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ABSTRACT

We propose MIRA (Multimodal Imagination for Reasoning Assessment), a new
benchmark designed to evaluate models in scenarios where generating intermedi-
ate visual images is essential for successful reasoning. Unlike traditional Chain-
of-thought (CoT) methods that rely solely on text, tasks in MIRA require models
to generate and utilize intermediate images — such as sketches, structural dia-
grams, or path drawings — to guide their reasoning process. This setup closely
mirrors how humans solve complex problems through “drawing to think”. To
solve this, MIRA focuses on tasks that are intrinsically challenging and involve
complex structures, spatial relationships, or reasoning steps that are difficult to
express through language alone (e.g., tracking a die’s movement on a board and
summing the face-down values after each roll). To ensure that our evaluation data
is of high-quality, we include 546 multimodal problems, annotated with inter-
mediate visual images and final answers. We also propose a unified evaluation
protocol for MIRA that spans three levels of evaluation input: direct input with
image and question only, text-only CoT (Text-CoT) input with image and think-
ing prompts, and Visual-CoT input with both annotated image clues and textual
thinking prompts. To probe the upper bound of model capacity on our bench-
mark, we also report pass@k and majority voting accuracies under different k
settings. Experimental results show that existing multimodal large language mod-
els (MLLMs), including strongest private models (e.g., GPT-5, 03, Gemini 2.5
Pro) as well as strong open-weight models (e.g., Qwen2.5-VL, GLM 4.5V), per-
form poorly when relying solely on textual prompts. However, when intermedi-
ate visual cues are provided, model performance improves consistently, yielding
an average relative gain of 33.7% across all models and tasks. We also probe
the upper bound by expanding the search space and designing textual prompts
aligned with Visual-CoT, but both yield only limited improvements compared to
our Visual-CoT setting. These results underscore the critical role of imagined
visual information in enabling successful reasoning on MIRA.

1 INTRODUCTION

Chain-of-Thought (CoT) prompting has emerged as a powerful paradigm for improving the rea-
soning capabilities of large language models (LLMs) (Wei et al) 2022). By generating inter-
mediate natural language rationales, CoT enables models to decompose complex problems into
manageable steps, yielding significant gains in tasks such as arithmetic reasoning, commonsense
inference, and multi-hop question answering (Kojima et al., [2022; [Zhang et al., 2022). De-
spite its effectiveness, existing CoT methods operate entirely in the textual domain—even for
multimodal models: every intermediate step must be verbalized in words. This purely linguis-
tic format is inherently limiting, as many real-world reasoning problems are intrinsically vi-
sual — requiring spatial reasoning, geometric manipulation, or physical simulation — that hu-
mans typically address by drawing to think. In such cases, natural language sometimes be-
comes an awkward and lossy medium for expressing intermediate states, forcing models to de-
scribe visual cues step-by-step. As Al models showing exceptionally strong capabilities on
everyday tasks with resemblant human perceptions, questions arise when facing these real-
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world questions: Can current multimodal models truly reason with integrated visual artifacts, and
how much can this capability contribute to solving complex visual reasoning problems?

Existing multimodal reasoning benchmarks primarily treat individual images as the input, testing
models on tasks such as visual question answering (Fu et al., 2023} |Antol et al., 2015} [Yue et al.,
2024aib; |Yu et al., 2023} [Phan et al., 2025), image captioning (Lin et al., [2014; Dong et al., 2024;
Cheng et al., [2025a)), or visual grounding (Yu et al., 2016; [Mao et al., 2016). While some recent
datasets incorporate multi-step reasoning (Lu et al., |2022; |Wang et al.l 2025} (Chen et al., [2025c;
Cheng et al., 2025bj /Wu et al., | 2025b)), the intermediate steps remain text-only, and visual generation
is rarely required to solve these problems. A few preliminary efforts have explored tool-augmented
reasoning, where models can call external drawing components or retrieve related images (Hu et al.,
2024} [Zhang et al., 2024} Fu et al.| 2025} [Mallis et al., [2024} [Shen et al., [2024), but these are often
limited to specific domains and constrained by tools leveraged.

To bridge this gap, we introduce MIRA (Multimodal Imagination for Reasoning Assessment), a
benchmark designed to evaluate reasoning scenarios where generating or leveraging intermediate
visual representations is essential. Each instance is constructed according to three principles: (1)
requiring intermediate visual cues to answer the question, (2) pairing each instance with annotated
step-wise visual clues to enable evaluation under a Visual-CoT setup, and (3) enforcing strict human
annotation and cross-validation to guarantee data quality. MIRA includes both tasks that hinge on
a single auxiliary image and those requiring a sequence of intermediate visual states (e.g., tracking
object state changes over time). In total, the benchmark spans 20 task types and 546 carefully
designed examples, covering scenarios from spatial layout reasoning and geometric construction
to cross-temporal state tracking. All examples are paired with gold-standard intermediate visual
states and images precisely aligned with reference reasoning trajectories, along with final answers,
ensuring evaluation is automated and repeatable.

Since each problem is paired with human-annotated intermediate visual states, to explore the ca-
pacity of models given different granularities of visual information, we evaluate models under three
settings: (1) Direct Evaluation — giving question and image directly; (2) Text-CoT Reasoning —
giving CoT prompt with the question and image; and (3) Simulated Visual-CoT Reasoning — giv-
ing both visual step input and textual CoT prompt along with the question and image. This protocol
decouples the information contribution of visuals from textual generation ability and provides an
evaluation path for future MLLMs that can “think while drawing”. We select state-of-the-art open-
weight MLLMs and commercial MLLMs from six different companies. By employing these three
input settings, our analysis uncovers several key findings. MIRA proves highly challenging: even
GPT-5 reaches only 16.5% accuracy with direct inputs, and no model surpasses 20%. Some cate-
gories are particularly difficult, such as Puzzles (9.5% vs. 16.1% on others). Text-CoT, while useful
elsewhere, often underperforms here on MIRA reducing accuracy for Gemini 2.5 Pro and o3 by
18.3% and 14.0%. In contrast, our Visual-CoT delivers consistent gains, e.g., GPT-5-mini improves
from 13.7% to 23.2% on average, and Physics tasks nearly double across all proprietary MLLMs.
Together, these results highlight both the limits of text-only CoT prompting and the promise of
visual reasoning for existing advanced multimodal systems.

2 RELATED WORK

CoT Reasoning in LLMs. Prompting models to articulate step-by-step solutions in natural lan-
guage - i.e., chain-of-thought prompting - significantly improves their reasoning performance (Wei
et al., 2022). Building on this paradigm, variants like zero-shot CoT (Kojima et al., 2022) and au-
tomatically constructed CoT exemplars (Zhang et al.l 2022) enable models to break down complex
problems into intermediate textual steps, achieving strong results on arithmetic, commonsense, and
multi-hop QA tasks. However, these approaches remain purely textual: they assume verbal reason-
ing alone suffices and struggle on inherently visual tasks that are better served by diagrams or spatial
representations, where intermediate graphical states would be needed.

Reasoning Benchmarks in MLLMs. Multimodal reasoning research has been driven by bench-
marks like Visual Question Answering (VQA) (Antol et al.|, 2015} [Fu et al.}|2023; [Yue et al.| 2024a),
image captioning (Lin et al. 2014} Dong et al) 2024)), and visual grounding (Yu et al), 2016}
Mao et all [2016). These tasks use an image-in, text-out format focusing on visual understand-
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Figure 1: MIRA categorizes Visual-CoT reasoning tasks into two primary types: Static (Single-
Step) and Dynamic (Multi-Step), with representative examples from each category illustrated in
the figure. The dataset includes 20 types of tasks, 546 input images with manually designed ques-
tions, and 936 manually constructed single-step and multi-step intermediate images. For more cases,
please refer to Appendix D}

ing, and many prompts target simple perception (e.g., “Who is wearing glasses?”), placing minimal
demands on reasoning. Some datasets, such as ScienceQA 2022), include multi-step
reasoning hints, but those steps remain textual; problems can still be solved via natural-language
rationales alone, without requiring intermediate images or visual cues. Comprehensive evaluation
suites broaden the coverage of vision—language tasks but similarly do not require models to generate
or manipulate intermediate visual cues (Phan et al.l 2025} [Yu et al. 2023} [Yue et al.| 2024alb;
2023). Thus, while these benchmarks advanced MLLM evaluation, they overlook problems
that genuinely need intermediate visual or diagrammatic reasoning — capabilities vital for unified
generation - understanding models (e.g., (Deng et al.| 2025} [Chen et all, 2025aljb} [Xie et al.| 2024}
Wu et al.| 20254, [Cai et al,[2023))).

Integrating Visual Cues into Reasoning. Bridging the gap between human problem solving (which
often uses sketches or diagrams) and text-only model reasoning, recent work explores visual chain-
of-thought techniques. For example, Visual CoT 2024) augments textual rationales with
intermediate visual cues (e.g., bounding boxes on relevant regions) to improve vision—-language
reasoning. Beyond static cues, tool-augmented methods like Visual ChatGPT 2023),
VisProg (Gupta & Kembhavi, [2023), and ViperGPT 2023) allow models to call external
drawing or vision tools during reasoning to produce auxiliary visuals (sketches, cropped views,
highlighted regions). Further, frameworks such as Vision-Augmented Prompting
and Visual Sketchpad 2024) let models execute code (e.g., Python) to generate or update
diagrams that assist in solving geometry and spatial reasoning tasks. However, these approaches
rely on external tool orchestration and have not yet been systematically evaluated in open-ended
reasoning scenarios.

