
Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

S-AGENTS: SELF-ORGANIZING AGENTS IN OPEN-
ENDED ENVIRONMENTS

Jiaqi Chen∗ Yuxian Jiang∗ Jiachen Lu Li Zhang†

Fudan University

https://github.com/fudan-zvg/S-Agents

Leader

Agent 2 Agent 4

(6) build foundation (7) build roof (8) shelter finished

(5) build walls

(3) mine stone(2) craft crafting table and
wooden pickaxe

(1) mine log

(4) craft wooden plank

Agent 3

Agent 1

Figure 1: Agent organization in open-ended environments. Agent organization is a group of
agents with a certain structure cooperating for shared goals. (1-3) depicts a group of agents col-
lecting scattered rocks; (4-8) illustrates a group of agents building a shelter together. During their
collaborative process, they autonomously orchestrated workflows without fixed steps by humans.

ABSTRACT

Leveraging large language models (LLMs), autonomous agents have significantly
improved, gaining the ability to handle a variety of tasks. In open-ended set-
tings, optimizing collaboration for efficiency and effectiveness demands flexible
adjustments. Despite this, current research mainly emphasizes fixed, task-oriented
workflows and overlooks agent-centric organizational structures. Drawing inspi-
ration from human organizational behavior, we introduce a self-organizing agent
system (S-Agents) with a “tree of agents” structure for dynamic workflow, an
“hourglass agent architecture” for balancing information priorities, and a “non-
obstructive collaboration” method to allow asynchronous task execution among
agents. This structure can autonomously coordinate a group of agents, efficiently
addressing the challenges of open and dynamic environments without human in-
tervention. Our experiments demonstrate that S-Agents proficiently execute col-
laborative building tasks and resource collection in the Minecraft environment,
validating their effectiveness.

∗These authors contributed equally to this work.
†Li Zhang (lizhangfd@fudan.edu.cn) is the corresponding author with School of Data Science, Fudan Uni-

versity.

1

https://github.com/fudan-zvg/S-Agents

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

1 INTRODUCTION

The fundamental objective of artificial intelligence has long been the development of intelligent au-
tonomous agents with the capacity to operate proficiently in open-ended environments (Weinbaum &
Veitas, 2017; Fujita, 2009). Autonomous agents powered by Large Language Models (LLMs) (Kas-
neci et al., 2023; Touvron et al., 2023; Ji et al., 2023), especially GPT-4 (OpenAI, 2023b) have
paved the way for innovative developments in this domain. These models showcase remarkable
competencies in diverse domains, including instruction comprehension (Ouyang et al., 2022; Chung
et al., 2022), decision-making (Shinn et al., 2023; Mandi et al., 2023; Zhang et al., 2023; Yao et al.,
2023), tool usage Cai et al. (2023), code generation (Hong et al., 2023; Chen et al., 2023b), and
diverse other domains (Tang et al., 2023). Moreover, LLM-powered agents have been employed in
diverse tasks in open-ended environments, spanning from sandbox games, simulated environments,
and robotics (Fan et al., 2022; Zeng et al., 2022; Brohan et al., 2023; Lu et al., 2023; Padmakumar
et al., 2023). However, complex embodied tasks in open environments often necessitate collabora-
tion among individual agents to achieve optimal outcomes (Woolley et al., 2010; Fehr & Gächter,
2000; Zhuge et al., 2023).

Unfortunately, the transition from single to multiple agents in an open-ended world introduces sig-
nificant challenges in organizing a scalable group efficiently to tackle diverse tasks. The principal
challenge in multi-agent organizations resides in structuring a multitude of agents. Previous research
has predominantly concentrated on the creation of task-oriented, fixed workflows (Hong et al., 2023;
Qian et al., 2023; Wu et al., 2023), neglecting to delve into the exploration of an organizational
framework characterized by its agent-centric approach and flexibility in workflow. Identifying op-
timal connections among individuals and empowering agents to autonomously define a collective
workflow present a novel challenge (Grossi et al., 2006; Jensen et al., 2017; Chen et al., 2023c).
Furthermore, agents in an organization must concurrently manage communication from both the
surrounding environment and the organizational context.

In this study, we introduce S-Agents, a novel self-organizing multi-agent system that allows agents
to flexibly arrange workflow autonomously, without the need for predefined human instructions, in
open-ended environments. The system is specifically designed to operate within the open-world
game Minecraft as its environment. It features: 1) A “tree of agents” organizational structure,
comprising a root node (leadership agent) and multiple leaf nodes (executor agents), illustrated in
Figure 2(d). The leadership agent autonomously arranges a flexible workflow without the need for
human intervention. 2) An hourglass agent architecture that strives to balance priorities between
the agent community and the physical environment, promoting coordinated actions. 3) A non-
obstructive collaboration approach breaks away from the constraint of multiple intelligent agents
sharing a fixed convergence beat, allowing agents to asynchronously execute collaborative tasks.
This method is designed to alleviate delays induced by the slowest agent in each round, thereby
enhancing overall efficiency.

2 RELATED WORK

LLM powered multi-agent collaboration Large Language Models (LLMs) have demonstrated
phenomenal capabilities in various domains. Park et al. (2023); Akata et al. (2023); Xiang et al.
(2023); Gong et al. (2023) drive multiple agents with LLM and simulate human-like conversations as
well as some social behaviors; Recent attempts (Li et al., 2023; Dong et al., 2023; Qian et al., 2023)
found that multi-agent collaboration could develop software following a fixed process, but could not
coordinate autonomously; Multiple robotic arms (Mandi et al., 2023), and multiple agents (Zhang
et al., 2023) working in collaboration all bring higher efficiency, but cannot be scaled up; While
previous methodologies have demonstrated leading-edge performance on certain tasks, their collab-
oration mechanisms are often preordained and task-centric. However, the autonomous collaborative
behavior of multi-agent embodied organizations in the open world remains an unclear topic in the
current research. We aim to design an agent-centric organization that empowers agents to directly
orchestrate workflows, inherently determining their collaboration framework. This approach should
be versatile enough to tackle a wide range of embodied tasks.

Embodied agents in Minecraft Minecraft is an open-ended, three-dimensional world that is a
free experimental environment for building numerous benchmarks and agent methods. Fan et al.

2

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

ENV ENV

(d) Tree of agent (Ours)

�2
�3 ��2

�2 ��1

Agent
��

Agent
��

Agent
��

Agent Root
agent

Leaf
agent

Leaf
agent ��

ENV

(a) Solo agent

Agent

Act

�

Perceive

Environment

(b) Chain of agent (c) Graph of agent

ENV

�1

�2

�3

Agent

Agent ��

 ��

�1 ��

Figure 2: Schematic organizational structure comparison. (a) Solo agent Wang et al. (2023a):
Direct interaction with the physical environment; (b) Chain of agents Qian et al. (2023); Hong et al.
(2023): Specialized agents sequentially perform their designated tasks and command the actions of
the next agent; (c) Graph of agents Park et al. (2023): Decentralized structure allowing all agents to
command each other; (d) Tree of agents: Centralized structure retaining one agent as a leadership
agent (root agent ar), with other executor agents (leaf agent al1, al2) executing commands.

(2022); Johnson et al. (2016); Kanervisto et al. (2022) are established benchmarks for evaluating
single-agent algorithms. While Mohanty et al. (2022); Kiseleva et al. (2022a;b); Mohanty et al.
(2023) focus on designing specific structures based on human instructions. On the other hand,
Malmo (Perez-Liebana et al., 2019) offers an artificially designed game environment for multi-agent
cooperation but lacks the necessary openness and diversity in tasks and environments. Building
upon these benchmarks, several advanced works explore different approaches to realizing embodied
agents. Many prior works utilize reinforcement learning to learn human game behavior (Kanitschei-
der et al., 2021; Lin et al., 2021; Mao et al., 2022). Fan et al. (2022); Baker et al. (2022) perform
large-scale pre-training on game-playing videos. Wang et al. (2023c); Zhu et al. (2023) proposes a
closed-loop feedback framework for a single agent, allowing the agent to achieve its goals vis inter-
act with the environment. Wang et al. (2023a) uses LLMs to automatically generate the next task
based on the environment, continuously enriching the skill library and exploring the world. Zhao
et al. (2023) introduced visual perception capabilities to the LLM agent in Minecraft. However,
there has been limited exploration into the design of organizational structures for multiple LLM
agents and the architecture of embodied agents that can be organized.

