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Abstract

Actor-critic methods in reinforcement learning leverage the action value function (critic) by
temporal difference learning to be used as an objective for policy improvement for the sake of
sample efficiency against on-policy methods. The well-known result, critic overestimation, is
usually handled by pessimistic policy evaluation based on critic uncertainty, which may lead
to critic underestimation. This means that pessimism is a sensitive parameter and requires
careful tuning. Most methods employ an ensemble approach to represent the uncertainty of
critic estimates, but it comes with the cost of computational burden. To mitigate the sample
and computation inefficiency of the actor-critic approach, we propose a novel and simple
algorithm in this paper, called Deep Bayesian Actor-Critic (DBAC), that employs Bayesian
dropout and a heteroscedastic critic network instead of an ensemble to make the agent
uncertainty-aware. To mitigate the overestimation bias of critic, pessimistic policy evaluation
is conducted where pessimism is proportional to the uncertainty of predictions. Using dropout
along with a distributional representation of the critic leads to more computation-efficient
calculations. With empirically determined optimal pessimism and dropout regularization,
only a single critic network is enough to achieve high sample and computation efficiency,
with near SOTA performance.

1 Introduction

Reinforcement learning (RL) has witnessed significant progress with the emergence of deep neural networks
(Mnih et al., 2013; 2015) in the last decade. However, sample efficiency is one of the main bottlenecks of
widespread adaptation of RL into applications (Mendonca et al., 2019; Li et al., 2023a). On the other hand,
efficiency is as important as sample efficiency (Chen et al., 2021a), especially to deploy RL agents into real-life
applications such as robots (Zhao et al., 2020; Kormushev et al., 2013) and edge devices (Dai et al., 2022;
Wei et al., 2022).

Actor-critic methods leverage off-policy samples to train critic, promising higher sample efficient learning than
on-policy algorithms. Despite this advantage, they are usually stuck on poor performance due to a mismatch
between behavioral and online policy since value estimates of actions, on which value network is never (or
not enough) trained, are required. Finally, the erroneous value estimates are exploited and the algorithm
suffers from critic overestimation that yields divergent (catastrophic) behavior (Thrun & Schwartz, 2014).
This problem is also named as deadly triad ((Sutton & Barto, 2018; Van Hasselt et al., 2018)) indicating the
instability emerges once function approximation, temporal difference, and off-policy learning are in the same
method together.

Critic overestimation can also be explained by the limited generalization capability of the used function
approximator (Korkmaz, 2024). Generalization is key to success for RL since the aim is to infer actions that
are not similar to available data, i.e., it is expected to extrapolate a new policy to perform differently than a
behavioral policy. If the critic of an actor-critic method would have strong generalization capability, it would
estimate better values for out-of-distribution actions, and much less overestimation would occur.
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1.1 Pessimism for Actor-Critic

One of the main solutions to the critic overestimation problem is to use a pessimistic objective. This way, it
is acceptable to have poor generalization as long as the learner is aware of it. However, this requires to assess
epistemic uncertainty, or in other words, the learner should be uncertainty-aware. Such models would identify
more uncertainty for out-of-distribution actions and use lower bounds (conservative estimates) as objective at
the cost of under-exploration. On the other hand, optimism in the face of uncertainty principle provides a
reasonable exploration scheme in an on-policy setting as this encourages exploration of state-action space.
However, for the off-policy actor-critic approach, it is only feasible to be optimistic on critic uncertainty for
policy improvement, not for policy evaluation (Tasdighi et al., 2024a) since critic errors are exploited in a
wrong and unrecoverable way in this phase.

In the literature, methods that assess their epistemic uncertainty (of transition model (Janner et al., 2019;
Chua et al., 2018; Depeweg et al., 2016) or critic (Chen et al., 2021b; Hiraoka et al., 2021)) can obtain
better performance and sample efficiency. Recently, for off-policy model-free actor-critic algorithms, epistemic
uncertainty is estimated by using double network (Fujimoto et al., 2018; Haarnoja et al., 2018) or ensemble
network (Chen et al., 2021b; Moskovitz et al., 2021). Hiraoka et al. (2021) found out that using Bayesian
dropout (Srivastava et al., 2014; Gal & Ghahramani, 2016) contributes to epistemic uncertainty assessment
but a small ensemble is still required. On the contrary, He et al. (2021) argued that a single critic network is
enough when dropout is also used to evaluate Bellman backup.

Kuznetsov et al. (2020) claims aleatoric uncertainty is also responsible for overestimation since any randomness
is exploited when the Bellman optimality operator (T ∗) is employed. For this purpose, they use ensemble
networks for epistemic uncertainty and distributional representation (as quantiles) of network output for
aleatoric uncertainty assessment.

Tasdighi et al. (2024a) and Moskovitz et al. (2021) showed that optimal pessimism (or optimism) is dependent
on environment, task, and learning method. Once the synergy between learner and task emerges (good
generalization), it does not need to be pessimistic for policy improvement and can trust its estimate. However,
when most out-of-distribution estimates are not consistent with reality (poor generalization), they need to
be pessimistic and should not trust their estimate unless sufficient observations are obtained. Therefore,
depending on the learner’s generalization capability, it requires to balance pessimism effectively.

1.2 Deep Bayesian Actor-Critic Algorithm

Actor-critic methods suffer from computation inefficiency when ensembles are employed for critic to track
epistemic uncertainty. In addition, they also suffer from sample inefficiency when constant pessimism is
employed. In this paper, we introduce a novel online actor-critic algorithm, named Deep Bayesian Actor-Critic
(DBAC), specifically designed to address both sample and computation inefficiencies. DBAC is an off-policy
maximum entropy actor-critic algorithm employing experience buffer to sample off-policy transition tuples,
similar to SAC (Haarnoja et al., 2018).

Our first contribution is a theoretical analysis of critic overestimation under the maximum entropy actor-critic
framework. As a result of this analysis, DBAC devises environment-specific pessimism hyper-parameter to
be used upon predictive uncertainty of critic. Pessimistic updates are conducted in both policy evaluation
and improvement phases to tackle critic overestimation. The optimal pessimism improves sample efficiency,
yielding similar results to other methods that use a much higher update-to-data (UTD) ratio and ensembles.

As the second contribution, DBAC replaces critic ensemble with a single critic by employing Bayesian dropout
(Srivastava et al., 2014; Gal & Ghahramani, 2016) on critic network to track epistemic uncertainty and
distributional (heteroscedastic) value representation for predictive uncertainty. Although a heteroscedastic
model is only able to capture aleatoric uncertainty (Kendall & Gal, 2017) in a supervised learning setting, it
can also capture epistemic uncertainty caused by Bellman backup since the bootstrapped critic target has
randomness sourced by dropout. Moreover, it also captures aleatoric uncertainty due to transition dynamics
randomness and the non-stationary nature of the learning procedure. Lastly, heteroscedastic representations
allow learning loss attenuation, making the critic loss more robust to noisy data (Kendall & Gal, 2017).

