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Abstract

Uncertainty quantification (UQ) has emerged001
as a promising approach for detecting halluci-002
nations and low-quality output of Large Lan-003
guage Models (LLMs). However, obtaining004
proper uncertainty scores is complicated by the005
conditional dependency between the generation006
steps of an autoregressive LLM, because it is007
hard to model it explicitly. Here, we propose to008
learn this dependency from attention-based fea-009
tures. In particular, we train a regression model010
that leverages LLM attention maps, probabili-011
ties on the current generation step, and recur-012
rently computed uncertainty scores from previ-013
ously generated tokens. To incorporate the re-014
current features, we also suggest a two-staged015
training procedure. Our experimental evalu-016
ation on ten datasets and three LLMs shows017
that the proposed method is highly effective018
for selective generation, achieving substantial019
improvements over rivaling unsupervised and020
supervised approaches.021

1 Introduction022

Uncertainty quantification (UQ; Gal and Ghahra-023

mani (2016); Baan et al. (2023); Geng et al. (2024);024

Fadeeva et al. (2023)) is of growing interest in025

the Natural Language Processing (NLP) commu-026

nity for dealing with Large Language Models027

(LLMs) hallucinations (Fadeeva et al., 2024) and028

low-quality generations (Malinin and Gales, 2021)029

in an efficient manner. For example, high uncer-030

tainty could serve as an indicator that the LLM031

generation should be discarded as potentially harm-032

ful or misleading. This approach is known in the033

literature as selective generation (Baan et al., 2023).034

There are many approaches for detecting halluci-035

nations and low-quality outputs of LLMs (Manakul036

et al., 2023; Min et al., 2023; Chen et al., 2023).037

However, many of them leverage external knowl-038

edge sources or a second LLM. Knowledge sources039

are generally patchy in coverage, while censoring040

the outputs of a small LLM using a bigger one has 041

a high computational cost and is impractical. We 042

argue that LLMs inherently contain information 043

about the limitations of their own knowledge, and 044

that there should be an efficient way to access this 045

information, which can enable LLM-based applica- 046

tions that are both safe and practical. 047

While for general classification and regression 048

tasks there is a well-developed battery of UQ tech- 049

niques (Zhang et al., 2019; He et al., 2020; Xin 050

et al., 2021; Wang et al., 2022; Vazhentsev et al., 051

2023; He et al., 2024a), for text generation tasks, 052

UQ is much more complicated. The complexity is 053

multifold: (1) there is an infinite number of pos- 054

sible generations, which complicates the normal- 055

ization of the uncertainty scores, (2) in the gen- 056

eral case, there are an infinite number of correct 057

answers (Farquhar et al., 2024), (3) decisions are 058

generally based on imprecise sampling and infer- 059

ence algorithms such as beam search, (4) there is 060

not one, but multiple tokens, and the uncertainty 061

of these predictions needs to be aggregated, and fi- 062

nally, (5) the predictions at each generation step are 063

not conditionally independent (Zhang et al., 2023). 064

This last problem is the focus of the present 065

work. During generation, LLMs condition on the 066

previously generated tokens. Thus, if an LLM has 067

hallucinated and generated an incorrect claim at 068

the beginning or in the middle of the sequence, 069

all subsequently generated claims might also be 070

incorrect. Even if the first claim was generated 071

with high uncertainty, this is not taken into account 072

during the subsequent generation process. This 073

means that while the first error could be recognized 074

as having high uncertainty, all subsequent errors 075

will be overlooked because the generation process 076

conditioned on this error will be very confident. 077

We note that the attention between the gener- 078

ated tokens provides information about the condi- 079

tional dependency between the generation steps. 080

Previously, there have been several attempts to 081
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LLM Spanish is the language with the highest number of total speakers in the world that is not an official language of the U.S.

Figure 1: An illustration of the proposed method TAD. The figure shows the generated tokens, the uncertainty scores
for the generated sequence, and the probabilities assigned by an LLM and by TAD (represented with bars). The
output is generated by Gemma 7b for the question What is the language with the highest number of total speakers
in the world that is not an official language of the U.S.? The LLM starts by generating a token Spanish that leads
to the erroneous answer. The probabilities estimated by the LLM are high for all tokens except for the first one,
which makes the uncertainty scores based on raw probabilities misleadingly low. On the contrary, TAD takes into
account uncertainty from the previous step using a trainable model C(·) based on attention, resulting in a high
overall uncertainty for the generated answer.

suggest heuristic approaches to model this depen-082

dency (Zhang et al., 2023). We argue that the par-083

ticular algorithmic function would be too difficult084

to engineer, and thus we propose to learn this de-085

pendency from data instead.086

For this purpose, we generate a training dataset087

with a target variable, representing the quality score088

of the generated text according to some ground089

truth annotation, and train a regression model that090

leverages LLM attention maps, probabilities on091

the current generation step, and recurrently com-092

puted uncertainty scores from previously generated093

tokens. To incorporate recurrent features, we sug-094

gest a two-staged training procedure where in the095

second stage, we use scores from the intermediate096

model obtained in the first training stage. We call097

the proposed approach Trainable Attention-based098

Dependency (TAD). Figure 1 illustrates the idea of099

the method on the real output of an LLM.100

The contributions of this work are as follows.101

• We develop a new data-driven supervised ap-102

proach to uncertainty quantification that lever-103

ages features based on attention maps, prob-104

abilities on the current generation step, and105

recurrently computed uncertainty scores from106

previously generated tokens.107

• We show that both attention and recurrent fea-108

tures are essential for achieving high perfor-109

mance in UQ, and two step training procedure110

is necessary to avoid overfitting.111

• We conduct vast empirical investigation in112

selective generation and show that the pro-113

posed approach outperforms previous unsu-114

pervised and supervised UQ methods across115

nine datasets and three LLMs.116

2 Problem Background and Key Idea 117

When an LLM generates a sequence of tokens ti, 118

it provides us a conditional probability distribution 119

p(ti | t<i) = p(ti | x, t<i), where x is an input 120

prompt and t<i is a sequence of tokens generated 121

before token ti. This essentially means that the 122

LLM considers that everything generated so far is 123

correct, which might not be the case. In practice, 124

we would like to somehow propagate the uncer- 125

tainty from the previous generation steps. 126

To illustrate the problem, for the sake of sim- 127

plicity, let us assume that only the uncertainty 128

from the previous tokens is propagated to the cur- 129

rent generation step. This assumption can be ex- 130

pressed as follows: p(ti | t<i) ≃ p(ti | ti−1). 131

Let us further consider that we have trained an 132

LLM that generates only tokens that are true (‘T’) 133

or false (‘F’). The probability of the token ti be- 134

ing ‘T’ is given by the conditional probability 135

p(ti | ti−1) = p(ti = T | ti−1 = T). Assume 136

we already have some tokens t1, t2, . . . , tn and 137

a prompt x. At each step, the LLM provides us 138

p(t1 = T | x), p(t2 = T | t1 = T), . . . , p(tn = 139

T | tn−1 = T). 140

These probability distributions are condition- 141

ally dependent on the previously generated tokens. 142

However, to estimate the correctness of some token 143

ti, we need to obtain an unconditional probability 144

p(ti) = p(ti = T). Let us expand p(ti = T) ac- 145

cording to the law of total probability and express 146

it using conditional probability: 147

p(ti = T) = p(ti = T | ti−1 = T) · p(ti−1 = T) 148

+ p(ti = T | ti−1 = F) ·
(
1− p(ti−1 = T)