Unified MLLMs with Image Generation Capabilities. Recent unified-architecture MLLMs
(e.g., Blip3-0 20254)), Janus-pro (Chen et al.}[2025b)), Bagel 2025), Show-
0 2024), OmniGen2 (Wu et al), 2025a)) combine vision and language processing to
both understand and generate images. By contrast, some open-weight MLLMs (Qwen2.5-VL
2025), InternVL-X3 2025)) focus only on visual understanding (e.g., recogni-
tion, grounding, VQA) and do not support general image generation. In principle, generation-
capable models could produce intermediate sketches or diagrams during reasoning, akin to a hu-
man’s scratch paper. Yet most image-generating MLLMs are optimized for photorealistic synthesis
or descriptive captioning, not for creating abstract, task-specific diagrams; even advanced systems

like Gemini (Comanici et al.] 2025b)) and GPT-5 (Hurst et al., [2024) have not demonstrated robust
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“think-while-drawing” abilities. This gap highlights the need for benchmarks explicitly evaluating
a model’s ability to generate and use intermediate visual representations during reasoning precisely
what our proposed MIRA benchmark is designed to assess.

3 MIRA: MULTIMODAL IMAGINATION FOR REASONING ASSESSMENT

In this section, we introduce MIRA a comprehensive benchmark designed to evaluate capacities of
MLLMs for Visual-CoT reasoning across a broad scope of tasks. MIRA consists of 546 curated
samples spanning four challenging domains: Euclidean Geometry (EG), Physics-Based Reasoning
(PBR), Abstract Spatial & Logical Puzzles (ASLP), and Causal Transformations (CT). Each instance
is meticulously designed through a pipeline involving extensive human annotations to ensure high
quality and a unique ground-truth answer. Except the data content itself, our evaluation extends
beyond the vanilla direct input evaluation by requiring models to engage in complex, multi-step
visual reasoning, which is further analyzed through a novel three-level diagnostic protocol with
provided sequences of visual clues.

3.1 BENCHMARK DATA DESIGN AND CONSTRUCTION DETAILS

The design of MIRA data is built around
three core principles to ensure the data requires Benchmark Task Distribution
visual-CoT to solve, paired with artificial visual p
reasoning clues, and is of high-quality, respec- c%o
tively. First, our data design emphasizes the %
need of intermediate visual information (i.e., Y
Visual-CoT) to solve questions. This interme- Seor,
diate process is analogous to the scratchpad di-

agrams humans create when solving difficult Paper Alpiane 25 Gubes Count 30
problems. For instance, to determine the direc- -
tion of force on a positive charge, one might s O
draw a force-body diagram to visualize the net o % K
force. This approach is a complement to tra- & ’
ditional text-based CoT and other prompting
paradigms that simulate model thinking merely ;
as attention-grounding bounding boxes or tex-
tual descriptions of visual concepts.
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Third, diving into detailed data implementation, we employed a hybrid construction pipeline by
integrating the manual labeling, human inspection and programmatic generations. All manually
created problems were authored by graduate-level researchers, drawing inspiration from Reddit’s
visual-puzzle and puzzle-game communities, as well as various exercise repositories and brain-
teaser websites (Redditl [2025}; |Brainglel |2025}; [Smart Brain, 2020; [LoQuiz, 2025), while ensuring
novel formulations and original content. To complement these, additional problems were program-
matically generated via Python scripts, enabling fine-grained control over difficulty. These initial
image inputs are then refined for better visual quality and clarity using image editing tools (e.g.,
GPT-40, Gemini 2.5 Flash). The final stage involves a rigorous quality control with cross-review
and conflict resolve, to ensure each problem has a single, unambiguous ground-truth answer and a
reliable visual reasoning trajectory for the input. Figure 2| summarizes the detailed data pipeline.
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3.2 EVALUATION PROTOCOL

Visual-CoT tasks are difficult in nature, as they favor intermediate visual clues for answering faith-
fully. A key contribution of MIRA is its three-level diagnostic evaluation protocol, designed to
move beyond a single accuracy score and provide insights into why a model fails:

* Level 1: Direct Evaluation. The standard end-to-end setting where the model receives only the
initial problem (I, T,) and must produce the final answer directly, where the I, and 7;, mean
the input images and text, respectively. This measures overall problem-solving capability.

e Level 2: Text-CoT Reasoning. The model is prompted to first generate a textual chain of
thought and then provide the final answer. This level tests the model’s ability to solve problems
in MIRA using text-based reasoning.

¢ Level 3: Simulated Visual-CoT Reasoning. Considering that current models, both open weight
and commercial, cannot accurately generate or interleave the use of intermediate images and
tool-generated auxiliary visuals, we provide manually annotated intermediate images for every
task in MIRA. In Level 3, we evaluate the benefits of these intermediate visuals by providing
them to the model and prompting it to reason based on them before giving the final answer.

Together, this evaluation paradigm allows us to assess the model abilities to understand and think
over visual-reasoning-intensive situations. We provide detailed prompt templates in the evaluation
process for these three levels in Appendix B}

4 EVALUATION

This chapter aims to provide a comprehensive empirical evaluation of the performance of current
mainstream MLLMs on the MIRA benchmark. We have three core objectives: (1) to quantify
the performance of state-of-the-art models on tasks that require intermediate visual reasoning; (2)
to systematically measure the performance improvements brought by an explicit visual chain-of-
thought, thereby isolating and evaluating the actual contribution of visual cues; and (3) to conduct a
fine-grained analysis of the models’ various capabilities and failure modes, providing deep insights
into the key challenges in achieving a human-like “thinking by drawing” reasoning process and how
to overcome them.

4.1 EXPERIMENTAL SETUP

This subsection provides a detailed account of the methodological framework for our evaluation,
covering model selection, implementation of the diagnostic evaluation protocol, and the evaluation
metrics, to ensure that our results are reproducible and clear.

Baseline Models. To provide a comprehensive snapshot of the current landscape, we selected a
diverse and representative cohort of MLLMs and these models are grouped into three key categories.

* Closed-Source MLLMs: These models represent the pinnacle of multimodal capabili-
ties and serve as an upper-bound reference. We evaluate a range of leading models, in-
cluding GPT-5 and GPT-5-mini (OpenAl, 2025a), GPT-4.1 (Fachada et al. 2025), GPT-
4.1-mini (Fachada et al., [2025)), GPT-40 (OpenAl, 2024b), GPT-40-mini (OpenAl, 2024a),
Claude 4 Opus (Anthropic} [2025)), Claude 4 Sonnet (Anthropic| 2025)), 04-mini (OpenAl,
2025b), 03 (OpenAll 2025b)), Seed1.5-VL (Guo et al., [2025), Seed1.6 Vision Pro (Guo et al.,
2025), Qwen-VL-Max (Bai et al.l [2025) and Gemini 2.5 Flash and Pro (Comanici et al.,
2025a)).

¢ Open-Weight MLLMs (Understanding): This class of models exhibits strong visual un-
derstanding capabilities, but typically lacks native, general-purpose image generation abil-
ities. Considering the overall difficulty of the task, we only selected flagship models with
large parameter counts from open-weight models for evaluation. We evaluate s Qwen2.5-VL
(73B) (Bai et al., [2025)), and GLM 4.5 V (106B) (Hong et al.,|2025). This category helps us
assess the reasoning limitations of models that are primarily geared towards perception tasks.

* Open-Weight Unified MLLMs (Understanding & Generation): This emerging class of
models possesses both understanding and generation capabilities, making them the most
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Table 1: Main results of various models on MIRAThe models are grouped into three categories:
Closed-Source SOTA MLLMs, Open-Weight MLLMs, and Open-Weight Unified MLLMs. We
report model results under three different inputs: D for direct input, T for Text-Cot, and V for
Visual-CoT. Detailed results on each sub-category can be found on Tables B{I0} We highlight the
top-three performing models in each column with varying shades of blue, where a darker shade
indicates a higher rank.

Model EG (Geometry) PBR (Physics) ASLP (Puzzles) CT (Causal) Overall
T \% T \% T \% T \% T \%
Closed-Source SOTA MLLMs

Gemini 2.5 Flash 94 11.7 156 197 229 467 65 59 7.1 140 120 141 113 11.7 173
Gemini 2.5 Pro 10.6 11.1 150 @I 27.1 §59%W 110 71 97 172 170 10.1 13.8 189
GPT-5 145 144 156 299 222 537 108 [ISEFANIONN 179 193 16.5

GPT-5-mini 100 106 1200 281 213 398 72 108 169 172 13.1 246 137 129 232
GPT-4.1 16.1 78N 167 122 165 394 66 79 105 132 179 153 119 147 179
GPT-4.1-mini 55 89 11.7 95 222 31.1 124 125 109 103 154 148 94 136 151
GPT-40 72y 111 117 8.0 111 381 46 32 97 141 121 91 112 9.0 144
GPT-40-mini 72 139 111 143 59 175 78 66 92 156 173 152 105 11.3 125
03 152 133 183 224 169 47.6 11.5 85 129 JROMEN202N 275 164 14.1 [ 234
04-mini 140 13.1 140 18.8 JBOBSN 440 &GN 114 117 166 144 244 156 [ 155 204
Claude 4 Opus 128 [ 156 150 19.0 222 286 78 7.8 105 127 11.6 121 122 133 149
Claude 4 Sonnet 122 100 150 197 186 276 103 110 85 126 151 96 129 129 136
Seed1.5-VL 11.1 106 16.1 206 28.6 437 86 112 39 140 180 12,6 125 153 157
Seedl.6 VisionPro 133 11.1 2 207 222 516 86 85 46 169 102 112 139 11.8 184
Qwen-VL-Max 11.7 128 17.8 245 222 317 135 9.1 11.7 138 7.6 202 147 11.8 187
Average 12.1 124 157 206 207 400 95 91 105 151 147 16.6 133 133 18.0