2



Under review as submission to TMLR

Using a single heteroscedastic critic network with dropout enhances computation efficiency compared to other
methods that use ensembles.

The implementation is very simple and can be obtained by injecting dropout to networks, introducing a
heteroscedastic critic network, and defining and pessimistic learning objective upon the well-known Soft Actor-
Critic algorithm (Haarnoja et al., 2018). We conduct extensive experiments on standard RL benchmarks to
evaluate the performance of DBAC compared to existing methods. Our results demonstrate the effectiveness
of DBAC in achieving competitive performance to SOTA methods while requiring fewer computational
resources and fewer samples, making it a promising approach for real-world RL applications.

2 Reinforcement Learning Preliminaries

2.1 Model-free Reinforcement Learning

In reinforcement learning language, the agent lives in a Markov Decision Process (MDP) which is represented
by a tupleM = (S,A, d0, τ, R), where S is state space, A is action space, d0 ∈ P(S) is initial state distribution,
τ : S ×A 7→ P(S) is transition kernel and R : S ×A 7→ R is reward function.

The initial state is sampled first, s0 ∼ d0(·). At each time t being on st ∈ S; next state is sampled from
the environment, st+1 ∼ τ(· | st, at) depending on taken action at ∼ π(· | st). Finally, reward is obtained,
rt = R(st, at) by the reward function R. The ultimate goal of the agent is to derive a policy π : S 7→ P(A) to
maximize discounted cumulative return, i.e., value function for a given state s,

V π(s) = Eπ,τ

[ ∞∑
t=0

γtR(st, at)
∣∣∣s0 = s

]
. (1)

2.2 Maximum Entropy Actor-Critic

To promote random actions for exploration and algorithm robustness, maximum entropy framework introduces
policy entropy bonus into value functions (Haarnoja et al., 2017; 2018),

V π(s) = Eπ,τ

[ ∞∑
t=0

γtR(st, at)− α log π(at|st)
∣∣∣s0 = s

]
, (2)

Qπ(s, a) = R(s, a) + Eπ,τ

[ ∞∑
t=1

γtR(st, at)− α log π(at|st)
∣∣∣s0 = s, a0 = a

]
. (3)

Learning iterates between solving policy evaluation and policy improvement. For the definition of critic,
Bellman backup operator T π is defined,

T πQ(s, a) = R(s, a) + γEs′∼τ(·|s,a)
a′∼π(·|s′)

[
Q(s′, a′)− α log π(a′ | s′)

]
, (4)

and the critic is expected to remain same if this operator applied on itself, i.e., Qπ(s, a) = T πQπ(s, a). The
policy evaluation phase minimizes the temporal difference, i.e., the difference between Q and T πQ(s, a) to
satisfy this condition. Therefore, the Bellman backup T πQ(s, a) is also called the temporal difference (TD)
target.

The optimal policy is defined as softmax over optimal critic,

π∗(· | s) = arg min
π

KL
(

π(· | s)
∣∣∣∣∣∣ exp(α−1Q∗(s, ·))∫

A exp(α−1Q∗(s, a))da

)
. (5)

The policy improvement phase solves Equation 5 for available critic Q instead of Q∗. After sufficient iteration,
both policy and critic converge to optimality in the ideal case. The optimal critic must satisfy Bellman
optimality, Q∗(s, a) = T ∗Q∗(s, a), where Bellman optimality operator T ∗ turns out to have following form
(Equation 5 from Haarnoja et al. (2017)),

T ∗Q(s, a) = R(s, a) + γEs′∼τ(·|s,a)

[
α log

( ∫
A

exp(α−1Q(s′, a′))da′
)]

. (6)
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3 Modeling Aleatoric and Epistemic Uncertainties

In this part, we explain the differences between two main types of uncertainties, aleatoric and epistemic
uncertainty (Der Kiureghian & Ditlevsen, 2009; Kendall & Gal, 2017; Gal et al., 2016b). Most deep learning
methods model either epistemic or aleatoric uncertainty alone (Gal et al., 2016b), whereas modeling both has
fundamental importance for reliable and robust predictions.

3.1 Aleatoric Uncertainty

This type of uncertainty comes from the inherent randomness within the data itself. It is sometimes called
statistical or data uncertainty. Even if more data are collected, aleatoric uncertainty is unavoidable and
cannot be reduced, because it is an intrinsic part of the process being modeled. For instance, this could be
due to measurement errors or natural variability in the data. Additionally, uncertainty due to lack of learning
capacity may also appear as aleatoric uncertainty from the model’s side, as it cannot be reduced by collecting
more data. In other words, the agent cannot decide true deterministic output just because it is not capable
of doing it and assigns a non-deterministic distribution as output.

For regression problems in deep learning setting, we can model this by having a heteroscedastic network (with
parameter θ) that outputs a normal distribution N (µθ(x), σ2

θ(x)), where both mean and variance depends on
input x (Lakshminarayanan et al., 2017; Kendall & Gal, 2017). Given a dataset D = {(xi, yi)}N

i=1, the loss
function for training the network can be derived from the negative log-likelihood of the normal distribution,

Lθ(D) = − log p(D | θ) = 1
N

N∑
i=1

( 1
2σ2

θ(xi)
(y − µθ(xi))2 + 1

2 log σ2
θ(xi)

)
+ 1

2 log 2π. (7)

3.2 Epistemic Uncertainty

This type of uncertainty arises from a lack of model knowledge. Also known as model uncertainty, epistemic
uncertainty can be reduced by gathering more data, refining the model, or simply using better modeling
techniques. It reflects the uncertainty in the model’s parameters and structure due to insufficient training
data, or incomplete understanding of the underlying process.

In deep learning context, Bayesian neural networks (BNNs) provide a way to model epistemic uncertainty. In
BNNs, there is a prior distribution p(θ) over the network parameters θ. Given the training data D, we can
compute the posterior distribution over the parameters,

p(θ | D) = p(D | θ)p(θ)
p(D) . (8)

In deep variational inference, we approximate posterior p(θ | D) by a neural network qw(θ) parameterized by
w. The objective is to maximize the posterior distribution, which is same as minimizing the evidence lower
bound (ELBO) as loss function,

Lw(D) = Eqw(θ) [− log p(D | θ)] + KL(qw(θ)∥p(θ)), (9)

combining likelihood of data where parameter is sampled by posterior qw(θ), and Kullback-Leibler (KL)
divergence from posterior qw(θ) to prior p(θ).

