
Biological Neurons vs Deep Reinforcement Learning:
Sample efficiency in a simulated game-world

Forough Habibollahi ∗
Department of Biomedical Engineering

University of Melbourne
Melbourne, Australia

Moein Khajehnejad ∗
Department of Data Science and AI

Monash University
Melbourne, Australia

Amitesh Gaurav
Cortical Labs Pty Ltd
Melbourne, Australia

Brett J. Kagan
Cortical Labs Pty Ltd
Melbourne, Australia

Abstract

How do synthetic biological systems and artificial neural networks compete in
their performance in a game environment? Reinforcement learning has under-
gone significant advances, however remains behind biological neural intelligence
in terms of sample efficiency. Yet most biological systems are significantly more
complicated than most algorithms. Here we compare the inherent intelligence of
in vitro biological neuronal networks to state-of-the-art deep reinforcement learn-
ing algorithms in the arcade game ’pong’. We employed DishBrain, a system that
embodies in vitro neural networks with in silico computation using a high-density
multielectrode array. We compared the learning curve and the performance of
these biological systems against time-matched learning from DQN, A2C, and
PPO algorithms. Agents were implemented in a reward-based environment of
the ‘Pong’ game. Key learning characteristics of the deep reinforcement learning
agents were tested with those of the biological neuronal cultures in the same game
environment. We find that even these very simple biological cultures typically
outperform deep reinforcement learning systems in terms of various game perfor-
mance characteristics, such as the average rally length implying a higher sample
efficiency. Furthermore, the human cell cultures proved to have the overall highest
relative improvement in the average number of hits in a rally when comparing the
initial 5 minutes and the last 15 minutes of each designed gameplay session.

1 Introduction

The concept of reinforcement learning dates back to the early days of cybernetics and has been
studied in statistics, psychology, neuroscience, and computer science. In the past decade, its use
has become increasingly popular in the fields of machine learning and artificial intelligence. Its
promise is highly convincing - a way of programming agents by rewarding and punishing them
without having to specify how the task is to be accomplished. However, to deliver on this promise,
formidable computational obstacles must be overcome. Reinforcement learning (RL) implies learn-
ing the best policy to maximize an expected cumulative long-term reward throughout many steps in
order to achieve complex objectives (goals) [1]. A deep reinforcement learning (deep RL) approach
integrates artificial neural networks with a reinforcement learning framework that helps the system
to achieve its goals [2]. That is, it maps states and actions to the rewards they bring, combining
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function approximation and target optimization. Reinforcement algorithms that incorporate deep
neural networks have been developed to beat human experts playing numerous Atari video games
[3], poker [4], multiplayer contests [5], and complex board games, including go and chess [6, 7, 8].
Nevertheless, reinforcement learning still faces real challenges including but not limited to complex-
ities in the selection of reward structure, sample inefficiency [9, 10], reproduciblity issues [11], as
well as requiring high levels of computing power [12]. All of these suggest that deep RL algorithms
may differ fundamentally from the underlying mechanisms of human learning while also being too
inefficient to be accepted as plausible models of human learning [10].
It was recently demonstrated that by using electrophysiological stimulation and recording in a real-
time closed-loop system with a monolayer of living biological neurons, these cells could be trained
to significantly improve performance in the simulated ’pong’ gameworld [13]. The question arises
as to whether this observed performance is notable in comparison to that of reinforcement learn-
ing at the same task. To compare the performance and efficiency of such a biological neuronal
network (BNN) to that of deep RL, we use data gathered from the DishBrain system [13] against
time-matched learning from DQN, A2C & PPO algorithms. DishBrain is a novel system shown to
display biological intelligence by harnessing the inherent adaptive computation of neurons within a
simulated gameplay environment in real time through closed-loop stimulation and recordings. In this
system, in vitro neuronal networks are integrated with in silico computing via high-density multi-
electrode arrays (HD-MEAs). We investigate whether these elementary learning systems achieve
performance levels which can compete with state-of-the-art deep RL algorithms while varying the
input information density required for training the RL algorithms to also determine the impact of
information sparsity and ensure suitable comparisons to the biological system. This is the first com-
parison between a synthetic biological intelligence system and state-of-the-art RL algorithms.

