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ABSTRACT

Adaptive Mesh Refinement (AMR) is crucial for mesh-based simulations, as it
allows for dynamically adjusting the resolution of a mesh to trade off computa-
tional cost with the simulation accuracy. Yet, existing methods for AMR either
use task-dependent heuristics, expensive error estimators, or do not scale well to
larger meshes or more complex problems. In this paper, we formalize AMR as a
Swarm Reinforcement Learning problem, viewing each element of a mesh as part
of a collaborative system of simple and homogeneous agents. We combine this
problem formulation with a novel agent-wise reward function and Graph Neural
Networks, allowing us to learn reliable and scalable refinement strategies on ar-
bitrary systems of equations. We experimentally demonstrate the effectiveness of
our approach in improving the accuracy and efficiency of complex simulations.
Our results show that we outperform learned baselines and achieve a refinement
quality that is on par with a traditional error-based AMR refinement strategy with-
out requiring error indicators during inference.

1 INTRODUCTION

Adaptive Mesh Refinement (AMR) is a powerful technique for complex Finite Element Method
(FEM)-based simulations (Reddy, 2019; Sabat & Kundu, 2021) that allows to dynamically allocate
resources to relevant parts of the simulated domain to trade off computational speed and simu-
lation accuracy (Plewa et al., 2005; Anderson et al., 2021). Applications of AMR include fluid
dynamics (Berger & Colella, 1989; Baker, 1997; Borker et al., 2019), structural mechanics (Ortiz
& Quigley Iv, 1991; Provatas et al., 1998; Stein, 2007; Gibert et al., 2019) and astrophysics (Cun-
ningham et al., 2009; Bryan et al., 2014; Guillet et al., 2019). Yet, classical approaches for AMR
usually rely on problem-dependent heuristics or error indicators (Mukherjee, 1996; Arnold et al.,
2000; Kita & Kamiya, 2001; Bangerth & Rannacher, 2003; Cerveny et al., 2019). Here, we instead
formalize AMR as a Reinforcement Learning (RL) (Sutton & Barto, 2018) problem. Following pre-
vious work (Yang et al., 2021; Foucart et al., 2022; Yang et al., 2022) in this direction, we encode the
state of the current simulation as local observations that we feed to RL agents. The chosen actions
then determine which elements of a mesh to refine. Opposed to e.g., Physics-Informed Neural Net-
works (Raissi et al., 2019; Cai et al., 2021), which are neural networks that are trained to satisfy the
governing equations of a physical system, learned AMR strategies combine Machine Learning with
classical mesh-based methods. As such, learned AMR methods present a more robust approach to
solving complex physics problems that require high accuracy and precision, as they identify regions
of interest which are subsequently used for a classical numerical solution.

While existing RL-based AMR approaches are trained on refinements of individual elements (Yang
et al., 2021; Foucart et al., 2022) or use a learned value decomposition of parallel refinements (Yang
et al., 2022), we instead employ Swarm Reinforcement Learning (Šošić et al., 2017; Hüttenrauch
et al., 2019) to efficiently train reliable and scalable refinement strategies. For this, our approach uses
a novel spatial reward formulation that assigns each element of the mesh an agent and each agent
its own reward throughout an episode. We combine this reward with Message Passing Networks
(MPNs) (Sanchez-Gonzalez et al., 2020), a class of Graph Neural Networks (GNNs) (Scarselli et al.,
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Figure 1: Overview of Adaptive Swarm Mesh Refinement (ASMR). Given a mesh Ωt, the obser-
vation graph GΩt encodes the elements as graph nodes, their neighborhood as edges, and general
information as global features. The graph is given to a learned policy, which marks mesh elements
for refinement. A remesher refines these elements, resulting in a refined mesh.

2009; Battaglia et al., 2018; Wu et al., 2020) that has proven highly effective for physical simula-
tions (Pfaff et al., 2021; Linkerhägner et al., 2023). The resulting method, Adaptive Swarm Mesh
Refinement (ASMR), produces highly refined meshes with thousands of elements while being appli-
cable to arbitrary Partial Differential Equations (PDEs). Experimentally, we show the effectiveness
of ASMR on challenging elliptic PDEs, outperforming strong learned baselines (Yang et al., 2021;
2022). Further, our results are on par with a traditional error-based AMR heuristic without requiring
expensive error indicators during inference. We additionally conduct a series of ablations to show
which parts of the approach make it uniquely effective.