)
. 149

In this formula, p(ti = T | ti−1 = T) is what 150
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the LLM provides during the current generation151

step in accordance with the specified assumptions,152

and p(ti−1 = T) is recurrently calculated based153

on the previous generation step. We still do not154

know the remaining term: p(ti = T | ti−1 = F).155

This simplistic example shows that in order to ob-156

tain a reliable uncertainty estimate, we cannot rely157

solely on the probability distribution provided by158

the LLM, and we also need to model the condi-159

tional dependency of the generation steps. It also160

makes explicit the need for recurrence in token-161

level uncertainty computation.162

Attention weights commonly reflect the degree163

of conditional dependency between the generation164

steps. However, obtaining a direct expression that165

would accurately approximate the conditional de-166

pendency between the generation steps is challeng-167

ing. The assumptions in our simplistic example do168

not hold in real LLMs, and thus the predictions on169

each step depend on multiple previous tokens in170

a complicated fashion. We suggest learning this171

dependency in a supervised way from attention.172

In particular, we propose a feature set for train-173

ing token-level unconditional confidence scores C,174

consisting of the attention weights Atti, the token175

probabilities from the LLM on the current step176

p(ti | t<i), and the recurrently calculated confi-177

dence scores on the previous steps C<i:178

C(ti) = C
(
Atti, p(ti | t<i),C<i

)
. (1)179

3 Trainable Attention-Based Conditional180

Dependency181

We learn unconditional token-level probability es-182

timates and aggregate the resulting scores into a183

single uncertainty score for the entire sequence.184

Obtaining targets for learning unconditional185

probability. In order to obtain the targets p̂(ti) for186

the unconditional probability C(ti) for a generated187

token ti ∈ y during the training phase, we com-188

pute the semantic similarity between the generated189

answer y and the ground truth y∗:190

p̂(ti) = sim(y,y∗). (2)191

For generating the targets, we use task-specific sim-192

ilarity measures, such as Accuracy, COMET (Rei193

et al., 2020), and AlignScore (Zha et al., 2023).194

Generating training data for TAD. We generate195

the training data for TAD using the original textual196

training dataset in the following way:197

1. For the input prompt xk, we use an LLM to 198

generate a text yk = t1t2 . . . tnk
of some 199

length nk and token probabilities p(ti | 200

xk, t<i). 201

2. For the first generated token t1 in each text, 202

we introduce its unconditional confidence es- 203

timate p̂k(t1) = sim(yk,y
∗
k) according to 204

Equation (2). 205

3. For each generated token ti, i = 2, . . . , nk 206

we construct a feature vector zki that depends 207

on N preceding tokens. The feature vec- 208

tor zki includes: the conditional probabili- 209

ties p(ti | xk, t<i) and p(ti−l | xk, t<i−l), 210

for l = 1, . . . ,min{N, i − 1}; the uncondi- 211

tional probabilities’ estimates from the previ- 212

ous steps p̂k(ti−l), and the attention weights 213

ai,i−l from the (i− l)-th token to the i-th to- 214

ken from all layers and heads. If N > i− 1, 215

we pad the feature vector with zeros to en- 216

sure they have the same length. On the first 217

stage of learning, the unconditional probabil- 218

ities p̂k(ti−l) are estimated by an auxiliary 219

non-recursive procedure. On the subsequent 220

learning stages it is estimated via the function 221

learned on the previous learning stage. 222

As a result, for each instance in the training 223

dataset and for each iteration of learning, we 224

generate a sequence of target variables C̃k
i = 225

sim(yk,y
∗
k) and corresponding feature vectors 226

zki , k = 1, . . . ,K, i = 2, . . . , nk. We use this 227

dataset to train the model C. The step-by-step 228

procedure for generating training data is presented 229

in Algorithm 1 in Appendix E. 230

Model for C and its training procedure. The 231

training procedure involves using the estimates of 232

the unconditional probabilities from the previous 233

steps as features. To address this problem, we per- 234

form the training procedure twice. In the second 235

stage, we leverage the predictions of the function C 236

trained on the first stage as features. This two-step 237

training approach enables us to leverage the con- 238

ditional dependency of the current step on the pre- 239

vious ones when computing the uncertainty score. 240

Our experiments show that it is essential for achiev- 241

ing good performance. 242

We experiment with two regression models for 243

TAD: linear regression (LinReg) and a multi-layer 244

perceptron (MLP). The hyper-parameters of the 245

regressors are obtained using cross-validation with 246

five folds on the training dataset. We select the 247

optimal values of the hyperparameters based on the 248
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best average PRR. The optimal values are used to249

train the regression model on the full training set.250

The selected hyper-parameters values for the TAD251

modules are presented in Appendix C.1.252

Inference procedure. During inference, we obtain253

predictions from the LLM as always, but we also254

extract features from the attention outputs. For the255

first generated token t1, its unconditional proba-256

bility is defined as p(t1) = p(t1 | xk). For each257

subsequent token, the function C computes the258

predictions recursively, leveraging the attentions,259

the conditional probabilities, and the unconditional260

probabilities predicted for the preceding tokens.261

Finally, for computing uncertainty of LLM an-262

swer, the token-level scores are aggregated into263

a sequence-level score:264

U(y) = 1− 1

nk

nk∑
i=1

Ck(ti). (3)265

We experiment with various aggregation ap-266

proaches in the ablation study.267

4 Related Work268

The majority of the methods for UQ of LLM gen-269

erations has been unsupervised, with few recently-270

proposed supervised methods.271

Unsupervised UQ methods. The problem of mul-272

tiple correct generations was explicitly addressed273

in (Kuhn et al., 2023; Nikitin et al., 2024; Cheng274

and Vlachos, 2024; Zhang et al., 2024) and in a275

series of black-box generation methods (Lin et al.,276

2024). The main idea is to sample multiple genera-277

tions from an LLM, extract semantically equivalent278

clusters, and analyze the diversity of the generated279

meanings instead of the surface forms. Chen et al.280

(2024) proposed evaluating the consistency of the281

multiple generations in the embedding space using282

their hidden states. In this category, lexical similar-283

ity (Fomicheva et al., 2020) is a very competitive284

baseline that can be applied to black-box models285

(without any access to logits or internal model rep-286

resentations). Fadeeva et al. (2024) addressed the287

problem of multiple sources of uncertainty present288

in the LLM’s probability distribution that are irrel-289

evant for hallucination detection.290

Zhang et al. (2023) and Duan et al. (2024) high-291

lighted that not all tokens should contribute to the292

uncertainty score, proposing heuristics to select the293

relevant tokens. Zhang et al. (2023) also modeled294

the conditional dependencies between the gener-295

ation steps by penalizing the uncertainty scores296

based on the uncertainties of the previously gen- 297

erated tokens and the max-pooled attention to the 298

previous tokens. 299

Overall, most previous work on UQ has not ad- 300

dressed the conditional dependency between the 301

predictions, or has addressed it using heuristics. 302

We argue that the conditional dependency is an im- 303

portant aspect of UQ for text generation tasks, and 304

we propose a data-driven approach to it. We also 305

note that techniques based on sampling multiple 306

answers from LLMs usually introduce prohibitive 307

computational overhead. We argue that for UQ 308

methods to be practical, they should also be com- 309

putationally efficient. 310

Supervised UQ methods. Supervised regression- 311

based confidence estimators are well-known for 312

classification problems, primarily from computer 313

vision (Lahlou et al., 2023; Park and Blei, 2024). 314

Their key benefit is computational efficiency. 315

A handful of papers applied them to text gener- 316

ation tasks. Lu et al. (2022) proposed training a 317

regression head of a model to predict confidence. 318

They noted that the probability distribution of a 319

language model is poorly calibrated and cannot 320

be used directly to spot low-quality translations. 321

They modified the model architecture and the loss 322

function, restricting this approach to fine-tuning 323

language models only for Machine Translation 324

(MT) and making it unsuitable for general-purpose 325

LLMs. In a similar vein, Azaria and Mitchell 326

(2023) approached the task of UQ by training a 327

multi-layer perceptron (MLP) on the activations 328

of the internal layers of LLMs to classify true vs. 329

false statements. They demonstrated that it out- 330

performed other supervised baselines and few-shot 331

prompting of the LLM itself. However, the reliance 332

on forced decoding limits the real-world applica- 333

bility for hallucination detection in unrestricted 334

generation cases. 335

Several studies enhanced this method by refining 336

the model architecture and the training procedure. 337

Su et al. (2024) combined the hidden state of the 338

last token with the average hidden state of the se- 339

quence, while CH-Wang et al. (2024) introduced 340

a trainable attention layer over token embeddings 341

and used linear regression on top of the MLP’s pre- 342

dictions based on embeddings from various layers. 343

He et al. (2024b) proposed to combine multiple 344

deep learning models trained on diverse features 345

extracted from hidden states. Chuang et al. (2024) 346

suggested training the linear classifier using fea- 347
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UQ Method SamSum CNN WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean
PRR

Mean
RankAlignScore AlignScore Comet AlignScore AlignScore AlignScore AlignScore AlignScore Acc. Acc.

