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ABSTRACT

Being able to broadly predict the function of novel metabolites based on their
structures has applications in systems biology, environmental monitoring and drug
discovery. To date, machine learning models aiming to predict functional char-
acteristics of metabolites have largely been limited in scope to predicting single
functions, or only a small number of functions simultaneously. Using the Human
Metabolome Database as a source for a wider range of functional annotations,
we assess the feasibility of predicting metabolite functions more broadly, as de-
fined by four elements, namely location, role, the process it is involved in, and
its physiological effect. We evaluated three graph neural network architectures to
predict available functional ontology terms. Among the models tested, the Graph
Attention Network, incorporating embeddings from the pre-trained ChemBERTa
model to predict the process metabolites are involved in, achieved the highest per-
formance with an F1-score of 0.889 and a recall of 0.903. The model identified
function-associated structural patterns within metabolite families, demonstrating
the potential for interpretably predicting metabolite functions from structural in-
formation.

1 INTRODUCTION

Metabolites are the small molecules produced during metabolism that play essential roles in bio-
chemical pathways in all living organisms. Understanding their functions is important to advance
the fundamental understanding of molecular and cellular pathways and for a range of different ap-
plication areas including environmental monitoring and drug discovery. Functions are commonly
linked to structures in biochemistry, including for metabolites (1) (2), enabling the potential predic-
tion of functional characteristics based on structures. This idea has been extensively explored for
proteins, where the prediction of function based on structure is a longstanding grand challenge in
computational biology (3)(4)(5)(6), and has seen great improvements in recent years with the rise
of machine learning models such as DeepFRI (7), which predicts functional Gene Ontology (GO)
terms based on the structure of proteins.

To our knowledge, unlike for proteins, for metabolites no machine learning model exists to predict
a broad range of functions at the same time based on their structure. A possible explanation could
be the lack of a gold-standard ontology for metabolites that matches the scale of the Gene Ontology
(GO) for proteins. Various ontologies exist, such as the ’role’ branch of the ChEBI (8) ontology or
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ChemFOnt (9), but these are not as complete as GO or as comprehensive in terms of annotations.
Nevertheless, chemical compounds have more stable and defined structures than proteins, which
should represent a valuable source of information. An increase in the number and scale of publicly
accessible metabolite databases, such as the Human Metabolome Database (HMDB)(10), gives rise
to an opportunity to address this gap.

We aimed to develop a model to address the challenge of predicting metabolite function based
on their structure. We hypothesize that the molecular structures of metabolites contain sufficient
information to enable prediction of their functional metabolic characteristics as defined by their
location, their role, the processes they are involved in, and their physiological effects (as per HMDB
annotations). Based on the logical representation of molecules as graphs, we compare three different
graph neural network architectures for this task, and furthermore show the ability of an attention-
based model to detect the importance of certain chemical bonds for the function of molecules.

1.1 RELATED WORK

Advancements in protein function prediction have been driven by machine learning models that ef-
fectively leverage sequence and structural information. For example, DeepGO uses deep learning
and protein sequence embeddings to predict protein function annotations, with its updated version,
DeepGO-SE, incorporating a pretrained large language model (LLM) to predict Gene Ontology
(GO) functions (11). Similarly, DeepFRI combines graph convolutional networks (GCNs) and pro-
tein contact maps to identify functional sites in protein structures. GCNFold (12) applies GCNs to
protein structure graphs for functional site prediction, while TAWFN integrates convolutional neural
networks (CNNs) and GCNs for enhanced protein function annotation (13).

While these advances highlight the power of machine learning in protein function prediction, no
model has yet been developed to perform multi-label functional predictions specifically for metabo-
lites. In the broader domain of chemical predictive modelling, QSAR (14) models link molecular
structure to specific biological activity, for example models may predict binding affinity, inhibitory
concentration, or toxicity using linear and non-linear methods. Other models have been developed to
address related prediction tasks, such as DLMPM (15), which employs a latent factor model to iden-
tify disease-metabolite associations, and Deep-DRM, which applies graph deep learning techniques
for the same purpose. GCNAT (16) combines GCNs with graph attention networks for predicting
disease-metabolite associations. Expanding to molecular property prediction, Qu et al. (2024) (17)
used GNNs to predict properties such as boiling points and mass spectra. Huckvale et al. (2024) (18)
proposed a model to determine metabolite-pathway involvement using features of both metabolites
and pathways. Additionally, Porokhin et al. (2023) (19) demonstrated GNN applications for site-
of-metabolism prediction, while Glauer et al. (2024) (20) introduced a Transformer-based model to
extend ChEBI’s ontology (the structural branch rather than the role branch) by classifying unseen
chemical structures.