2 Methods

2.1 DishBrain System

To investigate the learning efficiency of the BNNs in the task-present state, recordings from cultures
integrated onto an MEA were used. The DishBrain environment is a low latency, real-time system
which interacts with the MEA (Maxwell Biosystems, Switzerland) software to allow closed-loop
stimulation and recording. DishBrain was utilised to embody neural cultures in a virtual game-
world, to simulate the arcade game ‘Pong’. Stimulation was applied into a predefined bounded
two-dimensional sensory area consisting of 8 sensory electrodes to communicate ball’s position
on the x and y-axis using a combination of rate coding (4Hz - 40Hz) electrical pulses and place
coding, respectively. The movement of the paddle was controlled by the level of electrophysiological
activity measured in a predefined “motor area”, which was recorded in real time (see Supplementary
Materials for details). The cells also received information about the closed-loop response to their
control of the paddle. Each recording session of the cultures was 20 minutes. This equaled an
average number of 70 training episodes.

2.2 Deep Reinforcement Learning Algorithms

We use three state-of-the-art deep reinforcement learning algorithms: Deep Q Network (DQN) [3],
Advantage Actor-Critic (A2C) [14] and Proximal Policy Optimization (PPO) [15], established to
have good performance in Atari games. Benefiting from deep learning advantages in automated
feature extraction, specifically exploiting Convolutional Neural Networks (CNN) in their structures,
these methods are robust tools in reinforcement tasks, particularly in games where the system’s input
is an image. We only report the results of the deep RL algorithms in a design where the current state
is a tensor of the difference of pixel values from the two most recent frames (i.e. another 40 × 40
grayscale pixel image). This current state is then input into the CNN to obtain the selected action.
However, to account for potential adversaries resulting from the high dimensionality of the im-
age input, [16], we also designed two additional types of low-dimensional input information: 1)
[ballx, bally, paddletopy

, paddlebottomy
], and 2) [ballx, bally], bally ∈ {1, 2, · · · , 8} as we divide

the y-axis to 8 equal segments mimicking the 8 sensory electrodes which place code the bally in the
biological cultures. We compared all three different designs with the performance of biological cul-
tures and observed no significant difference in the outcome of these comparisons (see the additional
results in Supplementary Materials). In the training phase of all RL algorithms, we ran them for
40 random seeds and a total of 70 episodes for each seed (similar to BNNs). These seeds imply 40
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different neural networks trained separately, resembling 40 different recorded cultures. We report
the average value of each metric among all seeds.

3 Results

We studied both human cortical cells (HCCs; 174 sessions) and mice cortical cells (MCCs; 110 ses-
sions) and compared them to the introduced RL baseline methods. To determine how the learning
arises both in the cultures and the baseline methods, key gameplay characteristics were examined.
The hit counts in the gameplay in each episode before the ball was missed for the first time, the
number of times the paddle failed to intercept the ball on the initial serve (aces), and the number of
long rallies (> 3 consecutive hits) were calculated for this data. For comparison purposes, we first
mapped every 70-episode run of each RL algorithm to a real-time equivalent of 20 minutes by first
normalizing to the actual total length of each run in minutes and then multiplying by 20 minutes.

The DQN algorithm is outperformed by all groups in the highest level of average hits per rally
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Figure 1: a) Average number of hits per rally, b) % aces, and c) % long rallies over 20 minutes real-time
equivalent of training RL algorithms and biological cultures. A regressor line on the mean values with a 95%
confidence interval highlights the learning trends. d) Average rally length in the first 5 minutes and last 15
minutes of the sessions. e) Average % of aces within groups and over time. f) Average % of long-rallies (>3)
performed in each interval. g, h, and i) Pairwise Tukey’s post hoc test among groups in each time interval
and for g) average rally length, h) % aces, and i) % long rallies. Box plots show interquartile range, with bars
demonstrating 1.5X interquartile range, the line marks the median and ▲ marks the mean. Error bands = 1 SE