Open-Weight MLLMs (Understanding)

Qwen2.5-VL (32B) 44 39 56 48 64 43 1.3 39 45 39 107 47 34 60 49
Qwen2.5-VL (72B) 145 139 145 21.7 190 424 11.1 65 104 86 101 96 131 115 162
GLM 4.5V (106B) 150 139 16.1 175 206 238 89 7.8 105 133 13.6 259 131 13.0 18.0

Average 113 106 121 147 153 235 7.1 6.1 85 86 115 134 99 102 130
Open-Weight Unified MLLMs (Understanding & Generation)

Bagel (7B) 97 50 112 79 00 79 35 53 44 123 48 135 75 47 88

Janus-Pro (7B) 25 112 90 00 48 00 40 88 62 112 53 69 49 89 72

promising candidates for future autonomous Visual-CoT. We evaluate Bagel (Deng et al.,
20235) and Janus-pro (Chen et al.| [2025b). Their performance in the simulated Visual-CoT
setting provides a proxy for their potential to leverage self-generated visual aids.

For transparency, for all models, we will report the specific version or API endpoint used in Ap-
pendix [A] (e.g., gpt-40-2024-11-20), a standard practice for reproducibility in benchmark papers.
Here, the division of models into “understanding-focused” versus “unified” is not merely descrip-
tive; it constitutes an implicit experimental axis. It is plausible to hypothesize that unified mod-
els, even without explicit fine-tuning for such tasks, may demonstrate a greater ability to integrate
new visual information in the simulated Visual-CoT setting, as their architectures are designed for
tighter coupling between vision and language generation. Thus, by comparing the performance gain
between Text-CoT and Visual-CoT for these two classes of open-weight models, we can uncover
architectural nuances that favor Visual-CoT-style reasoning.

Evaluation. We use micro-averaged accuracy as our metric and employ a tiered pipeline to robustly
extract answers from outputs containing lengthy reasoning. Our process prioritizes a fast, rule-based
extraction, first attempting to parse a definitive answer from within an <answer> </answer>tag, and
then falling back to a set of heuristic regular expressions for common answer phrasings. For any
remaining ambiguous outputs that elude these deterministic methods, we use a powerful LLM (gpt-
40-2024-11-20) as a semantic judge to analyze the full response and determine the correctness of the
final answer against the ground truth. For the LLM evaluation prompts, please refer to Appendix [B]

4.2 MAIN RESULTS

In this section, we present a comprehensive comparison of various MLLMs on MIRA benchmark,
with detailed results in Table |Il Our observations are threefold, which are detailed as follows.
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Figure 3: A comprehensive performance comparison of leading models across three evaluation set-
tings: Direct Evaluation (D), Text-CoT Reasoning (T), and Simulated Visual-CoT Reasoning (V).
This stacked bar chart shows performance scaling: the base indicates pass@1 accuracy, with seg-
ments above capturing gains from pass@2, pass@4, and pass@8. The red horizontal marks show
majority voting scores over 8 responses.

MIRA is challenging, with some categories proving toughest. Our results show that MIRA
poses substantial difficulty even for the strongest MLLMs. For example, the latest OpenAI’s GPT-5
achieves only average 16.5% accuracy with direct inputs, while there is no a single model achieves
accuracy over 20% with only the image and question input. Interestingly, MLLMs generally lags
behind on tasks in the Puzzles category, a category that requires meticulous visual understanding
and reasoning abilities, compared to other task categories (i.e., average 9.5% on Puzzles vs. 16.1%
on other categories with the direct input). These observations indicate that the intrinsic challenging
nature of MIRA and confirm that current MLLMs are adapted for broad general-purpose reasoning
but remain poor in handling tasks that demand fine-grained visual comprehension and reasoning.

Text-CoT alone is not enough for solving MIRA. Although Text-CoT has proven beneficial on
various reasoning benchmarks, our analysis reveals it offers little to no advantage in MIRA. In fact,
for strong models like Gemini 2.5 Pro and 03, Text-CoT actually degrades performance by a relative
percentage of 18.3% and 14.0%, respectively. This trend suggests that stronger models with inherent
reasoning capabilities may be adversely impacted by the standard Text-CoT approach. Moreover, on
harder categories such as Puzzles and Causal, which evaluate a model’s capacity for detailed visual
reasoning, Text-CoT harms the accuracy of proprietary models by a relative average proportion of
4.2% and 2.6% severally. These findings not only highlight the limitations of relying exclusively on
Text-CoT when problems in MIRA demand auxiliary visual processes but also establish the need
for a more solid and effective visual reasoning framework.

The annotated Visual-CoT might be the (temporary) solution. One solution we proposed for ex-
amples that require visual thinking is incorporating human annotated visual demonstrations, which
yields substantial improvements across nearly all models. GPT-5-mini, for instance, improves
markedly from 13.7% to 23.2%, while all models achieve notable gains with an average relative
33.7% score boost (e.g., 12.2% to 16.3%). Importantly, Visual-CoT particularly benefits challeng-
ing categories: Puzzle tasks see a modest increase of 1.0% over the original 9.5% accuracy for
private models, whereas Physics tasks experience a striking jump from 20.7% to 40.0% when our
visual reasoning patterns are introduced. Open-weight models such as the Qwen2.5-VL family and
GLM-4.5V also improve with Visual-CoT (e.g., average 9.9% with direct input vs. 13.0% with
Visual-CoT), though their gains are more limited. This relatively weak performance is likely due to
smaller parameter scales and the lack of extensive training on interleaved Visual-CoT data. Although
current unified models like Bagel and Janus-Pro can generate both images and text, they cannot pro-
duce images while answering questions. Visual-CoT helps them better understand the question and
reason effectively, yielding relative gains of 17.3% and 46.9% for Bagel and Janus-Pro. Overall,
while our findings highlight the promise of Visual-CoT as an effective means of enhancing MLLM
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Table 2: Comparison of Text-CoT reasoning performance: General Template (T}.,,) vs. Specialized
Template (Tspec). The A (Gain) column indicates the performance improvement when using a
specialized template over a general one.

Model EG (Geometry) PBR (Physics) ASLP (Puzzles) CT (Causal) Overall
Tgen  Topec A Tyen  Topee A Tyen  Topee A Tyen  Topee A Tgen  Topee A
Closed-Source SOTA MLLMs

Claude 4 Opus 15.6 18.0 +24 222 19.0 -32 7.8 145 +6.7 116 142 +26 143 164 +2.1
Claude 4 Sonnet 10.0 16.5 +6.5 18.6 15.9 -27 110 1.8 +0.8 15.1 1.8 -33 137 140 +0.3
Gemini 2.5 Flash 11.7 1.7 00 229 282 453 59 9.8 +39 120 140 +20 131 159 +2.8
Gemini 2.5 Pro 11.1 120 +09 271 280 409 7.1 80 +09 17.0 176 +0.6 15.6 164 +0.8
GPT-4.1-mini 8.9 106 +1.7 222 314 492 125 102 -23 154 198 +44 148 18.0 +32
GPT-4.1 17.8 16.1 -1.7 165 175 +1.0 79 156 +7.7 179 139 -40 150 158 +0.8
GPT-40 11.1 11.1 00 111 6.3 -4.8 32 64 +32 121 129 +0.8 9.4 92 -02
GPT-5 14.4 156 +12 222 338 +11.6 157 137 20 193 191 -02 179 206 +27
GPT-5-mini 10.6 156 +50 213 286 +73 108 93 -1.5 131 124 -0.7 140 165 +2.5
03 13.3 122 -1.1 169 219 450 8.5 88 +03 202 181 -2.1 147 153 +0.6
o4-mini 13.1 133 +02 305 226 79 114 188 +7.4 144 163 +19 174 17.8  +0.4
Seedl.5-VL 10.6 1.7 +1.1 286 294 +0.8 112 1.8 +0.6 18.0 185 +05 171 179 +0.8
Seedl.6 Vision Pro  11.1 120 +09 222 230 +08 8.5 92 +0.7 102 10.8  +0.6  13.0 138 +0.8
Average 12.2 136 +14 210 236 +26 9.2 108 +1.6 152 153 +0.1 144 158 +1.4

Open-Weight MLLMs (Understanding)
Qwen2.5-VL (32B) 39 8.0 +4.1 6.4 5.6 -0.8 39 1.9 20 107 18.6 +7.9 6.0 78 +1.8

Qwen2.5-VL (72B) 139 1.5 24 190 16.7 -23 6.5 89 +24 10.1 134 +33 115 11.8  +0.3
GLM 4.5V (106B) 139 18.1 +42 206 250 +44 7.8 83 +0.5 136 144 +0.8 13.0 153 +2.3
Average 10.6 125 +20 153 158  +0.4 6.1 64 +03 115 155 +40 102 1.6 +1.5

performance, they also suggest it is only a temporary solution. Closing this gap will require new
training paradigms and datasets that seamlessly integrate visual and textual reasoning.

