
LeanTutor: A Lean-Verified Tutor for Mathematical Proofs

Manooshree Patel 1 Rayna Bhattacharyya * 1 Thomas Lu * 1 Arnav Mehta * 1 Niels Voss * 1

Narges Norouzi 1 Gireeja Ranade 1

Abstract
This paper presents a proof-of-concept version
for LeanTutor, a tutoring system for mathemati-
cal proofs that combines Large Language Models
(LLMs) with the Lean proof assistant. LeanTu-
tor interacts with the student in natural language,
formally verifies auto-formalized-versions of the
student-written proofs in Lean, generates correct
next steps, and provides the appropriate instruc-
tional guidance. LeanTutor is composed of three
modules: (i) an autoformalizer/proof-checker, (ii)
a next-step generator, and (iii) a natural language
feedback generator. To evaluate the system, we
introduce PeanoBench, a dataset of 371 Peano
Arithmetic proofs in human-written natural lan-
guage and formal language, derived from the Nat-
ural Numbers Game. Each natural language proof
step is paired with the corresponding logically
equivalent tactic in Lean. The autoformalizer cor-
rectly formalizes 57% of tactics in correct proofs
and accurately identifies the incorrect step in 30%
of incorrect proofs. In generating natural lan-
guage hints for erroneous proofs, LeanTutor out-
performs a simple baseline on accuracy and rele-
vance metrics.

1. Introduction
College students use LLMs such as ChatGPT and Claude to
start projects, create practice questions, and generate solu-
tions to academic assignments (OpenAI, 2025; Anthropic,
2025). State-of-the-art LLMs are easy to access and per-
form well on material from undergraduate courses (Scarfe
et al., 2024). However, LLM usage can be detrimental to
student learning (Goetze, 2025), because these systems are
not designed from a pedagogical perspective. Specifically,

*Equal contribution 1University of California, Berke-
ley, United States. Correspondence to: Manooshree Pa-
tel <manooshreepatel@berkeley.edu>, Gireeja Ranade
<ranade@eecs.berkeley.edu>.

The second AI for MATH Workshop at the 42nd International
Conference on Machine Learning, Vancouver, Canada. Copyright
2025 by the author(s).

(1) most models are designed to be maximally “helpful”
(Askell et al., 2021) to a user, which often leads to them di-
rectly giving away the answer to a student,instead of helping
them come up with it on their own (Sonkar et al., 2024), (2)
even state-of-the-art models are prone to hallucinations and
generate convincing wrong answers (Maurya et al., 2024;
Balunović et al., 2025; Gupta et al., 2025), (3) models strug-
gle to identify mistakes in reasoning (Tyen et al., 2024;
Miller & DiCerbo, 2024), and (4) even if models can pro-
duce the correct answer, they cannot necessarily produce
correct reasoning to guide the student (Gupta et al., 2025).
Even more alarmingly, students have admitted that LLM
usage on educational assignments has led them to feeling
that they are “getting dumber” (Goetze, 2025).

However, educational technology can have an immense
positive impact when used appropriately. For instance, au-
tograders have revolutionized the student experience in in-
troductory programming classes (DeNero & Martinis, 2014;
Mitra, 2023; Hecht et al., 2023; Messer et al., 2024). Auto-
graders, along with feedback from a programming language
compiler, encourage self-correction and allow students to
rapidly test solutions and learn from their mistakes, empow-
ering them to explore new ideas through private, low-stakes
failure (Aziz et al., 2015).

Mathematical proofs have long been a “stumbling block” for
undergraduates (Iannone & Thoma, 2024), and for decades,
math educators have been trying to build an autograder
and/or tutor for math proofs (Bundy et al., 2000; Lodder
et al., 2021; Barnes & Stamper, 2008; Park & Manley, 2024;
Sufrin & Bornat, 1997; Zhao et al., 2024a; Sieg, 2007; Wem-
menhove et al., 2022). Educators have developed intelligent
tutoring systems (ITS) (Lodder et al., 2021; Bundy et al.,
2000) to teach math proofs or utilized theorem provers as
teaching tools (Avigad, 2019; Wemmenhove et al., 2022).
While these systems provide students with similar benefits
to autograders (such as immediate feedback), they can be
tedious to create (Dermeval et al., 2018) or require an under-
standing of complex formal language syntax that students
find difficult to learn (Thoma & Iannone, 2022).

LLMs, theorem provers, and ITS all have unique comple-
mentary strengths, and we aim to develop a proof tutoring
system that leverages all of them. We propose LeanTutor, a
Lean-verified tutoring system for undergraduate mathe-

1

LeanTutor: A Lean-Verified Tutor

Figure 1. LeanTutor is comprised of three modules: an autoformalizer that automatically formalizes an NL student proof into Lean
step-by-step; a next step generator that generates a next feasible tactic for the student proof; and a natural language feedback generator
that generates guiding feedback to help the student progress towards a correct proof.

matics proofs. LeanTutor interacts with students in natural
language (NL), while using the formal language (FL) Lean
to evaluate proof correctness and generate correct next steps
on the backend. Specifically, LeanTutor can:

• Accept complete/partial/correct/incorrect student-
written natural language proofs

• Verify if the student work is correct or incorrect

• Identify the student error, if applicable, and provide
guidance towards a correct proof, without giving away
the complete answer

The LeanTutor design assumes a small self-contained
dataset, as used by Murphy et al. (2024); Cunningham et al.
(2023) and one known proof per theorem with a Lean for-
malization. These limit generalizability, but are reasonable
assumptions for the tutoring setting (solutions are readily
available, and there is a limited set of previous theorems
that students will use). We attempt faithful autoformaliza-
tion, (autoformalization focusing on preserving the semantic
meaning of the natural language (Murphy et al., 2024)) of
natural language statements, when one complete proof of
the theorem is known in natural and formal language. We
similarly explore next-step-generation where the explorable
space of theorems is small (relative to Mathlib which has an
extremely large theorem space (mathlib Community, 2020)).
Additionally, the educational application of LeanTutor in-
troduces the following novel challenges in AI for Math:

• We must be able to formalize, not only complete and
correct, but incomplete and incorrect proofs into Lean.

Previous work on autoformalization focuses on whole
proof and theorem statement autoformalization of cor-
rect proofs and statements (Yang et al., 2024).

• In our paradigm, at least one correct proof (and a se-
mantically equivalent Lean formalization) for all the-
orems is known. Hence, the key challenge is not to
prove a new theorem or formalize mathematics, but to
identify which proof approach a student is taking and
pinpoint error locations in the proof.

Contributions We present three main contributions in this
work. First, we propose a framework and implementation
for LeanTutor (Fig. 1) comprised of three modules: (1) an
autoformalizer and proof checker, (2) a next-step generator,
and (3) a natural language feedback generator. Second, we
introduce the new problem of autoformalization of correct
and incorrect proofs in the presence of a reference proof.
We propose an autoformalizer that proceeds tactic-by-tactic,
and propose a metric to evaluate faithful autoformalization
in the presence of a reference proof. Third, we construct
the PeanoBench dataset, comprising of 371 correct and
incorrect Lean proofs, with rule-based human-written NL
annotations. We evaluate LeanTutor’s ability to autoformal-
ize PeanoBench proofs and generate feedback for a subset
of incorrect and incomplete proofs.

2. Related Work
2.1. Autoformalization via Language Models

A large body of recent work has focused on autoformaliz-
ing, translating NL theorem statements into formal math

2

LeanTutor: A Lean-Verified Tutor

languages, using deep learning methods (Gadgil et al., 2022;
Ying et al., 2024a; Gao et al., 2024; Shao et al., 2024; Wu
et al., 2022; Jiang et al., 2022a; Azerbayev et al., 2023a;
Lin et al., 2025; Zhou et al., 2024; Lin et al., 2025). The
more difficult task of autoformalizing whole proofs from
NL to FL has been explored in fewer works (Jiang et al.,
2022b; Murphy et al., 2024; Wang et al., 2024b; Cao et al.,
2025; Tarrach et al., 2024; Huang et al., 2024). State-of-
the-art (SOTA) LLMs, without any specific formal language
training, have shown strong performance on the task of
autoformalization (Wu et al., 2022; Chen et al., 2021) and
motivate our development of an LLM-agnostic framework
for autoformalization.

In a classroom setting, autoformalization can support tutor-
ing (as in LeanTutor) or auto-grading. Both applications
require faithful autoformalization Murphy et al. (2024). We
take a similar approach to Kulal et al. (2019) method of
translating pseudocode to code, line-by-line, in a C++ pro-
gram generation task. Faithful autoformalization metrics
are discussed in Section 5.1. We make the reasonable as-
sumptions for the classroom setting that all proofs come
from a small dataset and at least one valid proof per theo-
rem is known (in both NL and FL). Murphy et al. (2024);
Cunningham et al. (2023) successfully formalize proofs in a
small dataset where all feasible theorems/tactics are known.

2.2. Neural Theorem Proving

Neural theorem proving reframes theorem proving as a lan-
guage modeling task (Li et al., 2024a). An abundance of
prior work has made progress towards training language
models for theorem proving (Jiang et al., 2022a; Wu et al.,
2024; Polu & Sutskever, 2020; Polu et al., 2022; Jiang et al.,
2021; Yeh et al., 2023; Wang et al., 2023b; Gloeckle et al.,
2023; Wang et al., 2024a; Szegedy et al., 2021; Welleck
et al., 2022; Ying et al., 2024b; Azerbayev et al., 2023b;
Thakur et al., 2025; Poesia et al., 2024; Ren et al., 2025; Lin
et al., 2025; Yang et al., 2023). Additionally, prior work has
explored theorem proving frameworks with SOTA LLMs
(Jiang et al., 2022b; Zhao et al., 2024b; Zheng et al., 2023;
Wang et al., 2023a; Huang et al., 2024; Thakur et al., 2023;
DeepMind, 2024; Trinh et al., 2024). Our next-step gen-
eration approach is largely inspired by the COPRA agent
(Thakur et al., 2023). The COPRA agent performs a GPT-4
directed depth-first search over sequences of possible tactics,
to complete a formal theorem proof. The agent additionally
implements a “progress check”, which assesses if generated
tactics progress the proof.

2.3. Automated Feedback Generation for Programming
Assignments

We draw inspiration for LeanTutor’s feedback generation
module from automated feedback generation in program-

ming classes (Suraweera & Mitrovic, 2002; D’antoni et al.,
2015; Singh et al., 2013; Suzuki et al., 2017; Head et al.,
2017; Alur et al., 2013). Since students write their code in
a programming environment where compilers enforce for-
mal correctness and autograders ensure that the code passes
test cases or return appropriate errors, autonomous tutors
can leverage the resulting error messages and metadata to
generate high-quality feedback. We build on the five hint
types identified by Suzuki et al. (2017) (transformation, lo-
cation, data, behavior, and example) that can be generated
via program synthesis to provide students feedback in an
introductory coding class.

Autoinformalization, translating formal statements into in-
formal ones (Li et al., 2024a), is a parallel task to feedback
generation. LLM-based autoinformalization has been ex-
plored with success (Wu et al., 2022; Jiang et al., 2023;
Huang et al., 2024; Azerbayev et al., 2023a; Lu et al.,
2024a).

2.4. Math Proof Tutors

We identify three categories of existing math proof tutors—
intelligent tutoring systems, LLM-based tutors, and theo-
rem prover-based tutors. Researchers have made attempts
to develop (Autexier et al., 2012; Briggle et al., 2008) or
developed intelligent tutoring systems (ITS) for math proofs
(Barnes & Stamper, 2008; Lodder et al., 2021; Bundy et al.,
2000). ITS require expert authoring of solutions or feed-
back, making them difficult to develop and scale (Dermeval
et al., 2018). LLM-based math tutors have demonstrated
benefits such as learning gains (Pardos & Bhandari, 2023)
and can maintain conversations with no harmful content
(Levonian et al., 2025). However, these LLMs fail as tutors,
for the reasons outlined in Section 1. Math educators have
used theorem provers, such as Lean, Coq (Huet et al., 1997),
and Isabelle (Paulson, 1994), to teach proofs (Avigad, 2019;
Villadsen & Jacobsen, 2021; Boldo et al., 2024; Kerjean
et al., 2024). These tools have led to unique benefits in
students’ learning of proofs (Thoma & Iannone, 2022), but
students struggle to learn the complex syntax required to
interact with most (Avigad, 2019; Buzzard, 2022; Villadsen
& Jacobsen, 2021; Karsten et al., 2023).