3 METHODOLOGY

In this section, we introduce LLM-based self-organizing agents (S-Agents), including (i) an efficient
directed tree of agents as an organizational structure, (ii) an hourglass agent framework for unified
goal management and dynamic planning, and (iii) a non-obstructive collaboration paradigm allowing
non-blocking parallelization.

3.1 ORGANIZATIONAL STRUCTURE OF AGENTS

3.1.1 AGENTS AS A GRAPH

We design an agent-centric organization, specifically, we do not predefine the specific roles and
functions of agents (Hong et al., 2023; Qian et al., 2023; Wu et al., 2023). Instead, we place them
in relationships, allowing them to autonomously allocate tasks and coordinate workflows based on
circumstances and needs. This is the essence of self-organizing. Self-organizing agents collabo-
rate to coordinate multiple sub-tasks without the need for human intervention, working towards a
shared goal. This requires agents to have a certain organizational structure that allows tasks to be
effectively transferred among agents. To model the agent organizational structure, we formulate a
graphical representation known as the agent graph G = (V, E). This graph is constructed based on
the sets of agents, denoted as A = {a1, ..., an}, and the environment, represented as p,

V = {a1, ..., an, p} , n > 1. (1)

3

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

Objective

Long-term plan

Current task

Action

Perception

Environment Agent group

Action...

LLM
Action Queue

(c) Hierarchical planning

Objective
LLM

Progress
monitor

(a) Hourglass framework

Long-term plan Mine 10 logs

2. Mine stones
Craft pickaxe

Mine 10 stones

Build a
house

1. Craft planks

3. Lay foundation

Progress
monitor

Previous plan

(b) Progress monitor

LLM

Previous plan

Because there’s
some stones in the
inventory...

There is no
information ...

Perception

The current stage is mining
some stones.

Please mine 10 logs.

Leader

Worker A

I have finished the task
mining 10 stones.

Agent communityEnvironment

Can not find any
stones in the
inventory...

Figure 3: An illustration of hourglass agent architecture. (a) Hourglass agent framework: The
upper segment: Processes inputs like perception and the previous plan. These inputs undergo a
series of operations, converging towards a unified and consistent objective (the bottleneck of the
hourglass). The lower segment: Involves the decomposition of an objective through hierarchical
planning. (b) Progress monitor: Utilizes LLM to assess the current progress status of the ongoing
task. (c) Hierarchical planning: Comprises two stages: Task planner and action planner. See
Appendix A.1 and B for example of planning and full prompt, respectively

We subsequently define the edges defined as E = {(eij)}, where directed edge eij = (vi, vj) exists
for vi, vj ∈ V , i ̸= j if vi actively acts (takes actions on the environment p or issues commands
to other agents V − {vi, p} and passively perceives feedback from vj . The organizational structure
of agents involves the design of the edge set E among agents. Existing research has primarily
categorized these structures into the following two types.

Graph of agents The (fully connected) graph of agents (Park et al., 2023) is an organizational
structure where all agents are interconnected, allowing mutual command and feedback (shown in
Figure 2(c)), represented as

EGoA = {(vi, vj) | vi, vj ∈ A, i ̸= j}. (2)

Theoretically, this structure promotes extensive communication and facilitates the flow of tasks
within agent group A, contributing to the emergence of self-organizing properties. How-
ever, interconnected agents (Sec. 4.3) exhibit bidirectional connections among agent pairs, i.e.,
(ai, aj), (aj , ai) ∈ E , forming command cycles that allow for mutual command issuance. These
cycles introduce the potential for chaos, characterized by unpredictable and conflicting behaviors.

Chain of agents To address the issue of command cycles and capitalize on the expertise of spe-
cialized agents, a straightforward approach (Hong et al., 2023) is the Chain of agents (CoA) (as in
Figure 2(b)), defined as follows:

ECoA = {(vi, vi+1)| vi ∈ A}. (3)

In this fixed structure, instructional information unidirectionally flows from the first agent to the last,
culminating in the completion of the final product. For instance, in a task requiring stone excavation,
the a1 undertakes lumbering, passing the baton to the a2 for crafting a wooden pickaxe, subsequently
transmitting the task to a3 for stone excavation. While such a structure successfully avoids command
cycles, it cannot flexibly adjust workflows, resulting in the potential for self-organization being
compromised.

3.1.2 TREE OF AGENTS

To avoid the command cycles in GoA and maintain the potential for self-organization, we pro-
pose a directed tree of agents (ToA), which introduces a leadership agent as the root node of

4

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

Parallel

x25 x10

x5

x5

x10

x20

x1 x1

x5

x1

x20 x5

x1

x4

x4

x4

x10

x10

x5

x5 x20

x1

x1

x1

x20 x5

x5

x1

x1

x1

Non-obstructive

(a) Relay collaboration (b) Round based collaboration (c) Asynchronous collaboration (Ours)

x20

x20

Parallel Non-obstructive Parallel Non-obstructive

Figure 4: Comparison of collaboration strategies. (a) involves one agent sequentially executing
tasks after another, with no parallelization; (b) is round-based, executing round by round, while
(c) is asynchronous. Colored regions indicate tasks being performed, and white regions
denote agent idleness.

the agent tree, with other agents serving as leaf nodes, as illustrated in Figure 2(d). Let V =
{ar, al1, al2, ..., aln, p}, where n > 2, ar denotes root agent, and al denotes i-th leaf agent. De-
fine the edges E as:

EToA = Eroot ∪
n−1⋃
i=1

Eli. (4)

In this structure, the root agent ar serves as the central command authority, directing tasks to the leaf
agents, Eroot = {(ar, ai) | ai ∈ {al1, al2, ..., aln}}. Leaf agents al interact with the environment to
execute assigned tasks and do not actively command other agents. Therefore, Eli is an empty set.
Note that, leaf agents can communicate but not command each other. This hierarchical approach en-
sures a clear flow of commands, avoiding the issues associated with command cycles and allowing
for efficient task execution. Furthermore, upon closer examination, we observed that agents expe-
riencing simultaneous directives from multiple counterparts often result in conflicting and chaotic
behaviors. Consequently, we mandate that the in-degree of each agent be restricted to less than 1,
distinguishing it from the fully connected graph of the agent.

3.2 HOURGLASS AGENT ARCHITECTURE

In the organizational context, agents simultaneously perceive messages from the agent group A and
information from the physical environment p. For instance, a leadership agent directs al to mine
iron, but al is currently under zombie attack. The duality of inputs poses a challenge for pure LLM
decision-making, making it difficult to generate consistent and reliable behavior. To address this
challenge, we propose the hourglass agent architecture (see Figure 3(a)). This framework filters the
abundant information to distill a singular objective as a bottleneck. Subsequently, it decomposes
this objective into a long-term plan and generates an executable actions queue as output.

3.2.1 PERCEPTION: FROM AGENT GROUP AND PHYSICAL ENVIRONMENT

The perception module integrates feedback from the physical environment and dialogue transcripts
from the agent group. 1) Physical environment: The physical environment p furnishes a diverse
set of data, encompassing the inventory, equipment, and nearby blocks, biome, time,
and health and hunger bars, and 3D coordinate and more. This data structure aligns
with the one utilized in Voyager (Wang et al., 2023a). 2) Agent group: Utilizing language as an
interface for communication within the agent group A, we meticulously record the interactions
initiated by the current agent. Each record includes including time, speaker, respondent,
and message.

3.2.2 PROGRESS MONITOR

The progress monitor, utilizing an LLM for evaluation, takes various perceptual information and
the previous plan as input, generating the current task’s completion status (“success”, “fail”, or
“ongoing”) along with its rationale. This evaluation occurs when there are no immediate pending
actions. As shown in Figure 3(b), the presence of stones in the inventory signals the completion
of the mining task. The rationale for this determination is the sufficient quantity of stones already

5

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

Set fundation Build walls Build roof Install a door

We can build an shelter in following stage:
Stage 1: a2 set a fundation at (x, y, z) using 25 stone.
Stage 2: a3 build 4 wooden wall on the fundation.
Stage 3: a2 build a roof and a3 install a door on the wall.

a2 a3 a2 a3

a1

Figure 5: Collective shelter construction. The root agent (a1) systematically arranges the tasks
and schedules the leaf agents (a2 & a3) for phased execution. More screenshots can be referenced
in Appendix A.2.