MSP .298 .157 .569 .356 .277 .450 .582 .687 .444 .380 .420 7.30
Perplexity .029 -.116 .460 .438 .178 .450 .202 .689 .374 .259 .296 13.10
Mean Token Entropy .005 -.129 .444 .432 .164 .434 .199 .711 .122 .279 .266 15.00
CCP .287 .101 .453 .321 .176 .385 .364 .712 .261 .408 .347 11.00
Focus .144 -.002 .501 .460 .213 .345 .456 .621 .155 .402 .330 13.10
Simple Focus .230 .101 .553 .381 .262 .475 .540 .703 .413 .381 .404 7.50

Lexical Similarity Rouge-L .073 .074 .455 .153 .029 .428 .555 .613 .313 .452 .315 13.20
EigenScore -.002 .094 .468 .047 .033 .412 .541 .591 .154 .385 .272 15.50
EVL NLI Score entail. .111 .056 .366 .133 .134 .458 .527 .684 .304 .359 .313 13.60
Ecc. NLI Score entail. .020 .003 .406 .099 .127 .434 .541 .632 .322 .399 .298 14.30
DegMat NLI Score entail. .112 .062 .388 .138 .134 .453 .542 .703 .279 .385 .320 12.20
Semantic Entropy .089 .056 .524 .027 .051 .423 .527 .660 .223 .465 .305 14.20
SAR .121 .081 .508 .219 .078 .458 .545 .697 .299 .471 .348 9.80
LUQ .153 .058 .258 .107 .099 .428 .499 .692 .267 .289 .285 14.70
Semantic Density .062 .093 .347 .180 .167 .478 .497 .691 .281 .315 .311 12.60

Factoscope .067 .086 .218 .236 .164 .049 .386 .460 .703 .108 .248 15.60
SAPLMA .284 .073 .574 .429 .146 .039 .425 .535 .492 .508 .350 11.20
MIND .217 .162 .494 .583 .385 .381 .589 .632 .813 .607 .486 6.90
Sheeps .292 .179 .554 .552 .464 .500 .487 .709 .796 .659 .519 4.40
LookBackLens .459 .233 .615 .579 .386 .441 .594 .631 .774 .619 .533 4.40

TAD .431 .215 .612 .662 .565 .509 .644 .737 .806 .682 .586 1.40

Table 1: PRR↑ of UQ methods for the Llama-3.1 8b model. Warmer color indicates better results. The best method
is in bold, the second best is underlined.

tures derived from attention matrices. A key limita-348

tion of these methods is that they can only provide349

veracity scores for the entire generated text.350

Unlike previous methods, we focus on modeling351

the conditional dependencies between generation352

steps using attentions in a supervised way. More-353

over, our method incorporates recurrently com-354

puted uncertainty scores for tokens from previ-355

ous generation steps, capturing the relationship be-356

tween uncertainty scores of the generated tokens.357

Our method is also flexible as it can be applied at358

different levels: to the entire text, to a sub-sequence,359

or to individual tokens. Finally, unlike LookBack-360

Lens, which relies on heuristically computed fea-361

tures, our method directly utilizes raw attention362

weights that give access to more information.363

5 Experiments and Evaluation364

5.1 Experimental Setup365

For the experimental evaluation, we use the LM-366

Polygraph framework (Fadeeva et al., 2023). We367

focus on the task of selective generation (Ren et al.,368

2023) where we “reject” generated sequences due369

to low quality based on uncertainty scores. Reject-370

ing means that we do not use the model output, and371

the corresponding queries are processed differently,372

e.g., they could be further reprocessed manually.373

Evaluation measures. Following previous work374

on UQ in text generation (Malinin and Gales, 2021;375

Vashurin et al., 2025), we compare UQ methods376

using the Prediction Rejection Ratio (PRR) metric.377

PRR quantifies how well an uncertainty score can378

identify and reject low-quality predictions accord-379

ing to some quality measure. The PRR scores are 380

normalized to the range [0, 1] by linearly scaling 381

the area under the PR curve between the values ob- 382

tained with random selection (corresponding to 0) 383

and oracle selection (corresponding to 1). Higher 384

PRR values indicate better quality of the selective 385

generation. We use Accuracy, COMET (Rei et al., 386

2020), and AlignScore (Zha et al., 2023) as gener- 387

ation quality measures. For QA datasets, we also 388

use ROC-AUC of detecting incorrect answers as 389

a supplementary metric, as it is widely adopted in 390

the UQ literature. 391

Datasets. We consider ten datasets from five 392

text generation tasks: text summarization (TS), 393

machine translation (MT), Question Answering 394

(QA) with long free-form answers, QA with free- 395

form short answers, and multiple-choice QA. A 396

detailed description of all datasets is provided in 397

Appendix D, the dataset statistics are presented in 398

Table 21. 399

LLMs. We experiment with three LLMs: LLaMA- 400

3.1 8b (Dubey et al., 2024), Gemma-2 9b (Rivière 401

et al., 2024), and Qwen-2.5 7b (Yang et al., 2024). 402

The values of the inference hyper-parameters are 403

given in Table 20 in Appendix C.2. 404

UQ baselines. The set of unsupervised baselines 405

includes Maximum Sequence Probability (MSP), 406

Mean Token Entropy, and Perplexity (Fomicheva 407

et al., 2020), which are considered simple yet 408

strong and robust baselines for selective genera- 409

tion across various tasks (Fadeeva et al., 2023). 410

We also compare our method to unsupervised 411

techniques considered to be state-of-the-art: Lex- 412

ical Similarity based on ROUGE-L (Fomicheva 413
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UQ Method Llama-3.1 8b Gemma-2 9b Qwen-2.5 7b Mean Rank

MSP 7.30 8.00 7.40 4.50
Perplexity 13.10 11.80 12.20 10.83
Mean Token Entropy 15.00 12.60 13.20 15.50
CCP 11.00 12.10 13.50 12.17
Focus 13.10 12.30 15.00 14.83
Simple Focus 7.50 8.20 7.50 5.67
Lexical Similarity Rouge-L 13.20 13.90 12.80 15.00
EigenScore 15.50 15.80 13.40 18.67
EVL NLI Score entail. 13.60 12.40 12.10 12.33
Ecc. NLI Score entail. 14.30 13.40 14.10 17.67
DegMat NLI Score entail. 12.20 13.20 12.00 11.17
Semantic Entropy 14.20 11.50 12.60 12.00
SAR 9.80 9.30 8.90 7.00
LUQ 14.70 13.50 13.30 17.00
Semantic Density 12.60 13.20 13.50 14.67
Factoscope 15.60 16.40 17.10 21.00
SAPLMA 11.20 10.70 13.20 10.17
MIND 6.90 7.10 7.40 3.83
Sheeps 4.40 9.00 6.50 3.83
LookBackLens 4.40 5.00 3.50 2.17

TAD 1.40 1.60 1.80 1.00

Table 2: Mean ranks of UQ methods aggregated over all
datasets for each LLM separately (the lower the better).
The column Mean Rank corresponds to the mean rank
of the ranks across all LLMs. The best method is in
bold, the second best is underlined.

