6 96.3± 0.9 93.5± 2.4
Crystals 46.3± 0.4 66.5± 1.8 83.7± 0.5 82.1± 0.9
Fog 78.4± 0.4 88.1± 0.3 90.4± 0.4 90.4± 0.4
Gauss. Blur 60.4± 2.1 86.0± 0.5 86.6± 0.4 86.9± 0.4
Grass 5.8± 0.2 77.0± 1.2 85.6± 1.0 85.5± 0.2
Imp. Noise 76.9± 0.9 88.5± 0.1 89.1± 0.6 88.3± 0.3
Sky 4.1± 0.5 73.3± 0.8 84.8± 1.0 84.7± 0.9
Stripe 16.3± 1.1 81.6± 0.4 83.9± 1.3 84.7± 1.1

Avg High 0.0± 0.0 88.3± 1.4 96.1± 0.2 93.0± 1.1
Avg Low 41.2± 0.3 80.1± 0.3 86.3± 0.3 86.1± 0.3
Avg All 28.8± 0.2 82.6± 0.2 89.2± 0.2 88.2± 0.4
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Table 13: 50-shot accuracy across shifts: training different layers of a CNN

Conv1 Conv2 Conv3 FC1 FC2 FC1 + FC2

H1 0.0± 0.0 25.8± 24.0 83.5± 5.3 97.0± 0.2 97.2± 0.5 95.9± 0.9
H2 0.0± 0.0 32.8± 4.5 84.4± 1.9 94.8± 0.7 95.2± 0.9 93.5± 1.2
H3 0.0± 0.0 28.1± 17.4 85.0± 4.7 95.5± 1.9 97.6± 0.5 96.1± 0.6
Crystals 85.2± 0.5 72.9± 1.2 59.3± 0.3 57.8± 0.3 53.1± 0.6 57.8± 0.2
Fog 90.6± 0.2 89.3± 0.1 87.7± 0.2 86.7± 0.2 85.1± 0.3 86.6± 0.2
Gauss. Blur 87.9± 0.5 87.3± 0.3 85.8± 0.4 84.6± 0.2 83.2± 0.6 84.6± 0.2
Grass 87.1± 0.6 75.2± 1.9 29.8± 1.6 19.3± 0.8 9.0± 0.2 19.7± 0.6
Imp. Noise 89.4± 0.3 88.3± 0.2 86.9± 0.3 85.9± 0.3 84.8± 0.2 85.9± 0.2
Sky 86.7± 0.5 80.9± 0.3 66.4± 0.6 54.3± 1.8 38.2± 0.8 56.7± 0.4
Stripe 87.4± 0.3 84.6± 0.7 83.2± 0.5 79.9± 0.9 67.6± 0.8 79.8± 0.8

Avg High 0.0± 0.0 28.9± 12.2 84.3± 3.7 95.8± 0.6 96.7± 0.6 95.2± 0.2
Avg Low 87.8± 0.1 82.6± 0.4 71.3± 0.3 66.9± 0.3 60.1± 0.3 67.3± 0.0
Avg All 61.4± 0.1 66.5± 3.8 75.2± 0.9 75.6± 0.4 71.1± 0.3 75.7± 0.1

Table 14: 50-shot accuracy across shifts: comparison of different responses. Zero-shot is the accuracy
before any updates are performed.

Zero-shot SGD FlexTune Upd. Rule

H1 0.0± 0.0 93.3± 0.5 97.2± 0.5 96.8± 0.3
H2 0.0± 0.0 89.9± 0.9 95.2± 0.9 94.4± 0.6
H3 0.0± 0.0 93.8± 1.4 97.6± 0.5 95.5± 2.0
Crystals 46.3± 0.4 73.2± 0.9 85.2± 0.5 83.5± 0.5
Fog 78.4± 0.4 88.9± 0.3 90.6± 0.2 90.5± 0.3
Gauss. Blur 60.4± 2.1 87.3± 0.4 87.9± 0.5 87.4± 0.3
Grass 5.8± 0.2 81.8± 0.4 87.1± 0.6 86.2± 0.4
Imp. Noise 76.9± 0.9 88.9± 0.2 89.4± 0.3 88.5± 0.5
Sky 4.1± 0.5 79.1± 0.5 86.7± 0.5 86.9± 0.3
Stripe 16.3± 1.1 84.8± 1.3 87.4± 0.3 87.5± 0.4