Finally, ChemBERTa (21) can learn molecular representations using SMILES and was used in our
model to improve the results. MolCLR (22) also aims to learn molecular representations in a self-
supervised manner.

1.2 CONTRIBUTIONS OF OUR STUDY

We propose a novel machine learning approach for predicting multiple metabolite functions based
solely on chemical structure, addressing a significant unmet need in current metabolomics research,
where increasingly large numbers of metabolite structures may be characterised in samples yet not
yet be associated with any functional annotations.

We extract and filter a dataset of 3’278 metabolite structures and associated functions from the
HMDB. We evaluated and compared three graph neural network (GNN) architectures: Graph Con-
volutional Network (GCN), Graph Isomorphism Network (GIN), and Graph Attention Network
(GAT), while also assessing the effectiveness of ChemBERTa embeddings to augment these mod-
els. We highlight the attention-based model’s ability to detect important molecular substructures by
leveraging explainable AI techniques on the attention weights.
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Figure 1: Data processing pipeline. Files from the HMDB were parsed to extract a truth table and
a tree ontology. Metabolites were filtered by keeping only the ones with the label “Detected and
quantified”. Ontology terms were first filtered to keep only the terminal (without a child) nodes.
A subset was selected using median absolute deviation filtering. Input/output information was ex-
tracted for this given set of metabolites and ontology terms. The data was stratified and split to tackle
the unbalanced nature of the data set regarding possible outputs.

2 METHODS

2.1 DATABASE

The Human Metabolome DataBase (HMDB) includes 217’920 metabolites, each characterized by
various attributes such as molecular weight and chemical structure.

2.2 METABOLITE FILTERING

Each metabolite in HMDB falls into one of four categories: “expected”, “predicted”, “detected
but not quantified”, or “detected and quantified”. For each ontology term, we counted the number
of metabolites associated with it, allowing us to calculate the standard deviation across different
metabolite categories (Fig. 2) using:

σj =

√∑
i(xi,j − x̄j)

N − 1

Here, xi,j represents the binary value for metabolite i and ontology term j. x̄j is the mean value
of the binary values for ontology term j and N is the number of metabolites. This analysis was
based on the assumption that if all metabolites are associated with a given term, or none are, the
standard deviation would be zero, indicating a lack of informative value for the model. An important
difference can be seen in the different distributions. Most ontology terms have a near zero standard
deviation when looking only at “expected”, “predicted”, or “detected but not quantified” metabolites.
This can be explained by the fact that most of them do not contain any ontology-related information
and thus are set to ‘False’ yielding a very small standard deviation. Thus, we decided to focus on
the “detected and quantified” (3’278 metabolites) category (Fig. 1) because it was the only one with
enough ontology-related information to test our hypothesis.
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Figure 2: Histogram of standard deviation across the different categories of metabolites as described
in the HMDB. Many ontology terms have a near zero standard deviation and were filtered out to re-
tain only a small subset of ontology terms as outputs of the model. Distribution for all the ’expected’
or ’predicted’ metabolites (green), ’detected but not quantified’ metabolites (blue), and ’detected and
quantified’ metabolites (yellow).

2.3 FUNCTION DEFINITION

The HMDB’s functional hierarchical structure comprises 2,009 distinct ontology terms, all of which
are categorized under one of four primary nodes:

• “Disposition” is defined by the HMDB as the “origin of a chemical, its location within an
organism or its route of exposure”. We will refer to this category as “location”.

• “Role” is defined by the HMDB as the “purpose or function of a chemical, either naturally
or as intended by humans”.

• “Process” is defined by the HMDB as the “biological or chemical events, or a series thereof,
leading to a known function or a known end product”.

• “Physiological effect” is defined by the HMDB as the “measured or observed physiological
effect on an organism resulting from its exposure to a chemical”.

We used median absolute deviation (MAD) to filter which ontology terms were used as an output
of the model. MAD is a robust statistical measure of variability and is sensitive to outliers. The
threshold was selected with a modified Z-score Mi based on the similarity with a gamma distribution
(23):

Mi =
0.6745(si − s)

MAD
where si is the standard deviation of the ontology term i, s is the median standard deviation, and
MAD is the median absolute deviation. Terms with an absolute Mi > 3.5 were selected as outputs
of the model. After filtering, 14 child nodes remained in “Process”, 31 in “Disposition”, 16 in
“Physiological effect”, and 11 in “Role” (Fig. 1).