achieved, while the biological cultures (i.e. HCC and MCC) outperform all the RL baselines (see
Subfigure 1.a). This indicates that the cultures represent faster growing learning rates. Subfigure 1.b
compares the % of missed balls on the initial serve, i.e. aces. HCC and MCC achieve the lowest %
of aces in Subfigure 1.b. The % of long rallies has an increasing trend in all groups with the highest
levels achieved by MCC and HCC as illustrated in Subfigure 1.c.
Next, for all the groups, we compared the key activity metrics in the first 5 minutes versus the last
15 minutes in each session. Our aim was to identify any significant improvement in the learning
process within each group. Subfigure 1.d compares the average rally length between the two defined
time intervals. The results imply that the intra-group improvement in the length of rallies is signif-
icant only in the biological groups (One-way ANOVA test). Subfigure 1.e represents the change in
the average % of aces over time. A significant decrease in the number of aces implies an improved
game performance. Only MCC and HCC groups had a significant decrease in the average % of aces
(One-way ANOVA test). Subfigure 1.f shows that % of long rallies in the first 5 minutes versus the
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last 15 minutes only significantly increased for the biological cultures (One-way ANOVA test).
Pairwise inter-group comparison was carried out for both time intervals and all metrics using Tukey’s
post hoc test represented in Subfigures 1.g, h, and i for hit counts, % of aces, and % of long rallies.
It should be noted that while certain metrics of the performance of the deep RL methods comes
closets to the biological cultures, the density of input information is starkly different between RL
methods and the biological cultures. While RL agents receive pixel data with a density of 40 × 40
pixels, biological cultures only receive input from 8 stimulation points with a given integer rate code
of 4Hz–40Hz, highlighting important efficiency differences in informational input between these
learning systems. The possibility of the higher input information dimensionality having adverse ef-
fects on the overall sample efficiency of these RL algorithms was further nullified by evaluating the
two alternative input structures as discussed above.
To account for potential effects of paddle movement speed on the success rate of paddle control,
we derived the average paddle movement (in pixels) for all groups. Subfigure S6.a represents these
results with DQN having a significantly higher average paddle movement compared to biological
cultures (Pairwise Tukey’s post hoc). Interestingly, the higher paddle movement speed of the RL
algorithms is not reflected as better game performance according to our results.
Subfigure S6.b compares the relative improvement in the performance of different groups over time.
This measure identifies the relative increase in the average accurate hit counts in the second 15 min-
utes of the game compared to the first 5 minutes. The HCC group shows the highest improvement in
time and performing Tukey’s post hoc tests showed that the difference in this measure is significant
between HCC and PPO, as well as HCC and DQN. The MCC group also outperforms DQN.

Im
age .           Location Vector      2dInout

a) b)

Figure 2: a) The average paddle movement in pixels and pairwise Tukey’s post hoc test representing the
significance of the differences. b) Relative improvement (%) in the average hit counts between the first 5
minutes and the last 15 minutes of all sessions in each separate group and pairwise Tukey’s post hoc test.

4 Discussion

In this work, we compared the performance of BNNs with that of state-of-the-art deep RL
algorithms in the game environment of pong. The results show that the game performance of the
deep RL algorithms in terms of relative learning improvement in time and the ultimate number of
average hits per rally is outperformed by biological cultures. Furthermore, their performance in the
average rally length and percentage of aces only matches those of neuronal cultures at best. The RL
algorithms showed the lowest sample efficiency having the lowest improvement in learning given
the 70 episode training duration provided for all the groups.
This is the first comparison between a synthetic biological intelligence system and state-of-the-art
RL algorithms. This early work establishes that even the most rudimentary SBI systems with
limited informational input are a viable learning system that can compete and even defeat the
established RL algorithms which receive significant more information input. Coupled with the
promise of significant gains in power efficiencies, flexibility of tasks, and as data representation to
the SBI system is improved, these biological intelligence systems present a compelling pathway for
realizing real-time learning unachievable by current silicon-based approaches.
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A Supplementary Materials

A.1 Cell Culture

Neural cells were cultured either from the cortices of E15.5 mouse embryos or differentiated from
human induced pluripotent stem cells via a dual SMAD inhibition (DSI) protocol or through a
lentivirus based NGN2 direct differentation protocols as previously described [13]. Cells were cul-
tured until plating. For primary mouse neurons this occurred at day-in-vitro (DIV) 0, for DSI cul-
tures this occurred at between DIV 30 - 33 depending culture development, for NGN2 cultures this
occured at DIV 3.

A.2 MEA Setup and Plating

MaxOne Multielectrode Arrays (MEA; Maxwell Biosystems, AG, Switzerland) was used and is a
high-resolution electrophysiology platform featuring 26,000 platinum electrodes arranged over an 8
mm2. The MaxOne system is based on complementary meta-oxide-semiconductor (CMOS) tech-
nology and allows recording from up to 1024 channels. MEAs were coated with either polyethylen-
imine (PEI) in borate buffer for primary culture cells or Poly-D-Lysine for cells from an iPSC
background before being coated with either 10 µg/ml mouse laminin or 10 µg/ml human 521
Laminin (Stemcell Technologies Australia, Melbourne, Australia) respectively to facilitate cell adhe-
sion.Approximately 106 cells were plated on MEA after preparation as per [13]. Cells were allowed
approximately one hour to adhere to MEA surface before the well was flooded. The day after plat-
ing, cell culture media was changed for all culture types to BrainPhys™ Neuronal Medium (Stem-
cell Technologies Australia, Melbourne, Australia) supplemented with 1% penicillin-streptomycin.
Cultures were maintained in a low O2 incubator kept at 5% CO2, 5% O2, 36°C and 80% relative
humidity. Every two days, half the media from each well was removed and replaced with free media.
Media changes always occurred after all recording sessions.