A more extensive review of these three categories of tutors
can be found in Appendix A.1.

3. PeanoBench Dataset
To develop and evaluate LeanTutor, we created the
PeanoBench dataset, which contains 371 total proofs. Each
proof has a human-written natural language proof and a
semantically equivalent formal language proof in Lean.
PeanoBench is derived from the original 80 Peano Arith-
metic proofs in the Natural Number Game 4 (NNG4) (Buz-

3

LeanTutor: A Lean-Verified Tutor

zard et al., 2023) (Apache-2.0 license). NNG4 organizes
proofs into “worlds”, or topic categories, such as “Addition
World”, “Multiplication World”, and so on. Worlds gener-
ally increase in difficulty. In PeanoBench, we keep proofs
organized by the original NNG4 world designations.

Unlike other datasets with NL and FL proofs (Lu et al.,
2024b; Wang et al., 2024b), PeanoBench’s informalizations
are human-written1.

To construct the dataset, we begin with a subset of 75 of the
original NNG4 proofs (we remove the attempted proof of
Fermat’s Last Theorem and proofs which contain the simp
tactic). A categorization of selected proofs by world can
be found in Appendix A.3. We annotate these 75 proofs
tactic-by-tactic, such that each Lean tactic has a correspond-
ing semantically equivalent NL back-translation (example
proofs in Figure 3 and Figure 4 in the Appendix). The
one-to-one correspondence between NL proof steps and
individual FL tactics differentiates PeanoBench from prior
datasets for Lean autoformalization that pair whole Lean
proofs with their whole NL counterpart (Lu et al., 2024b;
Wang et al., 2024b; Gao et al., 2024).

Proof annotators followed two rules while annotating. (1)
Natural language annotations are free of Lean-specific syn-
tax, premises, or tactics. (2) Natural language annotations
are written to function as standalone proofs independent of
the Lean code.

PeanoBench is comprised of three groups of proofs. The
first set of 75 proofs, derived directly from NNG4, is an-
notated by two paper authors and annotations are very de-
scriptive. We call this first set of proofs our staff solutions.
To mimic student proofs, we write two variations of each
staff solution proof, to create the second group of proofs.
When possible, we varied the proof’s Lean code (whether
this be a major logical difference or rearranging commu-
tative tactics). We then annotated the proof in either the
(1) equation-based persona or the (2) justification-based
persona (we borrow the idea of persona-based annotations
from user interface design (Cooper, 1999)). Each proof
was annotated by one of five annotators and proofread by a
different annotator. In total, we end with 75 staff solution
proofs, 75 equation-based proofs, and 75 justification-based
proofs. An example of one theorem with three proofs in
three personas can be found in Figure 3.

Incorrect proofs, the third group of proofs, are derived from
the set of equation-based and justification-based proofs. We
mimic “incorrectness” by randomly skipping a step from

1To support the laborious task of human-written informaliza-
tions, we build upon the tooling released by Welleck & Saha
(2023) and develop a suggest tactic, which displays an LLM-
generated NL informalization of the selected Lean tactic in the
Lean Infoview. Human annotators then appropriately edited these
informalizations.

the last three lines of the proof (step-skipping algorithm
pseudocode is in Algorithm 1). Proofs that are only one
line are removed from the incorrect set. The “incorrect”
step in the proof is then marked; this is the step that causes
the first Lean compiler error in the proof. In total, we end
with 73 incorrect equation-based proofs and 73 incorrect
justification-based proofs.

Staff solutions proofs are only offered as context to the
model. System performance is evaluated on the correct and
incorrect equation-based and justification-based proofs.

4. System Design
LeanTutor has three modules: an autoformalizer, a next-step
generator, and an automatic feedback generator, which are
illustrated in Fig. 1.

4.1. Autoformalizer and Proof Checker

The tutoring application offers a new frame for approach-
ing autoformalization of NL proofs into Lean, where the
autoformalizer will have access to a reference/staff solution.
Since we anticipate implementing this tutor in an under-
graduate classroom, all theorems have at least one correct
proof (staff solutions for assignments). Furthermore, the
space of all feasible definitions and theorems is known and
relatively small. However, the tutoring setting offers novel
challenges as compared to other autoformalization settings.
Specifically, tutoring requires faithful autoformalization, i.e.
one that retains the meaning of the student’s input. Even
mistakes must be correctly reflected in the formalization,
since student-written proofs may be both incomplete and
incorrect. Finally, student NL will have lots of variation
and may not have the polish of professional mathematical
writing.

Practically, we want both the semantic meaning and gran-
ularity of the student’s proof step to be reflected by the
generated Lean code. We note that the student written NL
proofs may or may not follow the proof path taken by the
staff solution. We include examples from PeanoBench of
faithful formalization of the desired style in Appendix A.2.

We autoformalize student proofs one step at a time, and
check for compliation at each step. This approach is similar
in spirit to previous works breaking autoformalization into
subtasks (Patel et al., 2023; Jiang et al., 2022b), but closest
to the work of Kulal et al. (2019). Figure 2 illustrates this
process of translating a single student proof step into Lean,
and repeating the process until the student is finished with
their proof or the student makes an error in their proof.
To support the autoformalization task, we add several key
pieces of information in-context of our model:

• Staff Solution: We provide in context one correct proof

4

LeanTutor: A Lean-Verified Tutor

Figure 2. Autoformalizer architecture. The natural langauge student step is provided to the autoformalizer, and the output is checked by
the Lean compiler. The formalization of each step is appended to formalizations of previous steps to check for correctness.

in both natural language and formal language (valid as-
sumptions in the tutoring paradigm). The input student
proof may or may not align with the staff solution. We
do not leverage this staff solution beyond providing it
in the context, but aim to do so in future work.

• Theorem and Tactic Dictionary: We organize all of
the tactics and theorems in our dataset into a dictio-
nary, where the keys are the formal Lean names of the
theorems and tactics, and the values are natural lan-
guage descriptions of each. All tactics and theorems
are equivalent (specifically a subset, as we remove a
few tactics such as simp) to those originally defined
in NNG42; we do not introduce new theorems or tac-
tics. All definitions for these theorems and tactics are
written by paper authors, based on the instructional
content in NNG4.

• 5-shot examples: We include five examples of transla-
tions of a natural language proof step and correspond-
ing Lean formalization following Murphy et al. (2024).
These five examples were selected from our existing
dataset.

Proof Checker. The input to autoformalizer module will
include both correct and incorrect proofs.

As shown in Figure 2, each autoformalizing student proof
step is appended to the Lean theorem statement and previ-
ously formalized steps. The proof is compiled, via Lean-
Interact (Poiroux et al., 2025). If the compiler output in-
dicates only unsolved goals, we assume the student
step is correct and proceed with autoformalizing remaining
steps. For any other error message (unknown tactic,
error:unexpected identifier, etc.), we assume
the student step is incorrect and mark this proof step as
erroneous. (Note: We end the autoformalization process

2For pedagogical purposes, tactics behave slightly differently
in NNG4 compared to Mathlib. Operations on the natural numbers
are defined axiomatically rather than recursively. We preserve
these changes in PeanoBench.

once the first error is located.) Furthermore, a compiler
error can indicate either an incorrect student proof step, or
an autoformalization error. This is a limitation of the system
that we intend to address in future work.

4.2. Next Step Generator

The Next Step Generator (NSG) (See Appendix A.5) is
launched when the student proof is not identified as com-
plete and correct by the autoformalizer/proof checker. The
NSG takes as input the formalized partial student proof
(with the incorrect step removed). It aims to output a Lean
tactic that can lead to a complete proof. Similar to (Thakur
et al., 2023), the module performs an LLM-directed depth-
first proof search. An LLM is instructed to generate 12
candidate tactics with a rank-ordering of their likelihood of
being a correct next step. The prompt includes a list of all
tactics/premises used in the NNG4 world of that theorem.

The 12 generated tactic candidates are appended to the ex-
isting proof and run through the Lean compiler (via Lean-
Interact (Poiroux et al., 2025)). Compiling tactics are then
filtered through a progress check, which follows Thakur
et al. (2023) and Sanchez-Stern et al. (2020). In the progress
check, we (1) ensure we are not using any theorems on a
list of forbidden theorems (we define this list to include the
theorem we are currently trying to prove and theorems that
are introduced after the theorem being proven in the order
defined by NNG4) and (2) avoid cyclic tactics that would
cause the proof-tree to revisit a goal state (Thakur et al.,
2023). We build a proof-search tree using all tactics that ful-
fill the compilation and progress check and do a depth-first
search until a complete proof is found. We bound the tree
depth to eight, which is sufficient for most of the proofs in
our case. If a proof cannot be found, we report to the fol-
lowing module that the NSG could not find an appropriate
next tactic.

5

LeanTutor: A Lean-Verified Tutor

4.3. Natural Language Feedback Generator

The feedback-generation module combines information
from previous modules to provide natural language feed-
back to the student. Specifically, the feedback generator
takes as input the student’s autoformalized proof, the Lean
compiler error message (if present), and the next Lean tactic
generated from the NSG module. To aid in error identifica-
tion, we include six common errors students have made in
inductive proofs (Baker, 1996) in our prompt (prompt found
in Appendix A.10.2).

We use this information to automatically generate three
types of feedback common in ITS (VanLehn, 2006). Sim-
ilar to the automatic feedback generated by D’antoni et al.
(2015), we (1) identify the student error and (2) generate a
hint or question that guides the student to the next step. We
also generate (3) an explicit next step the student could take,
following the paradigm of bottom-out hints (Suzuki et al.,
2017). This third part of our feedback is very similar to the
autoinformalization task in automated theorem proving (Li
et al., 2024a).

5. Experiments
We evaluate the end-to-end LeanTutor system on incorrect
proofs. In this experiment, a baseline model and LeanTu-
tor are both given incorrect proofs as input and generate
NL feedback as output. Human evaluators then assess the
generated feedback across four axes: Accuracy, Relevance,
Readability, and Answer Leakage, on a 5-point scale. These
experiments are detailed in section 5.4. To understand the
impact of key innovations in our autoformalizer, namely
the presence of staff solutions and the step-by-step autofor-
malization approach, we perform ablations on our Autofor-
malizer. To assess our model’s performance at the faithful
autoformalization task, we present a novel metric. These ex-
periments are explained in section 5.2. All experiments cost
less than $4.00 to run on gpt-4o-mini-2024-07-18.
We expect that the autoformalization performance can be
boosted by using other more powerful LLMs. Since the fo-
cus of our paper is presenting a framework for the LeanTutor
model, we did not optimize over different LLMs.

5.1. Metric for Faithful Autoformalization

A few metrics have been developed to assess faithful aut-
oformalization (Murphy et al., 2024; Liu et al., 2025; Lin
et al., 2025; Li et al., 2024b). Li et al. (2024b) verify Isabelle
formalizations and rely on Sledgehammer, Lin et al. (2025)
use an LLM-as-a-Judge, Murphy et al. (2024) use an SMT
solver to prove equivalence between two statements, and
Liu et al. (2025) define a new equivalence relation: bidirec-
tional extended definitional equivalence (BEq). We prefer
not to use the LLM-as-a-judge paradigm (Lin et al., 2025)

due to the potential for hallucinations. Both the measures
proposed by Murphy et al. (2024); Liu et al. (2025) are too
coarse for our use case.