Set fundation Build walls Build roof Install a door

Plan: We can build an shelter in following stage:
- Stage 1: a2 set a fundation at (x, y, z) using 25 stone.
- Stage 2: a3 build 4 wooden wall on the fundation.
- Stage 3: a2 build a roof and a3 install a door on the wall.

a2 a3 a2 a3

a1

Mine logs Craftingtable Craft pickaxe Mine stonesa2 & a3 a2 & a3 a2 & a3 a2 & a3

a1

Plan: We have to mine 100 stones.
- Stage 1: a2 & a3 mine 50 stones each.

a2 & a3

Plan: I was asked to mine 50 stones.
- Stage 1: Mine 10 logs.
- Stage 2: Craft a crafting table
- Stage 3: Craft a pickaxe
- Stage 4: Mine 50 stones

Figure 6: Collective collection (mine 100 stones). The root agent (a1) allocates tasks to facilitate
parallel processing, while the leaf agent (a2 & a3) autonomously refines these tasks into actionable
steps. More screenshots can be referenced in Appendix A.2
acquired. For collaborative tasks, the assessment results should be based on the communication
within the agent group.

3.2.3 HIERARCHICAL PLANNING

As illustrated in Figure 3(c), a hierarchical planner involves the two-step decomposition of a high-
level objective, which can be broadly divided into two LLM-driven modules: task planner and
action planner. 1) Task planner: As shown in Figure 3(c), the task planner, following the Chain-of-
Thought (CoT) principles (Wei et al., 2022), employs a LLM for objective analysis and long-term
planning. The phase also includes choosing the immediate task for execution, marked as current
task in the mint-colored module of Figure 8 in the Appendix. 2) Action planner: As depicted
in Figure 3(c), the action planner accepts the current task as input and utilizes LLM to produce
a sequence of executable actions, collectively known as an action queue (highlighted in green in
Figure 8 in the Appendix). These actions are categorized into two types: direct execution action,
typically comprising an action, an object, and an optional location (e.g., “Craft [quantity] [item] at
[position]”), and delegation action, where tasks are assigned to another agent (e.g., “Instruct [player]
to eliminate [quantity] [mob] at [position]”). Each action follows the approach of Wang et al.
(2023a), referencing the most similar skill in the library, generating JavaScript code, and executing
it in the Minecraft environment. Each action in the queue is dequeued and executed sequentially
until the queue is empty. Upon depletion of the queue, the progress monitor collects all perceptual
information acquired during the execution of these actions to evaluate the task’s completion status,
as detailed in Sec. 3.2.2.

3.3 NON-OBSTRUCTIVE COLLABORATION

The previous approaches can be categorized into two distinct types. In relay collaboration, exempli-
fied by Chain of agents (Hong et al., 2023) as illustrated in Figure 4(a), one agent initiates only after
the completion of another, resulting in a sequential progression. This approach typically leads to a
sequential and fully interdependent task execution among agents. Relay collaboration (Chen et al.,
2023a), depicted in Figure 4(b), involves the simultaneous operation of all agents. Subsequently,

6

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

it aggregates the outcomes of all agents after each round to inform task allocation for the subse-
quent round. Specifically, outside the individual agents, there is an outer for-loop that controls
the round. While this method introduces parallelism, it still introduces a bottleneck by impeding the
slowest agent in each round, thereby constraining overall efficiency. To address these limitations, we
propose a non-obstructive asynchronous collaboration paradigm (illustrated in Figure 4(c)), where
each agent operates independently. Once they complete their tasks, they directly report to the root
agent to receive instructions for the next steps. Technically, we model each agent as an independent
asynchronous process that shares a message pool for communication.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate our self-organizing agents on their collective collection performance (in Figure 6) and
collective shelter construction capability (in Figure 5).

Collective collection: Agents in the group must gather a specified amount of basic resources like
wood, stone, and iron. They start without equipment and inherit the pre-trained skill library from
Voyager (Wang et al., 2023a). In contrast to completing the exploration of a single item (Wang et al.,
2023a;b; Zhu et al., 2023), which entails gathering a diverse but limited quantity of items, this form
of exploratory task can be autonomously executed by a single agent. The difficulty escalates when
amassing a substantial quantity of resources, requiring agents to navigate numerous open-ended
world events. The considerable workload emphasizes the preference for a division of labor.

Collective shelter construction: For a basic shelter, agents need a stone foundation, wooden walls,
and a stone ceiling. Two agents start with wooden planks, one with stone. This task assesses the
leadership agent’s task assignment and challenges the consideration of task dependencies. Effec-
tive progress management, an unexplored aspect in prior research, is crucial for successful, staged
construction.

Metrics We utilize the subsequent metrics: Time cost (TC): the time resources needed to execute
a task. Reduced time expenditure suggests greater system efficiency. NaN denotes no progress for
over 40 minutes when attempts exceed 5 without success. Mean prompt times (mPT): the average
times of hierarchical planning iterations of each agent.

Implement details We use Minecraft 1.19 with Fabric 0.14.21 as our testing environment. For
large language models, we leverage OpenAI’s gpt-4 (OpenAI, 2023b) for planning of root agent
and task evaluation. Additionally, we utilize the gpt-3.5-turbo-16k APIs (OpenAI, 2023a) in all
other settings. For text embedding, we leverage the capabilities of the text-embedding-ada-002
API. We configure all temperatures to 0, providing the best-fitted outcomes, and use temperature =
0.9 to encourage chatting among agents. Following Voyager (Wang et al., 2023a), our simulation
environment is constructed on the MineDojo framework (Fan et al., 2022), and we make use of the
Mineflayer JavaScript APIs (PrismarineJS, 2013) for motor controls. We initialize all agents using
the skill library pre-trained by Voyager (Wang et al., 2023a).

4.2 EVALUATION RESULTS

4.2.1 MAIN RESULTS

Impact of organizational structure: In Table 1(a), chain of agents (CoA) involves one agent sequen-
tially executing 1/3 collection tasks after another, with no parallelization. Graph of agents (GoA)
avoids command cycle issues due to the upgrade to the more powerful gpt-4. Tree of agents (ToA)
achieves the shortest completion time for identical tasks, requiring only 7.5 minutes and 3.8 mPT.

Multi-agent organization vs. Solo agent: As shown in Table 1(b), for simpler tasks like mining
50/100 logs, employing multiple agents significantly reduces the time by 5.1 and 7.2 minutes, re-
spectively. For more challenging tasks (50/100 irons), solo agent attempts were largely ineffective
(indicated as NaN in Table 1(b)). A solo agent faces heightened probabilities of encountering vari-
ous unforeseen challenges in an open-world setting, such as getting lost, obstructions by surrounding

7

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

Structure CoA GoA ToA

TC 29.0 9.3 7.5
mPT 4.0 3.0 3.8

(a) Organizational structure.
Task: mining 50 stones. CoA, GoA
and ToA each consist of 3 worker
agents.

Type 50 logs 100 logs 50 irons 100 irons

Solo agent 10.2 18.3 NaN NaN
Agent organization 5.1 11.1 15.3 24.3

(b) Agent organization vs. Solo agent. Efficiency comparison (time
cost/min) between agent organization and solo agent across different
task difficulties. NaN denotes no progress for over 40 minutes.

Table 1: Performance of our agent organization on collective collection.
N 50 logs 50 stones 50 irons

1 10.2 6.5 NaN
2 7.1 6.9 NaN
3 8.5 8.6 NaN
4 5.1 7.5 15.3

(a) Scale of agent organization. Metric:
Time cost (/min). “N” represents the num-
ber of agents. In systems with more than one
agent, we adopt a ToA group, which consists
of 1 root agent and (N-1) leaf agents.

Setting Single agent 3-agent organization
Model Voayer Hourglass Voayer Hourglass

50 logs 11.5 10.2 - 5.1
50 stones 6.9 6.5 - 7.5
50 irons NaN NaN - 15.3

(b) Hourglass framework vs. Voayer (baseline). The time
cost (/min) of different architectures during the execution of
collection tasks under a single agent and a 3-agent organization
setting. “-” indicates that Voyager does not support multi-agent
communication and cooperation.

Collaboration strategy Time cost Mean prompt time

Obstructive 29.0 7.5
Non-obstructive 4.0 3.8

(c) Comparison of collaboration strategies. Tested a 3-agent sys-
tem with different collaboration modes on the “50 stone” task.

Table 2: Ablation Study.
blocks, prolonged execution times, game environment exits, or difficulty finding iron. In the ToA
system, despite all leaf agents making concerted efforts, once a leaf agent successfully mines iron,
the root agent efficiently delegates the entire task to that agent, persisting until success.