4.3 ATTEMPTS TO PROBE THE MODEL UPPER-BOUND

To evaluate models’ “best-case potential” beyond single-answer accuracy to determine whether their
failures are due to accidental reasoning errors or a fundamental lack of capability. We broaden the
decoding search space using Pass@k and majority voting (Wang et al., [2022), and further explore
model inputs with task-specific prompts aligned to our Visual-CoT.

Broaden the searching space by Pass@k and majority voting scores. We employ Pass@k (e.g.,
k=1,2,4,8) to aggregate sampled model answers. where the model generates k different reasoning
paths and answers for the same problem, and is considered successful if at least one is correct. We
found that while performance increases with £ from 1 to 4 with an average 15.3% improvement
over all models, the gains nearly converge between k=4 and k=8 (i.e., only average 3.0%). More
concretely, models like Gemini 2.5 Flash and GPT-5 exhibit only marginal gains from pass@4 to
pass@8 (e.g., 1.3% and 0.6%, respectively). These results prove that tasks in MIRA are highly
challenging for these models even with wider search spaces.

We also perform majority voting (Wang et al.,[2022) on the eight sampled responses, with the results
presented inside red bars in Figure [3| It is noteworthy that, both Pass@k and majority voting see
fewer performance gains for models with stronger reasoning abilities — e.g., the stronger GPT-
5 shows a 20.4% improvement from Pass@1 to Pass@8, while the slightly less powerful GPT-
40 gains more at 23.6%. Similarly, majority voting improves Gemini 2.5 Flash’s score by 5.1%,
whereas the more advanced Gemini 2.5 Pro only sees a minimal 0.3% increase. While a wider
search space benefits weaker models by offering more chances to succeed, stronger models show
that their failures are not due to simple reasoning errors but rather a fundamental lack of capability
on MIRA. This suggests that MIRA requires a core reasoning skill that is absent, regardless of how
many attempts are made.

Design Text-CoT to align with Visual-CoT. While vanilla Text-CoT prompts only instruct models
to “think step-by-step”, the proposed Visual-CoT provides richer and more explicit reasoning paths
for MLLMs to follow. To bridge the gap between Text-CoT and Visual-CoT, we design task-specific
CoT prompts that better align with the guidance provided by Visual-CoTs across different tasks (see
Appendix [B] for details). As shown in Table [2] replacing generic prompts with specialized ones
leads to consistent improvements, yielding an average gain of 1.4% over closed-source models and
1.5% over three open-weight MLLMs. However, these gains remain modest or even negative with a
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Input Image Visual CoT Image
Q: Given 10 blue points, they form a blue convex
hull. Given 10 green points, they form  green
convex hull, How many red points fall in the
overlapping portion of the blue and green convex
hulls? Answer with only one digit.

~
L]

@ GPT-5's Reasoning Based on Plain Text

Step-by-step reasoning
(1) Locate the blue points (10 of them) and imagine (or sketch) the
convex hull that encloses all of them, The extreme blue points are
roughly at (0.10.0.40). (0.10.0.62). (0.18.0.95). (0.53.0.90). (0.
and the single low point at (=0.47.0.03). This hull therefore spans an x-

0.10 — 0.66 an
slanting up from (0.47.0.03) to
(2) Locate the green points (10 of thei

range of y-range of = 0.03 — 0.95. with its right edge

'm) and imagine their convex hull
c f . the top
cen hull almost

e far le
( 97). and down to (=0.45.0.10). Hence. the
covers the entire square, especially for x < 0.85
(3) The overlap (intersection) of the two hulls is therefore the part of the
blue hull that is also inside the green hull ~ effectively the whole blue
hull, except possibly for a tiny slice near ts lowest right edge (because the
green hull already contains almost all of i)

(4) Check each red point (20 of them) against that overlapping zone. Red
points with x > 0.66 arc automatically outside the blue hull and arc not
counted; these are the tight cluster of points on the far right (about nine

points). For red points with x < 0.66, one only needs to check if they are
inside the slanted right-hand om (0.47.0.03) to (0.66.0.69). After
inspection, the following red points lie inside that edge (and are
also within the green hull): (0. ).C 79). (2024,0.67).
~0.36.0.58). (<0.28.0.55). (=0.30.0.38). (=0.53.0.44). All other red points

are either to the far right or outside this slanted edge and therefore fail the
blue-hull test,

(5)Thus, 7 red points fall inside the region common to both the blue and
green convex hulls.

<answer>7</answer>

@ GPT-5's Reasoning Based on Text and o4
(1) Identifying the Blue Convex Hull
First, we observe the blue polygon formed by the 10 blue
points. This polygon represents the minimum convex hull
that encloses all the blue points.
(2) Identifying the Green Convex Hull:
Similarly, we look at the green polygon formed by 10 green
points. This is the minimum convex hull that encloses all the
green points.
(3) Determining the Overlapping Region:
In the "Visual CoT Image”, the blue and green convex hulls
partially overlap. This overlapping region appears as the
darkest area in the image—where the blue and green colors
are combined.

(4) Counting the Red Dots:

Our goal is to count how many red dots fall within this
specific overlapping region. By carefully examining the area,

we can clearly see that 4 red dots lie within it.

<answer>4</answer>

Figure 4: A representative failure case of Text-CoT on a Euclidean Geometry (EG) reasoning task.
Even the strongest model (GPT-5) struggles to correctly reason through the problem using plain text,
due to its inability to manipulate intermediate visual states. In contrast, the Visual-CoT approach,
which leverages intermediate visualizations, enables more accurate localization of the overlapping
region and correct counting of red points.

range from -0.2% to +3.2% compared to the stronger improvements brought by Visual-CoT, which
achieves an average gain of 4.7% on closed models. This observation underscores the inherent
limitation of text-only guidance: certain reasoning steps require visual information that text alone
cannot fully capture. These findings further highlight the importance of developing models capable
of true visual reasoning and shed light on promising directions for advancing MLLMs.

4.4 CASE STUDY

To illustrate the limitations of Text-CoT on MIRA tasks, we conduct a case study from the Euclidean
Geometry (EG) category (Figure [d). The task asks the model to identify convex hulls of two point
sets, locate their overlapping region, and count red dots within it: a process requiring complex
spatial reasoning that is nearly impossible to convey in language alone. Even GPT-5 struggles: its
text-only reasoning (brown section) attempts to verbally construct and intersect geometric shapes,
resulting in vague and unreliable logic. Without visual grounding, it cannot accurately delineate
the overlap, often resorting to words like “imagine” (red section), which highlight the inadequacy of
purely textual reasoning. In contrast, supplying a simple “Visual-CoT Image” with hand-drawn hulls
transforms the task. As shown on the right of Figure ] the visual cue shifts reasoning from abstract
descriptions to direct analysis: GPT-5 clearly identifies the two hulls, marks their intersection, and
correctly counts the 4 red dots inside. This case clearly proves that for many visual reasoning tasks,
visual grounding is indispensable, and a drawing on a scratchpad can potentially allow the model to
reason more accurately.

5 CONCLUSION

This paper introduces the MIRA benchmark for systematically evaluating the capabilities of
MLLMs in complex reasoning scenarios that require the generation of intermediate visual im-
ages. The experiments demonstrate three key findings. First, the purely Text-CoT has an intrinsic,
medium-level limitation on visually-intensive tasks that is difficult to overcome with prompt engi-
neering, and gains for even state-of-the-art models are very limited. Second, Visual-CoT, which
provides intermediate visual clues, yields significant gains across various tasks, with an average
relative improvement of over 33%, highlighting the critical role of visual information in complex
reasoning. Third, a significant gap remains between closed-source and open-weight models in their
ability to effectively utilize visual clues. Overall, MLLM:s that rely solely on textual reasoning strug-
gle to address many real-world problems. There is an urgent need for a unified multimodal paradigm
geared towards “thinking while drawing” one that generates high-quality intermediate visual states
during the reasoning process and tightly couples them with subsequent language-based reasoning,
while also pushing for open-weight models to catch up in capability. MIRA provides a reproducible
evaluation platform and metric system for the development and comparison of such methods.
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settings used in model evaluations can be found in Appendix [A]
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A  EXPERIMENTAL MODEL SETTINGS

This section details the configurations for all models evaluated in our experiments. For all API-based
models, we utilized the default decoding settings provided by each endpoint, with the maximum
output length set to 16,384 tokens. The specific versions and checkpoints are organized in Table [3]

For a specific subset of models, we used tailored generation parameters. Specifically, for Qwen-VL-
Max (325B), GLM-4.5V (106B), and both variants of Qwen2.5-VL (32B/72B), we set the maximum
output length to 8,192 tokens and used a top, value of 1.0. For the Bagel (operating in thinking
mode) and Janus-Pro models, we followed the official inference configurations from their respective
code repositories to ensure faithful evaluation.

Table 3: A comprehensive list of the models evaluated in our experiments. For all API-based models,
the default decoding settings were used, as no specific sampling parameters (e.g., temperature) were
set.

