

Improving Image Captioning by Mimicking Human Reformulation Feedback at Inference-time

Anonymous ACL submission

Abstract

Incorporating automatically predicted human feedback into the process of training generative models has attracted substantial recent interest, while *feedback at inference time* has received less attention. The typical feedback at training time, i.e., preferences of choice given two samples, does not naturally transfer to the inference phase. We introduce a novel type of feedback – caption reformulations – and train models to mimic reformulation feedback based on human annotations. Our method does not require training the image captioning model itself, thereby demanding substantially less computational effort. We experiment with two types of reformulation feedback: first, we collect a dataset of human reformulations that correct errors in the generated captions. We find that incorporating reformulation models trained on this data into the inference phase of existing image captioning models results in improved captions, especially when the original captions are of low quality. We apply our method to non-English image captioning, a domain where robust models are less prevalent, and gain substantial improvement. Second, we apply reformulations to style transfer. Quantitative evaluations reveal state-of-the-art performance on German image captioning and English style transfer, while human validation with a detailed comparative framework exposes the specific axes of improvement.¹

1 Introduction

There is a growing interest in feedback models that approximate human feedback *during training* of generative models. While resulting generative models achieve improved performance on automatic metrics and human evaluations (Ouyang et al., 2022; Faltings et al., 2023), the use of feedback models during training requires the generative model to be trained or at least fine-tuned.

¹Our code and data are available here: github.com/uriberger/re_cap.git

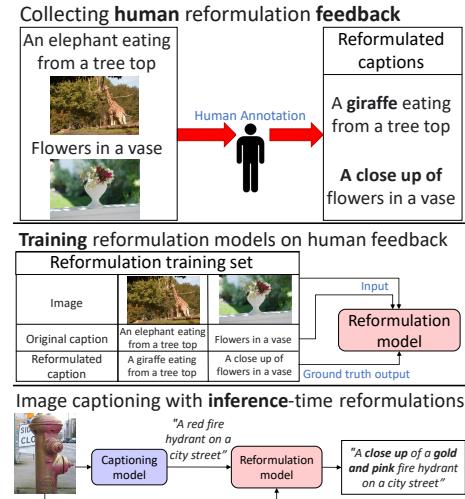


Figure 1: Our proposed method with reformulation for improved factuality as an example. Top: Collecting human-written reformulations of model captions. Center: Using the collected data to train models to generate reformulations, given an input image and original caption. Bottom: Combining an off-the-shelf captioning model (no training) with our reformulation model, to adapt generated captions at inference time.

The use of such feedback models *during inference* poses no such requirement, but was nevertheless generally overlooked by previous studies. One reason for this limited interest is the type of feedback that existing feedback models predict: comparative feedback, e.g., by predicting human preference for one of two generated candidate outputs (as used in Reinforcement Learning from Human Feedback, Stiennon et al., 2020). While this type of feedback naturally translates into a reward function to be used during training, it is less clear how to employ it at inference time when model parameters are fixed.

We bridge this gap by proposing a novel type of feedback, namely **reformulation** (see Figure 1 and Section 2). We focus on the image captioning task, since it provides a good testing ground for adapt-

058 ing a general model to fit specific user intent. For
059 example, one user may require the captions to de-
060 scribe the colors in the image while another would
061 focus on a specific style of generated captions.

062 When providing reformulation feedback for
063 model-generated captions, human annotators re-
064 ceive an image and a model-generated textual de-
065 scription as input, and subsequently produce text
066 that is as similar as possible to the input text but
067 also incorporates an additional desired attribute,
068 e.g., improved factuality or a desired style (Fig. 1,
069 top). We train models to mimic this type of feed-
070 back (Fig. 1, center) and integrate them into the
071 inference phase of off-the-shelf image captioning
072 models (Fig. 1, bottom).

073 A small amount of data (a few thousand samples,
074 as demonstrated in our experiments in Sections 3
075 and 4) is sufficient to train a reformulation model
076 that once trained, can be applied to any captioning
077 model without further training it, making reformu-
078 lation models a much more efficient alternative to
079 training-time feedback models that require to re-
080 train the captioning model.

081 To study the benefits of this type of feedback,
082 we focus on two reformulation attributes. First, we
083 train models to rewrite the input caption with im-
084 proved factuality (Section 3). We collect English
085 reformulation data by asking human annotators to
086 correct errors in generated captions while making
087 minimal changes, and use this data to train a re-
088 formulation model. We then use the reformulation
089 model on captions generated by off-the-shelf En-
090 glish models. We show that the automatic reformu-
091 lation process notably improves captions generated
092 by weaker models, while careful analysis includ-
093 ing a fine-grained human evaluation paradigm re-
094 veals that, similar to human reformulations, the
095 most notable factor in the improvement of the au-
096 tomatic reformulation process is adding missing
097 information. To further investigate the utility of
098 our method in domains where existing models are
099 weak (“challenge domains”²), we propose a cross-
100 lingual pipeline for reformulation in German image
101 captioning and show notable improvement, achiev-
102 ing state-of-the-art performance in German image
103 captioning on the Multi30k (Elliott et al., 2016)
104 dataset.

105 Second, we cast caption style transfer as a refor-

²We define “challenge domains” as the (many) domains dominated by weaker models, e.g., low-resource scenarios or niche domains less amenable to established model architectures.

106 mulation task (Section 4). We use existing parallel
107 stylized and non-stylized caption data, and train a
108 reformulation model to preserve the structure of
109 the input caption while adapting its style to a given
110 target. We build on powerful but style-agnostic cap-
111 tioning models using style-reformulation at infer-
112 ence time, achieving state-of-the-art performance
113 on the FlickrStyle dataset on automatic metrics,
114 while our human evaluation paradigm confirms that
115 the reformulated captions are more stylized than
116 competitive baselines.

117 Each of the reformulation attributes studied in
118 this work (improved factuality and style transfer)
119 reveal a use case for our method. In the first, the
120 goal of the user is to improve captioning models
121 in challenge domains. This is accomplished by se-
122 lecting a reformulation attribute that will improve
123 the quality of the captions (factuality in our case)
124 and apply corresponding reformulation models to
125 a weak captioning model. In the second case the
126 user aspires to generate high-quality captions in a
127 specific style, and therefore utilizes a robust cap-
128 tioning model to generate high quality captions and
129 then change their style using reformulation.