2 ADAPTIVE SWARM MESH REFINEMENT

Message Passing Networks. Let G = (V,E,XV,XE,g) be a directed graph with nodes V and
edges E ⊆ V × V. Then XV : V → RdV and XE : E → RdE are node and edge features of
dimensions dV and dE respectively, and g ∈ Rdg are global features. A MPN (Sanchez-Gonzalez
et al., 2020; Pfaff et al., 2021; Linkerhägner et al., 2023) is a GNN consisting of L Message Passing
Steps. Each step l receives the output of the previous step and updates the features for all nodes
v ∈ V, edges e ∈ E, and globals g. Using linear embeddings x0

v , x0
e, and g0 of the initial node,

edge, and global features, the step is given as

xl+1
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The operator ⊕ is a permutation-invariant aggregation such as a sum, max, or mean operator. Each
f l· is a learned function that we generally parameterize as a simple Multilayer Perceptron (MLP).
The network’s final output is a learned representation xL

v for each node v ∈ V. Appendix A.1
provides a schematic overview of the MPN architecture.

Swarm Markov Decision Process We frame AMR as an instance of a Swarm Markov Decision
Process (SwarmDP) (Šošić et al., 2017; Hüttenrauch et al., 2019), which can be seen as a special
case of a decentralized partially observable Markov Decision Process (MDP) for swarm systems.
For this, we adapt the process to per-agent rewards, a shared observation structure, and varying
numbers of agents. Details can be found in Appendix A.2.

Agents and Actions. Given a mesh Ωt for a domain Ω, we view each element Ωt
i ⊆ Ωt as an agent.

Each element’s action space comprises a binary decision to mark it for refinement or not. A remesher
refines all marked elements i as Ωt

i =
⋃

j Ω
t+1
i,j , resulting in a finer mesh Ωt+1 =

⋃
j Ω

t+1
j . The

remesher may also refine unmarked elements to assert a conforming solution (Arnold et al., 2000).

Observations. We encode an observation graph GΩt by creating a node for each mesh element and
(directed) edges between all pairs of neighboring elements. The node, edge, and global features of
the resulting graph depend on the considered system of equations. However, we encode positions on
the mesh only as relative Euclidean distances in the edge features XE to ensure that our observations
are equivariant under the Euclidean group (Bronstein et al., 2021; Pfaff et al., 2021).
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Figure 2: Qualitative results for ASMR on Poisson’s Equation on an L-shaped domain. Ranging
from high (left) to low (right) element penalties α, our approach produces highly accurate refine-
ments for different numbers of mesh elements. In all cases, the policy focuses on and refines the
relevant parts of the underlying system of equations. We list more examples in Appendix E.

Reward. A good refinement strategy trades off the accuracy of the mesh Ωt with its total number
of elements Ωt

i ⊆ Ωt. Let ẽrr(Ωt
i) be an error estimate of element Ωt

i, Area(Ωt
i) its total area and

δt(Ωt
i) = {Ωt+1

j ⊆ Ωt
i} the mapping that assigns the element to all elements Ωt+1

j that it refines
into. We then define a reward per element as

R(Ωt
i) =

1

Area(Ωt
i)

ẽrr(Ωt
i)−

∑
Ωt+1

j ∈δt(Ωt
i)

ẽrr(Ωt+1
j )

− α
(
|δt(Ωt

i)| − 1
)

, (1)

where α is a hyperparameter that acts as a penalty for adding new elements. Note that the reference
mesh Ω∗ is only needed during training and that the trained policy does not depend on it when
refining a new mesh during inference. To track the influence of the agents even though they may
appear and disappear throughout an episode, we can iteratively assign the mapping δt(Ωt

i) for k time
steps as δtk(Ω

t
i) = {Ωt+k

j ⊆ Ωt
i}. This mapping allows us to compute a return per element

J t
i = Eπ

 ∞∑
k=0

γk
∑

Ωt+k
j ∈δtk(Ω

t
i)

R(Ωt+k
j )

 .

We provide additional details on the construction of the error estimate ẽrr(Ωt
i), as well as an intuition

on the reward in Appendix A.3.

Adaptive Swarm Mesh Refinement. Our approach trains a policy π(a|GΩt) that computes a joint
action vector a ∈ A|{Ωt

i∈Ωt}| for all mesh elements Ωt
i by passing messages along the observation

graph G. Figure 1 gives a schematic overview.