A.3 DishBrain platform and electrode configuration

DishBrain was utilised to embody neural cultures in a virtual game-world, to simulate the arcade
game ‘Pong’. Sensory stimulation was applied into a predefined bounded two-dimensional sensory
area consisting of 8 sensory electrodes to communicate ball’s position on the x and y-axis using
a combination of rate coding (4Hz - 40Hz) electrical pulses and place coding, respectively. The
movement of the paddle was controlled by the level of electrophysiological activity measured in a
predefined “motor area”, which was recorded in real time. The cells also received information about
the closed-loop response to their control of the paddle.
It was possible to deliver five types of input. Either the sensory stimulation as explained above, or
one of four feedback protocols: Unpredictable, Predictable, Silent, or No-feedback. The reported
results in this work are obtained using the unpredictable feedback protocol. Cultures received un-
predictable stimulation when they missed connecting the paddle with the ‘ball’, i.e. when a ‘miss’
occurred. Using a feedback stimulus at a voltage of 150 mV and a frequency of 5 Hz, unpredictable
external stimulus could be added to the system. Random stimulation took place at random sites over
the 8 predefined sensory electrodes at random timescales for a period of four seconds, followed by
a configurable rest period of four seconds where stimulation paused, then the next rally began. Each
recording session of the cultures was 20 minutes. This equaled an average number of 70 training
episodes.

Figure S1 illustrates the the input information, feedback loop setup, and electrode configurations in
the DishBrain system.

The current DishBrain platform is configured as a low-latency, real-time MEA control system with
on-line spike detection and recording software. The DishBrain platform provides on-line spike de-
tection and recording configured as a low-latency, real-time MEA control. The DishBrain software
runs at 20 kHz and allows recording at an incredibly fine timescale. There is the option of recording
spikes in binary files, and regardless of recording, they are counted over a period of 10 millisec-
onds (200 samples), at which point the game environment is provided with how many spikes are
detected in each electrode in each predefined motor region as described below. Based on which
motor region the spikes occurred in, they are interpreted as motor activity, moving the ‘paddle’ up
or down in the virtual space. As the ball moves around the play area at a fixed speed and bounces
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Motor region, action: paddle down
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Motor regions
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Figure S1: a) DishBrain feedback loop setup. b) Electrode configuration and predefined sensory and motor
regions. Figures adapted and modified from [13]

off the edge of the play area and the paddle, the pong game is also updated at every 10ms inter-
val. Once the ball hits the edge of the play area behind the paddle, one rally of pong has come to
an end. The game environment will instead determine which type of feedback to apply at the end
of the rally: random, silent, or none. Feedback is also provided when the ball contacts the paddle
under the standard stimulus condition. A ‘stimulation sequencer’ module tracks the location of the
ball relative to the paddle during each rally and encodes it as stimulation to one of eight stimulation
sites. Each time a sample is received from the MEA, the stimulation sequencer is updated 20,000
times a second, and after the previous lot of MEA commands has completed, it constructs a new
sequence of MEA commands based on the information it has been configured to transmit based on
both place codes and rate codes. The stimulations take the form of a short square bi-phasic pulse
that is a positive voltage, then a negative voltage. This pulse sequence is read and applied to the
electrode by a Digital to Analog Converter (or DAC) on the MEA. A real-time interactive version
of the game visualiseris available at https://spikestream.corticallabs.com/. Alternatively, cells could
be recorded at ‘rest’ in a gameplay environment where activity was recorded to move the paddle but
no stimulation was delivered, with corresponding outcomes still recorded. Using this spontaneous
activity alone as a baseline, the gameplay characteristics of a culture were determined. Low level
code for interacting with Maxwell API was written in C to minimize processing latencies-so packet
processing latency was typically <50 µs. High-level code was written in Python, including configu-
ration setups and general instructions for game settings. A 5 ms spike-to-stim latency was achieved,
which was substantially due to MaxOne’s inflexible hardware buffering.

Figure S2 illustrates a schematic view of Software components and data flow in the DishBrain closed
loop system.

A.4 Deep Reinforcement Learning Algorithms

Deep Q Network (DQN): The utilized DQN algorithm begins by extracting spatiotemporal features
from inputs, such as the movement of the ball in game of ‘Pong’. Multiple fully connected layers are
used to process the final feature map, which implicitly encodes the effects of actions. As opposed
to traditional controllers that use fixed preprocessing steps, this method can adapt processing of the
state based on changes in the learning signal.