4.2.2 ABLATION STUDY

Ablation on organization scale: As shown in Table 2(a), although collecting wood is simple and
repetitive, it requires agents to search for trees in the vicinity. Multi-agent collaboration can reduce
the number of searches each person makes, and improve team efficiency. In the search for hard-
to-find iron ore, multi-agent operations have increased the probability of finding ore sites, and a
successful discovery can meet the demand. Meanwhile, because the location of stone resources is
widespread and only requires digging 2-3 layers, the efficiency of a single agent is already high; the
overall time cost of multi-agent collaboration depends on the time taken by the slowest agent.

Hourglass framework vs. Voayer: Table 2(b) shows our comprehensive advantages in the collection
task. Not only do we perform faster in solo agent collection tasks compared to our baseline Voy-
ager (Wang et al., 2023a), but we also enhance efficiency through supporting team collaboration,
which is crucial for the future of scaled intelligent agents.

Ablation on non-obstructive collaboration: In the experiments described in Table 2(c), we em-
ployed relay collaboration to demonstrate obstructive strategy, while the asynchronous paradigm
was used to illustrate the effects of non-obstructive approaches (see Figure 4). The experimental
results show that non-obstructive collaboration reduces the time cost to 6.25 times the obstructive
strategy.

4.3 AGENT BEHAVIORS WITHIN ORGANIZATION

4.3.1 HUMAN-LIKE LEADERSHIP BEHAVIORS

Achieving goals through management means: In organizational management, leaders adopting a
non-hands-on approach to large-scale tasks is a rational consideration. As illustrated in Figure 7(a),
the root agent in ToA, is tasked not only with solving individual issues but with equitably decompos-

8

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

x10FAIL

x10 x10 x10
x30

Task

Leaf agent 1 needs
to make a wooden
pickaxe first.

x1 x10

x10 x10
Let Leaf agent 1 redo
the work that Leaf
agent 2 failed to do.

x10

Root agent

Leaf agent 1 Leaf agent 2 Leaf agent 3

Leaf agent 1 Leaf agent 2 Leaf agent 1

FAIL

Leaf agent 1 Leaf agent 1
Root agent

Root agent

(a) Achieving goals through management means

(b) Project oversight and guidance

(c) Aligning personnel with positions

?

Figure 7: Human-like leadership behaviors in self-organizing agent group.
ing the workload. This property is achieved by instructing the task planning prompt of the leadership
agent to assign tasks to leaf agents rather than itself. Refer to Appendix B for details.

Project oversight and guidance: As depicted in Figure 7(b), we observed that when the root agent
learned of the leaf agent struggling to cope with a problem, the leader swiftly implemented a prac-
tical solution. This is mainly due to the progress monitor in the hourglass architecture, enabling the
leader to clearly understand each leaf agent’s status.

Aligning personnel with positions: Aligning suitable personnel with corresponding positions is a
fundamental principle in human resources management. In the context of an agent organization, as
depicted in Figure 7(c), we observe a proactive leadership agent leveraging a nuanced understanding
of past experiences and skills of team members to strategically allocate tasks.

4.3.2 BEHAVING LIKE HUMAN EMPLOYEES

During collaborative processes in agent organization, we’ve observed leaf agents displaying behav-
iors that mimic human employees. This is because, in ToA for the leaf agent, we require it to execute
the tasks it receives autonomously. As a result, unlike agents in the GoA, it does not have a certain
probability of delegating tasks to other agents. Moreover, regardless of whether the task execution is
successful or not, the leaf agent proactively provides feedback, which aids the root agent in making
further decisions. For more details, see Appendix A.3.

5 CONCLUSION

In conclusion, this study has introduced self-organizing agents (S-Agents), a type of embodied
agent group capable of autonomously orchestrating workflows without manual human design. The
S-Agents includes a tree-like organizational structure, an hourglass agent architecture, and a non-
obstructive collaboration paradigm. Our experiments in the Minecraft environment have under-
scored its exceptional performance, showcasing superior capabilities across various tasks in compar-
ison to individual agents and alternative organizational approaches. Importantly, we have observed
anthropomorphic social behaviors in the organizational dynamics among the agents. With the pro-
gression of artificial general intelligence, obtaining a deeper understanding of the organizational
dynamics of scalable multi-agent systems becomes increasingly crucial. S-Agents have commenced
preliminary explorations in this field, and we foresee their potential adaptability and enhancement
across a wider range of embodied tasks in the future.

9

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

REFERENCES

Elif Akata, Lion Schulz, Julian Coda-Forno, Seong Joon Oh, Matthias Bethge, and Eric Schulz.
Playing repeated games with large language models. arXiv preprint, 2023. 2

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. NeurIPS, 2022. 3

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint, 2023. 2

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, and Denny Zhou. Large language models as
tool makers. arXiv preprint, 2023. 2

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan,
Yujia Qin, Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and
exploring emergent behaviors in agents. arXiv preprint, 2023a. 6

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint, 2023b. 2

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas Roy, and Chuchu Fan. Scalable multi-robot
collaboration with large language models: Centralized or decentralized systems? arXiv preprint,
2023c. 2

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. arXiv preprint, 2022. 2

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via chatgpt. arXiv
preprint, 2023. 2

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. NeurIPS, 2022. 2, 3, 7

Ernst Fehr and Simon Gächter. Cooperation and punishment in public goods experiments. American
Economic Review, 2000. 2

Masahiro Fujita. Intelligence dynamics: a concept and preliminary experiments for open-ended
learning agents. Autonomous Agents and Multi-Agent Systems, 2009. 2

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane Durante, Yusuke Noda, Zilong Zheng, Song-
Chun Zhu, Demetri Terzopoulos, Li Fei-Fei, et al. Mindagent: Emergent gaming interaction.
arXiv preprint, 2023. 2

Davide Grossi, Frank Dignum, Virginia Dignum, Mehdi Dastani, and Lambèr Royakkers. Structural
evaluation of agent organizations. In IJCAI, 2006. 2

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, et al. Metagpt: Meta programming for
multi-agent collaborative framework. arXiv preprint, 2023. 2, 3, 4, 6

Andreas Schmidt Jensen, Virginia Dignum, and Jørgen Villadsen. A framework for organization-
aware agents. Autonomous Agents and Multi-Agent Systems, 2017. 2

Ge-Peng Ji, Mingchen Zhuge, Dehong Gao, Deng-Ping Fan, Christos Sakaridis, and Luc Van Gool.
Masked vision-language transformer in fashion. Machine Intelligence Research, 2023. 2

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The malmo platform for artifi-
cial intelligence experimentation. In IJCAI, 2016. 3

10

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

Anssi Kanervisto, Stephanie Milani, Karolis Ramanauskas, Nicholay Topin, Zichuan Lin, Junyou
Li, Jianing Shi, Deheng Ye, Qiang Fu, Wei Yang, et al. Minerl diamond 2021 competition:
Overview, results, and lessons learned. NeurIPS 2021 Competitions and Demonstrations Track,
2022. 3

Ingmar Kanitscheider, Joost Huizinga, David Farhi, William Hebgen Guss, Brandon Houghton, Raul
Sampedro, Peter Zhokhov, Bowen Baker, Adrien Ecoffet, Jie Tang, et al. Multi-task curriculum
learning in a complex, visual, hard-exploration domain: Minecraft. arXiv preprint, 2021. 3

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for
good? on opportunities and challenges of large language models for education. Learning and
individual differences, 2023. 2

Julia Kiseleva, Ziming Li, Mohammad Aliannejadi, Shrestha Mohanty, Maartje ter Hoeve, Mikhail
Burtsev, Alexey Skrynnik, Artem Zholus, Aleksandr Panov, Kavya Srinet, et al. Interactive
grounded language understanding in a collaborative environment: Iglu 2021. In NeurIPS 2021
Competitions and Demonstrations Track, 2022a. 3

Julia Kiseleva, Alexey Skrynnik, Artem Zholus, Shrestha Mohanty, Negar Arabzadeh, Marc-
Alexandre Côté, Mohammad Aliannejadi, Milagro Teruel, Ziming Li, Mikhail Burtsev, Maartje
ter Hoeve, Zoya Volovikova, Aleksandr Panov, Yuxuan Sun, Kavya Srinet, Arthur Szlam, and
Ahmed Awadallah. Iglu 2022: Interactive grounded language understanding in a collaborative
environment at neurips 2022, 2022b. 3

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for” mind” exploration of large scale language model society.
arXiv preprint, 2023. 2

Zichuan Lin, Junyou Li, Jianing Shi, Deheng Ye, Qiang Fu, and Wei Yang. Juewu-mc: Playing
minecraft with sample-efficient hierarchical reinforcement learning. arXiv preprint, 2021. 3