2 Modeling Reformulation Feedback

130 In this Section, we define our notion of reformu-
131 lation feedback. A human annotator observes an
132 image and a caption describing the image, and pro-
133 duces a caption that 1) incorporates some desired
134 attribute (e.g., factuality or some desired style),
135 and 2) is as similar to the input caption as pos-
136 sible. Since these two criteria are in conflict we
137 emphasize that the first requirement is obligatory,
138 but annotators should make minimal changes to
139 achieve it. Note that reformulation may be applied
140 in any generation task, but here we focus only on
141 image captioning.

143 In this study we focus on two attributes of refor-
144 mulation feedback: improved factuality (Section 3)
145 and style transfer (Section 4).

146 **Reformulation model.** Recent research exam-
147 ined frameworks of multimodal input (image+text)
148 and unimodal output (text), demonstrating that fine-
149 tuning a checkpoint that was pre-trained on gen-
150 eral Vision-and-Language tasks is an effective ap-
151 proach (e.g., in Visual Question Answering, Chen
152 et al., 2022). We follow this strategy by fine-tuning
153 the pre-trained mPLUG (Li et al., 2022a) check-

154 point³ on reformulation data⁴.

155 3 Reformulation for Improved Factuality

156 Captioning models in challenge domains, e.g., non-
157 English captioning, tend to generate captions of
158 lower quality compared to English captioning mod-
159 els. We propose to use reformulations to improve
160 the factuality of models in these domains. In this
161 Section, we study this use case. We first describe
162 data collection and then apply our model to English
163 and German image captioning.

164 3.1 Data Collection

165 **Data.** To generate an initial set of image captions,
166 we use three publicly available captioning models,
167 that vary in architecture, size and amounts of train-
168 ing data: BLIP (Li et al., 2022b), mPLUG (Li et al.,
169 2022a), and ClipCap (Mokady et al., 2021). We
170 randomly sample 1405 images from the test sets of
171 MSCOCO (Lin et al., 2014) and Flickr30k (Young
172 et al., 2014), and generate a caption with each
173 model.

174 **Annotation.** Human annotators were shown an
175 image and a model-generated caption, and asked to
176 reformulate the caption so that (a) it is as similar as
177 possible to the original caption and (b) any errors
178 in the original caption are corrected (if any errors
179 were present).

180 Annotators were instructed to consider a wide
181 range of errors in their feedback, including hallucin-
182 ations (describing elements that are not present in
183 the image), partial descriptions (failing to describe
184 a key element in the image) and replacements (us-
185 ing an incorrect word to describe an element in the
186 image).

187 We use Amazon Mechanical Turk to recruit an-
188 notators. For the full details on annotator recruit-
189 ment, guidelines and payment, see Appendix B.

190 **Data analysis.** In 864 samples (16.6%) the anno-
191 tators chose not to change the original caption. The
192 mean Levenshtein distance⁵ is 4.79. Additionally,
193 we sample 100 random captions that were changed
194 by the annotators and classify the changes to the
195 element changed (object, action, object attribute,
196 setting, other) and the nature of the change (add,
197 replace, remove, rewrite). ‘Setting’ changes are

³We also experimented with BLIP, but mPLUG performed significantly better.

⁴For the full training details see Appendix A.

⁵Minimum number of words needed to be added, removed or replaced to get from original to reformulated caption.

	Add	Replace	Remove	Rewrite	Total
Object	24	24	3	–	51
Action	11	7	0	–	18
Attribute	12	0	3	–	15
Setting	26	3	0	–	29
Other	0	9	0	–	9
Total	73	43	6	15	

Table 1: Statistics for reformulations of 100 random labeled data points. One reformulation may contain several operations.

198 changes in the setting of the caption (e.g., adding
199 the location in which the caption takes place is
200 classified as ‘add setting’). ‘Other’ captures any
201 change that is not covered by the first four elements.
202 If most of the objects, actions and attributes in the
203 reformulated caption differ from those of the orig-
204 inal caption, we classify the change as ‘rewrite’.
205 Results in Table 1 show that *object* is the most fre-
206 quently changed element: in 51% of the captions
207 an object was added, replaced or removed. The
208 most common type of change (applied in 73% of
209 the captions) is adding information. We find that
210 all the annotators’ modifications were valid⁶.

211 3.2 Improved Factuality for English Image 212 Captioning

213 In this section we experiment on English data. We
214 use off-the-shelf captioning models on well known
215 captioning datasets and reformulate the generated
216 captions using the model described in Section 2
217 trained on the data described in Section 3.1. To
218 test the reformulation model on data both from
219 a familiar and an unfamiliar distribution, we use
220 the models (BLIP, ClipCap, mPLUG) and datasets
221 (MSCOCO, Flickr30k) used to generate the refor-
222 mulation training data (Section 3.1) excluding the
223 images that were already presented to the refor-
224 mulation model during training, as well as models
225 (GIT: Wang et al. 2022, vit_gpt2: Kumar 2022)
226 and datasets (XM3600: Thapliyal et al., 2022) with
227 which the reformulation model is unfamiliar.

228 As described above, in this use case we expect to
229 improve the factuality of weaker models. We there-
230 fore mainly focus on relatively weak captioning
231 models: we use the pretrained only (not finetuned)
232 checkpoint of mPLUG, the base version of GIT,
233 and ClipCap and vit_gpt2 which are relatively old
234 and small models. For completion we also use one
235 strong model, the finetuned checkpoint of BLIP.

⁶For the list of manually examined captions, see supplementary materials.

3.2.1 Automatic Evaluation

We present the change in performance for different metrics in Table 2. We use the commonly used (e.g., Li et al., 2022a,b) metrics BLEU-4 (Papineni et al., 2002), METEOR (Banerjee and Lavie, 2005) CIDEr (Vedantam et al., 2015), and SPICE (Anderson et al., 2016). In addition to these 4 general metrics we report the performance on different types of sentential elements, provided by the SPICE metric (objects, relations, attributes, size words, color words, cardinality words). This allows us to observe a change in performance specifically regarding the sentential elements that our reformulation models are trained to address (Table 1).

For the weaker models (mPLUG, ClipCap, GIT, vit_gtp2) we see an improvement across all datasets and general metrics. For BLIP we see a minor decrease in performance on BLEU-4 and CIDEr, and a minor increase on METEOR and SPICE. Turning to SPICE components, improvement was observed across all weaker models, datasets and components, except for Color with GIT on Flickr30k. For BLIP, improvement was observed in most configurations, but most notably in color words. Therefore, our reformulation model is particularly well-suited for domains characterized by a lack of robust models, such as non-English image captioning, on which we focus in Section 3.3.