3 EXPERIMENTS

Systems of Equations and Graph Features. We experiment on two families of elliptical PDEs,
namely Laplace’s Equation on domains with an inner and an outer boundary with different boundary
conditions and Poisson’s Equation on L-shaped domains for Gaussian Mixture Model load func-
tions. Both equations are ubiquitous in physics (Strauss, 2007), with applications including heat
flow (Zill, 2016), electrodynamics (Griffiths, 2005) and astrophysics (Misner et al., 1973). We refer
to Appendix B for further details. The nodes features Xv for each node v ∈ V are given as the ele-
ment area, the distance to the closest boundary, and the mean and standard deviation of the solution
on the element’s vertices. Edge features are defined as euclidean distances between element mid-
points, and global features g consist of the number of mesh elements and mesh vertices, as well as
the current environment step. For Laplace’s Equation, the closest distance to the inner boundary is
included as an additional node feature, while for Poisson’s Equation, the load function f is evaluated
at the respective face midpoint.

Setup. We use Proximal Policy Optimization (PPO) (Schulman et al., 2017) for all experiments.
We experiment on different 2d domains with triangular meshes and linear elements. The PDEs are
implemented using scikit-fem (Gustafsson & Mcbain, 2020). All methods are evaluated for different
α to produce a wide range of solutions, and we repeat each experiment configuration for 10 different
random seeds. We report the average performance on 100 randomly sampled but fixed evaluation
PDEs for each seed. Appendix D.1 lists all PPO and network training hyperparameters.

All environment episodes start with a coarse initial mesh Ω0 and iteratively refine this mesh T = 4
times unless mentioned otherwise. During training, the reference mesh Ω∗ is computed by uniformly
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(b) Poisson’s Equation

Figure 3: Normalized squared error plotted against the number of elements for (a) the Laplace
Equation and (b) the Poisson Equation. Each point represents the average performance over 100
evaluation environments for one random seed. The lines are a Log-Log linear regression over the
aggregated results for each method. For both experiments, all methods can provide refinements for
different numbers of elements. However, ASMR is significantly more stable than the other learned
methods, producing more consistent and higher-quality refinements, especially for larger meshes.

refining the initial mesh Ω0 a total of 4 times. We evaluate a given refinement via its normalized
numerically integrated squared error compared to a 5 times refined reference mesh to ensure a small
numerical error in the evaluation. Details on this metric are given in Appendix C.2. We also provide
results for a normalized linear error in Appendix C.3.

Baselines. We adapt an Argmax (Yang et al., 2021) and a VDGN-inspired (Yang et al., 2022) base-
line, called PPO-VDQN, to our setup. Detailed information on the baselines is given in Appendix
C.1. We also compare to a traditional error-based AMR baseline (Binev et al., 2004; Bangerth et al.,
2012; Foucart et al., 2022). Given a parameter θ, this Heuristic iteratively refines all elements Ωt

i
for which ẽrr(Ωt

i) > maxj ẽrr(Ωt
j). This baseline uses the reference mesh Ω∗ for error calculation

as oracle information, which is usually unavailable during inference. Additionally, the heuristic is
purely local and thus may be sub-optimal for globally propagating errors, which is a well-known
issue for elliptic PDEs (Strauss, 2007; Foucart et al., 2022). Opposed to this, RL methods learn to
maximize an expected return, allowing them to find more strategic marking strategies.

We additionally conduct ablations to determine which parts of our approach make it effective. For
this, we consider an Unscaled variant for our method that drops the area scaling in Equation 1, as
well as a Shared Reward version that considers the sum of all agent’s rewards as a single global
reward. Note that the combination of these two changes results in PPO-VDGN.

Results. Figure 2 shows qualitative results of ASMR on an exemplary Poisson problem. For differ-
ent values of α, our approach provides refinements of different granularity. Quantitatively, Figure 3
shows that our approach outperforms other learned methods, especially for larger meshes. Interest-
ingly, ASMR matches or surpasses the error-based heuristic baseline, indicating its ability to learn
sophisticated refinement strategies that minimize error throughout the entire environment episode,
even without access to error estimates. We provide additional evaluations for a linear instead of a
squared error in Appendix C.3. Appendix C.4 provides further ablation experiments on different
observation graphs. Finally, Appendix E lists additional visualizations for all methods.