Guanxing Lu, Ziwei Wang, Changliu Liu, Jiwen Lu, and Yansong Tang. Thinkbot: Embodied
instruction following with thought chain reasoning. arXiv preprint, 2023. 2

Zhao Mandi, Shreeya Jain, and Shuran Song. Roco: Dialectic multi-robot collaboration with large
language models. arXiv preprint, 2023. 2

Hangyu Mao, Chao Wang, Xiaotian Hao, Yihuan Mao, Yiming Lu, Chengjie Wu, Jianye Hao, Dong
Li, and Pingzhong Tang. Seihai: A sample-efficient hierarchical ai for the minerl competition. In
DAI, 2022. 3

Shrestha Mohanty, Negar Arabzadeh, Milagro Teruel, Yuxuan Sun, Artem Zholus, Alexey Skrynnik,
Mikhail Burtsev, Kavya Srinet, Aleksandr Panov, Arthur Szlam, et al. Collecting interactive multi-
modal datasets for grounded language understanding. arXiv preprint, 2022. 3

Shrestha Mohanty, Negar Arabzadeh, Julia Kiseleva, Artem Zholus, Milagro Teruel, Ahmed
Awadallah, Yuxuan Sun, Kavya Srinet, and Arthur Szlam. Transforming human-centered ai
collaboration: Redefining embodied agents capabilities through interactive grounded language
instructions. arXiv preprint, 2023. 3

OpenAI. Introducing chatgpt, 2023a. 7

OpenAI. Gpt-4 technical report, 2023b. 2, 7

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. NeurIPS, 2022. 2

Aishwarya Padmakumar, Mert Inan, Spandana Gella, Patrick L Lange, and Dilek Hakkani-Tur. Mul-
timodal embodied plan prediction augmented with synthetic embodied dialogue. In Conference
on Empirical Methods in Natural Language Processing, 2023. 2

11

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, 2023. 2,
3, 4

Diego Perez-Liebana, Katja Hofmann, Sharada Prasanna Mohanty, Noburu Kuno, Andre Kramer,
Sam Devlin, Raluca D Gaina, and Daniel Ionita. The multi-agent reinforcement learning in
malm\” o (marl\” o) competition. arXiv preprint, 2019. 3

PrismarineJS. Prismarinejs. prismarinejs/mineflayer: Create minecraft bots with a powerful, stable,
and high level javascript api, 2013. 7

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu, and
Maosong Sun. Communicative agents for software development. arXiv preprint, 2023. 2, 3

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint, 2023. 2

Xiangru Tang, Anni Zou, Zhuosheng Zhang, Yilun Zhao, Xingyao Zhang, Arman Cohan, and Mark
Gerstein. Medagents: Large language models as collaborators for zero-shot medical reasoning.
arXiv preprint, 2023. 2

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint, 2023. 2

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint, 2023a. 3, 5, 6, 7, 8

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin,
Zhaofeng He, Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yitao Liang. Jarvis-1: Open-
world multi-task agents with memory-augmented multimodal language models. arXiv preprint,
2023b. 7

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain, plan and
select: Interactive planning with large language models enables open-world multi-task agents.
arXiv preprint, 2023c. 3

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. NeurIPS,
2022. 6

David Weinbaum and Viktoras Veitas. Open ended intelligence: the individuation of intelligent
agents. Journal of Experimental & Theoretical Artificial Intelligence, 2017. 2

Anita Williams Woolley, Christopher F Chabris, Alex Pentland, Nada Hashmi, and Thomas W Mal-
one. Evidence for a collective intelligence factor in the performance of human groups. science,
2010. 2

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint, 2023. 2, 3

Jiannan Xiang, Tianhua Tao, Yi Gu, Tianmin Shu, Zirui Wang, Zichao Yang, and Zhiting Hu.
Language models meet world models: Embodied experiences enhance language models. arXiv
preprint, 2023. 2

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint, 2023. 2

Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong, Stefan Welker,
Federico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, et al. Socratic models: Com-
posing zero-shot multimodal reasoning with language. arXiv preprint, 2022. 2

12

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum, Tian-
min Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
models. arXiv preprint, 2023. 2

Zhonghan Zhao, Wenhao Chai, Xuan Wang, Li Boyi, Shengyu Hao, Shidong Cao, Tian Ye, Jenq-
Neng Hwang, and Gaoang Wang. See and think: Embodied agent in virtual environment. arXiv
preprint, 2023. 3

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li,
Lewei Lu, Xiaogang Wang, et al. Ghost in the minecraft: Generally capable agents for open-world
enviroments via large language models with text-based knowledge and memory. arXiv preprint,
2023. 3, 7

Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R Ashley, Róbert Csordás, Anand
Gopalakrishnan, Abdullah Hamdi, Hasan Abed Al Kader Hammoud, Vincent Herrmann, Kazuki
Irie, et al. Mindstorms in natural language-based societies of mind. arXiv preprint, 2023. 2

13

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

A EXAMPLE

A.1 EXAMPLE OF PLANNING PROCESS

Figure 8 demonstrates the planning process of both the root agent and leaf agents in the “build a
house” task.

Analyze goal

Based on the conversation, we need to build a 5x5 house
at (-10,71,-30). The house requires a foundation, walls, a
roof, and a door. The foundation requires 25 stones, the
walls require 48 planks (which can be synthesized from 12
logs), and the roof requires 29 stones. WorkerA has
enough logs to synthesize the planks for the walls and has
2 oak doors. WorkerB has enough stones for the
foundation and the roof.

Long term plan

Stage 1: WorkerA synthesizes planks and WorkerB builds
the foundation
• WorkerA synthesizes 48 planks from 12 logs.
• WorkerB builds the foundation with 25 stones at (-

10,71,-30).

Stage 2: WorkerA builds the walls and WorkerB starts
building the roof
• WorkerA builds the walls with 48 planks at (-10,71,-30).
• WorkerB starts building the roof with 14 stones at (-

10,71,-30).

Stage 3: WorkerB finishes building the roof and WorkerA
installs the door
• WorkerB finishes building the roof with 15 stones at (-

10,71,-30).
• WorkerA installs the 2 oak doors at (-10,71,-30).

Stage 1: WorkerA synthesizes planks and WorkerB builds
the foundation

• inform workerA to synthesize 48 planks from 12 logs

Task at hand �

• WorkerA synthesizes 48 planks from 12 logs.

Long term plan

Stage 1: Worker A synthesizes planks
• WorkerA synthesizes 48 planks from 12 logs.

Please build a 5x5 house begin at
(-10,72,-30), it is a nice place for
building.

Root agent

Leaf agent 1

Leaf agent 2

• inform workerB to build the foundation at (-10,71,-30)
(use 25 stones)

• WorkerA synthesizes 48 planks from 12 logs.
• WorkerB builds the foundation with 25 stones at (-10,

71, -30).

Action: Craft 48 planks (from 12 logs)

Analyze goal

The leader has asked me to synthesize 48 planks from 12
logs. Considering the current inventory status, workerA
already has 50 oak logs, which is more than enough to
synthesize 48 planks.

Analyze goal

The leader has asked workerB to build a foundation at the
coordinates (-10,71,-30) using 25 stones. Considering the
inventory status, workerB already has 60 stones, which is
more than enough to complete the task. Therefore, there
is no need to mine for more stones.

Long term plan

Stage 1: WorkerB builds the foundation
• WorkerB uses 25 stones to build the foundation at (-

10,71,-30).

Task at hand �

• WorkerB uses 25 stones to build the foundation at (-
10,71,-30).

Action: Build foundation at (-10,71,-30)

Action

Task at hand �

Objective

Build a a 5x5 house begin at (-10,72,-30)

Objective

Build the foundation at (-10,71,-30) (use 25 stones)

Objective

Synthesize 48 planks from 12 logsHuman

Figure 8: The illustration of an example process of collaborative house building. Full prompts
are presented in Appendix B.

A.2 EXAMPLE OF EXECUTION PROCESS

Figure 9 and Figure 10 illustrate the collaborative processes of building a house and collecting iron,
respectively.

14

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

Build foundation ———————-Build walls ————————-Build roof

Figure 9: The procedure of building a house. The root agent commands while the two leaf agents
collaborate to complete the construction.

———Mine logs ———————–Craft crafting table —————Craft wooden pickaxe

Mine stones ——————–Craft stone pickaxe ———————-Mine iron

Figure 10: The procedure of mining iron. As the execution processes of the two agents are similar,
only one of them is presented here.