et al., 2020), black-box methods (DegMat, Ec-414

centricity, EigValLaplacian; Lin et al. (2024)),415

Semantic Entropy (Kuhn et al., 2023), hallucina-416

tion detection with a stronger focus (Focus; Zhang417

et al. (2023)), claim-conditioned probability (CCP;418

Fadeeva et al. (2024)), Shifting Attention to Rele-419

vance (SAR; Duan et al. (2024)), EigenScore (Chen420

et al., 2024), Semantic Density (Qiu and Miikku-421

lainen, 2024), and long-text uncertainty quantifi-422

cation (LUQ; Zhang et al. (2024)). For sampling-423

based methods, we generate five samples.424

The suite of baselines also includes state-of-the-425

art supervised methods that use hidden states or426

attention weights: Factoscope (He et al., 2024b),427

SAPLMA (Azaria and Mitchell, 2023), MIND (Su428

et al., 2024), Sheeps (CH-Wang et al., 2024), and429

LookBackLens (Chuang et al., 2024).430

5.2 Main Results431

Fine-grained comparison to the baselines. Ta-432

bles 1, 5 and 6 in Appendix A.1 present the results433

for LLaMa-3.1 8b, Gemma-2 9b, and Qwen-2.5 7b,434

respectively.435

The results demonstrate that, across all summa-436

rization and translation datasets, both LookBack-437

Lens and TAD outperform state-of-the-art methods438

by a substantial margin. For Llama, LookBack-439

Lens achieves slightly better results than TAD, but440

TAD confidently outperforms LookBackLens on441

the CNN dataset when using Gemma and on the442

WMT19 dataset with Qwen.443

For QA involving long answers (e.g.,444

MedQUAD, TruthfulQA, and GSM8k), TAD445

demonstrates substantial improvements over446

the baselines across all considered models. For 447

example, in the experiment with LLaMA-3.1 8b 448

on TruthfulQA, TAD outperforms the second- 449

best baseline, Sheeps, by 0.101 of PRR. On the 450

MedQUAD dataset, TAD achieves an improvement 451

of 0.079 in PRR over the second-best baseline, and 452

on GSM8k, it improves PRR by 0.023. 453

For QA with short answers (CoQA, SciQ, and 454

TriviaQA), TAD generally exhibits notable im- 455

provements over the baseline methods in the major- 456

ity of cases. The only exception is the case of the 457

SciQ dataset, where LookBackLens is marginally 458

better for Gemma-2 9b and Qwen-2.5 7b. On Trivi- 459

aQA, when using the Gemma-2 9b model, TAD per- 460

forms on par with sampling-based methods, while 461

other supervised methods fall behind simple base- 462

lines by a margin. 463

Finally, for MMLU, TAD also notably outper- 464

forms state-of-the-art methods for both Gemma-2 465

9b and Qwen-2.5 7b. However, for LLaMA-3.1 8b, 466

TAD slightly falls behind MIND. 467

Summarizing, our findings indicate that certain 468

UQ methods, such as LookBackLens and Sheeps, 469

can achieve top performance in specific experimen- 470

tal settings. However, TAD demonstrates the most 471

consistent and robust performance across all eleven 472

tasks, never ranking below the second-best method. 473

In contrast, other supervised methods occasionally 474

underperform, sometimes even falling below sim- 475

ple baselines such as MSP. Similar patterns are 476

observed in the ROC AUC results reported in Ta- 477

bles 7 to 9 (see Appendix A.2). 478

Aggregated results. Table 2 presents the mean 479

rank of each method aggregated over all datasets 480

for each model separately. The lower rank is better. 481

The column Mean Rank shows the mean rank of the 482

ranks across all models. Figure 2 additionally sum- 483

marizes all experimental setups. Each cell presents 484

a win rate for a method from a row compared to 485

a method from a column. The aggregated results 486

emphasize the significance of the performance im- 487

provements of the proposed method. Despite some 488

baselines showing good results in particular cases, 489

they usually are quite unstable, resulting in poor 490

overall ranking. TAD demonstrates more robust im- 491

provements across multiple tasks and LLMs, mak- 492

ing it a better choice overall. 493

Generalization to out-of-domain datasets. Ta- 494

ble 3 compares the results of the supervised meth- 495

ods trained on all QA datasets except for one that 496

represents the out-of-domain dataset for testing. 497

Additionally, Table 10 in Appendix A.3 presents 498
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Figure 2: Summary of 30 experimental setups with
various models and datasets. Each cell in the diagram
presents the fraction of experiments where a method
from a row outperforms a method from a column.
Warmer colors indicate better results.

UQ Method MedQUAD CoQA SciQ MMLU GSM8k Mean
PRRAlignScore AlignScore AlignScore Acc. Acc.

MSP .356 .450 .582 .444 .380 .442

Factoscope .166 .007 .129 -.022 -.082 .039
SAPLMA .137 .012 .270 -.034 .073 .092
MIND .095 .171 -.045 .415 .335 .194
Sheeps .044 .201 .538 .624 .348 .351
LookBackLens .061 .111 .407 .224 .261 .213

TAD .336 .461 .629 .489 .391 .461

Table 3: PRR↑ for Llama 8b v3.1 model for various
QA tasks for the considered supervised sequence-level
methods trained on the general QA dataset. Unsuper-
vised methods are not included as their performance
is not dependent of the training data. Warmer colors
indicate better results. The best method is in bold, and
the second best one is underlined.

the results when these methods are trained on all499

QA datasets and tested on the out-of-distribution500

tasks: summarization and translation. These set-501

tings evaluate the out-of-domain generalization ca-502

pabilities of the supervised techniques for both new503

domains and new tasks.504

The results show that all considered supervised505

methods substantially degrade compared to their506

in-domain performance and, in many cases, under-507

perform the simple MSP baseline. Nevertheless,508

TAD demonstrates strong out-of-domain perfor-509

mance on the unseen QA datasets, outperforming510

MSP by 0.019 of PRR on average. However, all511

supervised methods perform significantly worse512

than the MSP baseline on the OOD tasks, summa-513

rization and translation, underscoring their limited514

adaptability to unseen tasks.515

These findings indicate that previous supervised516

UQ methods are generally effective only for in- 517

domain selective generation. However, the TAD 518

method demonstrates the ability to achieve gener- 519

alization to unseen domains within similar tasks. 520

More details about these experiments are presented 521

in Appendix A.3. 522

5.3 Ablation Studies 523

Comparison of features. Table 15 in Ap- 524

pendix A.5 presents the ablation experiment with 525

different features for the TAD regression model. 526

For TAD (probs.), we only use probabilities 527

along with predictions from the preceding tokens 528

p(ti−k = T) for k = 1, . . . , N . For TAD (atten- 529

tion), we use attention weights on the N preceding 530

tokens without probabilities. The results show that 531

TAD (probs.) provides meaningful but relatively 532

low performance. TAD (attention) demonstrates 533

substantial improvements, underscoring the impor- 534

tance of using the attentions in the TAD method. 535

Finally, TAD (attention+probs.), which combines 536

both attention weights, probabilities, and uncer- 537

tainty scores from previous steps, achieves slight 538

but consistent performance gains. This indicates 539

the benefit of recurrence during the computation of 540

uncertainty scores. 541

Impact of the token-level training procedure. Ta- 542

ble 14 in Appendix A.5 presents an ablation study 543

comparing different training procedures for the re- 544

gression model in the TAD method. We compare 545

the original TAD against TAD (Sequence-level), 546

which uses a two-layer MLP with averaging of 547

the hidden features between layers, followed by a 548

linear layer for direct sequence-level uncertainty 549

prediction. The results demonstrate that while TAD 550

(Sequence-level) performs competitively, the orig- 551

inal TAD method surpasses it by 0.023 of PRR 552

on average, with the largest improvement of 0.078 553

PRR on MedQUAD. These findings highlight the 554

effectiveness of the token-level training procedure 555

with recurrent features in TAD. 556

Impact of the two-step training procedure. Ta- 557

ble 16 in Appendix A.5 presents the ablation ex- 558

periment comparing one-step vs. two-step training 559

procedures for the TAD method. The results show 560

that the two-step procedure is essential for training 561

a well-performing recurrent model. 562

Regression models and aggregation approaches. 563

Detailed results with various regression models 564

and aggregation approaches are presented in Ta- 565

ble 12. The optimal values of the hyper-parameters 566

of TAD for all experimental setups are presented 567
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in Tables 17 to 19 in Appendix C.1 for LLaMA-3.1568