Model Creator Version / Checkpoint

GPT-5 OpenAl gpt-5-2025-08-07

GPT-5-mini OpenAl gpt-5-mini-2025-08-07

GPT-4.1 OpenAl gpt-4.1-2025-04-14

GPT-4.1-mini OpenAl gpt-4.1-mini-2025-04-14

GPT-40 OpenAl gpt—-40-2024-11-20

GPT-40-mini OpenAl gpt-40-mini-2024-07-18

03 OpenAl 03-2025-04-16

04-mini OpenAl 04-mini-2025-04-16

Claude 4 Opus Anthropic  clauded4-opus

Claude 4 Sonnet Anthropic  clauded4-sonnet

Gemini 2.5 Pro Google gemini-2.5-pro

Gemini 2.5 Flash Google gemini-2.5-flash-preview—-05-20
Seedl.6 Vision Pro  ByteDance doubao-seed-1.6-vision-250815
Seed1.5-VL ByteDance doubao-1.5-vision-pro-250328
Qwen-VL-Max Alibaba gwen-vl-max-0813

Qwen-2.5-VL (32B) Alibaba gwen2.5-v1-32b-instruct
Qwen-2.5-VL (72B) Alibaba gqwen2.5-v1-70b-instruct
GLM 4.5V (106B) ZAI glm-4.5v

B PROMPT SETTINGS

This section provides the specific prompt templates used for the three evaluation levels described in
Section 3.2, as well as the specialized templates used for the upgraded Text-CoT analysis in Section
4.3. We also include, at the end, the prompt provided to gpt-40-2024-11-20 during our evaluation.
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Level 1: Direct Evaluation. For the direct evaluation setting, a straightforward prompt was used
to ask the model for the final answer without requesting intermediate reasoning steps. The template

was:

[Input Image]

prompt =

113

Question: {question}

Please provide the final answer directly. = The final answer is placed in <an-

swer></answer>.

999

Level 2: Text-CoT Reasoning. This level tested the models’ ability to use text-based reasoning on
MIRA tasks. The model is prompted to first generate a textual chain of thought and then provide
the final answer. Two types of templates were employed to investigate the efficacy of this approach:

* General Template (7., ): This approach used a generic CoT prompt for all tasks. It served as

a baseline to measure the general applicability of text-based reasoning.

[Input Image]

prompt = “‘Question: {question}

Please first conduct step-by-step reasoning, and then provide the final answer. The final
answer is placed in <answer></answer>.”

* Specialized Template (7,..): To test the upper-bound performance of text-only reasoning,
dedicated and task-specific CoT prompt templates were designed for each of the 20 tasks in the

MIRA dataset. Below are the specific prompts used for each task, organized by category.

(1) EUCLIDEAN GEOMETRY (EG)
Task: Convex Hull

7~

\.

[Input Image]
prompt = ““This is a convex hull problem. Analyze the points and determine the vertices
of the convex hull. Question: {question}

Please reason step-by-step: 1. Start with one color (e.g., Red): - Visually/algorithmically
assess which Red points are extreme (cannot be expressed as a convex combination of
other points). - Count how many target points this Red convex hull would contain (on
the boundary or strictly inside). Note any collinear runs along edges and whether inter-
mediate collinear points should be kept or skipped per the task convention. 2. Switch
to the other color (e.g., Blue): - Repeat the same analysis: identify extreme Blue points
and count how many target points the Blue convex hull contains. 3. Cross-check and
reconcile: - Compare Red- and Blue-based findings; verify no interior point is mistak-
enly classified as a hull vertex. - Use supporting checks (orientation tests/cross products)
to confirm each candidate vertex lies on the outer boundary; handle collinearity consis-
tently (keep only endpoints unless the problem requires listing all boundary points). 4.
Construct the final hull: - Order vertices counterclockwise starting from the leftmost-
lowest point (or another clear anchor) and ensure the polygon is simple and closed. -
Provide the set/list of hull vertices (by labels or coordinates) and the total count. 5.
Briefly justify: - Summarize why each listed vertex is extreme and why excluded points
are interior or collinear intermediates.

The final answer is placed in <answer></answer>.

999

Task: Overlap

[Input Image]

prompt = “‘Choose two images from A-D and overlay them by aligning their black
coordinate-axis borders. This produces the overlapping region of the two shapes. Which
pair has the largest overlapping area? Output only two letters like *AC’. Please rea-
son step-by-step: 1. Normalize: confirm all four tiles share the same scale and origin;

15
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\.

treat overlays as perfect border-to-border alignment with no extra rotation/translation.
2. For each pair (AB, AC, AD, BC, BD, CD): - Compare centers and orientations; note
how much their silhouettes intersect (heart/square/star/arrow) when placed at identical
coordinates. - Use bounding boxes as a quick upper bound; then refine with edge/ver-
tex relationships to judge whether overlap is large (broad interior intersection), medium
(partial edge/vertex overlap), or small (mostly disjoint). 3. Track the estimated overlap
area (qualitatively or numerically if obvious from symmetry/containment). Resolve ties
by preferring the pair with broader interior overlap rather than thin edge contact. 4. State
the chosen pair and a 1-2 sentence justification referencing the relative placements/ori-
entations that cause maximal intersection.

The final answer is placed in <answer></answer>.

999

Task: Localizer

[Input Image]

prompt = “‘Tile the square on the right using the solid-outlined puzzle pieces on the
left. Use all pieces; the tiling must be exact—no leftovers, no gaps, no overlaps. Each
piece has a circle. After completing the tiling, return the circle coordinates in numerical
order using the format: [piecelD, (X, y)]; separate entries with semicolons. Assumptions:
use the same unit grid as shown; coordinates are 1-indexed with (X,y) labeled along the
top/left axes; rotations and flips are allowed unless forbidden by outlines. Please reason
step-by-step: 1. Parse the target grid: record its outer size (width x height) and axes
labels. 2. Catalog each piece (1-4): sketch its unit-square footprint, edge types (axis-
aligned vs diagonal), and the circle’s offset in the piece’s local coordinates. 3. Area
& boundary check: verify the sum of piece areas equals the target area; note unique
constraints (e.g., long diagonals, notches) that can only fit specific borders/corners. 4.
Plan placements: anchor the largest/most constrained piece(s) to borders/corners first;
ensure diagonals match the grid diagonals; avoid creating unreachable cavities. 5. Place
all pieces: finalize positions and orientations so the region is fully covered; confirm no
overlaps and all borders align with grid lines/diagonals. 6. Convert circle positions: for
each placed piece, transform the circle’s local offset to global grid coordinates (X, y) and
round to exact grid intersections if applicable. 7. Output strictly in the required order
and format: [1, (x1, y1)]; [2, (X2, y2)]; [3, (X3, y3)]; [4, (x4, y4)].

The final answer is placed in <answer></answer>.”

Task: Mirror Pattern

~

\.

[Input Image]
prompt = ““Which option (A-D) can be obtained by mirroring the original image once?
You may follow these steps to reason: 1) Horizontally mirror the original image. 2)
After the reflection, allow an arbitrary in-plane rotation and critically compare against
each option A—-D (match landmark positions/orientations; rule out any option that would
require a second reflection or non-rigid warping).

The final answer is placed in <answer></answer>.

999

Task: Cubes Count

[Input Image]

prompt = ““What’s the number of cubes presented in the image? Please follow these
steps: 1. Identify each layer from bottom to top. 2. For each layer, count how many
cubes are present. 3. Add up the counts to get the total number of cubes.

The final answer is placed in <answer></answer>.”

Task: Cubes Missing

16
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[Input Image]

prompt = ““What is the number of cubes needed to fill in the structure so that it becomes
a solid block with no internal gaps? Please follow these steps: 1. Identify the full
dimensions of the solid block (length x width x height). 2. For each layer (from top to
bottom), count: - Maximum possible cubes in that layer if solid - Actual cubes present -
Missing cubes = (full layer) — (present layer) 3. Add the missing cubes across all layers.
The final answer is placed in <answer></answer>.”

(2) PHYSICS-BASED REASONING (PBR)

Task: Billiards

7

\.

[Input Image]

prompt = “‘In the image, a billiards table has pockets labeled 1-6. The blue ball rolls
along the green arrow, with no spin, perfectly elastic cushion bounces, and unlimited
momentum. Which numbered pocket will it finally enter? Answer with a single digit
1-6. You may follow these steps to reason: 1) Normalize the table: record the ball’s
starting point and the arrow’s direction; pockets are fixed at labels 1-6. 2) Use the
mirror (unfolding) method: virtually reflect the table across a cushion each time the path
would bounce. Extend the initial ray straight through these mirrored copies until it hits
the center of a mirrored pocket. 3) Map that hit back to the original table to identify the
real pocket number; equivalently, enforce equal-angles for each bounce and verify the
same destination. 4) Output only the pocket label (1-6).

The final answer is placed in <answer></answer>.”’

Task: Electric Charge

7

\

[Input Image]
prompt = “‘Question: {question}

You may follow these steps to reason:

1. Parse the setup: list each charge with sign, magnitude, and coordinates; identify the
target object (which charge/point the net force is asked about).

2. For each source charge, determine the force direction on the target (attraction if op-
posite sign, repulsion if same sign); sketch/describe the vector qualitatively.

3. Compute each force’s magnitude with Coulomb’s law

|QiQt|
|Fi|:k 7'1'2 )

and compute vector components using the displacement unit vector from source to
target.

4. Apply superposition: sum the components F,, and F), to obtain the net force vector;
use symmetry to simplify whenever possible.

\VF2+ F?

and direction (angle or cardinal description), and check limiting/special cases (e.g.,
r = 0 excluded, equal/opposite charges cancel along symmetry axes).

5. Report the net magnitude

299

The final answer is placed in <answer></answer>.

Task: Mirror Clock

17




Under review as a conference paper at ICLR 2026

[Input Image]

prompt = “‘Question: {question}

You may reason as follows:

1. First mirror the clock face (by default, a left-right reflection about the vertical axis).

2. Record the hands’ angles relative to 12 o’clock after mirroring. The angles transform
as
0" = 360° — 0,

i.e. clockwise and counterclockwise directions swap.

3. If required to match choices/diagram, you may then apply an in-plane rotation (0°,
90°, 180°, 270°), but do not perform a second reflection.