A.3 AGENT BEHAVIOR MIMICKING HUMAN EMPLOYEES

The following is a detailed description of behaviors similar to those of human employees exhibited
by the LLM agent during task execution.

Following instructions and execution: In the human workplace, proactively following the instruc-
tions of a leader and possessing excellent execution capabilities ensure the achievement of organi-
zational objectives. Within a GoA, as depicted in Figure 11(a), when leaf agent al1 receives instruc-
tions to craft a wooden pickaxe, he delegates the task to leaf agent al2. Subsequently, leaf agent al2
replicates this behavior, resulting in a loop of delegation, leading to inaction and production halt.
In contrast, as shown in Figure 11(b), in a ToA, when leaf agent al1 is assigned the task of crafting
a wooden pickaxe, he promptly begins the task himself, following the directive of leadership agent
without further delegation.

Progress updates to the leader: The root agent needs to model the execution progress on time, and
correspondingly, leaf agents are required to report the progress of task execution to the Root agent.
As illustrated in Figure 11(c,d), a leaf agent reports at the commencement of a task and provides
updates upon its completion, indicating success or failure. In case of task failure, the leaf agent also
elucidates the reasons and current state of their inventory.

B FULL PROMPT DESIGN

The displayed prompts have been corrected for minor grammar errors.

B.1 PROGRESS MONITOR

B.1.1 COMPONENTS IN THE PROMPT

The input prompt to LLM consists of several components:

15

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

Agent 1, please craft wooden pickaxes.

Root agent

Agent 2, please craft wooden
pickaxes.

Leaf agent 1

Agent 1, please craft wooden pickaxes.

Agent 3

Agent 2, please craft wooden
pickaxes.

Agent 1

Agent 1, please craft wooden pickaxes.

Agent 2 Leaf agent 1
[Action] mining oka logs

Agent 1, please craft a stone pickaxe.

Root agent

Leaf agent 1

Agent 1, please craft a stone pickaxe.

Sure! I’ll start the task by mining 10
logs.

Leaf agent 1

[Action] crafting a stone pickaxe

Root agent

Leaf agent 1

[Action] mining oka logs

Hey Leader! I have successfully
completed the task mining 10 logs. Is
there anything else you want me to do?

Leaf agent 1

Leaf agent 1

Sure! I’ll start crafting a stone pickaxe.

Hey Leader! Hey Leader! I have failed
the task crafting a stone pickaxe,
because I failed placing a crafting
table.

Leaf agent 1

(a) Cyclic command in GoA (b) Following instructions and execution

(c) Progress updates (successful) (d) Progress updates (failed)

Figure 11: Agent behaviors that mimic human employees.

(1) Task to be inquired, proposed by the task planner.
(2) Recent conversation, conversation since last task planning. Leaf agents report their task

progress and current inventory status during conversations, allowing for the inference of
task completion from the dialogue.

(3) Chest information. In rare instances, leaf agents might place the results of their actions in
nearby chests, necessitating the integration of chest information for accurate task comple-
tion assessment. In most cases, this field is left empty.

B.1.2 FULL PROMPT

Template of progress monitor

1 You’re a judge of progress in Minecraft, and you’re adept at judging whether or not [Task to be
↪→ inquired] is complete based on the [Conversation] and [chest information] so far.

2
3 Your task is to perform the following actions to help me play Minecraft:
4 I’ll give you [Task to be inquired], [Conversation] with another player, and the [Chest

↪→ information] nearby.
5 First, please give a [Task result judgment] about the current progress of [Task to be inquired].
6 You should give your judgment right on the spot, not beat around the bush!
7 Then, determine the [Final task status] (’success’ or ’fail’ or ’unknown’), based on the progress

↪→ analysis.
8
9 You must follow the following criteria:

10 1. Please focus only on [Conversation] or [Chest information] related to the [Task to be inquired
↪→], other information is not included in the analysis.

11 2. As long as one of the [Conversation] and [Chest information] contains valid information about [
↪→ Task to be inquired], it is sufficient for [Progress analysis] and [Final task status].

12 3. Recieve the response of ’I will start task: xxx’ in [Conversation] means that the task has
↪→ started, [Final task status] should be unknown.

13 4. No response or only get ’Got it!’, means that the task didn’t start, [Final task status] should
↪→ be unknown.

14 5. Recieve the response of ’I have succeeded in the task: xxx’ in [Conversation] means that the
↪→ task has finished, [Final task status] should be a success.

15 6. Recieve the response of ’I have failed the task: xxx’ in [Conversation] means that the task has
↪→ failed, [Final task status] should fail.

16

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

16 5. The [Final task status] should be one of status in ’success’ or ’fail’ or ’unknown’
17 ’unknown’ means there is no information about the success or failure in progress analysis,
18 ’success’ means the task is finally completed,
19 ’fail’ means the task is finally failed.
20
21 The response format should be:
22 Task result judgment: <Your output [Task result judgment] should be like, "According to [the key

↪→ sentence] from [Conversation or Chest information], [Task to be inquired] has succeeded/
↪→ failed." Or "[information summary], but it does not provide any information about the
↪→ result of the task, so the task status is unknown.">

23 Final task status: <Only one of the words in success or fail or unknown>

Monitor progress: example of root agent

1 Example:
2 Input: (If you are the leader)
3 The current task to be inquired:‘‘‘Stage 1: Gather resources
4 WorkerA mine 27 stones.‘‘‘
5 The conversation between worker and leader
6 -[15:03:10]leader says: ’WorkerA, please mine 27 stones’
7 -[15:03:20] WorkerA says: ’Got it!’
8 Task result judgment: Leader informs workers to mine 27 logs, workers receive it, but don’t hear

↪→ the message that WorkerA has succeeded, so the task status is unknown
9 Final task status: unknown

Progress monitor: example of leaf agent

1 Example:
2
3 Input:
4 The current task to be inquired: Craft a wooden pickaxe
5 Conversation: {’linnea3v3’: ["[19:35:09]workera says: ’I’ll start the task Craft a wooden pickaxe

↪→ now’", "[19:36:11]workera says: ’I have succeeded the task Craft a wooden pickaxe.’",
↪→ "[19:36:11]workera says: ’The critique is Successfully crafted a wooden pickaxe.’",
↪→ "[19:36:11]workera says: ’my inventory is {’acacia_log’: 11}, and my equipment is [None,
↪→ None, None, None, None, None] ’"]}

6 Supplies in the chest: none
7 Output:
8 Task result judgment: According to the conversation, workers’ inventory is {’acacia_log’: 11}, and

↪→ my equipment is none, so workera has failed the task Craft a wooden pickaxe.
9 Final task status: failed

10
11 Input:
12 The current task to be inquired: WorkerA mine 15 more irons. WorkerA mine 10 logs
13 {’linnea3v3’: ["[13:49:58]workera says: ’I have failed the task mine 15 irons.’", "[13:51:55]

↪→ workera says: ’I have succeeded the task mine 10 logs.’", "[13:51:55]workera says: ’my
↪→ inventory is {’crafting_table’: 1, ’oak_planks’: 8, ’stick’: 8, ’oak_log’: 5, ’birch_log
↪→ ’: 5}, and my equipment is [None, None, None, None, ’crafting_table’, None] ’"]}

14 Output:
15 Task result judgment: According to the inventory, workera has succeeded in the task mine 10 logs,

↪→ but has failed the task mine 15 irons. Therefore, he failed.
16 Final task status: failed

B.2 TASK PLANNER

B.2.1 COMPONENTS IN THE PROMPT

The input prompt to LLM consists of several components:

(1) Recent conversations. To optimize token usage, the conversation is truncated to only in-
clude the dialogue from the last task planning session to the present moment.

(2) Objective proposed by the previous task planner.

(3) Long-term plan broken down by objectives, also proposed by the previous task planner.

(4) The status of the current task. The completion of the current task, proposed by the progress
monitor.

17

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

B.2.2 FULL PROMPT

Task planner of root agent

1 You are a Minecraft planner, your name is {name}, and you need to follow the rules of Minecraft
↪→ and split the tasks into multiple stages to complete them according to the tasks in the [
↪→ Conversation].

2 I will give you a [Conversation] and a [Previous long-term plan] (if have one) and a [Previous
↪→ inventory of employers], and you need to output the [Current inventory of employers], [
↪→ Analysis], [Long term plan], [Task at hand] and [Informer].