Figure 2 shows examples where SPICE scores were notably higher after reformulation, for each SPICE element. In accordance with Table 1, most of the improvement originates from information that was added during reformulation.

3.2.2 Human Evaluation

To qualitatively evaluate the changes during reformulation, we propose a fine-grained human evaluation paradigm. For each of the models we randomly sample images from each of the datasets (17 from MSCOCO and Flickr30k, 16 from XM3600 to a total of 50 per model), and present human annotators with the images along with the original caption and the reformulated caption, in randomly shuffled order and without indicating the source of each caption. As we expect to observe notable improvement for weaker models, we exclude BLIP from this analysis⁷. Three on-site annotators with high English proficiency assessed the captions. For each sample, the annotators answer the following questions, each related to one axis of caption quality (in

bold):

- **Faithfulness:** Which caption includes less content that is not in the image?
- **Completeness:** Which caption covers more elements of the image being described?
- **Accuracy:** Which caption uses fewer incorrect words to describe one of the object/activities in the image?
- **Detail:** Which caption includes more *properties* (such as color or shape) of the main objects in the image?
- **Overall:** Which caption is the better description of the image?

For each question, the annotators were given three options (first caption is better, second is better, both are equal). If at least two annotators prefer one of the captions along an axis, we mark the caption as ‘better’. Otherwise both are considered ‘equal’.

Figure 3 presents the results. Across all axes, reformulated captions are significantly (Sign test, $p < 0.05$) better than the original captions. Specifically, we see notable improvement in the overall quality (reformulated captions were better in 76%) and the completeness (46%) of the caption. This result is in line with the analysis presented in Table 1, where the most common feedback type was ‘addition’ of information to the original caption. The inter-annotator agreement using Fleiss’ Kappa was 0.68, 0.68 for completeness, overall (substantial agreement, Landis and Koch, 1977), and 0.56, 0.55, 0.53 for faithfulness, detail, accuracy (moderate agreement).

3.3 Improved Factuality for Cross-Lingual Image Captioning

The last section demonstrated strong gains of our approach for weak off-the-shelf models. Acknowledging that image captioning models sharply drop in performance in languages other than English, we next investigate the use of English reformulation in a cross-lingual setup. We combine a German image captioning model with our reformulation model by generating German captions; translating the captions to English; reformulating them with our model; and translating back to German.

Data. We use Multi30k (Elliott et al., 2016), a large, non translated, German image caption dataset, which contains 30K/1K images for train/test, each with 5 captions. All images are taken from the Flickr30k dataset and all captions are generated by German native speakers.

⁷See Appendix E for a similar analysis for BLIP.

Dataset	Model	General metrics				SPICE components					
		B@4	M	C	S	Obj	Rel	Att	Car	Siz	Col
MSCOCO	ClipCap	6.3	3.3	7.2	6.5	7.6	7.6	15.5	194.6	1.8	19.8
	mPLUG	24.5	23.3	32.1	29.9	26.2	36.5	51.5	221.1	90.6	44.8
	GIT	81.3	41.3	57.4	42.4	34.0	93.4	70.9	58.1	53.3	31.6
	vit_gpt2	1.2	5.6	3.2	9.7	6.1	15.1	31.6	59.3	18.2	129.9
	BLIP	-5.2	0.6	-3.2	1.8	1.9	1.1	7.2	5.7	6.7	16.8
Flickr30k	ClipCap	21.3	10.3	30.9	16.6	13.7	20.4	37.6	115.7	10.3	30.8
	mPLUG	30.9	28.6	55.5	33.9	31.1	24.5	79.0	294.9	213.2	50.0
	GIT	45.2	32.5	19.2	27.6	24.0	155.4	19.0	45.7	87.9	-12.3
	vit_gpt2	20.8	17.1	34.9	25.9	19.0	117.1	76.1	121.4	35.0	160.3
	BLIP	-6.5	1.3	-2.2	1.6	1.5	2.2	5.5	8.3	-3.6	14.5
XM3600	ClipCap	14.6	8.4	21.3	14.0	12.6	15.1	27.0	122.0	0.0	17.8
	mPLUG	148.6	49.8	60.3	40.7	36.8	53.1	79.6	12.8	143.9	62.0
	GIT	46.5	23.9	23.6	11.9	11.4	4.7	13.3	70.8	33.7	1.3
	vit_gpt2	32.3	18.3	34.1	21.8	17.6	77.3	67.8	89.3	72.7	89.1
	BLIP	-3.5	1.9	1.8	0.7	0.9	-1.6	3.7	-7.6	4.6	6.0

Table 2: Performance change after reformulation compared to raw model output on common metrics, datasets and models (in % of the recorded performance before reformulation). We observe major improvements in weaker models (ClipCap, mPLUG, GIT, vit_gpt2). Darker green (red) indicates higher improvement (deterioration). M: METEOR, C: CIDEr, S: SPICE. ∞ marks a configuration where the metric value before reformulation was 0.

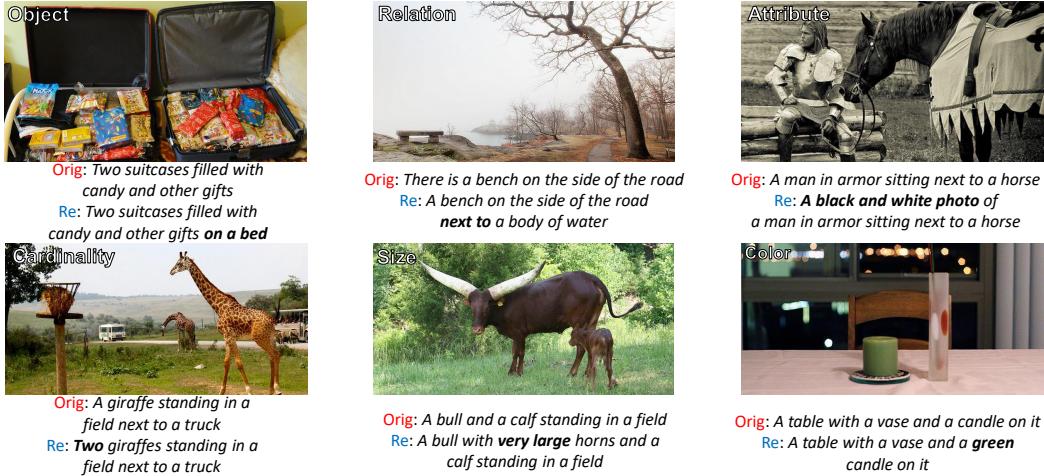


Figure 2: Examples in which the reformulated captions achieved better results than the original ones, in all SPICE elements. Orig: the caption generated by the model. Re: the reformulated caption.