8b, Gemma-2 9b, and Qwen-2.5 7b, respectively.569

We compared two strategies for aggregating the570

token-level TAD scores: (i) the mean of the scores571

and (ii) the sum of the log scores inspired by per-572

plexity. For the majority of the considered settings,573

the mean of the probabilities yielded the best re-574

sults. However, for QA with short answers, the sum575

of the log probabilities performed slightly better.576

We can see that the difference between MLP577

and LinReg is minimal. On average, TAD with578

LinReg outperforms TAD with MLP by 0.029 in579

PRR. Therefore, for simplicity, we use LinReg as a580

regression method for TAD.581

Impact of the number of previous tokens. Ta-582

ble 13 presents experiments with different numbers583

of preceding tokens used in TAD. The results show584

that using ten preceding tokens generally yields bet-585

ter performance compared to using only 1-2 tokens586

across all datasets, except for SamSum.587

Impact of the attention layers. Figure 3 in588

Appendix A.5 presents the normalized average589

weights of linear regression for different attention590

layers in the TAD method. We can see similar591

patterns across various tasks, revealing that the592

most important layers are typically the middle ones,593

which is consistent with observations in previous594

work (Azaria and Mitchell, 2023; Chen et al., 2024).595

Additionally, we note that for the majority of the596

tasks, the first and the last attention layers play a597

crucial role.598

Replacing attention weights with interpretabil-599

ity features. Table 11 in Appendix A.4 shows the600

results, where we investigate interpretability fea-601

tures from Layer Integrated Gradients (LIG; Sun-602

dararajan et al. (2017)) as a measure of conditional603

dependency between generation steps. We com-604

pare the original TAD method with two variants:605

TAD (LIG), which replaces attention weights with606

LIG features, and TAD (MIX), which concatenates607

LIG features with the raw attention weights. LIG608

features perform comparably to attention, but their609

inclusion does not enhance TAD performance.610

5.4 Computational Efficiency611

In order to demonstrate the computational effi-612

ciency of TAD, we compare its runtime to other613

UQ methods. We use a single 80GB H100 GPU, as614

detailed in Table 1. The inference is implemented615

as a single-batch model call for all tokens in the616

output text.617

Table 4 presents the average runtime per text618

UQ Method Runtime
per batch Overhead

MSP 1.30±0.62 -

DegMat NLI Score Entail. 6.86±2.28 430 %
Lexical Similarity ROUGE-L 6.72±2.24 420%
Semantic Entropy 6.86±2.28 430%
SAR 8.83±2.94 580%

Factoscope 3.30±2.13 150%
SAPLMA 1.30±0.62 0.06%
MIND 1.30±0.62 0.10%
Sheeps 1.50±0.97 15%
LookBackLens 1.30±0.62 0.08%

TAD 1.37±0.68 5%

Table 4: Evaluation of the inference runtime of UQ
methods measured on all test instances from all datasets
with predictions from Llama 8b v3.1. The best results
are in bold, and the second best results are underlined.

instance for each UQ method, along with the per- 619

centage overhead over the standard LLM inference 620

with MSP. As we can see, many state-of-the-art 621

UQ methods such as (DegMat, Lexical Similarity, 622

Semantic Entropy, and SAR) introduce huge com- 623

putational overhead (400-600%) because they need 624

to perform sampling from the LLM multiple times. 625

In contrast, all supervised methods introduce mini- 626

mal overhead. In particular, TAD introduces only 627

5% overhead, which makes it a highly practical and 628

efficient choice for uncertainty quantification. 629

6 Conclusion and Future Work 630

We have presented a new uncertainty quantifica- 631

tion method based on learning conditional depen- 632

dencies between the predictions made on multiple 633

generation steps. The method relies on attention 634

to construct features for learning this functional 635

dependency and leverages this dependency to al- 636

ter the uncertainty of the subsequent generation 637

steps. This yields improved results in selective 638

generation tasks, especially when the LLM out- 639

put is long. Our experimental study shows that 640

TAD usually outperforms other state-of-the-art UQ 641

methods (such as SAR) resulting in the best overall 642

performance across three LLMs and nine datasets. 643

Contrary to other supervised methods, TAD also 644

shows cross-domain generalization. Our method 645

requires only minimal computational overhead due 646

to the simplicity of the underlying linear regression 647

model, making it a practical choice for LLM-based 648

applications. 649

In future work, we aim to apply the suggested 650

method to UQ of retrieval-augmented LLMs. TAD 651

potentially could be used to take into account the 652

credibility of the retrieved evidence. 653
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Limitations654

The proposed approach is supervised and thus ben-655

efits from task-specific training data. We evaluate656

our method on out-of-domain data to explore its657

generalization. Despite expected variations in per-658

formance, the proposed method achieves promising659

results on unseen out-of-domain data when trained660

on the related source domain. Overall, the method661

can be used in out-of-domain settings, while cau-662

tion should be exercised when training on signifi-663

cantly different domains.664

Our experiments were conducted using 7–9B pa-665

rameter models, due to limitations in our available666

computational resources. Nevertheless, given the667

similar architectures and training procedures across668

model scales, we believe that the proposed method669

can be effectively applied to larger-scale LLMs.670

Ethical Considerations671

In our work, we considered open-weights LLMs672

and datasets not aimed at harmful content. How-673

ever, LLMs may generate potentially damaging674

texts for various groups of people. Uncertainty675

quantification techniques can help create more re-676

liable use of neural networks. Moreover, they can677

be applied to detecting harmful generation, but this678

is not our intention.679

Moreover, despite that our proposed method680

demonstrates sizable performance improvements,681

it can still mistakenly highlight correct and not dan-682

gerous generated text with high uncertainty in some683

cases. Thus, as with other uncertainty quantifica-684

tion methods, it has limited applicability.685
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A Additional Experimental Results 1095

A.1 Comparison with other UQ Methods 1096

Here, we present the main results for Gemma and Qwen. 1097

UQ Method SamSum CNN WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean
PRR

Mean
RankAlignScore AlignScore Comet AlignScore AlignScore AlignScore AlignScore AlignScore Acc. Acc.

MSP .370 .061 .588 .125 .187 .527 .614 .772 .771 .425 .444 8.00
Perplexity .008 -.036 .480 .354 .171 .517 .178 .779 .756 .225 .343 11.80
Mean Token Entropy -.039 -.066 .443 .345 .141 .475 .191 .792 .759 .275 .332 12.60
CCP .266 .031 .432 .306 .102 .448 .450 .769 .678 .482 .396 12.10
Focus .110 -.040 .494 .200 .198 .446 .528 .721 .721 .419 .380 12.30
Simple Focus .308 .066 .578 .156 .178 .543 .583 .770 .755 .436 .437 8.20

Lexical Similarity Rouge-L .077 .071 .458 .011 -.002 .453 .453 .751 .587 .544 .340 13.90
EigenScore .134 .085 .368 .141 -.144 .456 .452 .701 .473 .355 .302 15.80
EVL NLI Score entail. .143 .089 .373 .189 .035 .469 .464 .750 .606 .486 .361 12.40
Ecc. NLI Score entail. .073 .047 .393 .209 -.020 .487 .478 .742 .609 .512 .353 13.40
DegMat NLI Score entail. .147 .090 .381 .132 .034 .427 .466 .762 .465 .514 .342 13.20
Semantic Entropy .181 .078 .521 -.085 -.039 .490 .473 .744 .673 .546 .358 11.50
SAR .107 .087 .491 .217 .069 .496 .472 .781 .690 .545 .396 9.30
LUQ .104 .114 .261 .268 .140 .411 .430 .755 .503 .451 .344 13.50
Semantic Density -.003 .073 .323 .210 .241 .512 .520 .712 .475 .405 .347 13.20

Factoscope .090 .063 .088 .492 -.093 -.056 .480 .289 .542 .084 .198 16.40
SAPLMA .318 .019 .600 .240 .375 -.005 .535 .601 .535 .604 .382 10.70
MIND .292 .098 .608 .608 .511 .345 .524 .528 .782 .702 .500 7.10
Sheeps .304 .080 .638 .561 .397 .358 .439 .551 .733 .756 .482 9.00
LookBackLens .475 .194 .672 .543 .481 .465 .666 .685 .750 .712 .564 5.00

TAD .462 .219 .643 .848 .575 .555 .641 .773 .812 .769 .630 1.60

Table 5: PRR↑ for Gemma 9b v2 model for various tasks for the considered sequence-level methods. Warmer color
indicates better results. The best method is in bold, the second best is underlined.

UQ Method SamSum CNN WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean
PRR

Mean
RankAlignScore AlignScore Comet AlignScore AlignScore AlignScore AlignScore AlignScore Acc. Acc.