4. Convert the mirrored angles back to time and handle hour-minute carry. For minutes
m and hours h (12-hour clock, with h € {1,...,12}):

m’' = (60 —m) (mod 60),
and define the borrow/carry as

1, m#Q0,
Cmy_{o, m = 0.

Then compute the mirrored hour
h' = (12 — h —carry) (mod 12).
When presenting the result convert hour 0 to 12 for human-readable 12-hour time.

5. Compare with the choices, state the final time/option, and explain the key correspon-
dences in 1-2 sentences.

999

The final answer is placed in <answer></answer>.

(3) ABSTRACT SPATIAL & LOGICAL PUZZLES (ASLP)
Task: Unfolded Cube

[Input Image]
prompt = ““This is a cube unfolding problem. Determine which of the options can be
folded into the given cube, or what the unfolded pattern looks like. Explain your spatial
reasoning.

Question: {question}

The final answer is placed in <answer></answer>.

999

Task: Defuse A Bomb

[Input Image]

prompt = ““Question: {question} You can first connect the lines to the obstructed area
and then go through each option one by one to determine which wire to cut.

The final answer is placed in <answer></answer>.”

Task: Multi-piece Puzzle

[Input Image]
prompt = “‘Question: {question} You can carefully consider the details of each option
before making your choice.

The final answer is placed in <answer></answer>.

299

\.

Task: Puzzle
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[Input Image]
prompt = “‘Given the object above. There is a missing piece in the white area. Which of
the five pieces (A, B, C, D, or E) fits perfectly into the missing part of the object? Please
examine the immediate surroundings first and work step-by-step: 1. Describe the bound-
ary shape (angles, curves) of the hole. 2. Describe any pattern/stripe/texture crossing the
boundary. 3. Note lighting/shading and relative scale. 4. Compare each candidate to
steps 1-3 and rule out mismatches. 5. State final choice and a brief justification (3-5
short sentences).

The final answer is placed in <answer></answer>.

299

\

Task: Trailer Cubes Count

[Input Image]

prompt = “‘Based on the three views, what’s the maximum number of cubes that could
be present? Steps: 1. For each column (grid position in the top view), determine the
maximum possible height consistent with front and side views. 2. Count cubes in each
column = column height. 3. Sum across all columns for the total.

The final answer is placed in <answer></answer>.”

\.

Task: Trailer Cubes Missing

[Input Image]

prompt = ““Given the three views, what is the minimum number of cubes needed to fill
in the structure so that it becomes a solid block with no internal gaps?

Procedure the model must use:

1. Read the top view to list allowed (r,c) column positions.

2. Let Hyy be the required cuboid height (the maximum height implied by front/side).
3. To produce a minimal current 3D consistent with views.

4. For each allowed (r,c) column, compute missing = Hy,;; — assigned_height.

5. Sum missing cube values.

299

The final answer is placed in <answer></answer>.

(4) CAUSAL TRANSFORMATIONS (CT)

Task: Paper Airplane

[Input Image]

prompt = “‘Question: {question}

Please note the differences between the folding positions of the wings, center, and nose
of the aircraft in each option, and then choose the appropriate option.

The final answer is placed in <answer></answer>.”

Task: Gear Rotation

[Input Image]

prompt = ““Question: {question}

You can answer this question based on the fact that two connected gears rotate in oppo-
site directions, a conveyor belt rotates in the same direction as the gears, and a crossed
conveyor belt rotates in the opposite direction as the gears.

The final answer is placed in <answer></answer>.”’

.

Task: Rolling Dice (Top)
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[Input Image]

prompt = “‘Question: {question}
You can list the situation of each side of the dice after each roll, mark the top and bottom,
and then after you have reasoned through each step, combine each step with the final
result and choose the correct option.

The final answer is placed in <answer></answer>.

299

\.

Task: Rolling Dice (Two)
[Input Image]

prompt = ““Question: {question}

You can list the situation of each side of the dice after each roll, mark the top and bottom,
and then after you have reasoned through each step, combine each step with the final
result and choose the correct option.

The final answer is placed in <answer></answer>.

999

\. .

Task: Rolling Dice (Sum)

[Input Image]

prompt = “‘Question: {question}
You can list the situation of each side of the dice after each roll, mark the top and bottom,
and then after you have reasoned through each step, combine each step with the final
result and choose the correct option.

The final answer is placed in <answer></answer>.

399

\.

Level 3: Simulated Visual-CoT Reasoning. This level evaluates the model’s ability to utilize visual
information in its reasoning process. Given that current MLLMs are unable to generate their own
intermediate visual steps, this setting simulates a Visual-CoT process. The model is provided with
the initial problem image along with a sequence of manually annotated intermediate images that
act as visual clues. The prompt then directs the model to reason based on this sequence of visuals
to arrive at the final answer. This approach is designed to measure the performance improvement
gained from visual aids and to understand the potential of a true “think while drawing” capability.

[Input Image] [CoT Image 1] [CoT Image 2] ...
prompt = ““Based on the question image and the intermediate reasoning image(s) provided,
please continue the reasoning to solve the problem.
Question: {question}

The final answer is placed in <answer></answer>.

999

Evaluation Prompt. This prompt is used by an evaluator model to judge the correctness of the
primary model’s response.

[Input Image]

Judge prompt = ““You are a strict and precise evaluator. Your task is to determine whether
the model’s final answer is correct based on the ground truth.

Your evaluation must focus exclusively on the answer contained within the <an-
swer></answer>tags, as well as the final answer portion at the end of the model’s response.
Ignore all reasoning, explanations, or any other text outside of these sections. The correct-
ness of the reasoning process is not part of your evaluation.

Here is the data:

Question: “{question}”

Ground Truth Answer: “{ground truth}”

Model’s Full Response: “{model response}”

Based on the ground truth, is the answer inside the <answer>tag correct?

20



Under review as a conference paper at ICLR 2026

99 999

Please respond with only one word: “Correct” or “Incorrect”.

C DETAILED EXPERIMENTAL TABLES

This section provides a detailed breakdown of model performance across all sub-categories within
the MIRA benchmark, supplementing the main results presented in Table[I] The following tables
correspond to Tables [4{I0] as referenced in the main paper.

Table 4: Detailed Results for Euclidean Geometry (Convex Hull, Mirror Pattern) and Physics-Based
Reasoning (Mirror Clock) Tasks.

Model Convex Hull Mirror Pattern Mirror Clock
T A\ T A\ T A\

GPT-5 16.7 167 20.0 26.7 333 267 233 333 467
GPT-5-mini 100 167 233 30.0 10.0 167 3.33 6.67 433
GPT-4.1 133 167 10.0 20.0 36.7 267 333 6.67 133
GPT-4.1-mini 333 133 20.0 233 200 300 0.00 16.7 133
GPT-40 6.67 333 167 36.7 233 200 0.00 0.00 0.00
GPT-40-mini 6.67 100 16.7 133 30.0 200 0.00 3.33 0.00
o4-mini 13.8 11.5 333 333 200 167 167 133 333
03 179 0.00 16.7 26.7 267 233 100 6.67 333
Claude 4 Opus 6.67 133 133 30.0 36.7 30.0 0.00 0.00 0.00
Claude 4 Sonnet 16.7 100 133 26.7 233 200 6.67 333 6.67
Seed1.5-VL 133 133 167 16.7 167 267 0.00 0.00 16.7
Seed1.6 Vision Pro 10.0 3.33 400 267 30.0 267 0.00 0.00 16.7
Gemini 2.5 Flash 0.00 0.00 333 133 30.0 300 6.67 6.67 40.0
Gemini 2.5 Pro 6.67 10.0 10.0 20.0 30.0 167 233 10.0 50.0
Qwen-VL-max-latest (325B) 3.33 0.00 233 133 333 333 6.67 000 0.00
Qwen2.5-VL (32B) 0.00 0.00 10.0 133 333 133 0.00 0.00 3.33
Qwen2.5-VL (72B) 16.7 20.0 16.7 20.0 20.0 300 3.33 0.00 3.33
GLM 4.5V (106B) 16.7 133 20.0 30.0 333 267 0.00 0.00 0.00
Bagel (7B) 0.00 0.00 10.0 30.0 16.7 30.0 0.00 0.00 0.00
Janus-pro (7B) 0.00 167 0.00 3.33 133 233 0.00 0.00 0.00

Table 5: Detailed Results for Euclidean Geometry (Overlap), Abstract Puzzles (Unfolded Cube),
and Physics-Based Reasoning (Billiards) Tasks.