We develop a metric that performs relaxed exact matching.
Our metric has two phases. Firstly, exact tactic-matching is
attempted in which the generated tactic string is matched
with the ground truth tactic string, similar to the variable
transformations implemented by Jain et al. (2022) for pro-
gram synthesis. If string matching fails, we move to the
second phase: state-matching. In state-matching we com-
pare the two tactics by checking if the proof states (the proof
state rendered once the predicted and ground truth tactics
have been appended to the existing predicted and ground
truth proofs respectively) are syntactically identical up to
variable naming. We call our metric relaxed, because we
accommodate differing variable names between the input
and ground truth proofs. To do this, proof states are seg-
mented by goal and/or casework and we locate all variables
through a custom Python implementation of Lean Identi-
fiers (Lean Community, 2024). Variables in all goal state
segments are standardized and string matching can ensue.
If this check fails as well, we deem the predicted tactic as
not a faithful autoformalization of the input NL proof stem.
More details on metric implementation and pseudocode can
be found in Appendix A.7.

5.2. Autoformalizer Evaluation

For our baseline model, we adapt the autoformalization
prompt proposed by Murphy et al. (2024) to our dataset.
Their autoformalization prompt was designed for a small
dataset use case in which all tactics/premises can be pro-
vided in-context; this is appropriate for PeanoBench. Our
baseline prompt contains the theorem statement in both NL
and FL, the tactic and theorem dictionaries, five examples
of the formalization task, and the student input that needs to
be formalized.

For correct proof formalizations, accuracies at both the tactic
and proof levels were measured. Tactic-level accuracies
were determined using the metric described above. Proof-
level accuracy was measured by verifying all tactics in a
given proof were correctly autoformalized. For incorrect
proof formalizations, we report only proof-level accuracy.
Thus, for incorrect proofs a formalization is considered
successful if (1) all correct proof steps until the first incorrect
step were formalized correctly and (2) formalization of the
incorrect proof step leads to a Lean compiler error.

We report results in Table 1. Tactic-level results are out of
900 total tactics, correct proofs results are out of 150 total
proofs, and incorrect proof results are out of 146 proofs.
The Baseline + Staff Solution model displays superior per-
formance in all categories compared to the Baseline model.

6

LeanTutor: A Lean-Verified Tutor

Table 1. Autoformalization performance per experiment across correct and incorrect proofs. Autoformalization is done step-by-step in the
Baseline and Baseline + Staff Solution experiments. In the experiments labeled with (whole proof), the whole NL proof is autoformalized
into Lean code at once. Binomial error bars were computed using Jeffreys prior with a 95% confidence interval.

Experiment Correct Tactics Correct Proofs Incorrect Proofs

Baseline 32.9% ± 3.1% 6.7% ± 4.0% 14.4% ± 5.7%
Baseline + Staff Solution 56.8% ± 3.2% 18.0% ± 6.1% 30.1% ± 7.4%
Baseline (whole proof) 28.2% ± 2.9% 10.7% ± 4.9% 13.0% ± 5.4%
Baseline + Staff Solution (whole proof) 51.8% ± 3.3% 26.7% ± 7.0% 21.9% ± 6.7%

We find that the model relies heavily on the staff solution in
its context in generating the formalization. In 89% of correct
tactic formalizations, the tactic predicted was in the staff
solution (meaning that the tactic was present somewhere
in the staff solution provided in context, but possibly in
a different position than the predicted tactic). When the
autoformalization was wrong, the model copied a tactic
in the staff-solution, instead of predicting the real tactic
corresponding to the NL input, in 51% of cases. When
the expected formalization was not in the staff solution,
LeanTutor was able to correctly formalize the NL proof step
in 32% of cases. These results demonstrate a limitation of
the current approach’s ability to autoformalize NL proofs
whose formalization does not correspond to the formalized
staff solution provided in-context.

We compare our autoformalizer model to one ablation:
generating whole proofs all at once instead of step-by-
step generations (experiments labeled with (whole proof)
in Table 1). With this approach, the autoformalized
whole proof does not necessarily contain the same num-
ber of tactics as our ground truth whole proof. We trun-
cate proof lengths to min(len(generated proof),
len(ground truth proof)) (the length of a proof
referring to the number of tactics in the proof) and align
both proofs to each other tactic-by-tactic. We compute
tactic-level and proof-level accuracy in the same manner de-
scribed above3. Considering the models with staff solutions,
the step-by-step autoformalization approach has compara-
ble performance to the whole proof autoformalization on
correct proofs. However, the step-by-step autoformalization
outperforms the whole proof approach on incorrect proofs,
by 8%. As many incoming proofs to a tutoring system
will be incorrect, better performance on incorrect proofs vs.
correct proofs is advantageous.

3Our metric is imperfect for evaluating generated whole proofs.
Thus, we also evaluate how many generated whole proofs (in
the correct proof experiments) also completed successfully, with
the Lean compiler displaying no goals. The Baseline (whole
proof) model produced 28 compiling proofs and the Baseline +
Staff Solution model (whole proof) produced 50 compiling proofs.
Note, that a complete Lean proof doesn’t serve as an appropriate
measure for faithful autoformalization.

Prompts for step-by-step and whole proof generation can
be found in Appendix A.10.1. We performed additional
experiments, evaluating the impact of adding the student’s
natural language proof and Lean goal state information in-
context of the autoformalizer. These results can be found in
Appendix A.6.

5.3. Metric for LeanTutor Feedback

In the system-level evaluation of LeanTutor, a student NL
proof is input and NL feedback is generated as output. We
qualitatively evaluate the generated outputs on four axes:
Accuracy, Relevance, Readability, and Answer Leakage, mo-
tivated by the metrics used in Mitra et al. (2024); Mozafari
et al. (2025); Phung et al. (2024). We evaluate each of our
three categories of feedback (error identification, hint/ques-
tion generation and explicit next step) along each axis using
a 5-point scale.

We define what it means to receive the highest rating of
5 for each axis below. A score of 1 indicates complete
disagreement with the following definitions.

• Accuracy: The generated error/hint/next-step is cor-
rectly and accurately identified (similar to Factuality
axis of Mitra et al. (2024) and HCorrect of Phung et al.
(2024).)

• Relevance: The generated error/hint/next step is rele-
vant to the error/proof following Mitra et al. (2024);
Mozafari et al. (2025).

• Readability: The generated feedback is coherent (Mi-
tra et al., 2024; Phung et al., 2024).

• Answer Leakage: The generated feedback does not
disclose the answer in any way (Mozafari et al., 2025;
Phung et al., 2024).

5.4. LeanTutor Evaluation

We evaluate our full system on incorrect proofs and “cold-
start” proofs, a proof in which the student does not know
how to start the proof. Results for the “cold-start” proofs
can be found in Appendix A.9. Across our experiments, we

7

LeanTutor: A Lean-Verified Tutor

Feedback Type Accuracy Relevance Readability Answer Leakage

Baseline Error Identification 2.6 2.7 4.8 4.7
LeanTutor Error Identification 3.7 3.6 4.7 4.9

Baseline Hint/Question 2.9 2.8 4.8 4.6
LeanTutor Hint/Question 4.0 4.1 4.5 4.4

Baseline Next Step 2.8 2.8 4.6 1.6
LeanTutor Next Step 3.9 3.9 4.7 1.1

Table 2. Average (across all proofs) scores of generated feedback from baseline and LeanTutor experiments on 21 incorrect proofs. Only
proofs that were correctly autoformalized were selected for this evaluation. The generated feedback (error identification, hint/question,
next step) was all scored on four qualitative axes on a scale of 1-5 in which a score closer to 5 indicates desired performance.

use gpt-4o-mini-2024-07-18 (temperature = 0.0).
Feedback evaluation was conducted by three of the paper
authors, all of whom are undergraduate students with prior
teaching experience. All evaluators discussed and came to
an agreement on the scores for several proofs. After jointly
calibrating scores on several proofs, output for proof was
evaluated by a single author.

Incorrect Proofs We evaluate our end-to-end system on
a subset of incorrect proofs from PeanoBench. We only
consider incorrect proofs that were “successfully autofor-
malized” by the LeanTutor autoformalizer. Of the 44 proofs
(results in Table 1), we randomly selected one to three proofs
per world, totaling 21 proofs. We exclude proofs for evalua-
tion which did not contain a Lean compiler error, but were
simply incomplete proofs. These proofs are passed through
our Next Step Generator and Feedback Generator modules.
All three types of generated feedback are evaluated by paper
authors. We compare to a simple baseline, providing the
LLM with the erroneous student proof and prompting the
model to generate the three feedback types. An example
of LeanTutor’s generated hints (and their evaluations) for
one incorrect proof can be found in Appendix A.8. The
prompts for LeanTutor’s feedback generation module and
the baseline model can be found in Appendices A.10.2 and
A.10.3 respectively.

Our system-level evaluation (Table 2) indicates LeanTutor
outperforms the baseline model on the Accuracy and Rele-
vance metrics. Performance on the Readability and Answer
Leakage metrics are comparable for both models. (Note:
We expect high answer leakage in the scores for “next step”
feedback; a score of 1 is expected).

6. Limitations
LeanTutor presents a proof-of-concept design for a formally-
verified mathematical proof tutoring system. Our work is
a first prototype for such a system and leaves many open
questions for future research. Our autoformalization and
proof-search strategies are focused on a small dataset, which

is acceptable for our use case, but as a result, some aspects
of our approach do not easily generalize.

First, we are limited because of two major assumptions in
our system design. The first is assuming a one-to-one corre-
spondence between NL proof steps and FL tactics, which
does not scale to more complicated proofs as the granularity
of informal and formal mathematics is generally quite dif-
ferent. The second assumption is the presence of an already
formalized staff solution, which could be a significant bur-
den on an instructor in the absence of a good autoformalizer.
Similarly, our metric for faithful autoformalization applies
only when ground truth formalizations exist. We aim to
explore approaches that only use an informal staff solution
in future work.

A second set of limitations comes from our dataset construc-
tion. (1) While students commonly miss steps in writing
proofs, there are several other types of errors that are not
captured in the incorrect proofs dataset. (2) All of the natural
language in PeanoBench has been written by paper authors,
as opposed to non-author students (the varied personas are
an earnest effort to incorporate realistic natural language
variations).

Finally, a critical limitation in our system design is that if
autoformalization fails, we cannot proceed in responding to
the student. As a result, in our evaluation, we did not evalu-
ate end-to-end system performance on proofs with incorrect
autoformalization. Relatedly, we assume a student proof is
incorrect if the Lean compiler errors. However, errors may
also result from incorrect autoformalization, which could
lead to false positives (though spot checking revealed this
was not a big issue).

7. Conclusions and Future Work
Our hope is that LeanTutor’s approach of combining state-
of-the-art LLMs with the Lean theorem prover supports
students’ self-learning of math proofs. Our aim is to eventu-
ally deploy LeanTutor in large undergraduate mathematics
classes such as discrete math and linear algebra. However,

8

LeanTutor: A Lean-Verified Tutor

all LeanTutor modules require much improvement before
we can realize this goal. In particular, there is significant
room to more effectively use both the informal and formal
versions of the staff-solution proofs in the Autoformalizer
and NSG. For a large classroom deployment, another fu-
ture direction entails exploring small models that can run
on-device, similar to the work of Koutcheme et al. (2025)
on programming feedback.

The challenges to be overcome to develop AI-math-tutors
are very similar to the challenges in developing general
AI-mathematics-assistants. Riehl (2025) provides a list of
teaching tasks that a machine that can truly understand math-
ematics should be able to perform, such as generating ap-
propriate examples, grading complex proofs and identifying
main ideas in a proof. Achieving these teaching tasks is a
stepping stone to building more general mathematics ma-
chines that are understandable (clearly expressed via known
algorithms), verifiable (via software or proof assistant), and
well-sourced (with references to human-generated content)
(Riehl, 2025). We hope that future work on systems such as
LeanTutor will take steps in these directions.

Acknowledgments
The authors would like to acknowledge support from: NSF
CAREER grant ECCS-2240031, the 2023 CITRIS Institute
Seed Grant, and the UC Berkeley Instructional Technology
and Innovation MicroGrant Program.

Impact Statement
This paper presents work whose goal is to advance the fields
of AI for Math and AI for Education.

References
Alur, R., D’Antoni, L., Gulwani, S., and Kini, D. Automated

grading of DFA constructions. In IJCAI’13 Proceedings
of the Twenty-Third international joint conference on
Artificial Intelligence, pp. 1976–1982, 2013.