Model. Due to a lack of a strong and publicly available pretrained image captioning model for German, we train our own model. We use the ClipCap model as it separates the text decoder from the image encoder, allowing us to straightforwardly incorporate a German decoder. We use the original ClipCap implementation⁸ and change the text decoder to a German version of GPT2.⁹ We refer to this model as **base**. We reformulate the captions generated by **base**, and refer to these as **base+re**. Following recent captioning works (Thapliyal et al., 2022; Ramos et al., 2023b), we use Google Translation API for all translations.

Baselines. First, to directly measure the performance gain of the reformulation pipeline, we use

base as a baseline. Second, the mPLUG checkpoint on which the reformulation model is based (see Section 2) is in itself quite a capable captioning model. Consequently, given an input image and caption the reformulation model might ignore the input caption and generate its own caption. To make sure this is not the case, we also generate English captions using the reformulation model by providing an image and an empty caption as input, and translate these captions to German (**tran**). Finally, we present results reported by recent German image captioning studies: Dual Attention (**DA**, Jaffe, 2017), Cycle Consistency (**CC**, Wu et al., 2019) and Multi-Objective Optimization (**MOO**, Wu et al., 2022). We report the same metrics as in Section 3.2.1 except SPICE which, to the best of our knowledge, is not available for German.

⁸github.com/rmokady/CLIP_prefix_caption

⁹huggingface.co/dbmdz/german-gpt2

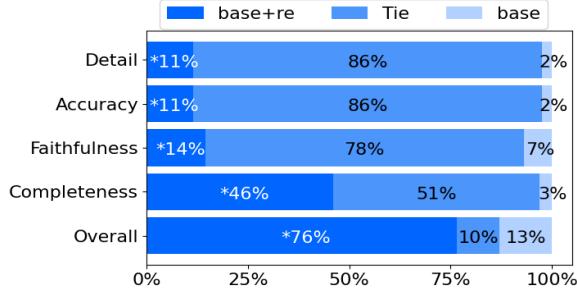


Figure 3: Results for human evaluation on different axes. We show proportions of preferences for generated captions without (base) and with (base+re) reformulations, and ties. * indicates a significant difference between base and base+re (Sign test; $p < 0.05$).

	B@4	METEOR	CIDEr
base	12.8 ± 0.3	18.6 ± 0.2	39.2 ± 1.6
tran	14.3	20.3	46.0
DA	16.0	17.8	30.8
CC	15.9	17.8	31.0
MOO	16.5	17.9	33.8
base+re	16.8 ± 0.1	20.1 ± 0.1	51.4 ± 0.6

Table 3: German Results on Multi30k test set. Results for the models that we train (base, base+re) are averaged over 3 random initializations and we report the standard deviation. For each metric, the best result is bolded.

Results. Results in Table 3 show that **base+re** outperforms all other methods in BLEU-4 and CIDEr, while **tran** achieve the best result in METEOR, though by a small margin. The improvement over **base** emphasizes the power of the reformulation pipeline, while the improvement over **tran** suggests that providing the reformulation model with a reasonable caption is an important factor in the success of the reformulation process. We also note the improvement over previous state-of-the-art studies. We partially attribute this to the use of the strong German GPT2 model (since **base** outperforms previous models on two metrics), but reformulation contributes notable value, as evidenced by the superiority of **base+re** over **base**.

3.3.1 Human Evaluation

To better understand the improvement reported by the automatic metrics, we follow the same protocol as in Section 3.2.2. The annotation was conducted by two on-site German native speakers with an inter-annotator agreement score (measured by Cohen’s Kappa) of at least 0.54 across all axes.

Results are presented in Figure 4. We notice that while in English improvement was most significant

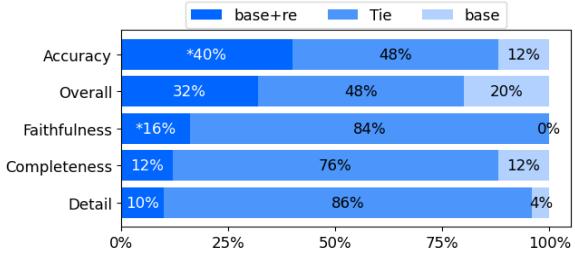


Figure 4: Results for human evaluation on different axes of German generated captions. We show proportions of preferences for generated captions without (base) and with (base+re) reformulations, and ties. * indicates significance as in Figure 3.

in terms of Completeness (Figure 3), in German the most significant axes are Faithfulness and Accuracy. We hypothesize that the captions produced by the German base model contain many errors and the focus of the reformulation process is therefore on fixing the errors, while errors in the English generated captions are rare and thus the focus is on adding new information. We corroborate this hypothesis by computing the mean caption length before and after reformulation for English ($44.6 \rightarrow 49.3$) and German ($57.3 \rightarrow 54.1$). See Appendix D for examples.

4 Reformulation for Style Transfer

We study the generalizability of reformulation feedback modeling by focusing on a second reformulation attribute: the style of the caption, i.e., the reformulation should adapt the style while making minimal changes.

4.1 Dataset

We use the FlickrStyle (Gan et al., 2017) dataset. FlickrStyle contains humorous and romantic captions for 7000 images from Flickr30K. Importantly, the annotators were instructed to generate the captions based on existing captions from Flickr30K. We follow Wang et al. (2023) and randomly split the data to 6000 train images and 1000 test images.