4 CONCLUSION

We propose Adaptive Swarm Mesh Refinement (ASMR), a novel method for Adaptive Mesh Re-
finement that utilizes Swarm Reinforcement Learning to iteratively refine meshes to efficiently solve
Partial Differential Equations. By viewing the mesh elements as agents in a swarm system, our
method can efficiently train a shared policy for all agents. Combining this approach with Graph Neu-
ral Networks and a novel per-agent reward formulation, our method yields stable and efficient mesh
refinements for meshes with thousands of elements without requiring access to an error estimate
during inference. Experimentally, we show that our method outperforms existing Reinforcement
Learning mesh refinement techniques and compares well to an error-based heuristic. In future work,
we want to extend our approach to more complex systems of equations, including time-dependent
Partial Differential Equations. Other promising directions include extending our approach to quadri-
lateral meshes and combining the current per-agent reward with a global measure of mesh quality.
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Marinier, Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly,
and Olivier Bachem. What matters for on-policy deep actor-critic methods? a large-scale study. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=nIAxjsniDzg.

Douglas N Arnold, Arup Mukherjee, and Luc Pouly. Locally adapted tetrahedral meshes using
bisection. SIAM Journal on Scientific Computing, 22(2):431–448, 2000.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. stat, 1050:21, 2016.

Timothy J Baker. Mesh adaptation strategies for problems in fluid dynamics. Finite Elements in
Analysis and Design, 25(3-4):243–273, 1997.

Wolfgang Bangerth and Rolf Rannacher. Adaptive finite element methods for differential equations.
Springer Science & Business Media, 2003.

Wolfgang Bangerth, Carsten Burstedde, Timo Heister, and Martin Kronbichler. Algorithms and
data structures for massively parallel generic adaptive finite element codes. ACM Transactions on
Mathematical Software (TOMS), 38(2):1–28, 2012.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinı́cius Flores
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
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Figure 4: A detailed view of the MPN architecture employed by ASMR. Given a graph G, the global
features g, node features XV and edge features XE′ are linearly embedded into a latent space. From
this latent space, L message passing steps are performed. The resulting latent features per node are
interpreted as a local observation encoding and can be given to an RL policy or value function.

A METHOD DETAILS

A.1 MESSAGE PASSING NETWORK ARCHITECTURE

Figure 4 shows the Message Passing Network employed by ASMR.

A.2 SWARM MARKOV DECISION PROCESS

Formally, we define an abstract agent as a tuple A := ⟨S,O,A, π⟩. Here, S, O, A are sets of local
states, observations and actions, respectively and π : O×A → [0, 1] is the local policy of the agent.
From this definition, the Swarm MDP is characterized by a tuple ⟨N,A, T,R, ξ⟩. More precisely,
given a number of agents N , the system follows a global transition model T : SN × AN → SM ,
where potentially M ̸= N and uses a per-agent reward function R : SN × AN → RN . The
observations of the agents are calculated from their states via the observation model ξ : SN → ON .

In our case, the local states and observations share a lot of structure. Given a mesh Ωt with N
elements Ωt

i ⊆ Ωt, each element can be considered an agent. The agent’s state then is its local view
on the full mesh, and its observations is a local encoding of the mesh. We make use of this shared
structure by encoding the observations as a graph, where each node represents a mesh element and
each edge the neighborhood of two elements. This allows us to compute joint actions for all agents
by using the whole observation graph as the input for an MPN-based policy.

A.3 REWARD DESIGN

Adaptive Mesh Refinement fundamentally trades off the accuracy of the refined mesh with its usage
of resources. To estimate the accuracy, we define an error per element as the numerically integrated
difference in solution of this element when compared to some fine-grained reference mesh Ω∗. For
this, we consider the midpoints pΩ∗

r
∈ Ω∗

r of all elements Ω∗
r of the reference mesh. For each

element Ωt
i we then integrate over all midpoints that fall into it, scaling each by the area of its

respective element in Ω∗. This results in an error estimate

êrr(Ωt
i) ≈

∑
Ω∗

r⊆Ωt
i

Area(Ω∗
r)
(
|uΩ∗(pΩ∗

r
)− uΩt(pΩ∗

r
)|
)

for the solution uΩ∗ on the fine mesh and the solution uΩt on the current mesh. To get an error
estimate that is consistent across different geometries, we normalize the error with the total error of
the initial mesh Ω0, i.e.,