3 Your task is to perform the following actions to help me play Minecraft:
4 1. Handling the conversation and [Previous inventory of employers], you need to summarize the [

↪→ Current inventory of employers]. Subject to the latest time of conversation
5 2. If there is no given [Previous long-term plan], develop one based on the conversation and [

↪→ Current inventory of employers], and if there is a [Previous long-term plan], adjust it
↪→ based on the conversation and [Current inventory of employers], (if there is not too much
↪→ information in the [Conversation], output the original [Previous long term plan] content
↪→)

6 3. Then, You need to break down the tasks in conversation into step-by-step that can be performed
↪→ in Minecraft, considering your social role and suppose you have nothing in your inventory
↪→ .

7 4. Finally, please output the task at hand and who informs you to do the task.
8 You must follow the following criteria:
9 1. You now have employments {employment} in Minecraft to dispatch and divide up, and you need to

↪→ try to arrange for everyone ({employment}) to have something to do in each STEP to
↪→ maximize parallelism and efficiency, and not have employees waiting for and blocking each
↪→ other. Don’t leave your employees with nothing to do.

10 2. You need to consider the interdependence of tasks in Minecraft for the division of labor.
11 3. You need to consider {employment}’s inventory status from the conversation and develop a

↪→ reasonable plan that fits their available resources (They can not get or use items from
↪→ others).

12 4. If a [Previous long-term plan] is already in place, you need to adjust it based on their
↪→ inventory and [previous progress] to reach your goals

13 5. You should take tasks that have a large workload and split them into smaller tasks, for example
↪→ , if you need to mine 50 logs, you can split them into workerA mine 25 logs, workerB mine
↪→ 25 logs.

14 6. You should have all your employees doing one thing and one thing only at every stage, no more
↪→ and no less.

15 7. You have to adjust the plan so that the goal is accomplished in the shortest possible time, for
↪→ example, by assigning work to an employee with a successful track record (once an
↪→ employee has completed a job, assign it to someone else who hasn’t) or by swapping the
↪→ employee’s work in hand.

16 8. Things that affect each other should be done in different stages (e.g. Building foundation
↪→ should be before building walls, building walls should before building roof and they(
↪→ building foundation, walls, roof) should be in different stages)

17 9. Things that don’t affect each other can be done in one stage by different employees (e.g.
↪→ Installing the door and building the roof do not interfere with each other and can be
↪→ scheduled in the same stage for different employees to do). Please try to improve the
↪→ overall efficiency as much as possible.

18 10. Each step related to construction needs to contain very detailed location information.
19 11. You can’t generate ’assistance’ tasks, each employee should do different things depending on

↪→ their inventory.
20
21 The response format should be:
22 Current inventory of employers: <Updated inventory based on a previous inventory of employers and

↪→ conversation.>
23 Objective: <combine the conversation and the objective from the last PLAN to give the current

↪→ overall objective, possibly keeping it the same>
24 Analysis: <the step-by-step analysis of the conversation and previous progress (if have), then

↪→ decide how to plan the goal and division of labor in Minecraft based on inventory of
↪→ employers>

25 Long-term plan: The overall plan with multiple [stage], in each stage, everyone has important and
↪→ specific tasks to do

26 The task at hand: The [stage] needs to be done now, in this stage, everyone has a specific task. (
↪→ Please answer in detailed text), Output None if there is no task need to do now.

27 Informer is <one of the player’s names, who inform you to do this thing, you can find in
↪→ conversation>

28 Examples:
29 Example 1:
30 [INPUT]:
31 Conversation: ‘‘‘ The conversation between linnea3v3 and leader
32 -[15:33:35]linnea3v3 says: build a house begin at (-10,72,-30)
33 ‘‘‘
34 previous conversation:‘‘‘None‘‘‘
35 previous long-term plan: ‘‘‘None‘‘‘
36 Current inventory of employers: workerA has an empty inventory, workerB has an empty inventory,

↪→ workerC has an empty inventory.
37
38 [Output]:
39 Current inventory of employers: workerA has an empty inventory, workerB has an empty inventory,

↪→ workerC has an empty inventory.
40
41 Objective:
42 Build a house.
43
44 Analysis:
45 To build a house, we need to break down the tasks into several stages, including gathering

↪→ materials, preparing the land, laying the foundation, constructing walls, and adding the

18

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

↪→ roof and finishing touches. Since we’re starting from scratch with empty inventories, the
↪→ first step will be to gather necessary resources like wood and stone.

46
47 Long-term plan:
48 Stage 1: WorkerA, WorkerB, WorkerC gather resources
49 WorkerA mine 12 woods.
50 WorkerB mine 25 stone.
51 WorkerC mine 25 woods.
52 Stage 2: WorkerA builds the foundation at (-10,72,-30) WorkerB and WorkerC dig the wood
53 WorkerA builds the foundation at (-10,72,-30)
54 Stage 3: WorkerB builds the wood wall at (-10,72,-30)
55 ...
56 Stage 4: WorkerC builds the wood roof at (-10,72,-30)
57 ...
58
59 The task at hand:
60 Stage 1: WorkerA,WorkerB,WorkerC gather resources
61 WorkerA mine 25 woods.
62 WorkerB mine 15 stone.
63 WorkerC mine 25 woods.
64
65 Informer is Linnea3v3
66
67
68 Example 2:
69 [INPUT]:
70 Conversation: ‘‘‘ The conversation between linnea3v3 and leader
71 -[15:33:35]linnea3v3 says: mine 50 stones
72 ‘‘‘
73 previous conversation:‘‘‘None‘‘‘
74 previous long-term plan: ‘‘‘None‘‘‘
75 Current inventory of employers: workerA has an empty inventory, workerB has an empty inventory,

↪→ workerC has an empty inventory.
76
77 [Output]:
78 Current inventory:
79 workerA has an empty inventory, workerB has an empty inventory, workerC has an empty inventory.
80
81 Objective:
82 Mine 50 stones.
83
84 Analysis:
85 To efficiently complete the task of mining 50 stones, the workload needs to be divided among

↪→ workerA, workerB, and workerC. Since the task is straightforward and all workers have the
↪→ same starting point (empty inventory), the task can be evenly distributed.

86
87 Long term plan:
88 Stage 1: Gather stones
89
90 WorkerA mines 17 stones.
91 WorkerB mines 17 stones.
92 WorkerC mines 16 stones.
93
94 The task at hand:
95 Stage 1: Gather stones
96
97 WorkerA mines 17 stones.
98 WorkerB mines 17 stones.
99 WorkerC mines 16 stones.

100
101 Informer is Linnea3v3
102
103 Example3:
104 [INPUT]:
105 Conversation: ’’’ The conversation between linnea3v3 and leader
106 -[19:15:13]linnea3v3 says: ’Mine 50 logs’
107 ...
108
109 The conversation between workera and leader
110 -[19:15:37]leader says: ’WorkerA, please mine 17 logs’
111 -[19:17:33]workera says: ’My inventory is [’birch_log’: 17, ’birch_planks’: 2], and my equipment

↪→ is [None, None, None, None, None, None] ’
112
113
114 The conversation between workerb and leader
115 -[19:15:42]leader says: ’workerB, please mine 17 logs’
116 -[19:16:09]workerb says: ’I’ll start the task mine 17 logs now’
117
118 The conversation between workerc and the leader
119 -[19:15:48]leader says: ’workerC, please mine 16 logs’
120 -[19:16:19]workerc says: ’I’ll start the task mine 16 logs now’
121
122 ’’’
123 Previous objective: ’’’Mine 50 logs.’’’
124 Previous long term plan: ’’’Stage 1: Gather logs
125
126 WorkerA mines 17 logs.
127 WorkerB mines 17 logs.
128 WorkerC mines 16 logs.’’’

19

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

129 The previous progress we have done is the step Stage 1: Gather stones
130
131 WorkerA mines 17 logs.
132 WorkerB mines 17 logs.
133 WorkerC mines 16 logs. is failed
134
135 [Output]:
136 Current inventory of employers: ...
137 Objective:
138 Complete the task of mining 50 stones.
139
140 Analysis:
141 A has successfully completed the task of mining 17 logs, however, b and c have not, to maximize

↪→ time efficiency try to get A to mine the remaining 33 logs and B and C to continue mining
142
143 Long term plan:
144 Stage 1 (adjust plan):
145 WorkerA mined the remaining 33 logs.
146 WorkerB mines 17 logs
147
148 The task at hand:
149 Stage 1 (adjust plan):
150 WorkerA mined the remaining 33 logs.
151 WorkerB mines 17 logs
152
153 Informer is Linnea3v3

Task planner of Leaf agent

1 You are a Minecraft planner, and you need to follow the rules of Minecraft and split the tasks
↪→ into multiple stages to complete them according to the tasks in the [Conversation].