2.4 DATA PROCESSING

Graph representation is commonly used for molecules (24) (25) (26) (27) (28) as a direct mapping
can be made by using a node for each atom and an edge between two atoms for each bond. The
input representation used in our model stores multiple pieces of information for each metabolite:
2D coordinates as given by HMDB and atomic number of each atom, the two atoms at the extrem-
ities of each bond, and the bond type (single, double, ...). One-hot encoding is commonly used for
categories in machine learning to avoid arbitrary ordinal relationships and was used in this model to
represent each possible atom. The 2D coordinates of each molecule were normalized and standard-
ized given that one-hot encodings were also used as input of the model. Indeed, having both extreme
coordinates and one-hot encodings as inputs would result in the model likely focusing only on the
coordinates. The model predicts a binary value separately for each selected ontology term (multi-
label classification). Even though some terms are related, the model treats all outputs as independent
for simplification.
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Figure 3: Visual representation of the model from input to the output. The input is composed of
four arrays to describe all the parts of each molecule: 2D coordinates, atomic numbers, and bonds.
The compared architectures all include convolutional layers followed by fully connected layers.
Multi-label classification is used and a binary value is outputted for each selected ontology term.

Due to the small size and the unbalanced nature of the dataset, the split between training and test
sets had to be carefully done. Indeed, many metabolites share similar outputs. To avoid their uneven
grouping in the training (or test) sets, the metabolites were stratified based on output labels with a
ratio of 0.9/0.1.

2.5 ARCHITECTURES

We used three graph architectures using convolutions and compared their performance: Graph
Convolutional Network (GCN), Graph Isomorphism Network (GIN) and Graph Attention Network
(GAT) (29) (30). GCNs extend the concept of convolution from grid-like data (such as images) to
graph data, allowing the aggregation of feature information from neighboring nodes. This approach
effectively captures local graph structure and node features. GINs are designed to be powerful for
graph isomorphism, making them capable of distinguishing a wide variety of graph structures. They
achieve this by using a multi-layer perceptron (MLP) to aggregate node features, enhancing their
discriminative power. GATs introduce an attention mechanism to GNNs, enabling nodes to assign
different importance weights to their neighbors. This allows for more flexible and expressive feature
aggregation, potentially improving performance on tasks where certain neighbors have more influ-
ence than others. Each architecture is made of 2 convolutional layers followed by a fully connected
layer. The Adam optimizer with the binary cross entropy (BCE) loss is used for all the models. Sum
aggregation is used to aggregate the features in order to do graph classification.

2.6 EMBEDDING CALCULATION

To improve model performances, pre-trained models are commonly used to include extra informa-
tion. We tested this hypothesis with the pre-trained model ChemBERTa (31), which is inspired
by the BERT (32) large language model (LLM) applied to molecules. This chemical model was
trained on 77M unique SMILES annotations from PubChem (33). For each part of the SMILES,
an embedding, i.e. a vector capturing important semantic and structural features of the molecule,
is obtained. By averaging these embeddings, we obtained a vector representation of each molecule
which is added before the fully connected layer of the model (Fig. 3).

2.7 METRICS

Due to the limited size of the dataset used (3’278 metabolites) and the small proportion of metabo-
lites with specific ontology terms, the model is susceptible to generate a high number of false neg-
atives. Accuracy is thus not a suitable metric to evaluate the model. We used instead the macro
F1-score, which combines precision and recall. The true positive rate (TPR), also known as recall,
was also used since we were mainly interested in knowing which ontology terms are associated with
a given metabolite.
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Figure 4: Summary of the tested architectures. a) Graph Convolutional Network (GCN) b) Graph
Isomorphism Network (GIN) c) Graph Attention Network (GAT).

Table 1: Hyper-parameters

Layers Features Heads Dimension Epochs Threshold Learning Rate Weight Decay
2 64 8 32 20 0.5 0.005 0.001

2.8 MODEL COMPARISON AND HYPER-PARAMETERS

We performed a model comparison using five-fold cross validation to select the best architecture and
related parameters for each level 1 node. The model’s general structure can be seen in Fig. 3 and
Fig. 4. All the models were trained using the same hyper-parameters that are listed in table 1.