4.2 Method

We train a reformulation model for a given style as follows. First, for each caption in FlickrStyle we identify the original caption in Flickr30K on which that caption is based by measuring the string overlap of the stylized caption with each of the original captions of the same image, and selecting the caption with the largest overlap. Next, we fine-tune a reformulation model as described in Section 2, with

Style	Method	B@1	B@3	M	C
Humorous	CapDec	29.4	8.8	13.2	55.1
	SAN	29.5	9.9	12.5	47.2
	TridentCap	30.6	11.2	12.8	56.6
	BLIP	29.6	11.0	14.4	73.9
	BLIP+re	33.7	11.7	14.8	72.0
Romantic	CapDec	27.9	8.9	12.6	52.2
	SAN	30.9	10.9	13.0	53.3
	TridentCap	31.9	11.4	13.4	60.4
	BLIP	28.5	11.2	14.3	72.0
	BLIP+re	35.1	13.0	15.4	74.6

Table 4: Results for stylized image captioning on FlickrStyle. B@n: BLEU-n, M: METEOR, C: CIDEr. For each style and metric, the best result is in bold.

the original caption as the input and the stylized caption as the ground-truth output.

4.3 Models

We use BLIP as the captioning model (**BLIP**) and for each style, we reformulate the BLIP captions using a reformulation model trained to transfer captions to the style in question (**BLIP+re**). Note that vanilla BLIP does not generate stylized captions (i.e., is expected to perform poorly on this task). As baselines, we present results from previous studies: CapDec (Nukrai et al., 2022), SAN (Li et al., 2021), and TridentCap (Wang et al., 2023).

4.4 Automatic evaluation

Results are presented in Table 4. We follow the convention from previous stylized image captioning studies and report Bleu-1, Bleu-3, METEOR and CIDEr. Our method achieves state-of-the-art results for both styles, and we attribute this improvement to the strong captions generated by the BLIP model (in the humor style **BLIP** even outperforms **BLIP+re** in the CIDEr metric). This unveils an issue in automatic evaluation: vanilla BLIP outperformed the baselines though it clearly does not generate stylized captions (see Figure 6 for examples). The same may be true for **BLIP+re**. Thus, we conduct human evaluation to ensure that captions generated by **BLIP+re** are indeed stylized.

4.5 Human Evaluation

We again use our human evaluation scheme (Section 3.2.2) to compare to previous baselines. We compare to CapDec¹⁰, since we found no available codebases for TridentCap and SAN. We ask

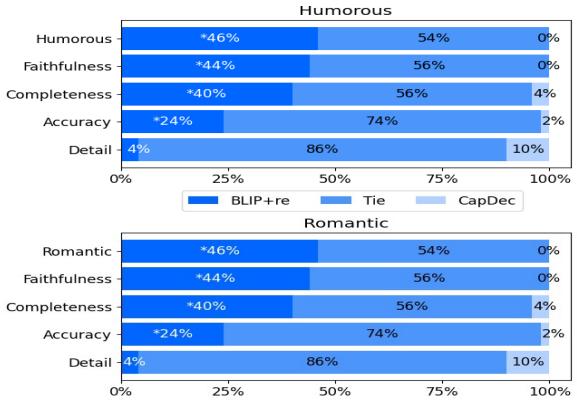


Figure 5: Results for human evaluation on different axes of stylized captions. We show proportions of preferences for the baseline (CapDec) and BLIP reformulated (BLIP+re) captions, and ties. * indicates significance as in Figure 3.

Figure 6: Examples of original captions and reformulated captions for humor and romantic reformulation.

the first 4 questions from Section 3.2.2 (Faithfulness, Completeness, Accuracy, Detail) and add a style-related question: *Which caption is more {humorous, romantic}?*

Results are presented in Figure 5. Our method improves over the baseline not only in the quality of captions, but also in generating stylized captions, significantly in both styles. Annotators agreement (Fleiss' Kappa) values were $\kappa = 0.59, 0.51, 0.48, 0.34$ for Faithfulness, Style, Completeness, Accuracy (the axes where reformulated captions were better), and $\kappa = 0.44$ for Detail.

5 Related Work

We classify related work by the type of feedback (human/model-generated) and the phase in which the feedback is applied (training/inference): human feedback during training (Section 5.1), model-generated feedback during training (Section 5.2), and model-generated feedback during inference (Section 5.3, our study is included in this category).

¹⁰github.com/DavidHuji/CapDec

478 5.1 Human Feedback during Training

479 A large volume of previous studies collect human
480 feedback and use it directly to improve training.
481 Most studies focus on either comparisons (which
482 of two candidate texts is better) or ratings as a re-
483 ward signal in reinforcement learning for various
484 tasks, e.g., dialogue (Jaques et al., 2020), machine
485 translation (Kreutzer et al., 2018a) or semantic pars-
486 ing (Lawrence and Riezler, 2018). Kreutzer et al.
487 (2020) fine-tune a generative model with on-line
488 feedback from human annotators.

489 Other types of training-time feedback include
490 natural language comments (Campos and Shern,
491 2022). Most similar to our reformulation feedback
492 are edits (Liu et al., 2022; Lu et al., 2023), where
493 humans change an incorrect response generated
494 by dialog models into a correct response. While
495 these studies use feedback directly we train mod-
496 els to predict it, avoiding the necessity to collect
497 annotations each time the feedback is used.

498 **Image captioning.** Several previous studies
499 trained captioning models with raw human feed-
500 back. Shen et al. (2019) propose a model that gen-
501 erates a caption and subsequently generates a ques-
502 tion pertaining to factual information within that
503 caption. This question is then answered by a hu-
504 man. No questions are generated during inference.
505 Seo et al. (2020) use human ratings of captions as
506 rewards in a reinforcement learning framework.

507 Ling and Fidler (2017) are most similar to our
508 study: they compare training captioning models on
509 human-generated captions with training on refor-
510 mulations, showing that the latter improves stan-
511 dard metrics. However, they use human-generated
512 reformulations during training while we use model-
513 generated reformulations during inference.

514 5.2 Model-Generated Feedback during 515 Training

516 Several works train feedback models, but use these
517 models during training, again predominantly focus-
518 ing on comparisons or ratings feedback. Early stud-
519 ies (Christiano et al., 2017; Ibarz et al., 2018) use
520 feedback models to train agents in simulated envi-
521 ronments and games. Others use feedback models
522 to train language models for specific tasks such
523 as summarization (Ziegler et al., 2019; Stiennon
524 et al., 2020), machine translation (Kreutzer et al.,
525 2018b) and visual storytelling (Hsu et al., 2021).
526 Recently, feedback models were used in training of
527 general-purpose large language models (e.g. GPT-

4, OpenAI, 2023). Most relatedly, Faltings et al.
528 (2023) investigate reformulation feedback models,
529 but only during training. Finally, constitutional
530 AI (Bai et al., 2022) use similar ideas to train non-
531 harmful models but use model feedback rather than
532 human feedback.