Anthropic. Anthropic education report: How university
students use claude, April 2025. URL https://www.
anthropic.com/news/anthropic-educati
on-report-how-university-students-use
-claude.

Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D.,
Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma,
N., et al. A general language assistant as a laboratory for
alignment. arXiv preprint arXiv:2112.00861, 2021.

Autexier, S., Dietrich, D., and Schiller, M. Towards an
intelligent tutor for mathematical proofs. arXiv preprint
arXiv:1202.4828, 2012.

Avigad, J. Learning logic and proof with an interactive the-
orem prover. Proof technology in mathematics research
and teaching, pp. 277–290, 2019.

Azerbayev, Z., Piotrowski, B., Schoelkopf, H., Ayers, E. W.,
Radev, D., and Avigad, J. Proofnet: Autoformalizing and
formally proving undergraduate-level mathematics. arXiv
preprint arXiv:2302.12433, 2023a.

Azerbayev, Z., Schoelkopf, H., Paster, K., Santos, M. D.,
McAleer, S., Jiang, A. Q., Deng, J., Biderman, S., and
Welleck, S. Llemma: An open language model for math-
ematics. arXiv preprint arXiv:2310.10631, 2023b.

Aziz, M., Chi, H., Tibrewal, A., Grossman, M., and Sarkar,
V. Auto-grading for parallel programs. In Proceedings
of the Workshop on Education for High-Performance
Computing, pp. 1–8, 2015.

Baker, J. D. Students’ difficulties with proof by mathe-
matical induction. In Annual Meeting of the American
Educational Research Association, April 1996.

Balunović, M., Dekoninck, J., Jovanović, N., Petrov,
I., and Vechev, M. Mathconstruct: Challenging llm
reasoning with constructive proofs. arXiv preprint
arXiv:2502.10197, 2025.

Barnes, T. and Stamper, J. Toward automatic hint generation
for logic proof tutoring using historical student data. In
International conference on intelligent tutoring systems,
pp. 373–382. Springer, 2008.

Billingsley, W. and Robinson, P. Student proof exercises
using mathstiles and isabelle/hol in an intelligent book.
Journal of Automated Reasoning, 39:181–218, 2007.

Boldo, S., Clément, F., Hamelin, D., Mayero, M., and Rous-
selin, P. Teaching divisibility and binomials with coq.
arXiv preprint arXiv:2404.12676, 2024.

Briggle, A. et al. Towards an intelligent tutoring system
for propositional proof construction. Current Issues in
Computing and Philosophy, 175:145, 2008.

Bundy, A., Moore, J., and Zinn, C. An intelligent tutoring
system for induction proofs. In CADE-17 Workshop on
Automated Deduction in Education, pp. 4–13, 2000.

Buzzard, K. Teaching formalisation to mathematics under-
graduates, July 2022. URL https://xenaproject.
wordpress.com/2022/07/29/teaching-for
malisation-to-mathematics-undergradua
tes/.

Buzzard, K., Eugster, J., Pedramfar, M., Bentkamp, A., Mas-
sot, P., Carey, S., Farabella, I., and Browne, A. NNG4:
Natural number game in lean 4, 2023. URL https://
github.com/leanprover-community/NNG4.

9

https://www.anthropic.com/news/anthropic-education-report-how-university-students-use-claude
https://www.anthropic.com/news/anthropic-education-report-how-university-students-use-claude
https://www.anthropic.com/news/anthropic-education-report-how-university-students-use-claude
https://www.anthropic.com/news/anthropic-education-report-how-university-students-use-claude
https://xenaproject.wordpress.com/2022/07/29/teaching-formalisation-to-mathematics-undergraduates/
https://xenaproject.wordpress.com/2022/07/29/teaching-formalisation-to-mathematics-undergraduates/
https://xenaproject.wordpress.com/2022/07/29/teaching-formalisation-to-mathematics-undergraduates/
https://xenaproject.wordpress.com/2022/07/29/teaching-formalisation-to-mathematics-undergraduates/
https://github.com/leanprover-community/NNG4
https://github.com/leanprover-community/NNG4

LeanTutor: A Lean-Verified Tutor

Cao, J., Lu, Y., Li, M., Ma, H., Li, H., He, M., Wen, C., Sun,
L., Zhang, H., Qin, S., et al. From informal to formal–
incorporating and evaluating LLMs on natural language
requirements to verifiable formal proofs. arXiv preprint
arXiv:2501.16207, 2025.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Petroski Such, F., Cum-
mings, D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak,
N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saun-
ders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight, M.,
Brundage, M., Murati, M., Mayer, K., Welinder, P., Mc-
Grew, B., Amodei, D., McCandlish, S., Sutskever, I.,
and Zaremba, W. Evaluating large language models
trained on code. CoRR, abs/2107.03374, 2021. URL
https://arxiv.org/abs/2107.03374.

Cooper, A. The inmates are running the asylum. Springer,
1999.

Corbett, A. T., Koedinger, K. R., and Anderson, J. R. Intelli-
gent tutoring systems. In Handbook of human-computer
interaction, pp. 849–874. Elsevier, 1997.

Cunningham, G., Bunescu, R. C., and Juedes, D. Towards
autoformalization of mathematics and code correctness:
Experiments with elementary proofs. arXiv preprint
arXiv:2301.02195, 2023.

D’antoni, L., Kini, D., Alur, R., Gulwani, S., Viswanathan,
M., and Hartmann, B. How can automatic feedback
help students construct automata? ACM Transactions
on Computer-Human Interaction (TOCHI), 22(2):1–24,
2015.

DeepMind, G. AI achieves silver-medal standard solving In-
ternational Mathematical Olympiad problems, July 2024.
URL https://deepmind.google/discover
/blog/ai-solves-imo-problems-at-silve
r-medal-level/.

DeNero, J. and Martinis, S. Teaching composition quality
at scale: human judgment in the age of autograders. In
Proceedings of the 45th ACM technical symposium on
Computer science education, pp. 421–426, 2014.

Dermeval, D., Paiva, R., Bittencourt, I. I., Vassileva, J.,
and Borges, D. Authoring tools for designing intelligent
tutoring systems: a systematic review of the literature. In-
ternational Journal of Artificial Intelligence in Education,
28:336–384, 2018.

Gadgil, S., Tadipatri, A. R., Agrawal, A., Narayanan, A.,
and Goyal, N. Towards automating formalisation of the-
orem statements using large language models. In 36th
Conference on Neural Information Processing Systems
(NeurIPS 2022) Workshop on MATH-AI, 2022.

Gao, G., Wang, Y., Jiang, J., Gao, Q., Qin, Z., Xu, T., and
Dong, B. Herald: A natural language annotated lean 4
dataset. arXiv preprint arXiv:2410.10878, 2024.

Gloeckle, F., Roziere, B., Hayat, A., and Synnaeve, G.
Temperature-scaled large language models for lean proof-
step prediction. In The 3rd Workshop on Mathematical
Reasoning and AI at NeurIPS, volume 23, pp. 33, 2023.

Goetze, C. The real reason why students are using ai to
avoid learning. Time, April 2025. URL https://ti
me.com/7276807/why-students-using-a
i-avoid-learning/.

Gupta, A., Reddig, J., Calo, T., Weitekamp, D., and
MacLellan, C. J. Beyond final answers: Evaluating
large language models for math tutoring. arXiv preprint
arXiv:2503.16460, 2025.

Head, A., Glassman, E., Soares, G., Suzuki, R., Figueredo,
L., D’Antoni, L., and Hartmann, B. Writing reusable code
feedback at scale with mixed-initiative program synthesis.
In Proceedings of the Fourth (2017) ACM Conference on
Learning@ Scale, pp. 89–98, 2017.

Hecht, R., Liu, R., Zenke, C., and Malan, D. J. Distribut-
ing, collecting, and autograding assignments with github
classroom. In Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 2, pp.
1179–1179, 2023.

Hendriks, M., Kaliszyk, C., Raamsdonk, F. v., and Wiedijk,
F. Teaching logic using a state-of-the-art proof assistant.
2010.

Huang, Y., Lin, X., Liu, Z., Cao, Q., Xin, H., Wang, H.,
Li, Z., Song, L., and Liang, X. Mustard: Mastering uni-
form synthesis of theorem and proof data. arXiv preprint
arXiv:2402.08957, 2024.

Huet, G., Kahn, G., and Paulin-Mohring, C. The coq proof
assistant a tutorial. Rapport Technique, 178:113, 1997.

Iannone, P. and Thoma, A. Interactive theorem provers for
university mathematics: an exploratory study of students’
perceptions. International Journal of Mathematical Ed-
ucation in Science and Technology, 55(10):2622–2644,
2024.

Jain, N., Vaidyanath, S., Iyer, A., Natarajan, N.,
Parthasarathy, S., Rajamani, S., and Sharma, R. Jig-
saw: Large language models meet program synthesis.

10

https://arxiv.org/abs/2107.03374
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://time.com/7276807/why-students-using-ai-avoid-learning/
https://time.com/7276807/why-students-using-ai-avoid-learning/
https://time.com/7276807/why-students-using-ai-avoid-learning/

LeanTutor: A Lean-Verified Tutor

In Proceedings of the 44th International Conference on
Software Engineering, pp. 1219–1231, 2022.

Jiang, A. Q., Li, W., Han, J. M., and Wu, Y. LISA: Language
models of ISAbelle proofs. In 6th Conference on Artificial
Intelligence and Theorem Proving, pp. 378–392, 2021.

Jiang, A. Q., Li, W., Tworkowski, S., Czechowski, K.,
Odrzygóźdź, T., Miłoś, P., Wu, Y., and Jamnik, M. Thor:
Wielding hammers to integrate language models and auto-
mated theorem provers. Advances in Neural Information
Processing Systems, 35:8360–8373, 2022a.

Jiang, A. Q., Welleck, S., Zhou, J. P., Li, W., Liu, J., Jamnik,
M., Lacroix, T., Wu, Y., and Lample, G. Draft, sketch,
and prove: Guiding formal theorem provers with informal
proofs. arXiv preprint arXiv:2210.12283, 2022b.

Jiang, A. Q., Li, W., and Jamnik, M. Multilingual mathemat-
ical autoformalization. arXiv preprint arXiv:2311.03755,
2023.

Karsten, N., Jacobsen, F. K., Eiken, K. J., Nestmann, U., and
Villadsen, J. Proofbuddy: A proof assistant for learning
and monitoring. arXiv preprint arXiv:2308.06970, 2023.

Keenan, M. and Omar, C. Learner-centered design criteria
for classroom proof assistants. In Proceedings of 5th
Workshop on Human Aspects of Types and Reasoning
Assistants (HATRA). Available at https://api. semantic-
scholar. org/CorpusID, volume 273399313, 2024.

Kerjean, M., Mayero, M., and Rousselin, P. Maths with coq
in l1, a pedagogical experiment. In 13th International
Workshop on Theorem proving components for Educa-
tional software-ThEdu 2024, 2024.

Koutcheme, C., Dainese, N., Sarsa, S., Hellas, A., Leinonen,
J., Ashraf, S., and Denny, P. Evaluating language models
for generating and judging programming feedback. In
Proceedings of the 56th ACM Technical Symposium on
Computer Science Education V. 1, pp. 624–630, 2025.

Kulal, S., Pasupat, P., Chandra, K., Lee, M., Padon, O.,
Aiken, A., and Liang, P. S. Spoc: Search-based pseu-
docode to code. Advances in Neural Information Process-
ing Systems, 32, 2019.

Lean Community, T. Defining new syntax — identifiers.
https://lean-lang.org/doc/reference/
latest/Notations-and-Macros/Defining
-New-Syntax/, 2024. https://lean-lang.or
g/doc/reference/latest/Notations-and
-Macros/Defining-New-Syntax/#--tech-t
erm-Identifiers.

Levonian, Z., Henkel, O., Li, C., Postle, M.-E., et al. Design-
ing safe and relevant generative chats for math learning

in intelligent tutoring systems. Journal of Educational
Data Mining, 17(1), 2025.

Li, Z., Sun, J., Murphy, L., Su, Q., Li, Z., Zhang, X., Yang,
K., and Si, X. A survey on deep learning for theorem
proving. In First Conference on Language Modeling,
2024a.