During prediction, we marginalize over the posterior distribution of the parameters to obtain the predictive
distribution p(y | x,D), and it is often approximated by sampling several sets of parameters from the posterior
distribution p(θ | D) representing epistemic uncertainty, and averaging the predictions from distribution
p(y | x, θ) representing aleatoric uncertainty,

p(y | x,D) =
∫

p(y | x, θ)p(θ | D)dθ. (10)
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Practical Implementation with Monte Carlo Dropout Monte Carlo dropout is a practical method
to approximate Bayesian inference in neural networks (Gal & Ghahramani, 2016; Gal et al., 2017). During
training, dropout is applied and the model learns to make predictions with dropout active. The loss function
in this setting typically remains the same as the standard loss (e.g., negative log-likelihood) but with
dropout applied. Multiple stochastic forward passes with dropout enabled are performed during inference to
approximate the predictive distribution, capturing epistemic uncertainty.

3.3 Uncertainty in Reinforcement Learning

In reinforcement learning, uncertainty representation for the value of a policy carries fundamental importance,
especially in the presence of approximation (Bellemare et al., 2017). This can be conducted by atoms
(Bellemare et al., 2017), quantiles (Dabney et al., 2018), and a probability distribution (Tang et al., 2019;
Yang et al., 2021). On the other hand, the representation of critic output as a distribution only allows us to
assess aleatoric uncertainty. To have a reasonable predictive uncertainty, epistemic uncertainty should also
be estimated. For this, ensembles (Chen et al., 2021b; Kuznetsov et al., 2020), Bayesian neural networks
(Tasdighi et al., 2024b) or Bayesian dropout (Hiraoka et al., 2021) can be used.

The predictive value uncertainty representation is the key to adjusting optimism vs pessimism balance, i.e., risk
seeking vs risk averse behavior. Especially, it is important to balance critic overestimation-underestimation,
as the main purpose of this work and similar studies.

4 Quantifying Overestimation for Sub-Gaussian Critic Distributions

In this part, we analyze how estimation error causes overestimation due to policy improvement. Assuming the
policy improvement step is successful and given Q, the target used to update the critic in maximum entropy
framework is simply Bellman backup T πQ, i.e., Bellman backup operator applied on Q. The definition uses
a deterministic function Q (Equation 4) while the critic is only known with some uncertainty, not exactly,
represented as a distribution over returns Q. Therefore, we define stochastic Bellman backup T πQ as follows;

T πQ(s, a) = R(s, a) + γE q∼Q
s′∼τ(·|s,a)
a′∼π(·|s′)

[
q(s′, a′)− α log π(a′ | s′)

]
. (11)

Similarly, we define stochastic Bellman update T ∗Q, i.e., Bellman optimality operator applied on Q as follows;

T ∗Q(s, a) = R(s, a) + γE q∼Q
s′∼τ(·|s,a)

[
α log

( ∫
A

exp(α−1q(s′, a′))da′
)]

. (12)

Now, we analyze overestimation bias, similar to the work of Chen et al. (2021b) and Lan et al. (2020) but
in the soft learning framework instead of discrete actions. Our main purpose is to find the source of critic
overestimation and to devise a pessimistic Bellman operator to prevent overestimation.
Definition 4.1. A random variable X ∈ R with mean µ = E[X] is called sub-Gaussian with variance proxy
σ2 if its moment generating function satisfies

E[exp(λX)] ≤ exp
(
λµ + 1

2λ2σ2)
, ∀λ ∈ R. (13)

Let µ(s, a) = Eq∼Q[q(s, a)]. We define overestimation error as difference between T ∗Q and average T ∗µ as ϵ,

ϵ(s, a) = T ∗Q(s, a)− T ∗µ(s, a). (14)

Ideally, ϵ(s, a) should be zero if there is no overestimation, which is not the case due to uncertainty. To
quantify it, we assume that critic distributionQ(s, a) is sub-Gaussian with variance proxy σ2(s, a), representing
uncertainty. Finally, we possess Theorem 4.1.
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Theorem 4.1 (Overestimation quantification for sub-Gaussian critics). Let estimated critic distribution
Q ∈ P(ΩQ) be sub-Gaussian with mean µ and variance proxy σ2. Then,

T ∗Q(s, a) ≤ R(s, a) + γEs′∼τ(·|s,a)

[
α log

( ∫
A

exp(α−1µ(s′, a′) + 1
2α−2σ2(s′, a′))da′

)]
. (15)

In addition, overestimation due to uncertainty of estimated distribution Q, denoted as ϵ, is upper bounded for
Bellman updates,

ϵ(s, a) ≤ γ

2α
Es′∼τ(·|s,a)

[
max

a′
σ2(s′, a′)

]
. (16)

Corollary 4.1.1 (Pessimistic critic target). Given estimated critic distribution Q, using shifted distribution
Q̃ = N (µ̃, σ̃2) for Bellman updates, where mean is shifted µ̃ = µ − βσ with same variance proxy σ̃2 = σ2,
prevents overestimation as long as β ≥ max

(s′,a′)
1
2 α−1σ(s′, a′).

The source of overestimation and necessity of pessimistic training is revealed in Theorem 4.1 and Corollary
4.1.1. Although using pessimistic critic targets for training critic and policy is not a new idea (Moskovitz
et al., 2021; Kuznetsov et al., 2020; Chen et al., 2021b), the question of how to determine pessimism (β)
remains. For this, Moskovitz et al. (2021) had shown that optimal pessimism/optimism depends on the
environment, and stated that estimation bias depends on overall context in which a learner is embedded.
Similarly, we argue that estimation bias depends on the generalization capability of the learner.

5 Deep Bayesian Actor-Critic

In this section, we discuss key mechanisms needed for computation and sample efficient actor-critic learning
and propose our algorithm Deep Bayesian Actor-Critic. This algorithm employs single critic network which
captures uncertainty instead of ensembling. For this, it employs Bayesian dropout within the critic network
and learns probability distribution as output representing predictive uncertainty to be used to evaluate the
pessimistic Bellman backup. In addition, the policy network has also dropout within layers to regularize its
improvement phase. Neural architectures of critic and policy are illustrated in Appendix D.

5.1 Heteroscedastic Critic

Heteroscedastic networks output probability distribution instead of a point estimate and are originally
designed to model aleatoric uncertainty of underlying phenomena (Kendall & Gal, 2017; Lakshminarayanan
et al., 2017). In addition to this property, modeling output as a distribution allows the network to learn loss
attenuation and makes learning robust to noisy data (Kendall & Gal, 2017). In our setting, the objective is
to fit a distribution of Bellman backup which includes epistemic randomness of the bootstrap estimate, and
aleatoric randomness of state transition and non-stationary learning procedure. Therefore, most of the critic
uncertainty is modeled this way, and this can be used for pessimistic updates of critic and policy.