MSP .394 .148 .582 .421 .210 .490 .661 .706 .508 .455 .457 7.40
Perplexity .114 .047 .503 .448 .232 .461 .447 .717 .310 .536 .381 12.20
Mean Token Entropy .036 .049 .487 .460 .251 .435 .302 .733 .060 .553 .337 13.20
CCP .374 .117 .455 .433 .131 .398 .422 .707 .197 .470 .370 13.50
Focus .156 .056 .503 .494 .196 .356 .500 .643 -.351 .474 .303 15.00
Simple Focus .317 .093 .570 .350 .250 .513 .639 .718 .449 .490 .439 7.50

Lexical Similarity Rouge-L .244 .059 .485 .189 .151 .400 .553 .653 .381 .683 .380 12.80
EigenScore .050 .054 .489 -.003 .089 .426 .643 .643 .364 .709 .346 13.40
EVL NLI Score entail. .206 .091 .383 .224 .270 .468 .595 .675 .290 .572 .377 12.10
Ecc. NLI Score entail. .186 .036 .439 .137 .216 .401 .598 .648 .342 .590 .359 14.10
DegMat NLI Score entail. .214 .091 .418 .234 .263 .419 .546 .699 .319 .593 .380 12.00
Semantic Entropy .262 .081 .514 .179 .189 .458 .589 .674 .252 .564 .376 12.60
SAR .238 .076 .515 .342 .224 .475 .634 .707 .333 .708 .425 8.90
LUQ .123 .075 .314 .093 .278 .423 .543 .682 .321 .607 .346 13.30
Semantic Density .118 .024 .336 .090 .271 .460 .611 .695 .294 .600 .350 13.50

Factoscope .064 .016 .134 .476 .038 .205 .447 .467 .821 -.368 .230 17.10
SAPLMA .283 .030 .416 .437 .316 -.035 .442 .519 .432 .643 .348 13.20
MIND .316 .124 .308 .527 .369 .489 .640 .639 .890 .783 .508 7.40
Sheeps .395 .180 .515 .547 .387 .380 .429 .704 .900 .837 .527 6.50
LookBackLens .445 .159 .571 .597 .398 .434 .703 .708 .848 .753 .562 3.50

TAD .434 .140 .607 .732 .468 .515 .648 .728 .904 .825 .600 1.80

Table 6: PRR↑ for Qwen 7b v2.5 model for various tasks for the considered sequence-level methods. Warmer color
indicates better results. The best method is in bold, the second best is underlined.

A.2 Results Using the ROC-AUC Metric 1098

The results with the ROC-AUC metric are presented in Tables 7 to 9. We obtain discrete versions of the 1099

generation quality metrics by thresholding the original continuous values. The thresholds were empirically 1100

determined as 0.3 for SamSum and CNN/DailyMail; 0.5 for MedQUAD, TruthfulQA, CoQA, SciQ, 1101

and TriviaQA; and 0.85 for WMT19. The results align with the trends observed in the PRR metric. 1102

Overall, TAD outperforms the second-best method (LookBackLens) by 1.1% for LLaMa-3.1 8B, 2.4% 1103

for Gemma-2 9B, and 0.4% for Qwen-2.5 7B on average across all datasets. 1104
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UQ Method SamSum CNN WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean
ROC-AUC

Mean
RankAlignScore AlignScore Comet AlignScore AlignScore AlignScore AlignScore AlignScore Acc. Acc.

MSP .622 .557 .726 .841 .710 .655 .776 .809 .771 .672 .714 8.50
Perplexity .518 .491 .722 .856 .658 .665 .678 .804 .741 .652 .679 12.70
Mean Token Entropy .512 .485 .728 .842 .658 .662 .669 .815 .619 .664 .665 13.70
CCP .634 .539 .671 .816 .619 .633 .704 .824 .709 .678 .683 10.90
Focus .577 .514 .708 .840 .656 .624 .785 .793 .642 .668 .681 12.80
Simple Focus .630 .551 .738 .804 .657 .671 .804 .821 .758 .669 .710 8.00

Lexical Similarity Rouge-L .559 .534 .679 .566 .536 .684 .803 .783 .642 .683 .647 12.90
EigenScore .482 .537 .673 .497 .530 .657 .746 .766 .612 .651 .615 17.00
EVL NLI Score entail. .568 .532 .630 .564 .600 .700 .765 .822 .640 .638 .646 13.50
Ecc. NLI Score entail. .503 .492 .648 .562 .584 .684 .767 .794 .642 .655 .633 15.30
DegMat NLI Score entail. .570 .533 .636 .571 .601 .701 .798 .828 .647 .649 .654 11.40
Semantic Entropy .558 .534 .693 .625 .565 .649 .722 .792 .624 .696 .646 14.30
SAR .581 .536 .717 .676 .554 .683 .813 .821 .676 .687 .675 10.20
LUQ .590 .529 .618 .548 .591 .687 .759 .820 .647 .606 .640 14.10
Semantic Density .543 .520 .638 .679 .642 .720 .785 .829 .622 .614 .659 12.40

Factoscope .529 .531 .592 .751 .571 .513 .698 .705 .820 .558 .627 16.70
SAPLMA .652 .516 .792 .872 .593 .509 .741 .728 .733 .713 .685 11.40
MIND .648 .563 .748 .924 .708 .654 .813 .785 .884 .795 .752 6.20
Sheeps .671 .581 .778 .913 .674 .746 .827 .827 .881 .816 .771 2.70
LookBackLens .718 .588 .820 .924 .734 .701 .826 .778 .874 .780 .774 3.80

TAD .710 .575 .811 .956 .764 .684 .823 .842 .879 .805 .785 2.50

Table 7: ROC-AUC↑ of UQ methods for the Llama-3.1 8b model. Warmer color indicates better results. The best
method is in bold, the second best is underlined.

UQ Method SamSum CNN WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean
ROC-AUC

Mean
RankAlignScore AlignScore Comet AlignScore AlignScore AlignScore AlignScore AlignScore Acc. Acc.

MSP .693 .523 .732 .690 .662 .698 .786 .863 .846 .681 .718 8.10
Perplexity .519 .492 .733 .926 .638 .703 .664 .867 .840 .634 .702 10.80
Mean Token Entropy .503 .483 .734 .926 .627 .689 .658 .874 .841 .657 .699 11.50
CCP .662 .511 .679 .764 .608 .669 .711 .857 .816 .699 .698 12.40
Focus .554 .493 .721 .913 .664 .676 .774 .842 .830 .664 .713 11.10
Simple Focus .664 .530 .761 .753 .643 .712 .806 .865 .838 .671 .724 7.60

Lexical Similarity Rouge-L .530 .547 .699 .544 .494 .692 .724 .851 .758 .700 .654 13.50
EigenScore .574 .540 .623 .613 .441 .680 .683 .820 .737 .630 .634 16.90
EVL NLI Score entail. .574 .540 .651 .585 .556 .696 .732 .865 .760 .680 .664 12.60
Ecc. NLI Score entail. .502 .515 .663 .647 .515 .692 .745 .847 .758 .700 .658 13.80
DegMat NLI Score entail. .576 .541 .657 .566 .552 .694 .743 .867 .747 .695 .664 12.40
Semantic Entropy .576 .544 .704 .500 .493 .679 .706 .839 .779 .727 .655 13.50
SAR .545 .551 .735 .680 .572 .698 .732 .872 .799 .710 .689 9.20
LUQ .579 .559 .642 .618 .616 .681 .689 .865 .756 .657 .666 13.10
Semantic Density .499 .544 .661 .655 .648 .734 .772 .858 .697 .634 .670 12.30

Factoscope .552 .527 .529 .865 .456 .493 .715 .640 .718 .523 .602 17.20
SAPLMA .673 .505 .831 .808 .703 .499 .772 .776 .738 .760 .707 10.60
MIND .638 .547 .826 .812 .748 .660 .766 .756 .847 .821 .742 7.70
Sheeps .663 .526 .831 .791 .709 .668 .764 .782 .806 .853 .739 9.10
LookBackLens .758 .596 .845 .807 .736 .697 .852 .816 .828 .817 .775 5.20

TAD .744 .604 .820 .925 .773 .714 .833 .866 .863 .847 .799 2.40

Table 8: ROC-AUC↑ for Gemma 9b v2 model for various tasks for the considered sequence-level methods. Warmer
color indicates better results. The best method is in bold, the second best is underlined.

UQ Method SamSum CNN WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean
ROC-AUC

Mean
RankAlignScore AlignScore Comet AlignScore AlignScore AlignScore AlignScore AlignScore Acc. Acc.