ẽrr(Ωt
i) =

êrr(Ωt
i)∑

Ω0
e∈Ω0 êrr(Ω0

e)
.
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From here, we formulate a reward per element as given in Equation 1. This reward intuitively
evaluates whether a given refinement decreases the overall error enough to warrant the extra use of
resources, and becomes 0 for unrefined faces. The added area scaling term leads to more accurate
refinements, as it discourages the refinements of large elements with a relatively low average error.
Mathematically, optimizing this reward corresponds to minimizing the error in elements with a
high error density while keeping the total usage of elements low. We expect a high reward of the
refinement of elements with a high error density, because the error is locally high compared to the
fine solution. A refinement thus leads to a more accurate solution in this area. We note that this
reward formulation is purely local, allowing the approach to scale to a large number of agents, at the
cost of providing less accurate rewards for PDEs with global dependencies.

B SYSTEMS OF EQUATIONS

In its most general form, the FEM is used to approximate the solution u(x) for the set of test func-
tions ψ, which satisfies the weak form ∀x : ∀ψ(x) : a(u(x), ψ(x)) = l(ψ(x)) of the underlying
system of equations.

B.1 LAPLACE’S EQUATION

Let Ω be a domain with an inner boundary ∂Ω0 and an outer boundary ∂Ω1. Laplace’s Equation is
given as

∇2u(x) = 0 in Ω.

The weak solution to this equation consists of finding u(x) such that∫
Ω

∇u(x) · ∇v(x) dx = 0

for all test functions ψ(x). Additionally, the solution has to satisfy the Dirichlet boundary conditions

u(x) = 0, x ∈ ∂Ω0, u(x) = 1, x ∈ ∂Ω1.

We use a unit square (0, 1)2 for the outer boundary ∂Ω0 of the domain and add a randomly sampled
square hole, whose borders are considered to be the inner boundary ∂Ω1. The size of the hole
is sampled from the uniform distribution U(0.05, 0.25)2, and its mean position is sampled from
U(0.2, 0.8)2.

B.2 POISSON’S EQUATION

We additionally consider the Poisson problem

∇2u(x) = f(x) in Ω, u(x) = 0 on ∂Ω

for a load function f(x) : Ω → R. Here, the weak solution consists of finding u(x) such that∫
Ω

∇u(x) · ∇ψ(x) dx =

∫
Ω

f(x)ψ(x) dx

for all test functions ψ(x) while being 0 on the boundary ∂Ω.

We model Poisson’s Equation on L-shaped domains, using a rectangular cutoff whose lower left
corner is sampled from p0 ∼ U(0.2, 0.95)2, resulting in a domain Ω = (0, 1)2\(p0 × (1, 1)).
On this domain, we sample a Gaussian Mixture Model with o = 3 components. The mean
of each component is sampled from U(0.1, 0.9)2, using rejection sampling to ensure that all
means lie within the domain. The components’ covariances are determined by first drawing di-
agonal covariances, where each dimension is drawn independently from a log-uniform distribu-
tion exp(U(log(0.0003, 0.003))). The diagonal covariances are then rotated by a random angle in
U(0, 180) to produce Gaussians with a full covariance matrix. The component weights are drawn
from the distribution exp(N(0, 1)) + 1 and subsequently normalized, where the 1 in the end is used
to ensure that all components have relevant weight.
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Figure 5: Normalized linear error plotted against the number of elements for (a) the Laplace Equa-
tion and (b) the Poisson Equation. For the linear error, areas with a high error are weighted less.
As a result, methods that produce more regular meshes perform slightly better, because their main
source of error is not taken into account as much.

C EXPERIMENTS AND EVALUATIONS

C.1 REINFORCEMENT LEARNING BASELINES

Both the Argmax and the PPO-VDGN baseline utilize a global reward, which is the sum over all local
rewards without area scaling, and use our MPN for the policy and value functions. For the Argmax
baseline, each element predicts a continuous action, and in each environment step the element with
the highest action is marked. We remove the face penalty and train for up to 100 environment steps
since the method refines only one element at a time. For PPO-VDQN, we compute a value function
for each agent and then sum them up to calculate a value decomposition (Sunehag et al., 2017).