2.9 ATTENTION NODES

The GAT architecture offers a class called “Explainer” which allowed us to easily interpret some of
the results of our study. The GAT architecture we used consists of eight heads which are composed
of attention nodes. An attention node has the advantage, as compared to a regular node, of giving
a different importance (or weight) to each of its neighbors. These different weights are useful for
classification and pattern detection. Our model uses the max attention explainer algorithm, which
selects the biggest weight across the different heads for a given node or bond. Min-max scaling was
used across each metabolites’ weights to see more distinct patterns.

3 RESULTS

3.1 MODEL COMPARISON

Overall, we obtained better results for models including the pre-trained embeddings (Tables 2, 3).
Using ChemBERTa embeddings improved the F1-score by an average of 7.96% and the recall by
5.88%. The best architecture depends on the function category (location, role, process, and physio-
logical effect) and the use or not of ChemBERTa embeddings. The GAT architecture using Chem-
BERTa embeddings predicting “Process” nodes yielded the best macro F1-score (0.889). The GIN
architecture without ChemBERTa embeddings predicting “Disposition” nodes yielded the best recall
(0.960). The “Physiological effect” nodes yielded poorer results with a best F1-score of 0.393.
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Table 2: Metrics evaluated on the three different architectures without using ChemBERTa embed-
dings.

METRIC CATEGORY GCN GIN GAT

F1-Score Disposition 0.624 ± 0.003 0.645 ± 0.004 0.601 ± 0.003
Role 0.811 ± 0.008 0.822 ± 0.009 0.706 ± 0.012
Process 0.834 ± 0.009 0.875 ± 0.007 0.823 ± 0.009
Physiological Effect 0.278 ± 0.006 0.287 ± 0.002 0.147 ± 0.050

Recall Disposition 0.918 ± 0.013 0.960 ± 0.019 0.903 ± 0.008
Role 0.834 ± 0.009 0.831 ± 0.014 0.776 ± 0.014
Process 0.841 ± 0.011 0.895 ± 0.005 0.830 ± 0.014
Physiological Effect 0.278 ± 0.003 0.277 ± 0.002 0.157 ± 0.050

Table 3: Metrics evaluated on the three different architectures using ChemBERTa embeddings.

METRIC CATEGORY GCN GIN GAT

F1-Score Disposition 0.682 ± 0.004 0.659 ± 0.007 0.672 ± 0.002
Role 0.874 ± 0.007 0.857 ± 0.008 0.877 ± 0.006
Process 0.883 ± 0.009 0.862 ± 0.014 0.889 ± 0.007
Physiological Effect 0.393 ± 0.028 0.293 ± 0.003 0.368 ± 0.055

Recall Disposition 0.880 ± 0.018 0.942 ± 0.006 0.939 ± 0.007
Role 0.910 ± 0.020 0.874 ± 0.012 0.928 ± 0.007
Process 0.904 ± 0.020 0.867 ± 0.015 0.903 ± 0.005
Physiological Effect 0.416 ± 0.061 0.287 ± 0.005 0.353 ± 0.053

3.2 CELL MEMBRANE COMPOSITION

To assess the biological relevance of our model, we focused on lipids and their presence in cell
membranes. Given that lipids constitute the primary components of cell membranes, the model
should demonstrate an understanding of this relationship. We therefore trained a model following the
same methodology as described earlier, specifically designed to classify whether a given metabolite
is found in the cell membrane or not. This approach enabled us to develop a more specialized
model and identify patterns in its learning process. In the test set for this model, 203 metabolites
are labeled as lipids by the HMDB, and 201 of those are found in the cell membrane. The model
correctly predicted cell membrane localization for 194 of these metabolites, highlighting its accuracy
in capturing this specific relationship (Fig. 5). Metabolites HMDB0000634 and HMDB0001452,
which are both fatty acyls, were the only misclassified lipids for the cell membrane category. The
various possible locations of fatty acyls could explain the more challenging nature of the predictions
of the model for this family of lipids.

3.3 INTERPRETABILITY

The use of attention nodes allowed us to look at the importance of certain bonds in the classification
process. Patterns were found across triacylglycerols, which are a family of lipids mostly found in
the cell membrane. Triacylglycerols are made of three fatty acyls and linked by a glycerol known as
the head of the lipid. The most important element for the classification of these metabolites as cell-
membrane metabolites appeared to be their head (Fig. 5). The bonds are colored using the attention
weights meaning that a darker bond is more important for classification. The darker pattern shows
the importance of bonds near the head of the molecule compared to the fatty acyls. The bonds
that are the most important in the classification of the majority of triacylglycerols seem to be less
important in the correct classification of metabolite HMDB0010445.
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Figure 5: Interpretability analysis for the ontology term “Cell Membrane”. a) Heat map for the
confusion matrix of “Cell membrane” predictions for lipid metabolites. b) Visual representation of
metabolite HMDB0005424 which belongs in the triacylglycerol family. The head of the metabolite,
weighted important for the classification process, is highlighted. c) Visual representation of triacyl-
glycerol metabolites present in the test set with colored bonds based on the weight attributed by the
model. Darker bonds are more important in the classification process.