2 Your task is to perform the following actions to help me play Minecraft:
3 1. Your name is {name}. Handling the conversation and your inventory status. If there is [previous

↪→ progress], you need to consider it when you make a plan.
4 2. If there is no given [Previous long-term plan], develop one based on the conversation, and if

↪→ there is a [Previous long-term plan], adjust it based on the conversation, (if there is
↪→ not too much information in the [Conversation], output the original [Previous long term
↪→ plan] content)

5 3. You need to break down the tasks in conversation step-by-step that can be performed in
↪→ Minecraft, considering your social role and suppose you have nothing in your inventory.

6 4. Then, please output the task at hand and who informs you to do the task.
7 You must follow the following criteria:
8 1. Since you are a WORKER, you have no Employment{employment}. you receive the plan in the chat

↪→ logs and you should do it yourself.
9 2. You need to consider your inventory status and make a plan that is easy to succeed in Minecraft

↪→ .
10 3. Please do not build shelters without authorization, but if you are asked to build something,

↪→ you should follow orders.
11 4. When mining logs, please do not craft a wooden axe, you should simply mine wood by hand. But,

↪→ if someone asks you to craft an axe, you should do so.
12 5. When mining stone, you should first mine logs, then craft and equip a pickaxe (e.g. a wooden

↪→ pickaxe).
13 6. When collecting resources such as Log and Stone, please collect more than one at a time (e.g.

↪→ 10 or more) just in case!
14 7. If the previous plan failed due to a timeout error, please try again with the same plan, do not

↪→ change the plan.
15 8. If you already have more than the required amount of supplies in your inventory, you don’t need

↪→ to generate mine tasks!
16 9. Each step related to construction needs to contain very detailed location information. Each

↪→ building step should contain location information.
17
18 The response format should be:
19 Current inventory: <current inventory, inferred from the conversation and inventory>
20 Objective: <combine the conversation and the objective from the last PLAN to give the current

↪→ overall objective, possibly keeping it the same>
21 Analysis: <the step-by-step analysis of the conversation and previous progress (if have), then

↪→ decide how to plan the goal in Minecraft>
22 Long term plan: The overall plan with multiple [stage], in each stage, everyone has important and

↪→ specific tasks to do
23 The task at hand: The [stage] needs to be done now, in this stage, everyone has a specific task. (

↪→ Please answer in detailed text), Output None if there is no task need to do now.
24 Informer is <one of the player’s names, who inform you to do this thing, you can find in

↪→ conversation>
25 Examples:
26 Example 1:
27 Input:
28 Conversation: ‘‘‘ The conversation between leader and workerA
29 -[15:33:35]leader says: WorkerA mine 10 woods.‘‘‘
30 previous objective:‘‘‘None‘‘‘
31 previous long term plan: ‘‘‘None‘‘‘
32
33 Output:
34 Current inventory:
35 the inventory of workerA is None
36

20

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

37 Objective:
38 mine 10 woods.
39
40 Analysis:
41 To mine 10 woods in Minecraft, you need to start by finding trees. Since you’re starting with

↪→ nothing in your inventory, you’ll have to mine the wood by hand.
42
43 Long term plan:
44 Stage 1: WorkerA gathers resources
45 WorkerA mine 10 woods.
46 The task at hand:
47 WorkerA mine 10 woods.
48 Informer is leader
49
50
51 Example2:
52 Input:
53 Conversation: ‘‘‘ The conversation between leader and workerA
54 -[15:33:35]leader says: WorkerA mine 25 stones.‘‘‘
55 previous objective:‘‘‘None‘‘‘
56 previous long term plan: ‘‘‘None‘‘‘
57
58 Output:
59 Current inventory:
60 the inventory of workerA is None
61
62 Objective:
63 mine 25 stones.
64
65 Analysis:
66 To mine 25 stones in Minecraft, you must first gather wood to craft wooden pickaxes, as mining

↪→ stones directly by hand won’t yield any resources. Start by finding and mining at least 3
↪→ logs from trees. Then, use a crafting table to convert these logs into wooden planks and
↪→ sticks. With these materials, craft a wooden pickaxe to start mining stone.

67
68 Long term plan:
69 Stage 1: Gather resources
70
71 WorkerA mine 3 logs.
72 WorkerA craft wooden planks and sticks from logs.
73 WorkerA crafts a wooden pickaxe.
74
75 Stage 2: Mine stone
76
77 WorkerA uses the wooden pickaxe to mine 25 stones.
78
79 The task at hand:
80 Stage 1: Gather resources
81
82 WorkerA mine 3 logs.
83 WorkerA craft wooden planks and sticks from logs.
84 WorkerA crafts a wooden pickaxe.
85
86 Informer is leader

B.3 ACTION PLANNER

B.3.1 COMPONENTS IN THE PROMPT

The input prompt to llm us the current task proposed by the task planner.

B.3.2 FULL PROMPT

Template of action planner

1 You are a helpful assistant. Your task is to directly translate [Current task] input into [TODO
↪→ list] as RESPONSE. Your [TODO list] translations must be consistent with the [Current
↪→ task], especially the ’who does each task’ issue.

2 1. - You are player {name}. Your profile is ‘‘‘{profile}‘‘‘.
3 2. - [TODO list] has two types of items, those that you do yourself (e.g. Craft [quantity] [item]

↪→ (at position)) and those that you arrange for someone else to do (e.g. inform [player] to
↪→ kill [quantity] [mob] (at position))

4 3. - If the [current task] is someone else’s, you should not translate the task you did yourself
↪→ in [TODO list], but you should INFORM that person!

5
6 You must follow the following criteria:
7 1. The [todo list] items should follow a concise format, such as "Mine [quantity] [block] (at

↪→ position)", "inform [player] to mine [quantity] [block] (at position)", "inform [player]
↪→ to kill [quantity] [mob] (at position)", "Craft [quantity] [item] (at position)", "Smelt
↪→ [quantity] [item] (at position)", "Kill [quantity] [mob] (at position)", "Cook [quantity]

21

Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

↪→ [food] (at position)", "Equip [item] (at position)", "Build [item] at [position]" etc.
↪→ It should be a single phrase. Do not mention anything else. mention position when
↪→ necessary.

8 2. The [to-do list] items should have an exact position if there is position information in the
↪→ conversation.

9 3. When the task contains someone else’s name ({employment}), you need to generate the inform todo
↪→ , like "inform [player] to mine [quantity] [block] (at position)", "inform [player] to
↪→ kill [quantity] [mob] (at position)", "inform [player1] to give [quantity] [item] to [
↪→ player2]".

10
11 Response format should be:
12 <a list of todo, like ["todo1", "todo2", "todo3", ...]>(This JSON format will be parsed by Python

↪→ ‘json.loads‘)
13 Ensure the response can be parsed by Python ‘json.loads‘, e.g.: no trailing commas, no single

↪→ quotes, etc.
14
15
16 EXAMPLE:
17 {example}

Action planner: example of root agent

1 Example 1: If your name is leader, you should better generate task that includes ’inform’:
2 INPUT:
3 Current task:
4 Step: gather resources
5 WorkerA mine 25 woods.
6 WorkerB mine 15 stone.
7 RESPONSE:
8 ["inform WorkerA to mine 25 woods", "inform workerB mine 15 stone"]
9

10 Example 2: If your name is leader:
11 INPUT:
12 Current task:
13 Step: WorkerA needs to build the foundation.
14 RESPONSE:
15 ["inform workerA to build the foundation"]
16
17 Example 3:
18 INPUT:
19 Current task:
20 Stage 2: WorkerA builds the walls
21 WorkerA uses 48 planks to build the walls at (-10,72,-30).
22 RESPONSE:
23 ["inform workerA to build walls at (-10,72,-30) (use 48 planks)"]
24
25 Example 4:
26 INPUT:
27 Current task:
28 Stage 1: WorkerA crafts 4 planks from the log of WorkerB.
29
30 RESPONSE:
31 ["inform workerB to give a log to workerA", "inform workerA to craft 4 planks"]

Action planner: example of leaf agent

1 Example 1: If your name is worker, you should not generate a task includes ’inform’, you should
↪→ only do the task yourself:

2 INPUT:
3 Current task:
4 Step: WorkerA mine 25 woods
5 RESPONSE:
6 ["mine 25 woods"]

22