Li, Z., Wu, Y., Li, Z., Wei, X., Zhang, X., Yang, F., and Ma,
X. Autoformalize mathematical statements by symbolic
equivalence and semantic consistency. arXiv preprint
arXiv:2410.20936, 2024b.

Lin, Y., Tang, S., Lyu, B., Wu, J., Lin, H., Yang, K., Li, J.,
Xia, M., Chen, D., Arora, S., et al. Goedel-Prover: A fron-
tier model for open-source automated theorem proving.
arXiv preprint arXiv:2502.07640, 2025.

Liu, Q., Zheng, X., Lu, X., Cao, Q., and Yan, J. Rethinking
and improving autoformalization: Towards a faithful met-
ric and a dependency retrieval-based approach. In The
Thirteenth International Conference on Learning Repre-
sentations, 2025. URL https://openreview.net
/forum?id=hUb2At2DsQ.

Lodder, J., Heeren, B., Jeuring, J., and Neijenhuis, W. Gen-
eration and use of hints and feedback in a hilbert-style
axiomatic proof tutor. International Journal of Artificial
Intelligence in Education, 31:99–133, 2021.

Lu, J., Wan, Y., Huang, Y., Xiong, J., Liu, Z., and Guo, Z.
Formalalign: Automated alignment evaluation for auto-
formalization. arXiv preprint arXiv:2410.10135, 2024a.

Lu, J., Wan, Y., Liu, Z., Huang, Y., Xiong, J., Liu, C., Shen,
J., Jin, H., Zhang, J., Wang, H., et al. Process-driven auto-
formalization in lean 4. arXiv preprint arXiv:2406.01940,
2024b.

Massot, P. Teaching mathematics using lean and controlled
natural language. In 15th International Conference on In-
teractive Theorem Proving (ITP 2024), pp. 27–1. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2024.

mathlib Community, T. The lean mathematical library. In
Proceedings of the ACM SIGPLAN International Con-
ference on Certified Programs and Proofs (CPP). ACM,
2020.

Maurya, K. K., Srivatsa, K., Petukhova, K., and Kochmar, E.
Unifying ai tutor evaluation: An evaluation taxonomy for
pedagogical ability assessment of llm-powered ai tutors.
arXiv preprint arXiv:2412.09416, 2024.

Messer, M., Brown, N. C., Kölling, M., and Shi, M. Au-
tomated grading and feedback tools for programming
education: A systematic review. ACM Transactions on
Computing Education, 24(1):1–43, 2024.

11

https://lean-lang.org/doc/reference/latest/Notations-and-Macros/Defining-New-Syntax/
https://lean-lang.org/doc/reference/latest/Notations-and-Macros/Defining-New-Syntax/
https://lean-lang.org/doc/reference/latest/Notations-and-Macros/Defining-New-Syntax/
https://lean-lang.org/doc/reference/latest/Notations-and-Macros/Defining-New-Syntax/#--tech-term-Identifiers
https://lean-lang.org/doc/reference/latest/Notations-and-Macros/Defining-New-Syntax/#--tech-term-Identifiers
https://lean-lang.org/doc/reference/latest/Notations-and-Macros/Defining-New-Syntax/#--tech-term-Identifiers
https://lean-lang.org/doc/reference/latest/Notations-and-Macros/Defining-New-Syntax/#--tech-term-Identifiers
https://openreview.net/forum?id=hUb2At2DsQ
https://openreview.net/forum?id=hUb2At2DsQ

LeanTutor: A Lean-Verified Tutor

Miller, P. and DiCerbo, K. LLM based math tutoring: Chal-
lenges and dataset, 2024.

Mitra, C., Miroyan, M., Jain, R., Kumud, V., Ranade, G.,
and Norouzi, N. RetLLM-E: retrieval-prompt strategy
for question-answering on student discussion forums. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pp. 23215–23223, 2024.

Mitra, J. Studying the impact of auto-graders giving imme-
diate feedback in programming assignments. In Proceed-
ings of the 54th ACM Technical Symposium on Computer
Science Education V. 1, pp. 388–394, 2023.

Moura, L. d. and Ullrich, S. The lean 4 theorem prover
and programming language. In Automated Deduction–
CADE 28: 28th International Conference on Automated
Deduction, Virtual Event, July 12–15, 2021, Proceedings
28, pp. 625–635. Springer, 2021.

Mozafari, J., Piryani, B., Abdallah, A., and Jatowt, A.
HintEval: A comprehensive framework for hint gen-
eration and evaluation for questions. arXiv preprint
arXiv:2502.00857, 2025.

Murphy, L., Yang, K., Sun, J., Li, Z., Anandkumar, A.,
and Si, X. Autoformalizing Euclidean geometry. arXiv
preprint arXiv:2405.17216, 2024.

Omar, C., Voysey, I., Chugh, R., and Hammer, M. A. Live
functional programming with typed holes. Proceedings
of the ACM on Programming Languages, 3(POPL):1–32,
2019.

OpenAI. GPT-4 technical report, 2023. URL https:
//arxiv.org/abs/2303.08774.

OpenAI. College students and chatgpt adoption in the us,
February 2025. URL https://openai.com/glo
bal-affairs/college-students-and-cha
tgpt/.

Pardos, Z. A. and Bhandari, S. Learning gain differences
between ChatGPT and human tutor generated algebra
hints. arXiv preprint arXiv:2302.06871, 2023.

Park, H. and Manley, E. D. Using ChatGPT as a proof assis-
tant in a mathematics pathways course. The Mathematical
Education, 63(2):139–163, 2024.

Patel, N., Saha, R., and Flanigan, J. A new approach towards
autoformalization. arXiv preprint arXiv:2310.07957,
2023.

Paulson, L. C. Isabelle: A generic theorem prover. Springer,
1994.

Phung, T., Pădurean, V.-A., Singh, A., Brooks, C., Cam-
bronero, J., Gulwani, S., Singla, A., and Soares, G.
Automating human tutor-style programming feedback:
Leveraging gpt-4 tutor model for hint generation and gpt-
3.5 student model for hint validation. In Proceedings of
the 14th learning analytics and knowledge conference,
pp. 12–23, 2024.

Poesia, G., Broman, D., Haber, N., and Goodman, N. Learn-
ing formal mathematics from intrinsic motivation. Ad-
vances in Neural Information Processing Systems, 37:
43032–43057, 2024.

Poiroux, A., Kuncak, V., and Bosselut, A. Leaninteract: A
python interface for lean 4, 2025. URL https://gi
thub.com/augustepoiroux/LeanInteract.

Polu, S. and Sutskever, I. Generative language model-
ing for automated theorem proving. arXiv preprint
arXiv:2009.03393, 2020.

Polu, S., Han, J. M., Zheng, K., Baksys, M., Babuschkin, I.,
and Sutskever, I. Formal mathematics statement curricu-
lum learning. arXiv preprint arXiv:2202.01344, 2022.

Ren, Z., Shao, Z., Song, J., Xin, H., Wang, H., Zhao, W.,
Zhang, L., Fu, Z., Zhu, Q., Yang, D., et al. Deepseek-
prover-v2: Advancing formal mathematical reasoning via
reinforcement learning for subgoal decomposition. arXiv
preprint arXiv:2504.21801, 2025.

Riehl, E. Testing artificial mathematical intelligence. http
s://emilyriehl.github.io/files/testi
ng.pdf, 2025.

Sanchez-Stern, A., Alhessi, Y., Saul, L., and Lerner, S. Gen-
erating correctness proofs with neural networks. In Pro-
ceedings of the 4th ACM SIGPLAN International Work-
shop on Machine Learning and Programming Languages,
pp. 1–10, 2020.

Scarfe, P., Watcham, K., Clarke, A., and Roesch, E. A
real-world test of artificial intelligence infiltration of a
university examinations system: A “Turing Test” case
study. PloS one, 19(6):e0305354, 2024.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang,
H., Zhang, M., Li, Y., Wu, Y., et al. Deepseekmath: Push-
ing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Sieg, W. The AProS project: Strategic thinking & computa-
tional logic. Logic Journal of the IGPL, 15(4):359–368,
2007.

Singh, R., Gulwani, S., and Solar-Lezama, A. Automated
feedback generation for introductory programming as-
signments. In Proceedings of the 34th ACM SIGPLAN

12

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://openai.com/global-affairs/college-students-and-chatgpt/
https://openai.com/global-affairs/college-students-and-chatgpt/
https://openai.com/global-affairs/college-students-and-chatgpt/
https://github.com/augustepoiroux/LeanInteract
https://github.com/augustepoiroux/LeanInteract
https://emilyriehl.github.io/files/testing.pdf
https://emilyriehl.github.io/files/testing.pdf
https://emilyriehl.github.io/files/testing.pdf

LeanTutor: A Lean-Verified Tutor

conference on Programming language design and imple-
mentation, pp. 15–26, 2013.

Sonkar, S., Ni, K., Chaudhary, S., and Baraniuk, R. G.
Pedagogical alignment of large language models. arXiv
preprint arXiv:2402.05000, 2024.

Sufrin, B. and Bornat, R. Jnj in Jape. 1997.

Suraweera, P. and Mitrovic, A. KERMIT: A constraint-
based tutor for database modeling. In Intelligent Tutoring
Systems: 6th International Conference, ITS 2002 Biar-
ritz, France and San Sebastian, Spain, June 2–7, 2002
Proceedings 6, pp. 377–387. Springer, 2002.

Suzuki, R., Soares, G., Glassman, E., Head, A., D’Antoni,
L., and Hartmann, B. Exploring the design space of auto-
matically synthesized hints for introductory programming
assignments. In Proceedings of the 2017 CHI Confer-
ence Extended Abstracts on Human Factors in Computing
Systems, pp. 2951–2958, 2017.

Szegedy, C., Rabe, M., and Michalewski, H. Retrieval-
augmented proof step synthesis. In Conference on Artifi-
cial Intelligence and Theorem Proving (AITP), volume 4,
2021.

Tarrach, G., Jiang, A. Q., Raggi, D., Li, W., and Jamnik, M.
More details, please: Improving autoformalization with
more detailed proofs. In AI for Math Workshop@ ICML
2024, 2024.

Thakur, A., Tsoukalas, G., Wen, Y., Xin, J., and Chaud-
huri, S. An in-context learning agent for formal theorem-
proving. arXiv preprint arXiv:2310.04353, 2023.

Thakur, A., Tsoukalas, G., Durrett, G., and Chaudhuri,
S. ProofWala: Multilingual proof data synthesis and
theorem-proving. arXiv e-prints, pp. arXiv–2502, 2025.

Thoma, A. and Iannone, P. Learning about proof with the
theorem prover lean: the abundant numbers task. Inter-
national Journal of Research in Undergraduate Mathe-
matics Education, pp. 1–30, 2022.

Tonga, J. C., Clement, B., and Oudeyer, P.-Y. Automatic
generation of question hints for mathematics problems
using large language models in educational technology.
arXiv preprint arXiv:2411.03495, 2024.

Trinh, T. H., Wu, Y., Le, Q. V., He, H., and Luong, T. Solv-
ing olympiad geometry without human demonstrations.
Nature, 625(7995):476–482, 2024.

Tyen, G., Mansoor, H., Cărbune, V., Chen, Y. P., and Mak, T.
LLMs cannot find reasoning errors, but can correct them
given the error location. In Findings of the Association for
Computational Linguistics ACL 2024, pp. 13894–13908,
2024.

VanLehn, K. The behavior of tutoring systems. Interna-
tional journal of artificial intelligence in education, 16
(3):227–265, 2006.

Villadsen, J. and Jacobsen, F. K. Using isabelle in two
courses on logic and automated reasoning. In Formal
Methods Teaching Workshop, pp. 117–132. Springer,
2021.

Wang, H., Xin, H., Zheng, C., Li, L., Liu, Z., Cao, Q.,
Huang, Y., Xiong, J., Shi, H., Xie, E., et al. Lego-prover:
Neural theorem proving with growing libraries. arXiv
preprint arXiv:2310.00656, 2023a.