5.2 Pessimistic Objective

Like most algorithms, the natural way to inhibit overestimation is by employing pessimistic critic updates.
Assuming critic value distribution is normal (still sub-Gaussian), we can use modified pessimistic distribution
Q̃ = N (µ − βσ, σ2) from Corollary 4.1.1, but it would be overpessimistic for higher β values which are
required to guarantee overestimation prevention. However, there are many other factors affecting the optimal
pessimism level. For example, policy improvement is slower than policy evaluation phase in actor-critic
methods, decreasing possible overestimation. In addition, the real variance might be lower than the estimated
variance since the estimation is not calibrated. Lastly, overestimation may not need to be fully prevented
and slight optimistic updates may promote exploration. For this purpose, we state that β simply stands
as a pessimism parameter to be tuned for each environment and learning hyper-parameters and it can be
small depending on the learning process. At the end, we define the pessimistic Bellman update T̃ ∗Q(s, a) as
follows;
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T̃ ∗Q(s, a) = T ∗Q̃(s, a) = R(s, a) + γE q∼Q̃
s′∼τ(·|s,a)

[
α log

( ∫
A

exp(α−1q(s′, a′))da′
)]

. (17)

5.3 Dropout Regularization

Dropout regularization (Srivastava et al., 2014) allows to capture the probabilistic nature of a network,
representing Bayesian neural networks (Gal & Ghahramani, 2016). It is also equivalent to representing the
model as an ensemble since each sampled weight set of the network corresponds to a sub-model (He et al.,
2021). For this purpose, DBAC employs dropout regularization for both critic and policy networks.

For the learning phase, it prevents policy and critic from overfitting and improves generalization. More
importantly, temporal difference (TD) targets are evaluated with dropout which has randomness of epistemic
uncertainty, leading up to be learned in heteroscedastic critic distribution. In the end, overall predictive
uncertainty can be quantified as a simple normal distribution and used to construct a pessimistic objective.

5.4 Layer Normalization

Layer Normalization (Ba et al., 2016) is a normalization method applied to feature dimensions of activations.
It has a regularization effect and prevents possible numerical instabilities in training time. In DBAC, we
implement Layer Normalization after all hidden activations of critic and policy networks, similar to Hiraoka
et al. (2021).

5.5 Algorithm Summary

Finally, we present the Deep Bayesian Actor-Critic (DBAC) algorithm using the results of analyses from
previous sections. Unlike previous methods, we parameterize critic Qθ as a single network by parameter
set θ and policy πϕ as another single network by parameter set ϕ, where both networks have probability
distribution as outputs, i.e., networks represent distributions over values and actions. Policy outputs a
tanh transformed normal distribution to bound actions to [−1, 1]. Networks illustrations are available in
Appendix D. Note that the bar notation stands for the lagged network with non-trained parameters. DBAC
is summarized in Algorithm 1 with gradient descent but Adam optimizer (Kingma & Ba, 2014) is used in our
experiments.

Critic learning Critic network predicts cumulative return with some uncertainty. Using transition tuples
from experience replay as batch, Db = {(si, ai, ri, s′

i, donei)}Nb
i=1, temporal difference (TD) target qT D

i ,
representing Bellman backup, is β-pessimistic,

qT D
i = ri + γ(µθ̄(s′

i, ã′
i)− βσθ̄(s′

i, ã′
i)− α log πϕ(s′

i, ã′
i))(¬donei), ã′

i ∼ πϕ(· | s′
i). (18)

Learning objective is cross-entropy loss (log loss),

Lθ(Db) = 1
Nb

Nb∑
i=1
− logQθ(qT D

i | si, ai). (19)

Theoretically, critic distribution is not restricted to any type but sub-Gaussian. For simplicity, we modeled
the critic to be represented as a normal distribution, i.e., Qθ = N (µθ, σ2

θ) in this work. In this case, the cross
entropy loss becomes as follows;

Lθ(Db) = 1
2 log 2π + 1

Nb

Nb∑
i=1

(1
2 log σ2

θ(si, ai) + (qT D
i − µθ(si, ai))2

2σ2
θ(si, ai)

)
. (20)

In this loss, qT D
i is simply a bootstrapped estimate, used in temporal difference methods. The major difference

is that we learn critic with cross entropy (log) loss and TD target qT D
i has also epistemic randomness sourced

by dropout.
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Lagged critic for TD target When the trained critic network is also used in calculating the target value,
the critic training is prone to divergence (Li et al., 2023b). For this, a common approach is to use another
critic network to evaluate TD target (Mnih et al., 2013). Similar to Lillicrap et al. (2015), Fujimoto et al.
(2018), and Haarnoja et al. (2018), we use a lagged critic network with non-trainable parameters for TD
target evaluations as demonstrated in Equation 18. The network parameters are only updated by Polyak
averaging of main critic network weights through learning steps. This strategy is important to ensure the
stability of temporal difference learning.

Policy learning The policy improvement objective has a very similar form to SAC algorithm (Haarnoja
et al., 2018) except using standard deviation to construct β-pessimistic objective instead of the minimum of
double critic predictions. Using only states from experience replay as batches Db = {(si)}Nb

i=1 with batch size
NB , loss function for policy network is as follows;

Lϕ(Db) = 1
Nb

Nb∑
i=1

Ea∼πϕ(·|si)
[
µθ(si, a)− βσθ(si, a)− α log πϕ(a | si)

]
. (21)

Automatic temperature tuning Inspired from Haarnoja et al. (2018), we also employed automatic
temperature tuning. Using constant temperature results in different policies if the reward magnitude changes.
To mitigate this, Haarnoja et al. (2018) proposed a policy entropy constraint, representing temperature as
the Lagrange multiplier of the constraint. Given target entropy H̄ as hyper-parameter, the loss function
related to this constraint is as follows;

Lα(Db) = −αH̄+ α

Nb∑
i=1

Ea∼πϕ(·|si)
[
− log πϕ(a | si)

]
. (22)

Algorithm 1 Deep Bayesian Actor-Critic
Require: Environment env
Require: Experience buffer D
Require: Critic Qθ, lagged critic Qθ̄, policy πϕ, all with dropout
Require: Initial temperature α, target entropy H̄
Require: Pessimism β
Require: Learning rates ηQ, ηπ, ηα, Polyak parameter ρ
Require: Total training steps N , batch size Nb

s ∼ env.reset() ▷ Reset the environment
for N timesteps do

a ∼ πϕ(· | s) ▷ Sample action
r, s′, done ∼ env.step(a) ▷ Act on environment
D ← D ∪ (s, a, r, s′, done) ▷ Record transition tuple
if done then s← s′ else s ∼ env.reset() ▷ State transition or reset
for G gradient steps do
Db = {(si, ai, ri, s′

i, donei)}Nb
i=1 ∼ D ▷ Sample minibatch for training

ã′
i ∼ πϕ(· | s′

i), ∀i ∈ {1, 2, ..., Nb} ▷ Sample next actions
qT D

i = ri + γ(µθ̄(s′
i, ã′

i)− βσθ̄(s′
i, ã′

i))(¬donei), ∀i ∈ {1, 2, ..., Nb} ▷ Build TD targets
θ ← θ − ηQ∇θ

(
1

Nb

∑Nb

i=1− logQθ(qT D
i | si, ai)