MSP .638 .544 .733 .843 .580 .678 .797 .819 .813 .670 .712 9.70
Perplexity .561 .506 .755 .848 .638 .674 .735 .822 .697 .746 .698 11.50
Mean Token Entropy .540 .512 .760 .847 .652 .668 .711 .832 .590 .756 .687 12.20
CCP .618 .536 .688 .840 .543 .639 .751 .821 .673 .679 .679 13.00
Focus .590 .529 .725 .837 .603 .641 .746 .799 .439 .676 .659 14.70
Simple Focus .627 .537 .751 .777 .618 .698 .798 .826 .772 .693 .709 8.60

Lexical Similarity Rouge-L .610 .532 .699 .556 .551 .676 .770 .795 .665 .787 .664 12.90
EigenScore .551 .511 .687 .476 .557 .671 .775 .781 .654 .803 .647 15.10
EVL NLI Score entail. .592 .527 .646 .628 .638 .701 .771 .822 .643 .713 .668 12.50
Ecc. NLI Score entail. .574 .515 .680 .551 .623 .678 .766 .799 .655 .725 .657 14.60
DegMat NLI Score entail. .596 .529 .656 .632 .637 .696 .769 .827 .645 .727 .671 12.40
Semantic Entropy .608 .548 .686 .713 .592 .670 .758 .798 .623 .734 .673 13.60
SAR .610 .545 .722 .699 .609 .698 .790 .820 .685 .797 .697 9.10
LUQ .550 .532 .637 .507 .653 .699 .761 .817 .674 .730 .656 13.10
Semantic Density .578 .507 .677 .602 .604 .731 .798 .828 .621 .739 .668 11.90

Factoscope .506 .513 .540 .836 .521 .585 .706 .716 .909 .409 .624 17.70
SAPLMA .659 .527 .667 .844 .654 .501 .720 .749 .709 .761 .679 12.30
MIND .674 .574 .682 .804 .676 .722 .795 .812 .939 .882 .756 6.20
Sheeps .670 .596 .760 .834 .702 .695 .776 .846 .945 .885 .771 4.00
LookBackLens .719 .589 .772 .883 .682 .706 .843 .827 .928 .839 .779 2.70
TAD .707 .577 .790 .915 .702 .694 .787 .837 .945 .879 .783 3.20

Table 9: ROC-AUC↑ for Qwen 7b v2.5 model for various tasks for the considered sequence-level methods. Warmer
color indicates better results. The best method is in bold, the second best is underlined.
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A.3 Generalization to Out-of-Domain Tasks 1105

In this experiment, we examine how our approach can be generalized on the unseen datasets. For each 1106

target dataset, we construct a general QA training dataset by sampling 300 instances from the training 1107

datasets from each of other QA datasets. Thus, we evaluate TAD that is not trained on the target dataset. 1108

We conduct experiments on one dataset from each task: SamSum, CNN, WMT19, MedQUAD, CoQA, 1109

SciQ, MMLU, and GSM8k. We compare the results with the baseline MSP method. 1110

Table 3 presents the performance of the supervised methods against the MSP baseline on QA tasks, 1111

while Table 10 presents the results when trained on QA datasets and evaluated on summarization and 1112

translation tasks. The results demonstrate that TAD consistently outperforms baselines on unseen QA 1113

domains, while its generalization across diverse task types remains limited. 1114

UQ Method SamSum CNN WMT19 Mean
PRRAlignScore AlignScore Comet

MSP .298 .157 .569 .342
Factoscope .077 .023 .131 .077
SAPLMA .045 .021 -.250 -.061
MIND .077 .048 .174 .099
Sheeps .104 -.021 .157 .080
LookBackLens -.026 -.032 .018 -.013

TAD .035 .003 .234 .091

Table 10: PRR↑ for Llama 8b v3.1 model for summarization and translation tasks for the considered supervised
sequence-level methods trained on the general QA dataset. Unsupervised methods are not included as their
performance is not dependent of the training data. Warmer colors indicate better results. The best method is in bold,
and the second best one is underlined.

A.4 Replacing Attention Weights with Layer Integrated Gradients (LIG) Features in TAD 1115

In this part, we expand our experiments by incorporating the use of Layer Integrated Gradients (LIG; 1116

Sundararajan et al. (2017)) as an alternative or addition to attention weights in the TAD method. The LIG 1117

features were computed using Captum’s (Kokhlikyan et al., 2020) attribute method, where for each 1118

predicted token ti, attributions were calculated with respect to the input and previously generated tokens. 1119

Attribution vectors were aggregated across all layers and aligned to match the shape of the attention 1120

matrices. 1121

The motivation behind this experiment was to assess whether attribution-based interpretability features, 1122

such as LIG, which estimate token importance with respect to model outputs, could serve as a more 1123

semantically grounded alternative to raw attention weights. Given the increasing critique of attention as 1124

explanation, it was natural to test whether LIG-based representations improve uncertainty modeling. 1125

Table 11 compares the original TAD method with two modified variants: TAD (LIG), which replaces 1126

attention weights entirely with LIG attributions, and TAD (MIX), which concatenates LIG attributions with 1127

the original attention weights. The results demonstrate that the TAD (LIG) method performs the worst 1128

across all tasks, particularly on TruthfulQA and SamSum, where it achieves notably low PRR scores. 1129

While TAD (MIX) significantly outperforms the LIG-only variant, the original TAD method remains 1130

superior, achieving the highest average performance across all datasets. 1131

The experiment demonstrates that LIG attributions, while interpretable and semantically grounded, are 1132

ineffective as a replacement for attention weights for uncertainty quantification. Furthermore, combining 1133

attention weights with LIG attributions can worsen the performance of the TAD method. 1134

UQ Method SamSum TruthfulQA CoQA SciQ TriviaQA MMLU
AlignScore AlignScore AlignScore AlignScore AlignScore Acc.

TAD (LIG) 0.246 .252 0.447 0.553 0.669 0.729
TAD (MIX) 0.392 .521 0.510 0.633 0.716 0.789
TAD 0.431 .565 0.509 0.644 0.737 0.806

Table 11: PRR↑ for Llama 8b v3.1 model for various modifications of the TAD method using the LIG features. The
best method is in bold, the second best is underlined.
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A.5 Ablation Studies1135

Here, we present ablation studies for various numbers of the preceding tokens, different features, and the1136

impact of various layers for the TAD method.1137

UQ Method Aggregation SamSum CNN WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean
PRR

Mean
RankAlignScore AlignScore Comet AlignScore AlignScore AlignScore AlignScore AlignScore Acc. Acc.

TAD (LinReg) 1
K

∑K
k=1 pk .431 .215 .612 .662 .565 .543 .542 .757 .806 .682 .581 1.80

TAD (LinReg)
∑K

k=1 log pk .348 .245 .462 .307 .450 .509 .644 .737 .816 .605 .512 2.80
TAD (MLP) 1

K

∑K
k=1 pk .402 .208 .602 .591 .482 .526 .491 .764 .814 .645 .552 2.40

TAD (MLP)
∑K

k=1 log pk .375 .239 .397 .222 .461 .482 .626 .746 .818 .522 .489 3.00

Table 12: Comparison of various considered regression models and aggregation strategies for TAD (PRR↑, Llama
8b v3.1 model). Warmer colors indicate better results.The best method is in bold, the second best is underlined.

UQ Method SamSum CNN WMT19 MedQUAD TruthfulQA GSM8k Mean
PRRAlignScore AlignScore Comet AlignScore AlignScore Acc.

TAD (1 tokens) .425 .228 .602 .570 .519 .659 .501
TAD (2 tokens) .424 .224 .606 .596 .537 .679 .511
TAD (5 tokens) .397 .219 .618 .628 .556 .687 .517

TAD (10 tokens) .431 .215 .612 .662 .565 .682 .528

Table 13: PRR↑ for Llama 8b v3.1 model for various tasks for the various number of preceding tokens for the TAD
method. Warmer color indicates better results. The best method is in bold, the second best is underlined.

UQ Method SamSum CNN WMT19 MedQUAD TruthfulQA GSM8k Mean
PRRAlignScore AlignScore Comet AlignScore AlignScore Acc.

TAD (Sequence-level) .455 .252 .650 .618 .520 .608 .517
TAD .465 .211 .622 .696 .565 .682 .540

Table 14: PRR↑ for the modifications of the TAD method for the Llama-3.1 8b model. The best method is in bold,
the second best is underlined.