533 5.3 Model-Generated Feedback during 534 Inference

535 Most similar to ours, some previous studies ap-
536 ply feedback models at inference time. Hsu et al.
537 (2019) train models to predict human post-edits
538 of model generated text but focus on the visual
539 storytelling task. Ramos et al. (2023a) apply met-
540 rics trained to predict human rating feedback for
541 reranking model outputs in machine translation.
542 To the best of our knowledge, we are the first to
543 use feedback models at inference time for image
544 captioning.

545 6 Discussion

546 Despite the recent success of incorporating (models
547 of) human feedback as a training signal, using feed-
548 back during inference has received little attention.
549 We presented a novel approach – reformulation
550 feedback at inference time – and applied it to the
551 task of image captioning.

552 We refrain from comparing our approach to a
553 baseline of fine-tuning the captioning model di-
554 rectly on the corrected captions for two reasons.
555 First, even if such baseline would induce better
556 results, our method’s advantage is efficiency, as
557 reformulation models are trained once and can be
558 combined with any base model architecture, while
559 fine-tuning would be performed on any new model.
560 Second, this baseline is not applicable in our cross-
561 lingual use-case (Section 3.3), as the corrected cap-
562 tions are in English.

563 We’ve studied two use-cases for our method: im-
564 proving captioning models in challenge domains
565 (Section 3.3) and generating high quality stylized
566 captions (Section 4). Both can be extended in fu-
567 ture work: captioning models in other challenge
568 domains (e.g., medical image captioning) can gain
569 improved factuality, while robust models can be
570 utilized to generate captions in other styles (e.g.,
571 sentimental captions). Taken together, our work
572 contributes to the active areas of learning from hu-
573 man feedback, and efficient adaptation of powerful
574 LLMs to diverse tasks.

576 Limitations

577 **Data collection.** While our method requires less
578 computational resources compared to previous
579 studies (since only the feedback model is trained
580 rather than the generative model), it requires more
581 human resources for annotation. Simpler types of
582 feedback (e.g., the common comparative feedback)
583 require less effort and time per sample than reformu-
584 lation, while some studies (e.g. [Ramos et al., 2023a](#))
585 refrain from explicitly collecting any feed-
586 back data, by using publicly available human anno-
587 tations that were originally collected for a different
588 purpose (e.g., to train evaluation metrics).

589 **Cross-lingual reformulation.** The pipeline sug-
590 gested in Section 3.3 for cross-lingual reformula-
591 tion (generation of captions in the target language,
592 translation into English, reformulation, translation
593 back into the target language) depends on the exis-
594 tence of a decent base captioning model in the tar-
595 get language and good translation models from/to
596 English. If the base captioning model in the target
597 language generates poor captions, the reformulated
598 captions will be no better than captions generated
599 in English and translated to the target language (i.e.
600 the **tran** baseline discussed in Section 3.3). If there
601 are no strong translation models from/to English,
602 the quality of captions would decrease in every
603 translation step in the pipeline, resulting in poor
604 captions. Future work may address training non-
605 English reformulation model to bridge the second
606 gap.

607 **Variation in annotation conditions.** Previous
608 studies ([Khashabi et al., 2022](#)) show that human
609 annotations may vary drastically when basic con-
610 ditions change, e.g., on different days or even at a
611 different time during the day. Since reformulation
612 models are trained on such annotations, this may
613 have a significant impact on the model. We did
614 not take this into account in our data collection and
615 usage.

616 Ethics Statement

617 In our data collection in Section 3.1 we collect
618 no identifying data on the annotators. For exist-
619 ing datasets, we use publicly available resources
620 in accordance with their license agreements. The
621 datasets are fully anonymized and do not contain
622 personal information about the caption annotators
623 or any information that could reveal the identity of
624 the photographed subjects.

625 As with other methods for modifying model out-
626 puts, our approach can be used to transfer toxic text
627 to non-toxic text, or vice versa. Additionally, the
628 reformulation data that was collected and presented
629 in Section 3 may contain social biases. Along with
630 the publication of our model and data, we will in-
631 clude a model card ([Mitchell et al., 2019](#)) which re-
632 ports standard information regarding the collected
633 data, training methods and intended use.

634 This work was approved by the <Removed for
635 anonymization> Committee for the Use of Human
636 Subjects in Research in <Removed for anonymization>.

638 References

639 Peter Anderson, Basura Fernando, Mark Johnson, and
640 Stephen Gould. 2016. Spice: Semantic proposi-
641 tional image caption evaluation. In *Computer Vision-
642 ECCV 2016: 14th European Conference, Amsterdam,
643 The Netherlands, October 11-14, 2016, Proceedings,
644 Part V 14*, pages 382–398. Springer.

645 Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
646 Amanda Askell, Jackson Kernion, Andy Jones,
647 Anna Chen, Anna Goldie, Azalia Mirhoseini,
648 Cameron McKinnon, et al. 2022. Constitutional
649 ai: Harmlessness from ai feedback. *arXiv preprint
650 arXiv:2212.08073*.

651 Satanjeev Banerjee and Alon Lavie. 2005. **METEOR:**
652 **An automatic metric for MT evaluation with im-
653 proved correlation with human judgments.** In *Pro-
654 ceedings of the ACL Workshop on Intrinsic and Ex-
655 trinsic Evaluation Measures for Machine Transla-
656 tion and/or Summarization*, pages 65–72, Ann Arbor,
657 Michigan. Association for Computational Linguis-
658 tics.

659 Jon Ander Campos and Jun Shern. 2022. Training lan-
660 guage models with language feedback. In *ACL Work-
661 shop on Learning with Natural Language Supervi-
662 sion*. 2022.

663 Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Pier-
664 giovanni, Piotr Padlewski, Daniel Salz, Sebastian
665 Goodman, Adam Grycner, Basil Mustafa, Lucas
666 Beyer, et al. 2022. **Pali: A jointly-scaled mul-
667 tilingual language-image model.** *ArXiv preprint,
668 abs/2209.06794*.

669 Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan
670 Martic, Shane Legg, and Dario Amodei. 2017. **Deep**
671 **reinforcement learning from human preferences.** In
672 *Advances in Neural Information Processing Systems
673 30: Annual Conference on Neural Information Pro-
674 cessing Systems 2017, December 4-9, 2017, Long
675 Beach, CA, USA*, pages 4299–4307.