)
▷ Update critic

ϕ← ϕ− ηπ∇ϕ

(
1

Nb

∑Nb

i=1 Ea∼πϕ(·|si)
[
µθ(si, a)− βσθ(si, a)− α log πϕ(a | si)

])
▷ Update policy

α← α− ηα∇α

(
− αH̄+ α

∑Nb

i=1 Ea∼πϕ(·|si)
[
− log πϕ(a | si)

])
▷ Update temperature

θ̄ ← ρθ̄ + (1− ρ)θ ▷ Update target critic network
end for

end for
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6 Experiments

Our experiments aim to investigate whether enhancing off-policy actor-critic methodology with DBAC can
improve their sample and computation efficiency on difficult continuous-control benchmarks. For this purpose,
DBAC is compared to similar competitive algorithms; TQC (Kuznetsov et al., 2020), DROQ (Hiraoka et al.,
2021), SAC (Haarnoja et al., 2018) and TOPSAC, which is SAC variant of TOP algorithm (Moskovitz et al.,
2021), where only exploration scheme is changed to maximum entropy policy. All algorithm results are
obtained using in-house code with the same network architectures (including layer normalization) to make a
fair comparison. We included DROQ algorithm with UTD ratio (G) equal to 1 and 5, although it is equal to
20 in the original paper. Additionally, two ablations studies are conducted to examine the effectiveness of
different levels of pessimism and dropout rates may vary across different environments. Lastly, the effect of
Layer Normalization is not surveyed since it is done by Hiraoka et al. (2021) extensively for DROQ algorithm.

Through Gymnasium API (Towers et al., 2023), six well-known MuJoCo environments (Todorov et al., 2012)
are used for comparison as they are tested by most algorithms in the literature. Hyper-parameters per
environment can be found in Table 4 of Appendix C. For all experiments, PyTorch (version 2.2.2) (Paszke
et al., 2019) is used. Please refer to Appendix E for codebase.

Evaluation protocol After each 1000 time steps, we execute a single test episode using the online policy and
measure its performance by calculating the total reward accumulated during the episode. For each environment,
the number of training steps is different to keep the training duration short. Total training steps are taken
from REDQ (Chen et al., 2021b) and MBPO (Janner et al., 2019), except InvertedDoublePendulum-v4
since it is not available on those papers.

Learning curves Specified environments are trained through a fixed number of environment interactions,
repeated 5 times to assess the stability of the algorithm shown by mean and standard deviation. Further
experimental details are presented in Appendix C. Mean and standard deviations on the last evaluation
episode are summarized in Table 1. Additionally, average returns through all learning processes averaged
over random seeds are summarized in Table 2. In Figure 1, the performance of DBAC is shown against
previously mentioned SOTA algorithms for 6 tasks, where important hyper-parameters used for DBAC and
TQC are summarized in Table 5. Additionally, value estimation errors are presented in Figure 2. The bold
lines represent the average, while the shaded area indicates the standard deviation (to represent randomness)
of the total reward across evaluation episodes.

Table 1: Episodic return over five training runs on MuJoCo tasks at the end of training. ± sign denotes one
standard deviation across trials. The first and second best methods are highlighted in blue and red.

Env # steps DBAC DROQ G=1 DROQ G=5 SAC TOPSAC TQC
InvertedDoublePendulum-v4 50k 9354 ± 2 8036 ± 2634 9349 ± 6 7899 ± 2884 7613 ± 3484 9354 ± 2

Walker2d-v4 300k 4901 ± 87 3896 ± 231 831 ± 298 490 ± 280 2739 ± 1310 4368 ± 296
Hopper-v4 125k 2886 ± 376 1550 ± 1006 1612 ± 1154 540 ± 137 1752 ± 1145 2789 ± 860

Humanoid-v4 300k 4454 ± 1672 1196 ± 789 980 ± 427 1482 ± 799 1150 ± 639 3303 ± 2330
HalfCheetah-v4 400k 8897 ± 399 6925 ± 1208 7632 ± 995 7303 ± 742 8049 ± 1300 9244 ± 611

Ant-v4 300k 5298 ± 281 876 ± 946 4068 ± 1427 2638 ± 1315 1700 ± 1527 5926 ± 163

Table 2: Average episodic return through learning procedure and over five training runs on MuJoCo tasks.
The first and second best methods are highlighted in blue and red.

Env # steps DBAC DROQ G=1 DROQ G=5 SAC TOPSAC TQC
InvertedDoublePendulum-v4 50k 6235.99 5967.47 6812.88 5578.03 5750.87 5624.03

Walker2d-v4 300k 3166.3 1490.9 1300.85 1371.76 1822.86 2963.89
Hopper-v4 125k 1122.34 502.25 1024.69 421.8 765.93 1193.79

Humanoid-v4 300k 2271.2 952.87 994.22 1182.69 833.41 1880.35
HalfCheetah-v4 400k 6866.44 5675.06 6483.58 6140.46 6149.67 7149.85

Ant-v4 300k 2742.98 983.09 2046.47 1582.81 1140.96 3056.95
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Figure 1: Main learning curves of DBAC and other algorithms. The standard deviation is represented by
the shaded areas, while the average return across evaluation episodes is shown by solid curves. See specific
hyper-parameters from Table 5.

Figure 2: Estimation error of DBAC and other algorithms on the beginning of episodes. The standard
deviation is represented by the shaded areas, while the average errors across evaluation episodes are shown
by solid curves. See specific hyper-parameters from Table 5.
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Sample efficiency As seen from Figure 1, DBAC outperforms all other algorithms except TQC for
HalfCheetah-v4, Ant-v4 and Hopper-v4 in terms of sample efficiency. The main explanation is in Figure 2,
as other algorithms except TQC suffer from positive overestimation bias, where DBAC handles it by using
a pessimism level specifically selected for each environment. It is also the same for TQC algorithm, as we
found the number of quantiles to drop per network by trial-and-error to represent pessimism. Also as seen in
Table 2, DBAC also performs well not only at the end of training but also during whole learning time along
with TQC.

Computation efficiency As wall-clock time statistics vary depending on computing units, we present the
number of critic networks and number of critic backpropagations per time step in Table 3. Note that policy
is a single and same network through all methods, and only the input and output layers of the critic are
different which has an insignificant effect on the number of training parameters. Although TQC performs
slightly better than DBAC on sample efficiency for some environments, DBAC uses fewer parameters and
consumes fewer computation resources compared to TQC as DBAC uses only a single critic network with a
UTD ratio of 1. Therefore, DBAC outperforms other algorithms in computation efficiency.