Advantage Actor-Critic (A2C): In an A2C model, the total reward itself could be represented as a
value of the state plus the advantage of the action. The value of each policy is learned while follow-
ing it. The policy gradient can be calculated by knowing the value for any state. The policy network
is then updated such that the probability of actions with a higher advantage values is increased. Here,
the policy network (which returns a probability distribution of actions) is called the actor, as it tells
the agents what to do. Critic is another network which enables the evaluation of the actions to decide
whether they were good or not. In this case, policy and value are implemented as separate heads of
the network, which transform the output from the common body into either probability distributions
or single numbers representing the state’s value. Thus, low-level features can be shared between the
two networks.

Proximal Policy Optimization (PPO): PPO models are a family of policy gradient methods for
reinforcement learning. The PPO method uses a slightly different training procedure: An extended
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a)

b)

Figure S2: a, b) Schematics of software used for DishBrain. a) Software components and data flow in the
DishBrain closed loop system. Voltage samples flow from the MEA to the ‘Pong’ environment, and sensory
information flows from the ‘Pong’ environment back to the MEA, forming a closed loop. The blue rectangles
mark proprietary pieces of hardware from MaxWell, including the MEA well which may contain a live culture
of neurons. The green MXWServer is a piece of software provided by MaxWell which is used to configure
the MEA and Hub, using a private API directly over the network. The red rectangles mark components of
the ‘DishServer’ program, a high-performance program consisting of four components designed to run asyn-
chronously, despite being run on a single CPU thread. The ‘LAN Interface’ component stores network state, for
talking to the Hub, and produces arrays of voltage values for processing. Voltage values are passed to the ‘Spike
Detection’ component, which stores feedback values and spike counts, and passes recalibration commands back
to the LAN Interface. When the pong environment is ready to run, it updates the state of the paddle based on
the spike counts, updates the state of the ball based on its velocity and collision conditions, and reconfigures
the stimulation sequencer based on the relative position of the ball and current state of the game. The stim-
ulation sequencer stores and updates indices and countdowns relating to the stimulations it must produce and
converts these into commands each time the corresponding countdown reaches zero, which are finally passed
back to the LAN Interface, to send to the MEA system, closing the loop. The procedures associated with each
component are run one after the other in a simple loop control flow, but the ‘Pong’ environment only moves
forward every 200th update, short-circuiting otherwise. Additionally, up to three worker processes are launched
in parallel, depending on which parts of the system need to be recorded. They receive data from the main thread
via shared memory and write it to file, allowing the main thread to continue processing data without having to
hand control to the operating system and back again. b) Numeric operations in the real-time spike detection
component of the DishBrain closed loop system, including multiple IIR filters. Running a virtual environment
in a closed loop imposes strict performance requirements, and digital signal processing is the main bottleneck
of this system, with close to 42 MB of data to process every second. Simple sequences of IIR digital filters
is applied to incoming data, storing multiple arrays of 1024 feedback values in between each sample. First,
spikes on the incoming data are detected by applying a high pass filter to determine the deviation of the activity,
and comparing that to the MAD, which is itself calculated with a subsequent low pass filter. Then, a low pass
filter is applied to the original data to determine whether the MEA hardware needs to be re-calibrated, affecting
future samples. This system was able to keep up with the incoming data on a single thread of an Intel Core
i7-8809G. Figures adapted from [13].

set of samples is taken from the environment, and then the advantage is estimated for the whole set
or sequence of samples before several epochs of training are performed To estimate policy gradients,
instead of using the gradient of action probabilities, the PPO method uses a different objective: the
ratio between the new and the old policy scaled by the advantages.
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Algorithm 1 Deep Q Network (DQN) with Experience Replay
Require:
1: D: Replay memory with capacity N (Default: 10000)
2: θ: Initial network parameters
3: θ̃: Copy of θ
4: Nb: Training batch size (Default: 5)
5: Ñ : Target network update frequency (Default: 10)
6: xt: Input matrix at time t
7: S: Number of seeds (Default: 40)
8: emax: Maximum number of episodes (Default: 70)
9: for seed ∈ {1, · · · , S} do
10: for episode e ∈ {1, · · · , emax} do
11: Set state s1 ← x1 and preprocess ϕ1 = ϕ(s1)
12: t = 1
13: while ϕt is non-terminal do
14: With probability ϵ select a random action at

15: otherwise select at = maxaQ
∗(ϕ(st), a; θ)

16: Execute action at and observe reward rt and input xt+1

17: Set new state st+1 and preprocess ϕt+1 = ϕ(st+1)
18: Store transition (ϕt, at, rt, ϕt+1) inD
19: Sample random minibatch of Nb transitions(ϕj , aj , rj , ϕj+1) fromD