4 DISCUSSION

We built a graph neural network model to predict multiple metabolite functions (location, role, pro-
cess, and physiological effect) based on molecular structures. We compared various commonly used
architectures, and the pre-trained ChemBERTa embeddings improved the results in the vast major-
ity of the categories. The small number of output nodes for “Process” and “Role” compared to the
“Disposition” nodes could in part explain the higher performance on these categories in general, as
multi-label prediction generally becomes more challenging as the number of labels increases. The
model underperformed on the “Physiological Effect” task compared to the others, which could be
because measurable physiological effects might be driven by differences in metabolite concentra-
tions rather than just their presence and structure, on top of many additional possible confounders.
In the future, incorporating concentration data could improve the model’s accuracy.

No clear distinction in the HMDB is made between missing information and a given metabolite not
having the function represented by a specific ontology term – there are no true negatives annotated
in the dataset. This, combined with the general sparsity of annotations, contributes to the model
having a large number of false negative results.

In future work, we plan to tune the various hyper-parameters of the architecture, such as the number
of convolutional layers, to improve the performance of the model. An additional next possible step
to improve the performance could be to use exact ChemBERTa embeddings for each part of the
metabolite instead of using mean embeddings as is currently done in our model. In this case, the
model would use as input and as node feature for each atom and bond the exact atom or bond
embedding as given by ChemBERTa.

SMILES is commonly used in computational chemistry as an input for models. We decided to
directly use coordinates here on the hypothesis that it would yield better results. A next step would
be to perform an ablation study to evaluate this hypothesis and in the case where coordinates do not
significantly improve results, a new model could be made using SMILES as input. This would also
solve the previously mentioned limitation as it would allow for easier integration of the ChemBERTa
embedding of each part of the molecule.

Kengkanna et al. (2024) (34) introduced novel molecular graph representations by leveraging graph
reduction techniques to enhance the capture of chemical substructures, including functional groups,
chemical fragments, and pharmacophoric features. A promising avenue for future research lies in
utilizing these graph reduction methods to provide varying levels of detail about key characteristics
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relevant to compound property identification and interaction profiling, thereby potentially improving
metabolites function prediction.

Our model establishes the feasibility of predicting functional ontology terms for metabolites based
on their structural information. The availability of larger and more comprehensive datasets will be
crucial for advancing the accuracy and applicability of machine learning techniques in this domain.

5 DATA AVAILABILITY

All the code is available at https://github.com/TancrediCogne/MetaboliteGNN and
the data needed to run the files can be downloaded directly from the HMDB website.
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M. Darsow, M. Guedj, and M. Ashburner. Chebi: a database and ontology for chemical entities
of biological interest. Nucleic Acids Research, 36(suppl1):D344–D350, January 2008.

[9] D.S. Wishart, S. Girod, H. Peters, E. Oler, J. Jovel, Z. Budinski, R. Milford, V.W. Lui, Z. Say-
eeda, R. Mah, W. Wei, H. Badran, E. Lo, M. Yamamoto, Y. Djoumbou-Feunang, N. Karu, and
V. Gautam. Chemfont: The chemical functional ontology resource. Nucleic Acids Research,
51(D1):D1220–D1229, 2023.

[10] D.S. Wishart, A. Guo, E. Oler, F. Wang, A. Anjum, H. Peters, R. Dizon, Z. Sayeeda, S. Tian,
B.L. Lee, M. Berjanskii, R. Mah, M. Yamamoto, J. Jovel, C. Torres-Calzada, M. Hiebert-
Giesbrecht, V.W. Lui, D. Varshavi, D. Varshavi, D. Allen, D. Arndt, N. Khetarpal, A. Sivaku-
maran, K. Harford, S. Sanford, K. Yee, X. Cao, Z. Budinski, J. Liigand, L. Zhang, J. Zheng,

9

https://github.com/TancrediCogne/MetaboliteGNN
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