Wang, H., Yuan, Y., Liu, Z., Shen, J., Yin, Y., Xiong, J., Xie,
E., Shi, H., Li, Y., Li, L., et al. Dt-solver: Automated
theorem proving with dynamic-tree sampling guided by
proof-level value function. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 12632–12646,
2023b.

Wang, H., Xin, H., Liu, Z., Li, W., Huang, Y., Lu, J., Yang,
Z., Tang, J., Yin, J., Li, Z., et al. Proving theorems
recursively. arXiv preprint arXiv:2405.14414, 2024a.

Wang, R., Zhang, J., Jia, Y., Pan, R., Diao, S., Pi, R., and
Zhang, T. Theoremllama: Transforming general-purpose
llms into lean4 experts. arXiv preprint arXiv:2407.03203,
2024b.

Wang, R. E., Ribeiro, A. T., Robinson, C. D., Loeb, S.,
and Demszky, D. Tutor CoPilot: A human-AI ap-
proach for scaling real-time expertise. arXiv preprint
arXiv:2410.03017, 2024c.

Welleck, S. and Saha, R. Llmstep: Llm proofstep sugges-
tions in lean. arXiv preprint arXiv:2310.18457, 2023.

Welleck, S., Liu, J., Lu, X., Hajishirzi, H., and Choi, Y.
Naturalprover: Grounded mathematical proof generation
with language models. Advances in Neural Information
Processing Systems, 35:4913–4927, 2022.

Wemmenhove, J., Arends, D., Beurskens, T., Bhaid, M., Mc-
Carren, S., Moraal, J., Garrido, D. R., Tuin, D., Vassallo,
M., Wils, P., et al. Waterproof: educational software
for learning how to write mathematical proofs. arXiv
preprint arXiv:2211.13513, 2022.

Wu, Y., Jiang, A. Q., Li, W., Rabe, M., Staats, C., Jam-
nik, M., and Szegedy, C. Autoformalization with large
language models. Advances in Neural Information Pro-
cessing Systems, 35:32353–32368, 2022.

Wu, Z., Huang, S., Zhou, Z., Ying, H., Wang, J., Lin, D., and
Chen, K. Internlm2. 5-stepprover: Advancing automated
theorem proving via expert iteration on large-scale lean
problems. arXiv preprint arXiv:2410.15700, 2024.

13

LeanTutor: A Lean-Verified Tutor

Yang, K., Swope, A., Gu, A., Chalamala, R., Song, P.,
Yu, S., Godil, S., Prenger, R. J., and Anandkumar, A.
LeanDojo: Theorem proving with retrieval-augmented
language models. Advances in Neural Information Pro-
cessing Systems, 36:21573–21612, 2023.

Yang, K., Poesia, G., He, J., Li, W., Lauter, K., Chaudhuri,
S., and Song, D. Formal mathematical reasoning: A new
frontier in ai. arXiv preprint arXiv:2412.16075, 2024.

Yeh, E., Hitaj, B., Owre, S., Quemener, M., and Shankar,
N. CoProver: a recommender system for proof construc-
tion. In International Conference on Intelligent Computer
Mathematics, pp. 237–251. Springer, 2023.

Ying, H., Wu, Z., Geng, Y., Wang, J., Lin, D., and Chen,
K. Lean workbook: A large-scale lean problem set for-
malized from natural language math problems. arXiv
preprint arXiv:2406.03847, 2024a.

Ying, H., Zhang, S., Li, L., Zhou, Z., Shao, Y., Fei, Z.,
Ma, Y., Hong, J., Liu, K., Wang, Z., et al. Internlm-
math: Open math large language models toward verifiable
reasoning. arXiv preprint arXiv:2402.06332, 2024b.

Zhao, C., Silva, M., and Poulsen, S. Autograding mathemat-
ical induction proofs with natural language processing.
arXiv preprint arXiv:2406.10268, 2024a.

Zhao, X., Li, W., and Kong, L. Subgoal-based demonstra-
tion learning for formal theorem proving. In Forty-first
International Conference on Machine Learning, 2024b.

Zheng, C., Wang, H., Xie, E., Liu, Z., Sun, J., Xin, H.,
Shen, J., Li, Z., and Li, Y. Lyra: Orchestrating dual
correction in automated theorem proving. arXiv preprint
arXiv:2309.15806, 2023.

Zhou, J. P., Staats, C., Li, W., Szegedy, C., Weinberger,
K. Q., and Wu, Y. Don’t trust: Verify–grounding llm
quantitative reasoning with autoformalization. arXiv
preprint arXiv:2403.18120, 2024.

14

LeanTutor: A Lean-Verified Tutor

A. Appendix
A.1. Extended Review of Math Proof Tutors

We identify three main categories of autonomous proof tutoring systems: (1) intelligent tutoring systems, (2) LLM-based
tutoring systems, and (3) theorem prover based systems. Each of these systems has unique advantages, which LeanTutor
attempts to build upon.

A.1.1. INTELLIGENT TUTORING SYSTEMS.

Corbett et al. (1997) characterize a system as an intelligent tutoring system (ITS) if it fulfills eight design principles,
which include: scaffolding student learning, modeling students’ learning trajectories over time, and providing immediate
feedback. Researchers have made attempts to develop (Autexier et al., 2012; Briggle et al., 2008) or developed ITS
for math proofs (Barnes & Stamper, 2008; Lodder et al., 2021; Bundy et al., 2000). ITS maintain a high quality of
education through expert authoring of solutions or feedback, but this also makes them difficult to develop and scale
(Dermeval et al., 2018). To reduce this burden, LeanTutor dynamically generates proof trees based on student solutions,
similar to Lodder et al. (2021) approach, but in contrast, also generates feedback on-demand via a generative language model.

A.1.2. LLM-BASED TUTORS.

Given the extremely recent advance of high performance LLMs, there are not yet many LLM-based math tutors for proofs
specifically. Zhao et al. (2024a) propose an LLM-based autograder for inductive proofs, which provides students with
real-time feedback on the correctness of their proofs. Park & Manley (2024) evaluated ChatGPT’s abilities to aid students in
refining and improving their proofs. Broadly speaking, many LLM-based math tutors have been developed and studied
(Tonga et al., 2024; Miller & DiCerbo, 2024; Autexier et al., 2012; Wang et al., 2024c; Park & Manley, 2024). These math
tutors have shown to maintain conversations without inappropriate content (Levonian et al., 2025) and even lead to learning
gains for students studying algebra (Pardos & Bhandari, 2023). However, LLMs still cannot suffice as effective tutors due to
(1) hallucinations,(Maurya et al., 2024; Balunović et al., 2025) (2) models revealing the whole answer (Sonkar et al., 2024),
(3) models do not necessarily provide the correct reasoning behind an answer (Gupta et al., 2025), and (4) models struggle
to identify mistakes (Tyen et al., 2024; Miller & DiCerbo, 2024). LeanTutor capitalizes on the conversational ability of
LLMs, but “outsources” reasoning tasks to theorem provers.

A.1.3. PROOF ASSISTANT-BASED TUTORS.

Theorem provers, such as Lean (Moura & Ullrich, 2021), Coq (Huet et al., 1997), and Isabelle (Paulson, 1994), have all
been used by some math educators as tools to teach students proofs (Avigad, 2019; Villadsen & Jacobsen, 2021; Boldo et al.,
2024; Kerjean et al., 2024). Additionally, proof tutors or educationally-geared tools have been developed on top of theorem
provers: ProofTutor using APRoS (Sieg, 2007), ProofWeb (Hendriks et al., 2010) based on Coq, JAPE (Sufrin & Bornat,
1997), Waterproof (Wemmenhove et al., 2022) built on Coq, HazelProver built on Agda (Omar et al., 2019; Keenan & Omar,
2024), Verbose Lean based on Lean (Massot, 2024), and MathsTiles build on Isabelle/HOL (Billingsley & Robinson, 2007).
These tools have led to unique benefits in students’ learning of proofs (Thoma & Iannone, 2022), but students struggle to
learn the complex syntax required to interact with most (Avigad, 2019; Buzzard, 2022; Villadsen & Jacobsen, 2021; Karsten
et al., 2023). LeanTutor combats this issue by allowing the student to interface only in natural language and hiding the Lean
formalizations of student proofs altogether.

A.2. Proofs from PeanoBench

The PeanoBench dataset contains three main subsets of proofs: staff solution proofs, correct proofs, and incorrect proofs.
Correct proofs are derived from the staff solution proofs, with two main differences: (1) Lean syntax in the proof is changed
when possible and (2) the NL in-line comments are in differing “personas” (the equation-based and justification-based
personas). Figure 3 demonstrates the staff solution proof of the theorem add comm (proving the commutativity of addition)
as well as the equation-based and justification-based commented versions of the original proof (with small changes in Lean
code). Figure 4 is an example of an incorrect proof of add comm, created by skipping a step in the justification-based
persona proof.

15

LeanTutor: A Lean-Verified Tutor
1 theorem add_comm_staff_solution (a b : N) : a + b = b + a := by
2 -- Induct on b, with d = 0 as the base case and the inductive hypothesis a + d = d + a.

There are now two proof goals, prove base case: a + 0 = 0 + a and the inductive step: a +
succ d = succ d + a

3 induction b with d hd
4 -- First prove base case. Simplify LHS a + 0 to a.
5 rw [add_zero]
6 -- Simplify RHS 0 + a to a
7 rw [zero_add]
8 -- Prove LHS and RHS are equal, a = a, completing the base case.
9 rfl

10 -- Now prove the inductive step. Rewrite LHS a + succ (d) to succ (a + d)
11 rw [add_succ]
12 -- Rewrite RHS succ (d) + a to succ (d + a)
13 rw [succ_add]
14 -- Rewrite LHS succ (a + d) to succ (d + a) using the inductive hypothesis
15 rw [hd]
16 -- Prove succ LHS and RHS are equal, (d + a) = succ (d + a), completing the proof
17 rfl

1 theorem add_comm_equation_based (a b : N) : a + b = b + a := by
2 -- Start by inducting on b
3 induction b with d hd
4 -- 0 + a -> a on RHS giving us a + 0 = a
5 rw [zero_add]
6 -- a + 0 -> a into the LHS to get a = a
7 rw [add_zero]
8 -- a=a, we are done with the base case
9 rfl

10 -- a + succ d -> succ (a + d) on LHS giving us succ (a + d) = succ d + a
11 rw [add_succ]
12 -- succ d + a -> succ (d + a) on RHS giving us succ (a + d) = succ (d + a)
13 rw [succ_add]
14 -- using the induction hypothesis, succ (a + d) -> succ (d + a) on the LHS giving us

succ (d + a) = succ (d + a)
15 rw [hd]
16 -- succ (d + a) = succ (d + a), we are done.
17 rfl

1 theorem add_comm_justification_based (a b : N) : a + b = b + a := by
2 -- Start by inducting on b
3 induction b with d hd
4 -- We start with the base case. using properties of addition by 0 we can rewrite a + 0

to a on the LHS
5 rw [add_zero]
6 -- using properties of addition by 0 we can rewrite 0 + a to a on the RHS
7 rw [zero_add]
8 -- since both sides are equal, we are done with the base case
9 rfl

10 -- Now to the (n+1) step. using properties of successors, succ (n) + a -> succ (n + a)
and substitute this into the RHS

11 rw [succ_add]
12 -- using properties of succession, we substitute a + succ(n) -> succ(a+n) on the RHS
13 rw [add_succ]
14 -- Use the induction hypothesis on the LHS to substitute succ (a + n) -> succ (n + a)
15 rw [hd]
16 -- since both sides are equal, we are done with the proof
17 rfl

Figure 3. Examples of annotated Peano Arithmetic proofs from PeanoBench for the theorem proving commutativity of addition, that is,
for all a, b ∈ N, a+ b = b+ a. The first proof,add comm staff solution follows the exact Lean code from NNG4. The second
and third proofs, add comm equation based and add comm justification based, are written in two different personas.