676 Desmond Elliott, Stella Frank, Khalil Sima’an, and Lu-
677 cia Specia. 2016. **Multi30K: Multilingual English-
678 German image descriptions.** In *Proceedings of the*

679	5th Workshop on Vision and Language, pages 70–74, Berlin, Germany. Association for Computational Linguistics.	736
680		737
681		738
682	Felix Faltungs, Michel Galley, Baolin Peng, Kianté Brantley, Weixin Cai, Yizhe Zhang, Jianfeng Gao, and Bill Dolan. 2023. <i>Interactive text generation</i> . <i>ArXiv preprint</i> , abs/2303.00908.	739
686		
687		
688		
689		
690		
691	Chuang Gan, Zhe Gan, Xiaodong He, Jianfeng Gao, and Li Deng. 2017. <i>Stylenet: Generating attractive visual captions with styles</i> . In <i>2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017</i> , pages 955–964. IEEE Computer Society.	740
692		741
693		742
694		743
695		744
696		745
697		746
698		747
699		
700	Chi-yang Hsu, Yun-Wei Chu, Ting-Hao Huang, and Lun-Wei Ku. 2021. <i>Plot and rework: Modeling storylines for visual storytelling</i> . In <i>Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021</i> , pages 4443–4453, Online. Association for Computational Linguistics.	748
701		749
702		750
703		751
704		752
705		753
706		754
707		
708		
709		
710		
711	Ting-Yao Hsu, Chieh-Yang Huang, Yen-Chia Hsu, and Ting-Hao Huang. 2019. <i>Visual story post-editing</i> . In <i>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</i> , pages 6581–6586, Florence, Italy. Association for Computational Linguistics.	755
712		756
713		
714		
715		
716	Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. 2018. <i>Reward learning from human preferences and demonstrations in atari</i> . In <i>Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada</i> , pages 8022–8034.	757
717		758
718		759
719		
720		
721		
722		
723		
724	Alan Jaffe. 2017. <i>Generating image descriptions using multilingual data</i> . In <i>Proceedings of the Second Conference on Machine Translation</i> , pages 458–464, Copenhagen, Denmark. Association for Computational Linguistics.	760
725		761
726		762
727		763
728		764
729		765
730		766
731		
732		
733	Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata Lapedriza, Noah Jones, Shixiang Gu, and Rosalind Picard. 2020. <i>Human-centric dialog training via offline reinforcement learning</i> . In <i>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</i> , pages 3985–4003, Online. Association for Computational Linguistics.	767
734		768
735		769
736		770
737		771
738		
739		
740		
741		
742		
743		
744		
745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		
756		
757		
758		
759		
760		
761		
762		
763		
764		
765		
766		
767		
768		
769		
770		
771		
772		
773		
774		
775		
776		
777		
778		
779		
780		
781		
782		
783		
784		
785		
786		
787		
788		
789		
790		

791	In <i>Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA</i> , pages 5068–5078.	846
792		847
793		848
794		849
795	Ruibo Liu, Chenyan Jia, Ge Zhang, Ziyu Zhuang, Tony Liu, and Soroush Vosoughi. 2022. Second thoughts are best: Learning to re-align with human values from text edits. <i>Advances in Neural Information Processing Systems</i> , 35:181–196.	850
796		851
797		852
798		853
799		854
800	Hua Lu, Siqi Bao, Huang He, Fan Wang, Hua Wu, and Haifeng Wang. 2023. Towards boosting the open-domain chatbot with human feedback. In <i>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</i> , pages 4060–4078, Toronto, Canada. Association for Computational Linguistics.	855
801		856
802		857
803		858
804		859
805		860
806		861
807	Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. 2019. Model cards for model reporting. In <i>Proceedings of the conference on fairness, accountability, and transparency</i> , pages 220–229.	862
808		863
809		864
810		865
811		866
812		867
813	Ron Mokady, Amir Hertz, and Amit H Bermano. 2021. Clipcap: Clip prefix for image captioning. <i>ArXiv preprint</i> , abs/2111.09734.	868
814		869
815		870
816	David Nukrai, Ron Mokady, and Amir Globerson. 2022. Text-only training for image captioning using noise-injected clip. <i>ArXiv preprint</i> , abs/2211.00575.	871
817		872
818		873
819	OpenAI. 2023. Gpt-4 technical report. <i>ArXiv</i> , abs/2303.08774.	874
820		875
821		876
822	Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022. Training language models to follow instructions with human feedback. <i>Advances in Neural Information Processing Systems</i> , 35:27730–27744.	877
823		878
824		879
825		880
826		881
827	Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic evaluation of machine translation. In <i>Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics</i> , pages 311–318, Philadelphia, Pennsylvania, USA. Association for Computational Linguistics.	882
828		883
829		884
830		885
831		886
832		887
833		888
834	Miguel Moura Ramos, Patrick Fernandes, António Farinhas, and André FT Martins. 2023a. Aligning neural machine translation models: Human feedback in training and inference. <i>ArXiv preprint</i> , abs/2311.09132.	889
835		890
836		891
837		892
838		893
839	Rita Ramos, Bruno Martins, and Desmond Elliott. 2023b. Lmcap: Few-shot multilingual image captioning by retrieval augmented language model prompting. <i>ArXiv preprint</i> , abs/2305.19821.	894
840		895
841		896
842		897
843	Paul Hongsuck Seo, Piyush Sharma, Tomer Levinboim, Bohyung Han, and Radu Soricut. 2020. Reinforcing an image caption generator using off-line human	898
844		899
845		900
		901
		902

903 Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
904 Brown, Alec Radford, Dario Amodei, Paul Chris-
905 tiano, and Geoffrey Irving. 2019. [Fine-tuning lan-](#)
906 [guage models from human preferences](#). *ArXiv*
907 [preprint](#), abs/1909.08593.

908 A Model Training Details

909 A.1 Reformulation Models

910 We now specify the details of the reformulation
911 models trained in Sections 3 and 4.2.

912 We use the VQA training pipeline from the of-
913 ficial mPLUG code base.¹¹ We use the default
914 hyperparameters, and fine-tune the `mplug.en.base`
915 checkpoint for 8 epochs with the AdamW optimizer
916 and learning rate of 3e-5. Models were trained on
917 an Nvidia RTX a5000 GPU and each training ses-
918 sion took less than an hour. Models contain 350M
919 parameters.