UQ Method SamSum CNN WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean
PRRAlignScore AlignScore Comet AlignScore AlignScore AlignScore AlignScore AlignScore Acc. Acc.

TAD (probs.) .178 .086 .411 .437 .270 .444 .567 .683 .668 .374 .412
TAD (attention) .426 .212 .611 .670 .566 .480 .632 .712 .804 .673 .579

TAD (attention+probs.) .431 .215 .612 .662 .565 .509 .644 .737 .806 .682 .586

Table 15: PRR↑ for Llama 8b v3.1 model for various tasks for different features for the TAD method. Warmer
color indicates better results. The best method is in bold, the second best is underlined.

UQ Method SamSum CNN WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean
PRRAlignScore AlignScore Comet AlignScore AlignScore AlignScore AlignScore AlignScore Acc. Acc.

TAD (1 step) .107 .043 .281 .057 .168 .421 .499 .677 .397 .285 .294
TAD (2 step) .431 .215 .612 .662 .565 .509 .644 .737 .806 .682 .586

Table 16: PRR↑ for Llama 8b v3.1 model for various tasks for the different number of learning steps for the TAD
method. Warmer color indicates better results. The best method is in bold.

16



0 5 10 15 20 25 30
Layer

SamSum

CNN

WMT19

MedQUAD

TruthfulQA

CoQA

SciQ

TriviaQA

MMLU

GSM8k

Da
ta

se
ts

Impact of Various Attention Layers on Linear Regression

Figure 3: Normalized average weights of linear regression for different attention layers in the TAD method across
the considered datasets. Warmer color indicates a higher impact on the TAD performance.
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B Computational Resources and Efficiency1138

All experiments were conducted on a single NVIDIA H100 GPU. On average, training a single model1139

across all datasets took over 750 GPU hours, while inference on the test set took 260 GPU hours.1140

C Hyperparameters1141

C.1 Optimal Hyperparameters for TAD1142

The optimal hyperparameters for TAD for various considered regression models and different aggregation1143

strategies are presented in Tables 17 to 19 for Llama-3.1 8b, Gemma-2 9b, and Qwen-2.5 7b models1144

respectively. These hyperparameters are obtained using cross-validation with five folds using the training1145

dataset. We train a regression model on k − 1 folds of the training dataset and estimate uncertainty on1146

the remaining fold. The optimal hyperparameters are selected according to the best average PRR for1147

AlignScore. Finally, we use these hyperparameters to train the regression model on the entire training set.1148

The hyperparameter grid for the linear regression is the following:1149

L2 regularization: [1e+1, 1, 1e-1, 1e-2, 1e-3, 1e-4].1150

The hyperparameter grid for the MLP is the following:1151

Num. of layers: [2, 4];1152

Num. of epochs: [10, 20, 30];1153

Learning rate: [1e-5, 3e-5, 5e-5];1154

Batch size: [64, 128].1155

UQ Method Aggregation SamSum CNN WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k

TAD (MLP) 1
K

∑K
k=1 pk 4, 30, 1e-05, 0, 128 4, 30, 3e-05, 0, 128 4, 30, 3e-05, 0, 128 4, 30, 1e-05, 0, 128 4, 30, 5e-05, 0, 128 4, 30, 3e-05, 0, 64 2, 30, 5e-05, 0, 128 4, 30, 3e-05, 0, 128 4, 30, 5e-05, 0, 128 4, 30, 1e-05, 0, 128

TAD (MLP)
∑K

k=1 log pk 4, 30, 5e-05, 0, 64 4, 30, 1e-05, 0, 128 2, 20, 5e-05, 0, 64 4, 30, 5e-05, 0, 64 4, 30, 5e-05, 0, 64 2, 30, 5e-05, 0, 64 4, 30, 5e-05, 0, 128 4, 30, 3e-05, 0, 128 4, 30, 5e-05, 0, 64 4, 30, 3e-05, 0, 128
TAD (LinReg) 1

K

∑K
k=1 pk 1 10.0 1 0.01 1 1 0.001 10.0 1 10.0

TAD (LinReg)
∑K

k=1 log pk 1 1 0.0001 0.001 0.1 10.0 10.0 1 1 0.01

Table 17: Optimal values of the hyper-parameters for the TAD methods for the Llama 8b v3.1 model.

UQ Method SamSum CNN WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k

TAD (LinReg) 10.0 10.0 0.0001 0.0001 1 10.0 1 10.0 10.0 1

Table 18: Optimal values of the hyper-parameters for the final configuration of the TAD method for the Gemma 9b
v2 model.

UQ Method SamSum CNN WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k

TAD (LinReg) 0.1 0.01 1 0.0001 0.01 10.0 10.0 10.0 1 1

Table 19: Optimal values of the hyper-parameters for the final configuration of the TAD method for the Qwen 7b
v2.5 model.
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C.2 LLM Generation Hyperparameters 1156

Dataset Task Max Input Length Generation Length Temperature Top-p Do Sample Beams Repetition Penalty

SamSum
TS

-

128

1.0 1.0 False 1 1

CNN 128
WMT19 MT 107
MedQUAD

QA
Long answer

128
TruthfulQA 128
GSM8k 256
CoQA

QA
Short answer

20
SciQ 20
TriviQA 20
MMLU MCQA 3

Table 20: Values of the text generation hyper-parameters for all LLMs used in our experiments.

D Dataset Statistics 1157

Statistics about the datasets are provided in Table 21. For TS, we experiment with CNN/DailyMail (See 1158

et al., 2017) and SamSum (Gliwa et al., 2019). For the long answer QA task, we use MedQUAD (Abacha 1159

and Demner-Fushman, 2019), which consists of real medical questions, TruthfulQA (Lin et al., 2022), 1160

which consists of questions that some people would answer incorrectly due to a false belief or a miscon- 1161

ception, and GSM8k (Cobbe et al., 2021) with a grade school math questions. For the QA task with short 1162

answers, we follow previous work on UQ (Kuhn et al., 2023; Duan et al., 2024; Lin et al., 2024) and we 1163

use three datasets: SciQ (Welbl et al., 2017), CoQA (Reddy et al., 2019), and TriviaQA (Joshi et al., 2017). 1164

For multiple-choice QA, we use MMLU (Hendrycks et al., 2021), a widely used benchmark for evaluating 1165

LLMs. For MT, we use WMT19 (Barrault et al., 2019), focusing on translations from German to English. 1166

Task Dataset N-shot Train texts
for TAD

Evaluation
texts

Text
Summarization

CNN/DailyMail 0 2,000 2,000
SamSum 0 2,000 819

MT WMT19 De-En 0 2,000 2,000

QA
Long answer

MedQUAD 5 700 2,000
TruthfulQA 5 408 409
GSM8k 5 700 1,319

QA
Short answer

SciQ 0 2,000 1,000

CoQA all preceding
questions 2,000 2,000

TriviaQA 5 2,000 2,000

MCQA MMLU 5 2,000 2,000

Table 21: Statistics about the datasets used for evaluation.

19



E Generating Training Data for TAD1167

Algorithm 1: Generating training data for TAD
Data: Input prompt xk, LLM generation yk = t1:nk

, token probabilities p(ti | t<i,xk), number of
preceding tokens N , vector of LLM attention weights ai,i−l from the (i− l)-th token to the
i-th token from all layers and heads, and step of the training procedure j

Result: Feature vectors zki , k = 1 . . .K, i = 2 . . . nk

// Estimate unconditional probability for the first token
1 p̂k(t1) = sim(yk,y

∗
k);

2 for i← 2 to nk do
// Construct token-level features

3 zki ←
⊕min{N,i−1}

l=1

[
p(ti−l | t<i−l,xk), p̂k(ti−l), ai,i−l

]
⊕
[
p(ti | t<i,xk)

]
;

// If N > i− 1, we pad zki with zeros to ensure they have the same length
4 if i− 1 < N then
5 zki ← zki ⊕ 0(2+|ai,i−l|)(N−i−1);

// Estimate token-level unconditional probability
6 if j == 1 then

// On the first training step, we use ground truth
7 p̂k(ti) = sim(yk,y

∗
k);

8 else
// On the next training steps, we use trained function C(·)

9 p̂k(ti) = C(zki );

10 return zki , k = 1 . . .K, i = 2 . . . nk;
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