Table 3: Number of critic networks and backprops per time step. Each critic has almost same size.

DBAC DROQ G=1 DROQ G=5 SAC TOPSAC TQC
# critic network 1 2 2 2 2 5
# critic backprop 1 2 10 2 2 5

However, the key behind DBAC’s performance depends on two main hyper-parameters, pessimism and
dropout rate of critic and policy networks. Therefore, we conduct sensitivity analysis for this purpose in the
following sections.

6.1 Ablation Study 1: Pessimism Sensitivity

To investigate sensitivity of DBAC to pessimism parameter β, we run DBAC on all environment by varying β.
Results are available in Appendix B.1. As shown in Figure 3, results indicate that the optimal β parameter
is neither small nor big number and it is a sensitive parameter. In Figure 4, higher β yields lower error,
consistent with our assumptions. Therefore, it should be determined carefully to guarantee better performance.
As we stated earlier, excess pessimism paves the way to underestimation, whereas lack of it causes critic
overestimation which is inherent to actor-critic methods.

In addition, varied pessimism levels do not affect results significantly in HalfCheetah-v4 and
InvertedDoublePendulum-v4 environments compared to others and have similar value error curves. In
other environments, score curves are worse if value estimations tend to be positive, meaning that critic
overestimation is not handled well. This is observed in less pessimistic settings. On the other hand, score
curves are again worse when error curves are negative and far from zero, meaning that the learner is stuck on
critic underestimation caused by high pessimism. As an extra observation, for Humanoid-v4, sensitivity is
much higher, and episodic value estimate diverged for β = 1.1 and β = 1.2, as shown in Figure 4.

In the end, pessimism sensitivity varies for different environments, possibly because of varying task difficulties.
For easier tasks, less pessimism is enough but difficult tasks require significant pessimism. This parameter
stands as the major bottleneck of DBAC and can only be determined by this heuristic for now.

6.2 Ablation Study 2: Dropout Sensitivity

In addition to pessimism, dropout rate is also an important parameter as it determines epistemic uncertainty.
Results are available in Appendix B.2. As it can be seen from Figure 5, for most environments, dropout
rate 0.01 is best, except HalfCheetah-v4 and Walker2d-v4. This is the reason behind using zero dropout
for the mentioned environments in the main comparison study (Table 5). This hyper-parameter is also
sensitive and requires careful tuning. Although optimal dropout rate may also depend on the neural network
architecture and environment, it is known that mentioned environments are relatively easier compared to
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others in terms of overestimation issues, which is obvious from high performance with relatively primitive
algorithms like Vanilla SAC (Haarnoja et al., 2018), TD3 (Fujimoto et al., 2018) and DDPG (Lillicrap et al.,
2015). Therefore, we believe that dropout for those environments only slows down learning as they do not
suffer from the critic overestimation problem sourced by epistemic uncertainty too much.

Moreover, zero dropout yields to relatively positive episodic value error as demonstrated in Figure 6.
For HalfCheetah-v4 and Ant-v4, both error curves and episodic returns have similar behaviour, while
corresponding curves for Hopper-v4 and Humanoid-v4 differ together. Although pessimism is kept constant
through dropout changes, dropout affects episodic value estimates since predictive uncertainty is also affected
by the randomness of the temporal difference target sourced by dropout. However, this is probably not the
single reason since dropout alters the overall learning procedure.

Another interesting result is that for all zero dropout experiments, DBAC is still on par with SAC, DROQ,
and TQC (for some environments) in terms of sample efficiency, meaning that only representing the critic as
a distribution, and learning by hand-tuned pessimism level removes the necessity to use double or ensemble
critic network.

6.3 Ablation Study 3: Experiments on Stochastic Environments

As DBAC also captures aleatoric uncertainty of critic, it is also tested along with TQC on stochastic environ-
ments with continuous action space, BipedalWalker-v3 and BipedalWalkerHardcore-v3 from Gymnasium
library (Towers et al., 2023). These environments have stochastic transition dynamics since the terrain where
the walker walks is randomly generated. Results are available in Appendix B.3. β parameter is sweeped
for three values while ndrop parameter of TQC is determined by trial-and-error to get best performance.
Learning is terminated after 500k although the task is not completed but both algorithms tend to learn the
task as seen from Figure 7 and the episodic value error curve is summarized in Figure 8.

Best performance is obtained when β = 0.1 and β = 0.5 for BipedalWalkerHardcore-v3 and
BipedalWalker-v3 respectively, indicating that different pessimism levels are required to solve even similar
environments. TQC demonstrates slightly better performance in both environments with ndrop = 1/25 being
the same for both environments. However, DBAC is also able to solve BipedalWalker-v3 with a single critic
network with 5 times fewer critic parameters, but in an unstable way compared to TQC.

6.4 Ablation Study 4: Target Entropy Sensitivity

Target entropy of the policy is another hyper-parameter affecting performance. Therefore, different H̄ values
are tested for three environments; Hopper-v4, HalfCheetah-v4 and Humanoid-v4. The same β values are
used from the main experiment with dropout equal to 0.01. Learning curves are available in 9. With a smaller
H̄ value, the agent in HalfCheetah-v4 learns earlier but tends to demonstrate unstable behaviour after
learning. According to the results, target entropy H̄ is not a critical parameter compared to β for DBAC.

7 Prior Art

Pessimistic policy evaluation Earlier approaches to overcome the overestimation bias phenomenon by
using double critic networks (Van Hasselt et al., 2016; Wang et al., 2016), lagged critic networks (Lillicrap
et al., 2015), and combination of them (Fujimoto et al., 2018; Haarnoja et al., 2018). Recent methods use
an ensemble of critic networks are used to capture epistemic uncertainty, and pessimistic Bellman backup
for critic training (Chen et al., 2021b; Lan et al., 2020; Kumar et al., 2019). Similarly, Hiraoka et al. (2021)
utilized dropout for critic regularization on top of this approach to increase this capability. These methods use
constant pessimism for policy evaluation and improvement but better estimated epistemic uncertainty allows
them to use a high update-to-data (UTD) ratio, the number of gradient steps per environment interaction.

Unlike previous approaches, Kuznetsov et al. (2020) define pessimism for each environment separately, in
the form of sample truncation from quantile distribution and critic ensemble together. While ensembling is
for epistemic uncertainty, quantile representation captures aleatoric uncertainty, in which they stated: it is
especially useful for precise overestimation control, supportive to our idea about it. Similarly, our method
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uses a single critic network returning normal distribution instead of quantile representation and employs
Bayesian dropout instead of ensemble.