20: Set yj =

{
rj for terminal ϕj+1

rj + γmaxa′Q(ϕj+1, a
′; θ) for non-terminal ϕj+1

21: Perform a gradient descent step on (yj −Q(ϕj , aj ; θ))
2

22: Replace target parameters θ̃ ← θ every Ñ steps
23: t = t + 1
24: end while
25: end for
26: end for

Algorithm 2 Advantage Actor-Critic (A2C)
Require:
1: θv : Initial parameter vector for the value net (critic)
2: θπ : Initial parameter vector for the policy net (actor)
3: N : Number of consecutive steps to play current policy in the environment (Default: 5)
4: xt: Input matrix at time t
5: S: Number of seeds (Default: 40)
6: emax: Maximum number of episodes (Default: 70)
7: for seed ∈ {1, · · · , S} do
8: t = 1
9: e = 1
10: repeat
11: ∂θπ ← 0 and ∂θv ← 0
12: tstart = t
13: Set state st ← xt and preprocess ϕt = ϕ(st)
14: repeat
15: Select at according to π(at|ϕt; θ)
16: Execute action at and observe reward rt and input xt+1

17: Set new state st+1 and preprocess ϕt+1 = ϕ(st+1)
18: t← t + 1
19: until ϕt is terminal or t− tstart = N

20: R =

{
0 for terminal ϕt

V (ϕt; θv) for non-terminal ϕt

21: for i ∈ {t− 1, · · · , tstart} do
22: R← ri + γR
23: Accumulate the policy gradients: ∂θπ ← ∂θπ +∇θ log π(ai|ϕi; θ)

(
R− V (ϕi, θv)

)
24: Accumulate the value gradients: ∂θv ← ∂θv +

∂
(
R−V (ϕi,θv)

)2
∂θv

25: end for
26: Update θπ and θv using ∂θπ and ∂θv , respectively.
27: if ϕt is terminal then
28: e← e + 1
29: end if
30: until e > emax

31: end for

A.5 Alternative RL Input Designs: Additional Results

In this work, aiming to account for potential adversaries resulting from the increased dimension-
ality of the image input to the deep RL algorithms [16], we design two additional types of input
information to the RL algorithms. We compare all three different designs with the performance of
biological cultures. We attempt to study whether the curse of dimensionality and increased size of
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Algorithm 3 Proximal Policy Optimization (PPO)
Require:
1: θ0: Initial policy parameter vector
2: ϵ: Clipping threshold (Default: 0.2)
3: N : Number of consecutive steps to play current policy in the environment (Default: 5)
4: xt: Input matrix at time t
5: S: Number of seeds (Default: 40)
6: emax: Maximum number of episodes (Default: 70)
7: for seed ∈ {1, · · · , S} do
8: t = 1
9: e = 1
10: repeat
11: tstart = t
12: Set state st ← xt and preprocess ϕt = ϕ(st)
13: repeat
14: Select at according to π(at|ϕt; θ)
15: Execute action at and observe reward rt and input xt+1

16: Set new state st+1 and preprocess ϕt+1 = ϕ(st+1)
17: t← t + 1
18: until ϕt is terminal or t− tstart = N
19: Collect set of partial trajectoriesD on current policy π

20: Estimate Advantages Âπ
t = σt + (γλ)σt+1 + · · ·+ (γλ)N−t−1σN−1, where σt = rt + γV (ϕt+1)− V (ϕt)

21: θ ← argmaxθL
CLIP
θ (θ)

22: where LCLIP
θ (θ) = Eτ∼π

[∑T
t=0

[
min(rt(θ)Â

π
t , clip(rt(θ), 1− ϵ, 1 + ϵ)Âπ

t )
]]

23: if ϕt is terminal then
24: e← e + 1
25: end if
26: until e > emax

27: end for

the feature vectors when directly utilizing image inputs affects the comparison between biological
cultures and RL algorithms in terms of their sample efficiency. The three different input categories
and RL algorithm designs are introduced below:

• IMAGE INPUT: All the algorithms follow a common strategy although different in struc-
ture. In this design, the current state is a tensor of the difference of pixel values from the
two most recent frames (i.e. another 40 × 40 grayscale pixel image). This current state
is then input into the CNN to obtain the selected action. Next, based on the action taken,
a reward is received, and a new state is formed. The ultimate goal is to find a policy that
indicates the best action in each state to maximise the reward function.