Avg High 0.0± 0.0 92.3± 0.6 96.7± 0.6 95.6± 0.6
Avg Low 41.2± 0.3 83.4± 0.2 87.8± 0.1 87.2± 0.1
Avg All 28.8± 0.2 86.1± 0.3 90.4± 0.2 89.7± 0.1
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Table 15: 2000-shot (all data) accuracy across shifts: training different layers of a CNN

Conv1 Conv2 Conv3 FC1 FC2 FC1 + FC2

H1 0.0± 0.1 80.0± 9.9 97.6± 0.2 98.7± 0.1 98.6± 0.1 98.8± 0.1
H2 2.0± 3.2 78.2± 8.1 96.7± 0.2 98.0± 0.2 98.0± 0.2 98.3± 0.2
H3 0.0± 0.0 81.9± 2.8 97.7± 0.4 98.6± 0.3 98.7± 0.2 98.8± 0.0
Crystals 88.0± 0.3 85.5± 0.3 72.6± 0.2 69.4± 0.6 57.4± 0.4 68.2± 0.3
Fog 91.2± 0.3 91.2± 0.1 90.6± 0.1 90.2± 0.1 88.0± 0.3 89.6± 0.1
Gauss. Blur 90.1± 0.1 90.9± 0.1 90.3± 0.0 90.2± 0.1 86.7± 0.1 89.7± 0.2
Grass 89.1± 0.2 86.1± 0.5 56.6± 1.1 40.8± 0.9 17.0± 0.3 38.8± 1.0
Imp. Noise 89.8± 0.1 89.7± 0.2 88.2± 0.1 88.3± 0.2 86.6± 0.3 87.6± 0.2
Sky 89.0± 0.1 88.2± 0.3 81.7± 0.1 75.2± 0.3 48.8± 0.4 73.7± 0.4
Stripe 89.9± 0.1 90.8± 0.3 90.3± 0.1 89.0± 0.0 76.3± 0.5 88.3± 0.2

Avg High 0.7± 1.1 80.0± 5.1 97.4± 0.2 98.5± 0.1 98.4± 0.1 98.6± 0.0
Avg Low 89.6± 0.1 88.9± 0.0 81.5± 0.2 77.6± 0.1 65.8± 0.1 76.5± 0.1
Avg All 62.9± 0.3 86.3± 1.5 86.2± 0.1 83.8± 0.1 75.6± 0.1 83.2± 0.1

Table 16: 2000-shot (all data) accuracy across shifts: comparison of different responses. Zero-shot is
the accuracy before any updates are performed.

Zero-shot SGD FlexTune Upd. Rule

H1 0.0± 0.0 97.9± 0.1 98.8± 0.1 98.7± 0.2
H2 0.0± 0.0 97.2± 0.4 98.3± 0.1 98.1± 0.2
H3 0.0± 0.0 98.2± 0.1 98.8± 0.0 98.7± 0.3
Crystals 46.3± 0.4 87.7± 0.3 88.0± 0.3 88.3± 0.2
Fog 78.4± 0.4 90.9± 0.0 91.3± 0.2 90.8± 0.2
Gauss. Blur 60.4± 2.1 90.5± 0.1 90.9± 0.1 90.6± 0.1
Grass 5.8± 0.2 89.2± 0.1 89.1± 0.2 89.5± 0.4
Imp. Noise 76.9± 0.9 89.3± 0.2 89.8± 0.1 89.5± 0.2
Sky 4.1± 0.5 89.1± 0.2 89.0± 0.1 89.4± 0.1
Stripe 16.3± 1.1 90.6± 0.3 90.8± 0.3 90.0± 0.2

Avg High 0.0± 0.0 97.8± 0.1 98.6± 0.0 98.5± 0.1
Avg Low 41.2± 0.3 89.6± 0.1 89.8± 0.0 89.7± 0.1
Avg All 28.8± 0.2 92.1± 0.1 92.5± 0.0 92.4± 0.0
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