Model Overlap Unfolded Cube Billiards
T v T v T v

GPT-5 36.7 367 4677 870 273 458 238 950 857
GPT-5-mini 20.0 36.7 80.0 0.00 136 500 952 952 619
GPT-4.1 56.7 500 633 0.00 000 385 952 143 762
GPT-4.1-mini 333 133 200 233 200 300 000 16.7 133
GPT-40 533 367 30.0 0.00 000 000 476 143 57.1
GPT-40-mini 13.3 40.0 167 0.00 0.00 000 19.1 9.52 38.1
o4-mini 333 433 567 143 000 231 158 21.1 700
03 36.7 433 667 100 0.00 235 952 250 905
Claude 4 Opus 36.7 433 433 0.00 000 7.69 952 238 429
Claude 4 Sonnet 233 267 533 000 000 000 952 952 429
Seed1.5-VL 36.7 333 467 0.00 7.69 385 952 238 524
Seed1.6 Vision Pro 433 333 567 0.00 7.69 7.69 19.1 19.1 85.7
Gemini 2.5 Flash 36.7 30.0 467 0.00 385 000 952 143 524
Gemini 2.5 Pro 36.7 200 633 192 385 7.69 286 143 619
Qwen-VL-max-latest (325B) 46.7 433 467 6.67 000 333 143 19.1 57.1
Qwen2.5-VL (32B) 133 20.0 100 0.00 000 000 143 19.1 9.52
Qwen2.5-VL (72B) 400 433 400 0.00 0.00 0.00 476 952 762
GLM 4.5 V (106B) 40.0 333 467 000 385 000 952 952 381
Bagel (7B) 100 133 167 0.00 0.00 0.00 19.1 0.00 19.1
Janus-pro (7B) 0.00 20.0 20.0 0.00 0.00 0.00 476 4.76 0.00
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Table 6: Detailed Results for Euclidean Geometry (Localizer), Causal Transformations (Paper Air-
plane), and Abstract Puzzles (Defuse A Bomb) Tasks.

Model Localizer Paper Airplane Defuse A Bomb
T \% T \Y% T \Y%

GPT-5 0.00 0.00 0.00 32.0 320 28.0 320 28.0 320
GPT-5-mini 0.00 0.00 0.00 12.0 160 360 160 28.0 16.0
GPT-4.1 0.00 0.00 0.00 28.0 160 160 240 28.0 40.0
GPT-4.1-mini 0.00 0.00 0.00 240 20.0 28.0 28.0 320 200
GPT-40 0.00 0.00 0.00 20.0 20.0 240 160 8.00 24.0
GPT-40-mini 0.00 0.00 0.00 20.0 12.0 20.0 8.00 240 320
o4-mini 0.00 0.00 0.00 20.0 12.0 40.0 240 240 28.0
03 0.00 0.00 0.00 28.0 32.0 28.0 28.0 240 120
Claude 4 Opus 0.00 0.00 0.00 28.0 20.0 120 20.0 240 320
Claude 4 Sonnet 0.00 0.00 0.00 16.0 120 120 28.0 36.0 28.0
Seedl.5-VL 0.00 0.00 0.00 4.00 240 160 32.0 40.0 8.00
Seed1.6 Vision Pro 0.00 0.00 0.00 20.0 24.0 240 28.0 20.0 8.00
Gemini 2.5 Flash 0.00 0.00 0.00 160 120 240 160 16.0 12.0
Gemini 2.5 Pro 0.00 0.00 0.00 28.0 32.0 20.0 200 16.7 28.0
Qwen-VL-max-latest (325B) 0.00 0.00 0.00 200 4.00 200 320 160 36.0
Qwen2.5-VL (32B) 0.00 0.00 0.00 12.0 120 160 0.00 0.00 4.00
Qwen2.5-VL (72B) 0.00 0.00 0.00 20.0 4.00 20.0 32.0 16.0 36.0
GLM 4.5 V (106B) 0.00 0.00 0.00 4.00 12.0 12.0 304 200 28.0
Bagel (7B) 0.00 0.00 0.00 28.0 12.0 120 16.0 0.00 20.0
Janus-pro (7B) 0.00 0.00 0.00 4.00 8.00 120 160 0.00 8.00

Table 7: Detailed Results for Abstract Puzzles (Multi-piece Puzzle), Physics-Based Reasoning
(Electric Charge), and Causal Transformations (Rolling Dice: Top) Tasks.

Model Multi-piece Puzzle  Electric Charge  Rolling Dice: Top
T \Y% T A% T \Y%

GPT-5 0.00 0.00 6.67 427 238 286 308 308 923
GPT-5-mini 0.00 0.00 0.00 714 476 143 387 269 73.1
GPT-4.1 0.00 0.00 0.00 238 28.6 286 115 269 269
GPT-4.1-mini 0.00 333 0.00 28.6 333 667 385 231 231
GPT-40 0.00 0.00 333 19.1 19.1 57.1 154 7.69 115
GPT-40-mini 0.00 0.00 0.00 238 476 143 192 269 308
04-mini 690 3.57 0.00 238 57.1 286 2.1 150 577
03 0.00 0.00 3.57 476 19.1 19.1 308 269 769
Claude 4 Opus 333 0.00 0.00 47.6 429 429 115 154 23.1
Claude 4 Sonnet 333 333 0.00 429 429 333 154 346 308
Seedl.5-VL 0.00 0.00 0.00 524 619 619 231 385 192
Seed1.6 Vision Pro 0.00 333 0.00 429 476 524 154 269 269
Gemini 2.5 Flash 0.00 0.00 333 429 47.6 476 115 192 115
Gemini 2.5 Pro 333 6.67 333 714 571 667 769 231 154
Qwen-VL-max-latest (325B) 3.33 0.00 0.00 524 47.6 381 192 192 385
Qwen2.5-VL (32B) 0.00 0.00 0.00 0.00 0.00 0.00 7.69 11.5 7.69
Qwen2.5-VL (72B) 0.00 0.00 333 57.1 47.6 476 231 115 23.1
GLM 4.5V (106B) 0.00 333 0.00 429 524 333 192 269 615
Bagel (7B) 0.00 0.00 0.00 476 0.00 0.00 154 385 192
Janus-pro (7B) 0.00 0.00 0.00 0.00 143 0.00 11.5 385 115

D DATASET SHOWCASE

The MIRA benchmark is composed of 546 multimodal problems spanning 20 distinct task types.
These tasks are curated to be challenging and require intermediate visual reasoning, a process analo-
gous to how humans “draw to think” to solve complex problems. The tasks fall into four challenging
domains: Euclidean Geometry (EG), Physics-Based Reasoning (PBR), Abstract Spatial & Logical
Puzzles (ASLP), and Causal Transformations (CT).

To supplement the overview provided in Figure [I] and offer a more intuitive understanding of the
dataset, we showcase several representative examples for each category below (Figure 3} [14).
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Table 8: Detailed Results for Causal Transformations Tasks (Rolling Dice: Sum, Rolling Dice: Two,
Gear Rotation).

Model Rolling Dice: Sum Rolling Dice: Two  Gear Rotation
T \% T \% T \%

GPT-5 1.5 3.85 796 0.00 000 000 150 30.0 150
GPT-5-mini 154 7.69 385 0.00 0.00 000 200 150 100
GPT-4.1 115 11.5 3.85 0.00 0.00 0.00 150 350 30.0
GPT-4.1-mini 385 385 7.69 0.00 0.00 0.00 200 30.0 15.0
GPT-40 0.00 7.69 0.00 0.00 000 0.00 350 250 100
GPT-40-mini 385 7.69 0.00 0.00 0.00 000 350 40.0 250
04-mini 11.8 5.00 4.17 0.00 0.00 0.00 300 40.0 200
03 1.5 120 7.69 0.00 0.00 0.00 300 30.0 250
Claude 4 Opus 385 7.69 154 0.00 0.00 000 200 15.0 100
Claude 4 Sonnet 1.5 3.85 000 0.00 0.00 000 200 250 5.00
Seed1.5-VL 769 7.69 7.69 0.00 0.00 0.00 350 20.0 20.0
Seed1.6 Vision Pro 385 0.00 000 0.00 0.00 000 450 0.00 5.00
Gemini 2.5 Flash 7.69 385 0.00 0.00 0.00 0.00 350 250 350
Gemini 2.5 Pro 154 0.00 000 0.00 0.00 000 350 30.0 150
Qwen-VL-max-latest (325B) 0.00 0.00 0.00 0.00 0.00 7.69 30.0 150 35.0
Qwen2.5-VL (32B) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 30.0 0.00
Qwen2.5-VL (72B) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 350 5.00
GLM 4.5 V (106B) 154 385 115 7.69 0.00 346 200 250 10.0
Bagel (7B) 385 0.00 000 333 333 333 154 231 115
Janus-pro (7B) 385 7.69 000 0.00 000 000 250 10.0 5.00

Table 9: Detailed Results for Euclidean Geometry (Cubes Count, Cubes Missing) and Abstract
Puzzles (Puzzle) Tasks.

Model Cubes Count Cubes Missing Puzzle
T v T v T v

GPT-5 333 0.00 0.00 333 000 000 385 346 308
GPT-5-mini 0.00 0.00 0.00 0.00 0.00 0.00 192 192 23.1
GPT-4.1 0.00 0.00 0.00 6.67 333 000 11.5 154 154
GPT-4.1-mini 0.00 0.00 0.00 333 6.67 000 231 154 154
GPT-40 333 0.00 333 333 333 000 11.5 11.5 308
GPT-40-mini 333 0.00 6.67 6.67 333 6.67 346 154 23.1
o4-mini 357 4.00 7.14 000 000 000 308 231 192
03 333 6.67 000 6.67 333 333 269 231 346
Claude 4 Opus 0.00 0.00 0.00 333 0.00 333 192 231 23.1
Claude 4 Sonnet 333 0.00 333 333 000 000 308 269 23.1
Seedl.5-VL 0.00 0.00 333 0.00 0.00 333 385 7.69 7.69
Seed1.6 Vision Pro 0.00 0.00 333 0.00 000 333 11.5 000 3.85
Gemini 2.5 Flash 333 0.00 000 333 100 133 192 154 192
Gemini 2.5 Pro 0.00 6.67 0.00 000 000 000 11.5 11.5 19.2
Qwen-VL-max-latest (325B) 6.67 0.00 3.33 0.00 0.00 0.00 308 346 23.1
Qwen2.5-VL (32B) 0.00 0.00 0.00 0.00 0.00 000 7.69 23.1 19.2
Qwen2.5-VL (72B) 6.67 0.00 0.00 333 0.00 0.00 308 231 23.1
GLM 4.5 V (106B) 0.00 0.00 0.00 333 333 333 192 154 23.1
Bagel (7B) 0.00 0.00 333 333 333 333 154 231 115
Janus-pro (7B) 0.00 0.00 0.00 10.0 0.00 6.67 000 346 269

E DISCLOSURE OF LARGE LANGUAGE MODEL USE
As required by ICLR 2026 policy, we report that a large language model (ChatGPT) was used for
language refinement of this paper, including improvements to grammar, phrasing, and style.