C.2 EVALUATION METRIC

Given a reference mesh Ω∗ and a final refined mesh ΩT , we compute the normalized squared error
by evaluating the squared difference in the reference solution uΩ∗ and the solution uΩT as∑

m Area(Ω∗
m)

(
uΩ∗(pΩ∗

m
)− uΩT (pΩ∗

m
)
)2∑

m Area(Ω∗
m)

(
uΩ∗(pΩ∗

m
)− uΩ0(pΩ∗

m
)
)2 . (2)

Here, we use the squared error during evaluation as it is more sensitive to outliers and thus provides
a cleaner measure of the quality of the mesh. We additionally provide results for the linear error,
i.e., for Equation 2 without the squares, in Appendix C.3.

C.3 LINEAR ERROR METRIC

Figure 5 shows results for the linear error. The general trends for the linear errors are consistent with
the quadratic errors in Figure 3. However, we find that the linear metrics does not punish meshes
with very high local errors as much, resulting in slightly better results for methods that produce less
adaptive meshes.

C.4 ADDITIONAL ABLATIONS

We experiment with a version of ASMR that does not use global features g (ASMR (No Global
Features)) but still relies on a global update to pass messages across the full mesh, and with a
version that removes the global message passing altogether (ASMR (No Global Messages)). In both
cases, the global information of the mesh is limited, and for the latter, the policies have to act purely
from local information. Additionally, we consider an ablation of our approach that does not use the
solution information u(x) as a node feature. For this ablation, the RL algorithm has to refine relevant
areas of the domain from just an encoding of the mesh and basic information about the underlying
PDE.

Figure 6 shows the results for these ablations. We find that all methods perform roughly equally
well on the simpler Laplace Equation. However, the solution information and global features and
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Figure 6: Normalized squared error plotted against the number of elements for ablations of ASMR
on (a) the Laplace Equation and (b) the Poisson Equation. Finding a good refinement for Laplace’s
Equation seems to be possible without either global information or information about the solution
u(x). However, for Poisson’s Equation, the performance degrades when not providing global fea-
tures. It further decreases for policies without any access to global messages and when not providing
solution information per mesh element.

messages significantly improve performance on the more challenging Poisson problem. Interest-
ingly, the results for ASMR (No Solution) suggest that the RL algorithm is able to calculate relevant
regions of the PDE from just an encoding of the domain and the boundary conditions. This is likely
achieved by implicitly construction some form of solution within the policy.

D HYPERPARAMETERS

D.1 GENERAL HYPERPARAMETERS

We use the same general hyperparameters across all methods and environments for the sake of
simplicity. All experiments are repeated for n = 10 random seeds with randomized PDEs and
network parameters. During training, a new PDE is sampled for every environment reset. All PDEs
are normalized to be in (0, 1)2. We evaluate all approaches for the final policies on 100 randomly
sampled PDEs that we keep consistent across random seeds for better comparability.

For PPO, we largely follow the suggestions of Andrychowicz et al. (2021). We train for a total of
500 iterations, drawing 256 samples per iteration and then training for 5 epochs with a batch size of
32. All networks are implemented in PyTorch (Paszke et al., 2019) and trained using the (Kingma
& Ba, 2014) ADAM optimizer with a learning rate of 3.0e − 4. The loss of the value function is
multiplied with a factor of 0.5. We clip the norm of the gradient during backpropagation to 0.5, and
set the clip range for the policy and the value function to 0.2. We normalize the observations with a
running mean and standard deviation, use a discount factor of γ = 0.99 and estimate the advantages
using Generalized Advantage Estimate (Schulman et al., 2015) with λ = 0.95. The policy and value
function heads MLPs with 2 hidden layers with a latent dimension of 32 and use a tanh activation
function.

We use separate MPNs for the policy and the value function. Each MPN consists of 2 Message Pass-
ing Steps, where each function f· is represented as a 2-layer MLP with a latent dimension of 32. All
message aggregations

⊕
are mean aggregations. Additionally, we apply Layer Normalization (Ba

et al., 2016) and Residual Connections (He et al., 2016) independently for the node, edge and global
features after each message passing step.

D.2 METHOD-SPECIFIC PARAMETERS

All methods control the number of mesh elements that they produce with a parameter. The error-
based Heuristic uses the refinement threshold θ, the Argmax baseline a number of timesteps T to
refine for, and all other methods make use of an element penalty α. Table 1 lists the different
ranges for these parameters for our experiments for Laplace’s Equation, and Table 2 for Poisson’s
Equation.
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Table 1: Ranges for the refinement hyperparameters for the Laplace Equation. The Argmax baseline
considers a different number of timesteps T ,while the error-based Heuristic uses different thresholds
θ. All other methods make use of an element penalty α. Note that values of α need to be different
when scaling/not scaling the reward in Equation 1 with the element area term.