Moskovitz et al. (2021) focus on updating pessimism on the fly as a bandit problem instead of fixing it but this
requires evaluating on-policy returns and introduces an online bandit to update pessimism. This approach
would work in an off-policy online setting surely, but it is not usable in a completely offline setting since
there would be no feedback for the bandit. Li et al. (2023b) goes beyond this approach by parameterization
of optimism/pessimism with a neural network and obtains significantly good performance on benchmarks.
Still, these methods use critic ensembles, thus increasing computational overhead. Our work does not focus
on pessimism adaptation and takes it as constant through training and focuses on well-estimated predictive
critic uncertainty.

Risk-sensitive reinforcement learning Pessimism is also needed for safety-critical RL applications to
avoid catastrophic situations. For this purpose, pessimistic policy updates upon aleatoric uncertainty are
modeled as normal distribution (Tang et al., 2019; Yang et al., 2021). Stachowicz & Levine (2024) devised a
risk-sensitive actor-critic algorithm in which epistemic uncertainty is modeled by ensemble whereas aleatoric
uncertainty is modeled by distributional representation as an output of critic network similar to the work
of Kuznetsov et al. (2020). Their approach leads to higher performance by significantly reducing unsafe
maneuvers.

Overestimation vs overfitting Li et al. (2023a) demonstrated that statistical overfitting should be
mitigated for efficient RL. This is a valid statement for any machine learning problem since overfitting means
poor generalization. On the other hand, Kumar et al. (2019) and Levine et al. (2020) state that overestimation
is different than statistical overfitting since increasing the number of training samples does not prevent it.
However, temporary overfitting may cause bias, and it may not be recoverable in actor-critic settings. In our
work, we adopt pessimism to overfitted state-action pairs, resolving overestimation similar to previous works
(Chen et al., 2021b; Hiraoka et al., 2021; Kumar et al., 2019; Lan et al., 2020) but in a more computation
efficient way.

Optimism in the face of uncertainty Epistemic uncertainty is also employed to improve policy opti-
mistically (Audibert et al., 2007; Kocsis & Szepesvári, 2006). However, for large-scale problems, this approach
either fails or requires carefully tuned optimism (Pacchiano et al., 2020; Ciosek et al., 2019). O’Donoghue
et al. (2018) used normal distribution to track critic uncertainty in which the upper bound is used as a policy
improvement target. Osband et al. (2016) follows a similar way but uses ensembles, and improves policy with
random critics at each episode inspired by Thompson sampling. However, their experiments are on relatively
easier environments for deep RL, so overestimation correction is not a major bottleneck. In the actor-critic
setting, Tasdighi et al. (2024a) implemented a double critic network and used optimistic estimates for policy
learning while constructing pessimistic critic targets to mitigate the critic overestimation problem. Ciosek
et al. (2019) followed a similar way by using optimistic estimates only for exploration and pessimistic critic
targets using double critics.

Dropout uncertainty Using dropout is a kind of Bayesian approximation, so another way to assess model
uncertainty (Gal & Ghahramani, 2016). It has applications on model-based (Gal et al., 2016a; 2017; Kahn
et al., 2017) and model-free (Moerland et al., 2017; Jaques et al., 2019; He et al., 2021) reinforcement learning.
Using the same idea in off-policy maximum entropy actor-critic setting, He et al. (2021) injects dropout to
the critic network and demonstrates that one critic network is enough for an actor-critic method. Similarly,
Hiraoka et al. (2021) uses dropout mechanism to evaluate epistemic uncertainty additive to ensembling, and
shows that it reduces the number of required networks in the ensemble but they used critics with deterministic
head. Dropout allows us to significantly reduce ensemble size and use a high UTD ratio like Chen et al.
(2021b). A high UTD ratio increases the risk of overestimation bias but policy is certainly improved in a
more pessimistic way to handle it. They also experimented with a single critic network (called Sin-DroQ)
and obtained similar performance in easier environments such as Hopper-v2 and Walker2d-v2 but failed to
converge for Ant-v2 and Humanoid-v2. We empower this approach by introducing a heteroscedastic critic
network and bootstrapping dropout uncertainty into a distributional representation.
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Heteroscedastic representation for epistemic uncertainty Although heteroscedastic representation
is mainly used to assess aleatoric uncertainty, it may also capture epistemic uncertainty if trained for this
purpose, such as evidential learning (Sensoy et al., 2018; Amini et al., 2020). Moreover, Lakshminarayanan
et al. (2017) also used ensembles to create adversarial examples to robustly assess predictive uncertainty as
neural network output. We treat critic estimate as a random value both epistemically (sourced by dropout
of TD target) and aleatorically (sourced by state transition and learning dynamics) and use distributional
representation to learn both.

8 Conclusion & Future Directions

In this paper, we introduced Deep Bayesian Actor-Critic (DBAC), a novel off-policy actor-critic algorithm.
The main idea is to inhibit overestimation for the sake of faster and more robust learning by incorporating
critic uncertainty arising from both limited samples (epistemic uncertainty) and environmental stochasticity
(aleatoric uncertainty). We utilize Bayesian dropout to capture epistemic uncertainty, while heteroscedastic
output models the total predictive uncertainty which serves to pessimistic critic and policy updates, enabling
stability and robustness in learning. Moreover, we used normal distribution to represent predictive critic
uncertainty, but our analysis is valid for all sub-Gaussian critic distributions or quantile representations.
Finally, we derived an upper bound for overestimation, demonstrating that an adequate level of pessimism
mitigates overestimation without succumbing to underestimation, thus facilitating computation and sample-
efficient learning.

Limitations & Future work Our ablation studies demonstrate the effects of dropout rate and pessimism,
revealing the sensitivity of the learning procedure to these parameters. For each specific environment and
optimization method, there exists an optimal level of pessimism and dropout rate. A promising direction for
future research is to develop a grounded method to adjust the pessimism level for specific environments and
agents to allow better adaptation for the learner to the environment. In addition, the sensitivity of similar
algorithms to pessimism and dropout rate should be investigated in depth. Another promising direction
for future work is to explore different methods for tracking epistemic uncertainty other than ensembles and
Bayesian dropout. Bayesian neural networks (Depeweg et al., 2016), concrete dropout (Gal et al., 2017), and
evidential deep learning (Sensoy et al., 2018; Amini et al., 2020) frameworks may offer more computation
efficient alternatives. Lastly, uncertainty calibration of critic estimates is worth investigating, which might
make pessimism tuning much easier.