16

LeanTutor: A Lean-Verified Tutor

1 theorem add_comm_incorrect (a b : N) : a + b = b + a := by
2 -- Start by inducting on b
3 induction b with d hd
4 -- We start with the base case using properties of addition by 0 we can rewrite a + 0 to

a on the LHS
5 rw [add_zero]
6 -- using properties of addition by 0 we can rewrite 0 + a to a on the RHS
7 rw [zero_add]
8 -- since both sides are equal, we are done with the base case
9 rfl

10 -- Now to the (n+1) step. using properties of successors, succ (n) + a -> succ (n + a)
and substitute this into the RHS

11 rw [succ_add]
12 -- using properties of succession, we substitute a + succ(n) -> succ(a+n) on the RHS
13 rw [add_succ]
14 -- since both sides are equal, we are done with the proof
15 rfl

Figure 4. Example of an incorrect proof for the theorem proving commutativity of addition, that is, for all a, b ∈ N, a+ b = b+ a. This
proof, originally the justification-based persona, has the rw [hd] step, which applies the inductive hypothesis, skipped.

A.3. Proof Breakdown by Worlds

NNG4 categorizes proofs based on distinct worlds. The table below presents the distribution of proofs across these worlds,
illustrating the relative frequency of each category.

World # Tactics # Proofs

Implication 38 13
Multiplication 57 9
Advanced Multiplication 66 10
Algorithm 20 5
Less or Equal 86 11
Power 70 9
Tutorial 24 7
Advanced Addition 32 6
Addition 41 5

Total 434 75

Table 3. Distribution of selected proofs from NNG4 by world.

A.4. PeanoBench: Incorrect Proof Generation Algorithm

Algorithm 1 STEPSKIPPING

for P ∈ CorrectDeviatingProofs do
n← length(P)
if n = 2 or n = 3 then

delete step 2
else if n = 4 then

randomly delete step n− 1 or n− 2
else if n > 4 then

randomly delete one of step n− 1, n− 2, or n− 3
end if

end for

Algorithm 1: Step-skipping algorithm for generating incorrect proofs.

17

LeanTutor: A Lean-Verified Tutor

A.5. Next Step Generator

Figure 5. Architecture of the Next Step Generation module. An LLM generates tactic candidates which are appended to the pre-existing
proof. Tactics that compile correctly are then passed through a “progress check” filter which ensures goal states are not being re-visited.
This process of generating and checking tactics is repeated until the proof is completed.

A.6. Autoformalizer Extended Results

We additionally experiment with adding the following information into the autoformalizer prompt. All formalizations were
generated step-by-step (Section 4.1).

Experiments include:

• Staff Solution: The staff solution proof, a complete and correct proof for the theorem in both NL and FL. The
autoformalizer accuracy with the staff solution is also presented in the main paper.

• Previous NL: The student’s previous proof steps (in natural language) up until that point,

• Previous Goal State: The Lean goal state of the proof formed by appending autoformalizations of the student’s NL
proof to the Lean theorem statement. (Note that this goal state may become “corrupted” if any previous formalizations
were incorrect. If a goal state displays an error message, we did not include the goal state in the prompt and the prompt
was then identical to the baseline.)

The results of these experiments (in addition to experiments discussed in the main paper) are summarized in Table 4.

Condition Correct Tactics Correct Proofs Incorrect Proofs

Baseline 296 / 900 = 32.89% 10 / 150 = 6.67% 21 / 146 = 14.38%
+ Staff Solution 511 / 900 = 56.78% 27 / 150 = 18.00% 44 / 146 = 30.14%
+ Previous Goal State 312 / 900 = 34.67% 15 / 150 = 10.00% 29 / 146 = 19.86%
+ Previous NL 331 / 900 = 36.78% 10 / 150 = 6.67% 20 / 146 = 13.70%
+ Previous NL + Staff Solution 522 / 900 = 58.00% 28 / 150 = 18.67% 42 / 146 = 28.77%
Whole Proof (Baseline) 254 / 900 = 28.22% 16 / 150 = 10.67% 19 / 146 = 13.01%
+ Whole Proof (Staff Solution) 466 / 900 = 51.78% 40 / 150 = 26.67% 32 / 146 = 21.92%

Table 4. Extended autoformalizer experiment results.

A.7. Metric

Since we are interested in faithful autoformalization, we measure the accuracy of our autoformalizer on a tactic-by-tactic
basis. For this, we check that check either the tactic itself or the proof state after every tactic matches the corresponding
ground truth tactic/proof state. First, the tactics themselves are compared using exact string matching, with the minor
exception that rw [... and rw[... (the only difference between the strings is the space before the brackets) are
considered equivalent. This covers a lot of cases, but sometimes two tactics behave identically, but are not literally the
same string (for example, rw [add comm] and rw [add comm a b] might do the same thing in a proof, but string

18

LeanTutor: A Lean-Verified Tutor

matching would fail). Additionally, two tactics might use different variable names (for example, induction n with d
hd and induction n with k hk are equally valid). So, we cannot just use exact string matching.

If string matching does not identify the tactics as identical, then the tactics are verified in Lean (appended to any previous
tactics for the predicted and ground truth proofs respectively) and we check if the resulting proof states are syntactically
identical up to variable naming. If either the string matching or proof state matching check succeeds, the generated tactic is
considered correct. By “up to variable naming”, we mean that two goals are considered equivalent if they are structurally the
same, but may use different variable names. For example, the following proof states are identical up to variable naming, but
neither of them are exact string matches.

1 n : N
2 h : 1 ≤ n
3 ⊢ n + 0 = n

1 m : N
2 hm : 1 ≤ m
3 ⊢ m + 0 = m

A.7.1. PROOF STATE COMPARISON

The algorithm to compare proof states up to variable renaming works as follows. First, the proof states are split into cases
and each case is compared individually. All cases must be equivalent for the proof states to be considered equivalent. Then,
within each case, free variables (which are not bound by a binder and can be seen for the first time above the ⊢) 4 are
identified by checking what appears before the first colon on each line. In the proof states below, n and hn in the first proof
and m and hm in the second proof are all free variables. After identifying free variables, the proof states are normalized by
renaming each appearance of a variable according to its position in the variable list (see Algorithm 2). 5

The proof state normalization algorithm is written in Algorithm 2. To normalize a proof case (one case in a proof state),
we make a list of all variables (including proofs) in the local context, which includes everything listed before a colon in a
line above the ⊢. Next, we locate all identifiers in the goal states we are comparing via a Python implementation of Lean
identifiers (Lean Community, 2024). An identifier in Lean is a string that acts as a variable name or refers to a constant such
as a theorem or a type. For example, x and MyNat.add comm are both identifiers. Identifiers that match a variable name
are replaced with vari, where i is the index of the variable in the variable list created earlier. To locate identifiers, we use a
greedy algorithm which loops through all characters in the proof state.

So, for example, the following proof states,

1 n : N
2 h : 1 ≤ n
3 ⊢ n + 0 = n

1 m : N
2 hm : 1 ≤ m
3 ⊢ m + 0 = m

would both be converted to

1 var0 : N
2 var1 : 1 ≤ n
3 ⊢ var0 + 0 = var0

4Lean supports three types of variables: bound variables, which first appear under a binder such as ∀ or fun; free variables, which are
not bound by a binder and can be seen for the first time above the ⊢; and meta-variables, which represent holes in an expression that must
be filled in before the proof is complete. Only free variables are supported for variable renaming; bound variables and meta-variables
are not handled because they rarely ever appear within proof states in NNG4 and handling them would amount to a drastic increase in
complexity.

5Our code to determine what constitutes a valid Lean identifier does not handle double guillemets (and) because they are not used in
NNG4.

19

LeanTutor: A Lean-Verified Tutor

The algorithm Normalize is below. Note that GetVariables is a function that collects all the variables from proof state as
described earlier.

Algorithm 2 Normalize Proof State
1: function Normalize(proof state)
2: variable list← GetVariables(proof state)
3: result← ””
4: i← 0
5: while i < len(proof state) do
6: ident← LongestIdentifierStartingAt(proof state, i)
7: if ident ̸= Null then
8: if ident ∈ variable list then
9: result← result + ”var” + IndexOf(ident, variable list)

10: else
11: result← result + ident
12: end if
13: i← i+ len(ident)
14: else
15: result← result + GetChar(proof state, i)
16: i← i+ 1
17: end if
18: end while
19: return result

The Normalize algorithm relies on the LongestIdentifierStartingAt algorithm as described below.

Algorithm 3 Longest Identifier
1: function LongestIdentifierStartingAt(str, i)
2: len← 0
3: if IsValidLeanIdentifier(Substring(str, i, i+ 2)) then
4: len← 2
5: end if
6: while IsValidLeanIdentifier(Substring(str, i, i+ len + 1)) and i+ len < Len(str) do
7: len← len +1
8: end while
9: if len > 0 then

10: return Substring(str, i, i+ len)
11: else
12: return Null
13: end if

A.8. Examples of Generated Hints

We demonstrate an example of the three generated hint types (error identification, question, bottom-out hint) for the following
theorem. The incorrect proof skips the tauto tactic and results in the base case never being proven. Unfortunately,
LeanTutor’s feedback fails to get at the heart of the student’s issue and seems more inclined towards the inductive case.

20

LeanTutor: A Lean-Verified Tutor
1 -- Theorem Statement: Prove that if a is not equal to 0, then a is the successor of some

natural number.
2 theorem eq_succ_of_ne_zero_correct (a :) (ha : a 0) : n, a = succ n := by
3 -- Induct on a
4 induction a with d _
5 -- For the base case, a = 0, we have a contradiction in hypotheses because we know a 0.
6 tauto
7 -- For the inductive step, we set n to be d.
8 use d
9 -- succ d = succ d

10 rfl

1 -- Theorem Statement: Prove that if a is not equal to 0, then a is the successor of some
natural number.

2 theorem eq_succ_of_ne_zero_incorrect (a :) (ha : a 0) : n, a = succ n := by
3 -- We use induction on a.
4 induction a with d _
5 -- For the inductive step, we set n to be d which gives us the goal succ d = succ d
6 use d -- incorrect
7 -- Since the LHS and RHS are equal, we can use reflexivity to prove the goal.
8 rfl -- incorrect

1. Error Identification: You are incorrectly inducting on the variable ’a’ instead of its successor form, which leads to
confusion in your proof.

[Accuracy: 1, Relevance: 1, Readability: 4, Answer Leakage: 5]

2. Question: Do you think you should consider the structure of ’a’ in terms of its base case and successor?

[Accuracy: 3, Relevance: 2, Readability: 3, Answer Leakage: 4]

3. Bottom-out Hint: The next step is to use the fact that if ’a’ is a successor, you should analyze ’a’ as ’succ d’ for some
natural number ’d’.

[Accuracy: 4, Relevance: 3, Readability: 5, Answer Leakage: 1]

A.9. Cold-start Proof Results

A “cold-start” proof is a proof in which the student does not know how to start the proof. For this experiment, we use
gpt-4 (OpenAI, 2023) for both the baseline and LeanTutor. LeanTutor is given no student input and the system is asked
to generate feeback types 2 (hint/question) and 3 (next step). We develop a simple baseline, providing the model with the
erroneous student proof and prompting the model to generate the two feedback types. For the LeanTutor model, since there
is no NL from the student in this case, we do not run the Autoformalizer or Next Step Generator. Instead, the system directly
extracts the first step in the proof (in Lean) from the available staff-solution, and this is passed to the Feedback Generation
module. We evaluate 18 cold start proofs, two from each world. The results (Table 5) indicate that LeanTutor outperforms
the baseline on Accuracy and Relevance axes.

Feedback Type Accuracy Relevance Readability Answer Leakage

Baseline Hint/Question 3.6 3.2 4.9 4.5
LeanTutor Hint/Question 4.3 4.4 4.4 4.1

Baseline Next Step 3.6 3.2 4.9 N/A
LeanTutor Next Step 3.9 4.8 4.9 N/A

Table 5. Average (across all proofs) qualitative scores of generated feedback from baseline and LeanTutor experiments on 18 cold-start
proofs. A score closer to 5 indicates desired performance.