• PADDLE&BALL POSITION INPUT: In this case, instead of the grayscale image, we ob-
tain a 4-dimensional vector encoding the x and y coordinates of the ball (distance to the
paddle/wall and distance to the floor in pixels) and the y coordinates of the paddle’s top and
bottom, all being integer values in [1, 40]. The current state which is the input to each al-
gorithm is then a tensor of the difference of values from the two most recent 4-dimensional
location vectors. No additional CNN layer is utilized in this case.

• BALL POSITION INPUT: Finally, we aim to examine a design as similar to the DishBrain
system’s input structure as possible. For this case, we divide the y-axis of the gameplay
environment to 8 equal segments each mimicking one of the sensory electrodes in the bi-
ological cultures and place coding the information about the ball’s y-axis position as an
integer in the [1, 8] interval. Then, the ball’s x-axis position is used as the second element
of this input vector being an integer value in [4, 40] similar to the rate coded component of
the stimulation applied to the biological cultures. No additional CNN layer is utilized in
this design.

Figure S3 illustrates the comparison between the input information in the DishBrain system and the
deep RL algorithms.

In addition to the results reported in Section Results which represented the findings from the IMAGE
INPUT design, Figures S4, and S5 illustrate similar comparisons between the biological cultures
and the two alternative RL input designs, namely: PADDLE&BALL POSITION INPUT and BALL
POSITION INPUT.

Finally, accounting for potential effects of paddle movement speed, we derived the average paddle
movement (in pixels) for all groups and all designs. Subfigures S6.a,c, and e represent these results
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Figure S3: Schematic comparing the information feeding routes in the DishBrain system (bottom) and the
three implementations of the deep RL algorithms (top). In each design, the input information to the computing
module (deep RL algorithms or DishBrain) is denoted by a vector I .