All research concepts, methods, analyses, and conclusions were conceived and executed solely by
the authors. The model’s role was confined to copy-editing and it made no contribution to the
scientific content. The authors are fully responsible for the final manuscript.
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Table 10: Detailed Results for Abstract Puzzles Tasks (Trailer Cubes Count, Trailer Cubes Missing).

Model Trailer Cubes Count Trailer Cubes Missing
T v T v
GPT-5 16.0 4.00 4.00 4.00 0.00 0.00
GPT-5-mini 400 400 800 4.00 0.00 4.00
GPT-4.1 0.00 0.00 4.00 4.00 4.00 0.00
GPT-4.1-mini 0.00 0.00 000 0.00 4.00 0.00
GPT-40 0.00 0.00 000 0.00 0.00 0.00
GPT-40-mini 0.00 0.00 000 4.00 0.00 0.00
04-mini 11.8 177 0.00 0.00 0.00 0.00
03 400 0.00 000 0.00 4.00 4.00
Claude 4 Opus 0.00 0.00 000 4.00 0.00 0.00
Claude 4 Sonnet 0.00 0.00 000 0.00 0.00 0.00
Seedl.5-VL 16.0 120 0.00 0.00 0.00 4.00
Seed1.6 Vision Pro 400 120 800 8.00 8.00 0.00
Gemini 2.5 Flash 0.00 0.00 400 4.00 0.00 4.00
Gemini 2.5 Pro 8.00 0.00 0.00 4.00 4.00 0.00
Qwen-VL-max-latest (325B) 4.00 0.00 4.00 4.00 4.00 4.00
Qwen2.5-VL (32B) 0.00 0.00 000 0.00 0.00 4.00
Qwen2.5-VL (72B) 0.00 0.00 0.00 4.00 0.00 0.00
GLM 4.5 V (106B) 400 400 400 0.00 0.00 8.00
Bagel (7B) 0.00 160 000 0.00 4.00 4.00
Janus-pro (7B) 0.00 0.00 000 4.00 0.00 4.00
Convex Hull Cubes Count

o &

Input Image Visual CoT Image Input Image Visual CoT Image 1 Visual CoT Image 2

Q: Given 10 blue points, they form a blue convex hull.
%  Given 10 green points, they form a green convex hull. ~
@ How many red points fall in the overlapping portion of
the blue and green convex hulls? Answer with only one
digit.

Q: What's the number of cubes presented in the image?

Figure 5: Ilustrative cases for Convex Hull task (left) and Cubes Count task (right).

Mirror Clock Cubes Missing
§><>
<> >
=N 5 B B
Input Image Visual CoT Image Input Image Visual CoT Image 1 Visual CoT Image 2

~N Q: What is the number of cubes needed to fill in the
@am Structure so that it becomes a solid block with no internal
gaps?

~ Q: This is what a clock looks like in a mirror. What
@a®  time will it be in 3 hours and 5 minutes?

Figure 6: Illustrative cases for Mirror Clock task (left) and Cubes Missing task (right).
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Mirror Pattern
A@ B@
@ ¢ y
orgrna

Input Image

Visual CoT Image

~ Q: Which option can be obtained by mirroring the
@& original image once?

Overlap

5: Heart s rrow, B: Heart

Tt & a0 1

G o - - -
‘ @ a €

Input Image Visual CoT Image 1 Visual CoT Image 2

Q: Choose two images from the four images A-D and overlay them
™ according to the black coordinate axis borders of cach image. This will
__ produce the overlapping portion of the shapes in the image. Which
O ol e e b e Ot Gty o i
represent the combination, such as 'AC'.

Figure 7: Illustrative cases for Mirror Pattern task (left) and Overlap task (right).

Puzzle

N
Ned A )
> :

Input Image Visual CoT Image

Q: Given the object above. There is a missing piece
~ in the white area. Which of the five pieces (A, B, C,
D, or E) fits perfectly into the missing part of the
object?

Trailer Cubes Count

&g =

SIDE BACK Top

Top SIbE BACK Top

siDE BACK

Input Image Visual CoT Image 1 Visual CoT Image 2

~ Q: Based on the three views, what's the maximum
@a®  number of cubes that could be present?

Figure 8: Illustrative cases for Puzzle task (left) and Trailer Cubes Count task (right).

Billiards
i 3

Input Image

Visual CoT Image

Q: In the image, a billiards table is shown with its pockets
numbered 16 in red. If the blue ball rolls in the direction
indicated by the green arrow—without spin and with

limited d is d to drop into a
pocket, which pocket will it enter? Please answer with the
single digit 1 —6.

~
e

Top SioE BACK Top

Trailer Cubes Missing

SIDE BACK

BACK Top

Visual CoT Image 2

SIDE

Input Image Visual CoT Image 1

~ Q: Given the three views, what is the minimum
@am number of cubes needed to fill in the structure so
that it becomes a solid block with no internal gaps?

Figure 9: Illustrative cases for Puzzle task (left) and Trailer Cubes Count task (right).

Unfolded Cube

3! c 0

Input Image CoT Image 1 CoT Image 2 CoT Image 3

Q: Given three different perspectives of a cube (top left, top right, and botiom left in

the left image) and the patterns on its six faces (bottom right i the left image), please
H fill in the corresponding patterns in its unfolded view (right image). Note that only
L the outer surface of the cube has patterns; the inner surface does not. That is, the

@AM unfolded view on the right represents the outer surface of the cube. The six patterns
are represented by 'heart, 'circle,’ 'moon,' 'arrow, 'triangle, and 'star,' respectively.
The output format is (number, shape),' with different correspondences separated by
semicolons.

Localizer

Input Image Visual CoT Image

Q: Tile the square on the right using the solid-outlined puzzle
pieces on the left. Use all pieces; the final tiling must be exact no
H leftovers, no gaps, and no overlaps. Each piece has a circle. After
@ad completing the tiling, return the coordinates of each circle in
numerical order, using the format: [piece ID (e.g., 1), (x, y)];
separate entries with semicolons.

Figure 10: Illustrative cases for Unfolded Cube task (left) and Localizer task (right).
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Paper Airplane Defuse A Bomb

OO
mala~

A B c o €

Input Image Visual CoT Image Input Image Visual CoT Image
Q: Based on the partial folding steps shown at the . X X i .
H top of the image (ordered from left to right, top to H Q: Bomb in a Box — which wire will you cut to defuse it? You
T i), e e el ikt @R T z{irplanes Peos can’t open the box or see beneath the metal slats, and the wires

below is the final 12 only change direction where they’re visible.
clow 18 the Tinal result?

Figure 11: Illustrative cases for Paper Airplane task (left) and Defuse A Bomb task (right).

Multi-piece Puzzle Electric Charge

b +Q

(W 4 _ N
' Y de oo <
BN \

A=7 B—> C ~— DA\

Input Image Visual CoT Image Input Image Visual CoT Image
Q: Which three of the nine pieces on the right can be Q: Analyze the forces acting on the topmost positive charge (+Q)
(o] combined to exactly match the shape on the left? (o] and indicate the direction of the net force on it. Note: the size of
@4®  Please list the three piece numbers (comma-separated, @adh cach sphere does not represent the charge magnitude; use the label
ascending order). inside each sphere to determine its charge.

Figure 12: Illustrative cases for Multi-piece Puzzle task (left) and Electric Charge task (right).

Rolling Dice: Top Gear Rotation
axy o - G Ao - m = -,
-] e s & PR

'
e !/ ' I e ! $
o/ . )
(O} XO)

Input Image CoTImage | CoT Image2 CoT Image 3 CoT Image 4 Input Image Visual CoT Image

Ql: If the first gear in the image rotates slightly in the direction of the arrow,
N Q: If the dice is rolled on the showed path, what will be %) will the arrow on the final gear point to 1 or 2? Please answer with a number.
@a®  the number on the top? @AM Q2: If the first gear in the image rotates slightly in the direction opposite to
the arrow, will the arrow on the final gear point to 1 or 2? Please answer with
anumber.

Figure 13: Illustrative cases for Rolling Dice: Top task (left) and Gear Rotation task (right).

Rolling Dice: Sum Rolling Dice: Two
'-'.', S Yy S - :.'.° 3 | P
o " / o ! :
' 0 - . & S 3
Input Image CoT Image I CoT Image2 CoT Image 3 CoT Image 4 Input Image CoT Image 1 CoT Image 2

. . Q: When the die is rolled along the black and red paths
™ Q:Ifthe die is rolled along the shown path, what is the ¢ respectively, which path yields a higher total sum of the numbers
total sum of the numbers on the bottom face that touches on the bottom face at each step (answer with \"red\", \"black\" or

the path at each step? \"same\")? What is the total sum for that path? Note: both paths
have the same length.

Figure 14: Illustrative cases for Rolling Dice: Sum task (left) and Rolling Dice: Two task (right).
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