920 A.2 German Captioning Model

921 We train the model discussed in Section 3.3 for 10
922 epochs with the AdamW optimizer and learning
923 rate of 2e-5. The model was trained on an Nvidia
924 RTX a5000 GPU and training took 4 hours to com-
925 plete. The model contains 156M parameters.

926 B Data Collection

927 In this section we thoroughly discuss the data col-
928 lection process briefly discussed in Section 3.1.

929 We use Amazon Mechanical Turk to recruit an-
930 notators. As a first filter we require native-speaker
931 level proficiency in English. Next, we publish a
932 qualification task and filter the annotators. Finally,
933 after each batch of annotation, we sample 20 anno-
934 tated samples to ensure the quality of annotations,
935 and inform annotators if a wrong annotation has
936 been made.

937 Annotators were paid 0.1\$US per annotation.
938 Early experiments indicated that a single reformula-
939 tion annotation takes 5 to 30 seconds. The expected
940 hourly wage exceeds the US minimum wage which
941 ranges between 8\$US and 15\$US.

942 We provide the following annotation guidelines:

- 943 • In this task, you will be presented with images
944 together with a textual image description.
- 945 • Your task is to reformulate the description so
946 that (a) it is as similar as possible to the origi-
947 nal (b) all errors from the original descriptions
948 are fixed (if any errors exist).

¹¹github.com/alibaba/AliceMind

- 949 • If the original description is too bad to fix,
950 please write a completely new description.

951 Subsequently, annotators were shown several
952 examples of reformulations.

953 C Used Packages

954 We used the following packages in our implemen-
955 tation:

- 956 • COCO-caption evaluation¹²: used for all eval-
957 uation metrics.
- 958 • statsmodel: used for sign-test¹³ and Fleiss'
959 Kappa¹⁴ in the human evaluation sections.
- 960 • sklearn: used for Cohen's Kappa¹⁵ in Sec-
961 tion 3.3.

962 D More Examples

963 Figure 7 presents samples where the German cap-
964 tioning `base` model discussed in Section 3.3 gen-
965 erates caption with errors, which are fixed by the
966 reformulation process.

967 E Analysis of BLIP Reformulation

968 We use the evaluation framework described in Sec-
969 tion 3.2.2 on the BLIP model. We randomly sam-
970 ple 50 images from each of the MSCOCO and
971 Flickr30k test sets for the evaluation.

972 Figure 8 presents the results. Across datasets,
973 reformulated captions are more complete and de-
974 tails but less faithful and accurate. This result is in
975 line with the analysis presented in Table 1, where
976 the most common feedback type was ‘addition’ of
977 information to the original caption. The reduction
978 in accuracy and faithfulness shows that in some
979 cases the added information was incorrect. How-
980 ever, annotators scored the reformulated captions
981 as overall better in both datasets.

982 We find that reformulated captions are signif-
983 icantly (Sign test, $p < 0.05$) more detailed in
984 MSCOCO, less faithful in Flickr30k, more com-
985 plete in both datasets and overall better in both
986 datasets ($p < 0.05$). We also compute inter-
987 annotator agreement using Fleiss' Kappa: $\kappa =$

¹²github.com/tylin/coco-caption

¹³www.statsmodels.org/stable/generated/statsmodels.stats.descriptivestats.sign_test.html

¹⁴[https://www.statsmodels.org/stable/generated/statsmodels.stats.inter_rater.fleiss_kappa.html](http://www.statsmodels.org/stable/generated/statsmodels.stats.inter_rater.fleiss_kappa.html)

¹⁵scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html

base: Ein Mann sitzt an einem Tisch vor einem Glas Bier
 (A man sits at a table in front of a glass of beer)
base+re: Ein Mann sitzt an einem Tisch vor einem Glas Wein
 (A man sitting at a table in front of a glass of wine)

base: Ein Hund steht an einem Zaun vor einem Stall
 (A dog stands at a fence in front of a stable)
base+re: Ein Hund steht an einem Zaun vor einem Pferd
 (A dog stands at a fence in front of a horse)

base: Ein Junge in roter Jacke und Helm sitzt auf einem roten Motorrad
 (A boy in a red jacket and helmet sits on a red motorcycle)
base+re: Ein Junge in roter Jacke und Helm sitzt auf einem Motorrad
 (A boy in a red jacket and helmet sits on a motorcycle)

base: Zwei Radfahrer fahren auf einer Brücke über einen Fluss
 (Two cyclists ride on a bridge over a river)
base+re: Drei Radfahrer fahren auf einer Brücke über einen Fluss
 (Three cyclists ride on a bridge over a river)

Figure 7: Examples in which the reformulated captions fix errors in captions generated by the base model, for German image captioning. **base:** the caption generated by the base model. **base+re:** the reformulated caption.

988 0.55, 0.47, 0.44 for completeness, overall, detail
 989 (axes on which reformulated captions were better),
 990 and $\kappa = 0.37, 0.34$ for faithfulness, accuracy.

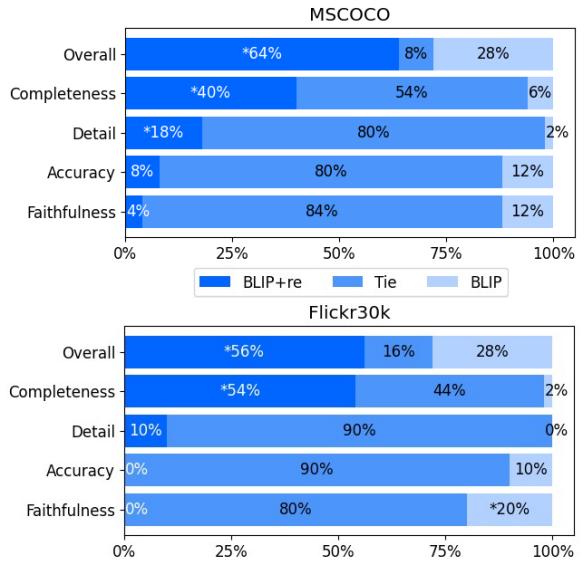


Figure 8: Results for human evaluation on BLIP in different axes. We show proportions of preferences for generated captions without (base) and with (base+re) reformulations, and ties. * indicates a significant difference between base and base+re (Sign test; $p < 0.05$).