for the IMAGE INPUT, PADDLE&BALL POSITION INPUT, and BALL POSITION INPUT designs
respectively. Using pairwise Tukey’s post hoc tests it was found that a consistent significant differ-
ence is present between pairs of DQN and HCC in terms of the average paddle movement with DQN
having the higher average. This is when all the RL algorithms with the PADDLE&BALL POSITION
INPUT and BALL POSITION INPUT designs have significantly higher average paddle movement
compared to both groups of biological cultures. Interestingly, the higher paddle movement speed
of the RL algorithms is not reflected as better game performance according to previously discussed
results.
Subfigures S6.b, d, and f compare the relative improvement in the performance of different groups
over time when comparing the HCC and MCC groups to RL algorithms with IMAGE INPUT, PAD-
DLE&BALL POSITION INPUT, and BALL POSITION INPUT respectively. This measure identifies
the relative increase in the average accurate hit counts in the second 15 minutes of the game com-
pared to the first 5 minutes. The HCC group shows the highest improvement in time and performing
Tukey’s post hoc tests showed that the difference in this measure is significant between HCC and
PPO, as well as HCC and DQN in the IMAGE INPUT case, between HCC and PPO and well as HCC
and A2C in the PADDLE&BALL POSITION INPUT case, and between HCC and A2C in the BALL
POSITION INPUT case. The MCC group also outperform DQN, PPO, or A2C groups in the IMAGE
INPUT, PADDLE&BALL POSITION INPUT, and BALL POSITION INPUT designs respectively.
Eventually, Subfigures S6.g, h, i, and j compare the frequency tables for the distributions of mean
summed hits per minute amongst groups for the IMAGE INPUT, PADDLE&BALL POSITION INPUT,
and BALL POSITION INPUT designs respectively. These tables were found to be not significantly
different (Two-sample t-test).
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Figure S4: PADDLE&BALL POSITION INPUT to the deep RL algorithms: Average number of a) hits per
rally, b) % of aces, and c) % of long rallies over 20 minutes real-time equivalent of training DQN, A2C, PPO,
and MCC, HCC cultures. A regressor line on the mean values with a 95% confidence interval highlights the
learning trends. The highest level of average hits per rally is achieved by the neuronal MCC and HCC cultures.
Average % of aces is lowest for the neuronal cultures compared to all deep RL baseline methods. Average %
of long rallies reaches its highest levels for MCC and HCC. Comparing to the same findings for the HCC and
MCC groups, d) average rally length over time only showed a significant increase in the biological cultures
between the two time intervals (One-way ANOVA test, p = 0.241, p = 0.756, and p = 0.315 for DQN, A2C, and
PPO respectively). e) Average % of aces within groups and over time only showed a significant difference in the
MCC and HCC groups. No significant change was detected within the DQN, A2C, or PPO groups (One-way
ANOVA test, p = 0.858, p = 0.279, and p = 0.398 respectively). f) Average % of long-rallies (>3) performed in
a session increased in the second time interval in all groups except the PPO group. This intra-group difference
was significant for MCC, HCC, and PPO (One-way ANOVA test, p = 1.172e-7, p = 1.525e-24, p = 0.008
respectively). g) Pairwise Tukey’s post hoc test shows that the HCC group significantly outperforms PPO in
the first 5 minutes in terms of the hit counts or rally length. The biological cultures do significantly better
compared to all deep RL opponents in the 15 minutes interval. h) Using pairwise Tukey’s post hoc test, HCC
group significantly outperforms A2C and DQN in the last 15 minutes interval with a lower average of % Aces.
DQN is also outperformed by the MCC group in this time interval. i) Pairwise comparison using Tukey’s test
shows a significant difference in the percentage of long rallies between HCC and the rest of the groups in the
first 5 minutes all outperforming the HCC. PPO also shows a significantly higher % of long rallies in the first
time interval compared to MCC and DQN. However, this is later altered in the last 15 minutes with only MCC
putperforming PPO significantly having an increased % of long rallies. Box plots show interquartile range, with
bars demonstrating 1.5X interquartile range, the line marks the median and ▲ marks the mean. Error bands = 1
SE
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Figure S5: BALL POSITION INPUT to the deep RL algorithms: Average number of a) hits per rally, b) % of
aces, and c) % of long rallies over 20 minutes real-time equivalent of training DQN, A2C, PPO, and MCC, HCC
cultures. A regressor line on the mean values with a 95% confidence interval highlights the learning trends.
The highest level of average hits per rally is achieved by the neuronal MCC and HCC cultures. Average % of
aces is lowest for the neuronal cultures compared to all deep RL baseline methods. Average % of long rallies
reaches its highest levels for MCC and HCC. Comparing to the same findings for the HCC and MCC groups, d)
average rally length over time only showed a significant increase in the biological cultures between the two time
intervals (One-way ANOVA test, p = 0.436, p = 0.612, and p = 0.240 for DQN, A2C, and PPO respectively).
e) Average % of aces within groups and over time only showed a significant difference in the MCC and HCC
groups. No significant change was detected within the DQN, A2C, or PPO groups (One-way ANOVA test,
p = 0.858, p = 0.279, and p = 0.398 respectively). f) Average % of long-rallies (>3) performed in a session
increased in the second time interval in all groups. This intra-group difference was only significant for MCC
and HCC groups. g) Pairwise Tukey’s post hoc test shows that biological cultures significantly outperform all
deep RL groups in the last 15 minutes in terms of the hit counts or rally length. h) Using pairwise Tukey’s
post hoc test, HCC and MCC groups significantly outperform A2C and DQN in the last 15 minutes interval
with a lower average of % Aces. DQN is also outperformed by the PPO group in this time interval. i) Pairwise
comparison using Tukey’s test shows a significant out-performance of all groups over HCC in the percentage
of long rallies in the first 5 minutes. MCC also shows a significantly higher % of long rallies in the second time
interval compared DQN. Box plots show interquartile range, with bars demonstrating 1.5X interquartile range,
the line marks the median and ▲ marks the mean. Error bands = 1 SE
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Figure S6: The average paddle movement in pixels in all the difference groups for the a) IMAGE INPUT,
c) PADDLE&BALL POSITION INPUT, and e) BALL POSITION INPUT to the deep RL algorithms. Pairwise
Tukey’s post hoc test was conducted showing that DQN had a significantly higher average paddle movement
compared to HCC and MCC in all scenarios. A2C and PPO also had a significantly higher average movement
of the paddle in the case of Location Vector Input, and 2-dimensional Input. Relative improvement (%) in the
average hit counts between the first 5 minutes and the last 15 minutes of all sessions in each separate group for
the b) IMAGE INPUT, d) PADDLE&BALL POSITION INPUT, and f) BALL POSITION INPUT to the deep RL
algorithms. The biological groups show higher improvements with HCC outperforming all. b) Using pairwise
Tukey’s post hoc test, the inter-group differences were significant for HCC and DQN, HCC and PPO, MCC
and DQN, as well as MCC and HCC. d) HCC showed a significantly higher relative improvement compared
to PPO and A2C while MCC also outperformed PPO in terms of relative improvement over time. f) Finally,
MCC and HCC groups could significantly perform better than the A2C group with the 2-dimensional Input
vector inputted to the deep RL algorithms. Distribution of frequency of mean summed hits per minute amongst
groups for g) biological cultures and deep RL algorithms with h) IMAGE INPUT, i) PADDLE&BALL POSITION
INPUT, and j) BALL POSITION INPUT.
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