21

LeanTutor: A Lean-Verified Tutor

A.10. Model Prompts

A.10.1. AUTOFORMALIZER PROMPTS

Autoformalizer prompt for step-by-step formalization contains the system and user prompts used for autoformalization. The
following were given as input to the system prompt: the theorem statement of the proof (in NL and FL), the theorem and
tactic dictionaries, five hard-coded examples of the autoformalization task, and the staff solution. The prompt for full proof
generation, in Autoformalizer prompt for whole proof formalization, is the same, except the five hard-coded examples were
adjusted to whole proof translations, to match the whole proof autoformalization task.

Autoformalizer prompt for step-by-step formalization

System:

An undergraduate student is proving the following Peano Arithmetic theorem:
Theorem statement in natural language: {theorem statement NL}
Theorem statement in formal language: {theorem statement FL}

Convert the student’s natural language mathematical proof step to Lean4
syntax.

[If staff solution is provided]
This is one example of the completed proof in Lean4, with in-line comments
of the natural language proof corresponding to the Lean4 syntax:
whole theorems[theorem name]

These are the formal theorems you have access to:
{theorem dict}

These are the Lean tactics you have access to:
{tactic dict}

Your response must be written as a single line of Lean tactic code, as used
in the body of a by block of a Lean theorem.It should match the structure of
Lean DSL tactic proofs, such as:
intro h
rw [← is zero succ a]
apply succ inj at h
exact h
contrapose! h

Note: Only 1 lean tactic, do not write multiple lean tactics that are comma
seperated.

DO *NOT* wrap your answer in markdown syntax, e.g. ’’’lean ’’’. It must
be simply a Lean tactic script that can be inserted into a proof.

Here are some examples. NOTE: These are just examples. The correct Lean4
code may not necessarily use the propositions shown in these proofs.

22

LeanTutor: A Lean-Verified Tutor

All strings in typewriter font are runtime placeholders. {theorem statement NL} – theorem in natural language;
{theorem statement FL} – the same theorem in Lean’s formal syntax; {whole theorems[theorem name]} –
The staff solution; {theorem dict} – dictionary of Peano-arithmetic facts available to the model; {tactic dict} –
dictionary of Lean tactics the model may use; {prev goal} – current Lean proof state ; {prev nl} – previous student
proof lines ; {nl statement} – the natural-language step to be converted. The optional block, corresponding to the staff
solution, renders optionally.

Example 1:
Input: Rewrite the LHS pred (succ a) with the given statement that succ a =
succ b, LHS is now pred (succ b)
Output: rw [h]

Example 2:
Input: Rewrite LHS using the commutative property of addition, changing a +
(b + c) to a + b + c
Output: rw [← add assoc]

Example 3:
Input: Assume that the hypothesis ’h’ is true, that is, a + succ d = 0.
The goal now is to prove that a = 0.
Output: rw [add zero] at h

Example 4:
Input: Split the natural number ’b’ into two cases: ’b’ is zero, and ’b’
is the successor of another natural number ’d’.
Output: cases b with d

Example 5:
Input: Use the case of a + b to simplify the goal to equal z = x + (a + b).
Output: use a + b

User: The natural-language statement to formalize is:
{nl statement}

Autoformalizer prompt for whole proof formalization

System:

An undergraduate student is proving the following Peano Arithmetic theorem:
Theorem statement in natural language: {theorem statement NL}
Theorem statement in formal language: {theorem statement FL}

Convert the student’s natural language mathematical proof to Lean4 syntax.

[If staff solution is provided]
This is one example of the completed proof in Lean4, with in-line comments

23

LeanTutor: A Lean-Verified Tutor

of the natural language proof corresponding to the Lean4 syntax:
whole theorems[theorem name]

These are the formal theorems you have access to:
{theorem dict}

These are the Lean tactics you have access to:
{tactic dict}

Your response must be written as a proof in Lean, in a list of tactics on
each new line. SUch as:
intro h
rw [← is zero succ a]
apply succ inj at h
exact h
contrapose! h

Each tactic must be formatted consistently with Lean4’s syntax and DO NOT
include any comments in the list.
DO *NOT* wrap your answer in markdown syntax, e.g. ’’’lean ’’’. It must be
simply a list of Lean tactics separated by \n.

Here are some examples. NOTE: These are just examples. The correct Lean4
code may not necessarily use the propositions shown in these proofs.

Example 1:
Input: Induct on b, with d = 0 as the base case and the inductive
hypothesis a * d = d * a. There are now two proof goals, prove base case:
a * 0 = 0 * a, and inductive step: a * succ d = succ d * a.
First we prove base case.
Simplify RHS 0 * a to 0.
Simplify LHS a * 0 to 0.
Prove LHS and RHS are equal, 0 = 0, completing base case.
Next prove inductive step. Rewrite RHS succ d * a to d * a + a.
Rewrite the RHS from d * a + a to a * d + a using the inductive hypothesis.
Rewrite the LHS, changing a * succ d to a * d + a.
Prove LHS and RHS are equal, a * d + a = a * d + a, completing the proof.
Output: induction b with d hd
rw [zero mul]
rw [mul zero]
rfl
rw [succ mul]
rw [← hd]
rw [mul succ]
rfl

Example 2:
Input: We must assume succ (succ 0) + succ (succ 0) = succ (succ (succ

24

LeanTutor: A Lean-Verified Tutor

(succ (succ 0)))) and derive a contradiction or falsehood.
Using our previous theorems, we can change succ (succ 0) + succ (succ 0)
into succ (succ (succ (succ 0))).
By the injectivity of succ, we know that 0 = succ 0. 0 is not equal to the
successor of any natural number, so we have a contradiction.
Thus, we have a falsehood/contradiction, which is what we wanted to show.
Output: intro h
rw [add succ, add succ, add zero] at h
repeat apply succ inj at h
apply zero ne succ at h
exact h

Example 3:
Input: We consider the case where the successor of x is less than or equal
to the successor of y. This implies that the successor of y is equal to the
successor of x plus some natural number d.
We assume d as the difference such that when added to x results in y. The
goal now is to prove that y is equal to x plus d.
We rewrite the right-hand side of succ y = succ x + d using the theorem that
states the the successor of a sum of two natural numbers is the same as the
successor of the first number added to the second number.
We apply the property that if two natural numbers with successors are equal,
then the original numbers are also equal.
We have shown that x = y + d, so we can use this to prove the goal.
Output: cases hx with d hd
use d
rw [succ add] at hd
apply succ inj at hd
exact hd

Example 4: Input: We use proof by contraposition. So, we assume succ m =
succ n and show m = n.
By the injectivity of succ, we have m = n.
So, m = n, which is exactly what we wanted to show.
Output: contrapose! h
apply succ inj at h
exact h

Example 5:
Input: Rewrite the expression for the square of (a + b), a2̂, and b2̂ to be
(a + b) * (a + b), a * a, and b * b respectively.
Rearrange the terms on the right hand side of the equation, swapping the
order of b * b and 2 * a * b. This is based on the commutative property
of addition, which states that the order of the terms does not change the
result of the addition.
Rewrite the left-hand side of the equation using the distributive property
of multiplication over addition. This expands (a + b) * (a + b) to a * a +
b * a + a * b + b * b.
Rewrite the term 2 * a * b in the goal as (a * b + a * b) using the theorem
that 2 times a number is the same as the number added to itself. Also,

25

LeanTutor: A Lean-Verified Tutor

All strings in typewriter font are runtime placeholders. {theorem statement NL} – theorem in natural language;
{theorem statement FL} – the same theorem in Lean’s formal syntax; {whole theorems[theorem name]} –
The staff solution; {theorem dict} – dictionary of Peano-arithmetic facts available to the model; {tactic dict} –
dictionary of Lean tactics the model may use; {prev goal} – current Lean proof state ; {prev nl} – previous student
proof lines ; {nl statement} – the natural-language proof to be converted. The optional block, corresponding to the
staff solution, renders optionally.

rewrite the term a * b + b * b as (a * b + a * b) + b * b using the theorem
that the product of a sum is the sum of the products.
We rewrite the expression a * b as b * a in the goal. This is based on the
commutative property of multiplication, which states that the order of the
factors does not change the product. This results in the new goal: a * a +
a * b + (a * b + b * b) = a * a + (a * b + a * b) + b * b.
We use the theorem that states the associativity of addition twice to
rearrange the left-hand side of the equation. This changes the goal to
proving that a * a + a * b + a * b + b * b equals a * a + a * b + a * b +
b * b.
The goal is now to prove that a * a + a * b + a * b + b * b = a * a + a * b
+ a * b + b * b, which is true by reflexivity
Output: rw [pow two, pow two, pow two]
rw [add right comm]
rw [mul add, add mul, add mul]
rw [two mul, add mul]
rw [mul comm b a]
rw [← add assoc, ← add assoc]
rfl
User: The natural language proof that we want to formalize:
{nl statement}

A.10.2. NATURAL LANGUAGE FEEDBACK GENERATION

Natural language feedback generation prompt is the prompt to generate student feedback for incorrect proof inputs. This
prompt is used in our final end-to-end system evaluation.

26

LeanTutor: A Lean-Verified Tutor

Natural language feedback generation prompt

System: You are a math professor, identifying the error in student
proofs, with the help of the Lean4 verifier.

User: A first-year math student’s incomplete Peano Arithmetic proof has
been formalized in Lean4, but it has an error.
This is the incorrect student proof in Lean4:

{lean proof}

This is the current Lean4 state, throwing an error due to the last step
last line:

{error}

The actual correct step in Lean4 is:

{next step}

Error Categories include:
1. Inducting on the incorrect variable
2. Selecting the incorrect base case
3. Not generalizing the inductive step to all cases
4. Failing to apply the inductive hypothesis
5. Incorrect/Incomplete simplification or expansion
6. Incorrect calculation or careless mistake
7. Other

Explain the student error, ask a guiding question to reach correct next
step, and give a hint that explicitly reveals the answer in 1-2 sentences.
Be specific and use equations from goal states.

DO NOT USE any "Lean" or any Lean tactics or syntax such as "tactic" or
"reflexivity" or theorems such as "add comm". You are speaking directly
to the student, use "You" language.

Example:

Type: Incorrect simplification
Message: The RHS of your equation, a + (b + succ d), cannot be simplified
with your applied strategy. Question/Hint: Do you know of a theorem that
can perform this simplification? Informalization: The next step is to
rewrite a + (b + succ d) as (a + b) + succ d.

IMPORTANT: Respond with ONLY a raw JSON object in the following format,
without any code block formatting or additional text:
{
"Type": "Students’ error type",
"Message": "Brief description of error in this problem"
"Question": "Do you....?"
"Informalization": "The next step is to..."
}

27

LeanTutor: A Lean-Verified Tutor

{lean proof} is a placeholder for the autoformalized proof until now. {error} is the Lean compiler error thrown by
the formalized proof. {next step} is a placeholder for the next tactic generated by the NSG module.

A.10.3. BASELINE PROMPT FOR FULL SYSTEM EVALUATION

Natural language error + next-step prompt is the baseline prompt used in end-to-end system evaluation. This prompt does
not receive any Lean inputs.

Natural language error + next-step prompt

System: You are a math professor helping a student debug their Peano
Arithmetic proof.

User: A first-year math student is working on the following Peano
Arithmetic theorem:
{theorem}

Below are the steps of the proof the student has completed thus far. There
may be errors and/or the work may be incomplete:
{proof}

Identify and explain the student error, if it exists. Then, identify the
correct next step. Ask a guiding question or give a hint that can help the
student reach the correct next step in 1-2 sentences. Be specific.

Speak directly to the student using "You" language. Avoid using Lean
tactics or syntax like "apply", "intro", or "rw".

Example:
Error Message: The RHS of your equation, a + (b + succ d), cannot be
simplified with your applied strategy.
Next Step: The next step is to rewrite a + (b + succ d) as (a + b) + succ
d.
Question/Hint: Do you know of a theorem that can perform this
simplification?

IMPORTANT: Respond with ONLY a raw JSON object in the following format,
without any code block formatting or additional text:
{
"Error Message": "Brief description of error in this problem",
"Next Step": "The next step is to...",
"Question": "Do you....?"
}

{theorem} is a runtime placeholder for the theorem statement (in NL). {proof} is a placeholder for the student’s current
attempt.

28