Broader Impact DBAC tackles critical challenges such as accelerating learning, improving stability, and
ensuring computation efficiency. Our research not only pushes the boundaries of reinforcement learning but
also promises significant implications for enhancing the safety and intelligence of robots, self-driving cars,
and autonomous systems in healthcare and finance.
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Appendix A Proofs

Proof of Theorem 4.1. Analyzing Bellman update T ∗Q(s, a),

T ∗Q(s, a) = R(s, a) + γEs′∼τ(·|s,a)

[
Eq∼Q

[
α log

( ∫
A

exp(α−1q(s′, a′))da′
)]]

≤ R(s, a) + γEs′∼τ(·|s,a)

[
α log

( ∫
ΩQ

∫
A

exp(α−1q(s′, a′))da′dQ
)]

= R(s, a) + γEs′∼τ(·|s,a)

[
α log

( ∫
A

∫
ΩQ

exp(α−1q(s′, a′))dQda′
)]

≤ R(s, a) + γEs′∼τ(·|s,a)

[
α log

( ∫
A

exp(α−1µ(s′, a′) + 1
2α−2σ2(s′, a′))da′

)]
≤ R(s, a) + γEs′∼τ(·|s,a)

[
α log

(( ∫
A

exp(α−1µ(s′, a′))da′) · ( max
a′

exp(1
2α−2σ2(s′, a′)

))]
= R(s, a) + γEs′∼τ(·|s,a)

[
α log

( ∫
A

exp(α−1µ(s′, a′))da′
)

+ 1
2α

max
a′

σ2(s′, a′)
]

= R(s, a) + γEs′∼τ(·|s,a)

[
α log

( ∫
A

exp(α−1µ(s′, a′))da′
)]

+ γ

2α
Es′∼τ(·|s,a)

[
max

a′
σ2(s′, a′)

]
.

First inequality comes from Jensen’s inequality (using concave property of log function) while the following
equality is a result of Tonelli’s theorem. The second inequality results from the property of sub-Gaussian
distribution 4.1, where the first statement of the theorem is proven. The following inequality is a result of the
mean value theorem for integrals. In the last equality, the first two terms are equal to T ∗µ(s, a). Therefore,

ϵ(s, a) = T ∗Q(s, a)− T ∗µ(s, a) ≤ γ

2α
Es′∼τ(·|s,a)

[
max

a′
σ2(s′, a′)

]
.

Proof of Corollary 4.1.1. From the Theorem 4.1, we can show that

T ∗Q̃(s, a) ≤ R(s, a) + γEs′∼τ(·|s,a)

[
α log

( ∫
A

exp(α−1(µ(s′, a′)− βσ(s′, a′) + 1
2α−1σ2(s′, a′)))da′

)]
= R(s, a) + γEs′∼τ(·|s,a)

[
α log

( ∫
A

exp(α−1µ†(s′, a′))da′
)]

= T ∗µ†(s, a).

where we have defined µ†(s′, a′) = µ(s′, a′) − βσ(s′, a′) + 1
2 α−1σ2(s′, a′)). If β ≥ max

(s′,a′)
1
2 α−1σ(s′, a′), then

µ†(s′, a′) < µ(s′, a′). So we can show that

T ∗Q̃(s, a) ≤ T ∗µ†(s, a) ≤ T ∗µ(s, a). (23)
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Appendix B Results of Ablation Studies

B.1 Ablation Study 1: Pessimism Sensitivity

Figure 3: Learning curves of DBAC with varying pessimism (β) parameter. Dropout is equal to 0.01 for all
experiments.

Figure 4: Episodic value estimation error curves of DBAC with varying pessimism (β) parameter. Dropout is
equal to 0.01 for all experiments.
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B.2 Ablation Study 2: Dropout Sensitivity

Figure 5: Learning curves of DBAC with varying dropout rates (for both critic and policy). Pessimism
parameters are used the same as the main experiment, available in Table 5.

Figure 6: Episodic value estimation error curves of DBAC with varying dropout rates (for both critic and
policy). Pessimism parameters are used the same as the main experiment, available in Table 5.
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B.3 Ablation Study 3: Experiments on Stochastic Environments

Figure 7: Learning curves of DBAC with varying β and TQC (ndrop = 1/25), on Bipedal Walker environments,
H̄ = −2.

Figure 8: Episodic value estimation error curves of DBAC with varying β and TQC (ndrop = 1/25), on
Bipedal Walker environments, H̄ = −2.

B.4 Ablation Study 4: Target Entropy Sensitivity

Figure 9: Learning curves of of DBAC with different target policy entropy H̄. Dropout is 0.01 and pessimism
parameters are used same to main experiment, available in Table 5.
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Appendix C Hyper-parameters and Experiment Details

Hyper-parameter values used in the experiments per method are listed in Table 4. Dropout parameter is
found by trial-and-error and it matches the selection in DROQ paper (Hiraoka et al., 2021). In addition,
target entropy and pessimism parameters (only for DBAC) are summarized in Table 5. Target entropy values
are taken from the DROQ paper, which uses the same values (except Humanoid-v4). For DBAC, pessimism
hyper-parameter and for TQC, quantile drop parameters per environment are found by trial-and-error to
obtain the best performance.

Table 4: Experimental Parameters per Algorithm

Algorithm Parameter Value

DBAC, DROQ, SAC, TOPSAC, TQC

Optimizer Adam ((Kingma & Ba, 2014))
Critic Learning Rate 1× 10−3

Actor Learning Rate 3× 10−4

Discount Rate (γ) 0.99
Target-Smoothing Coefficient (ρ) 0.995
Replay Buffer Size 1× 106

Mini-Batch Size 256
Random Starting Data 10000
UTD Ratio (G) 1

DROQ Dropout Rate 0.01
TOPSAC, TQC Number of Quantiles 25
TQC Ensemble Size 5

TOPSAC
Bandit Optimism/Pessimism Arms [-1, -0.5, 0]
Bandit Learning Rate 0.1
Bandit Window Size 10

Table 5: Target policy entropy (H̄), pessimism (β for DBAC), dropout rate (for DBAC) and quantile drop
(ndrop for TQC) per Environment

Environment Entropy (H̄) Pessimism (β) Dropout Quantile Drop (ndrop)
Ant-v4 -4 0.5 0.01 5/25
Hopper-v4 -1 0.6 0.01 5/25
Walker2d-v4 -3 0.5 0.00 5/25
HalfCheetah-v4 -3 0.1 0.00 0/25
Humanoid-v4 -8 1.0 0.01 12/25
InvertedDoublePendulum-v4 -1 0.2 0.01 3/25
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Appendix D Network Architectures of DBAC

Input (ds + da): (s, a)

Linear (256)

Dropout

LayerNorm

ReLU

Linear (256)

Dropout

LayerNorm

ReLU

Linear (2)

Normal (1): Q

Figure 10: Critic network architecture

Input (ds): s

Linear (256)

Dropout

LayerNorm

ReLU

Linear (256)

Dropout

LayerNorm

ReLU

Linear (2da)

TanhNormal (da): π

Figure 11: Policy network architecture

Appendix E Source Code

Our results can be accessed publicly at https://github.com/authors-github/
deep-bayesian-actor-critic-results. This code uses our in-house developed RL framework as
a sub-repository, available on https://github.com/authors-github/rl-warehouse.
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