Method Parameter

ASMR α {3e− 1, 1e− 1, 3e− 2, 1e− 2}
ASMR (Shared Reward) α {3e− 1, 1e− 1, 3e− 2, 1e− 2}
ASMR (Unscaled) α {1e− 5, 3e− 5, 1e− 4, 3e− 4, 1e− 3, 3e− 3, 1e− 2}
PPO-VDGN α {1e− 5, 3e− 5, 1e− 4, 3e− 4, 1e− 3, 3e− 3, 1e− 2}
Argmax T {20, 60, 100}
Heuristic θ {0, 0.02, 0.04, ..., 0.98}

Table 2: Ranges for the refinement hyperparameters for the Poisson Equation. The Argmax baseline
considers a different number of timesteps T , while the error-based Heuristic uses different thresholds
θ. All other methods make use of an element penalty α. Note that values of α need to be different
when scaling/not scaling the reward in Equation 1 with the element area term.

Method Parameter

ASMR α {2e− 1, 1e− 1, 5e− 2, 2e− 2, 1e− 2, 5e− 3}
ASMR (Shared Reward) α {2e− 1, 1e− 1, 5e− 2, 2e− 2, 1e− 2, 5e− 3}
ASMR (Unscaled) α {1e− 5, 3e− 5, 1e− 4, 3e− 4, 1e− 3, 3e− 3, 1e− 2}
PPO-VDGN α {1e− 5, 3e− 5, 1e− 4, 3e− 4, 1e− 3, 3e− 3, 1e− 2}
Argmax T {20, 60, 100}
Heuristic θ {0, 0.02, 0.04, ..., 0.98}

E ADDITIONAL VISUALIZATIONS

We provide additional visualizations for both systems of equations on randomly selected evaluation
environments and algorithm random seeds. For Laplace’s Equation, visualizations are shown in Fig-
ure 7(ASMR), Figure 8 (PPO-VDGN), Figure 9 (Argmax), and Figure 10 (error-based Heuristic).
For Poissons’s Equation, visualizations are provided in Figure 11(ASMR), Figure 12 (PPO-VDGN),
Figure 13 (Argmax), and Figure 14 (error-based Heuristic). The visualizations show that ASMR is
able to provide consistent refinements of high quality for different mesh resolutions. Opposed to
this, VDGN sometimes over- or underrefines meshes for the same element penalty α. The Argmax
baseline generally performs well, but sometimes focuses on uninteresting regions of the mesh. Fi-
nally, the error-based Heuristic greedily refines the elements with the largest errors. This may lead
to issues for globally propagating errors (Strauss, 2007).
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=0.3 =0.1 =0.03 =0.01

Figure 7: Refinements for Laplace’s Equation for refinements of ASMR on randomly sampled PDEs
for different values of the element penalty α.

=0.003 =0.0001 =0.0003 =3e-5

Figure 8: Refinements for Laplace’s Equation for refinements of PPO-VDGN on randomly sampled
PDEs for different values of the element penalty α.
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Figure 9: Refinements for Laplace’s Equation for refinements of the Argmax baseline on randomly
sampled PDEs for different environment rollout lengths T .

=0.9 =0.6 =0.4 =0.3 =0.2 =0.1

Figure 10: Refinements for Laplace’s Equation for refinements of the error-based Heuristic on ran-
domly sampled PDEs for different refinement thresholds θ.
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Figure 11: Refinements for Poisson’s Equation for refinements of ASMR on randomly sampled
PDEs for different values of the element penalty α

=0.001 =0.003 =0.0001 =0.0003 =3e-5 =1e-5

Figure 12: Refinements for Poisson’s Equation for refinements of PPO-VDGN on randomly sampled
PDEs for different values of the element penalty α
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T=20 T=60 T=100

Figure 13: Refinements for Poisson’s Equation for refinements of the Argmax baseline on randomly
sampled PDEs for different environment rollout lengths T .

=0.9 =0.6 =0.4 =0.3 =0.2 =0.1

Figure 14: Refinements for Poisson’s Equation for refinements of the error-based Heuristic on ran-
domly sampled PDEs for different refinement thresholds θ.
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