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Abstract

Recent advances in neural scene representations have led to unprecedented quality
in 3D reconstruction and view synthesis. Despite achieving high-quality results for
common benchmarks with curated data, outputs often degrade for data that contain
per image variations such as strong exposure changes, present, e.g., in most scenes
with indoor and outdoor areas or rooms with windows. In this paper, we introduce
Neural Exposure Fields (NExF), a novel technique for robustly reconstructing
3D scenes with high quality and 3D-consistent appearance from challenging real-
world captures. In the core, we propose to learn a neural field predicting an optimal
exposure value per 3D point, enabling us to optimize exposure along with the
neural scene representation. While capture devices such as cameras select optimal
exposure per image/pixel, we generalize this concept and perform optimization in
3D instead. This enables accurate view synthesis in high dynamic range scenarios,
bypassing the need of post-processing steps or multi-exposure captures. Our
contributions include a novel neural representation for exposure prediction, a
system for joint optimization of the scene representation and the exposure field via
a novel neural conditioning mechanism, and demonstrated superior performance
on challenging real-world data. We find that our approach trains faster than prior
works and produces state-of-the-art results on several benchmarks improving by
over 55% over best-performing baselines.

1 Introduction

Neural scene representations [8, 24, 33, 50] have revolutionized 3D vision due to their simple
design, stable optimization, and state-of-the-art performance. As a result, they have now become
the predominant representation for many 3D vision tasks ranging from 3D and 4D reconstruction
[19, 30, 34–36, 53], to generative modeling [20, 29, 38, 44, 46], to view synthesis [3, 4, 26, 28].

While these methods have achieved unprecedented performance on existing view synthesis datasets,
the majority of these benchmarks [3, 25] factor out several conditions that might occur in real world
captures leading to a performance gap on such data. Among different phenomena, in particular strong
exposure and appearance changes can lead to drastically degraded results (see Fig. 1a).

Prior works that consider exposure information during the optimization have explored this from a
computer graphics perspective and usually aim to either reproduce images with certain exposures
or recover a high dynamic range (HDR) representations that can be tonemapped via professional
software [6, 13, 15, 47]. However, the goal of many applications is not only to reproduce input views
at the same exposure, but to reconstruct scenes from RGB images in a 3D consistent manner and
with an appearance that is most faithful to the real world. Another line of work does not consider
input exposure and aim to recover a 3D consistent scene by explaining away per-image variations.
For example, what has been widely adopted in practice is to use generative latent optimization (GLO)
embeddings [5], e.g., as done in the pioneering work NeRF-W [21]. While being a robust solution
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(a) Ignore Exp. (b) GLO. (c) Ours.

Figure 1: Neural Exposure Fields. While state-of-the-
art neural fields [4] produce high-quality results on clean,
well-curated datasets, the quality drops significantly for
real-world captures if the exposure variation is ignored (1a).
When equipped with per-view GLO embeddings [4, 21],
the results improve (1b) but scene parts might be over- or
underexposed. In contrast, our neural exposure field leads
to high-quality 3D consistent scene appearance (1c) while
no manual post-processing or reference view is required.

(a) Inconsistencies from 2D Tonemapping.

(b) 3D Consistent Appearance (Ours).

Figure 2: 3D Consistent Appearance.
Prior works [6, 15] use 2D tonemap-
ping which can lead to inconsistent ap-
pearance of the same 3D point even in
close-by views (2a). In contrast, our
method produces 3D consistent appear-
ance across the entire scene (2b).

for smaller appearance changes, we find that it leads to non-ideal color predictions when drastic
variations are present, and parts of the scene can be over- or underexposed (see Fig. 1b). Recently,
Bilarf [49] aims to learn more local bilateral mappings to explain per-image appearance changes.
However a separate processing step is required together with a target appearance, e.g., given by an
HDR image produced by an artist with professional software.

In this work, we present Neural Exposure Fields (NexF), a novel method to reconstruct scenes with
high-quality appearance that shows well-exposed colors while being consistent in 3D (Fig. 1c). Our
key insight is that we can learn a neural field that predicts an optimal exposure value per 3D point
jointly with the scene representation. By aggregating information in 3D, as opposed to in 2D as
done in capturing devices and previous works, our model is 3D consistent by design, freeing us
from a separate per-image 2D tonemapping process (see Fig. 2). Further, we propose to learn neural
exposure fields jointly with grid-based radiance fields using a novel latent exposure conditioning
mechanism, leading to improved performance. In summary, our contributions are:

• A novel neural representation to predict optimal exposure values per 3D point.

• A system to jointly learn the exposure field and the neural 3D scene representation with a
novel latent conditioning mechanism that produces high-quality view synthesis while being
consistent in 3D.

• A thorough evaluation of the proposed system and baselines where we find that our approach
improves over the state-of-the-art by more than 55% in MSE.

We believe that our proposed system is a significant step towards bringing neural 3D scene represen-
tations closer to challenging real-world use cases while pushing the quality of view synthesis.

2 Related Work

Neural Fields. Since their emergence in 3D reconstruction [8, 24, 33, 50], neural fields have become
a leading technique for various 3D vision tasks, e.g., 3D/4D reconstruction [19, 30, 34–36, 53],
3D generative modeling [7, 20, 29, 38, 44, 46], and view synthesis [3, 4, 26]. Their widespread
adoption can be attributed to factors such as simplicity, strong performance, and stable optimiza-
tion [50]. Unlike more traditional representations such as point clouds [37, 40, 41], voxels [22, 39],
or meshes [12, 48], neural fields, especially when parameterized as an MLP, typically do not require
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complex regularization, manually tuned initializations, or specialized optimization mechanisms. As a
result, we chose to represent our exposure field as a neural field that is optimized end-to-end along
with the neural scene representation.

Neural Fields for View Synthesis. In the context of view synthesis, Neural Radiance Fields
(NeRF) [26] have produced unprecedented results by optimizing neural fields using volume rendering
which demonstrated greater robustness compared to previous surface-based rendering methods [31,
45, 52]. This breakthrough inspired a series of follow-up works that improved, among others, the
rendering quality [2–4] and speed [11, 18, 28, 32, 42, 43, 53]. Due to state-of-the-art performance,
we use a modified version of ZipNeRF [4] as our scene representation. Note that we do not choose
3DGS [18] as scene representation in this work due to the degradation on challenging data and less
stable joint optimization together with our neural exposure field parameterized by an MLP [32]. 2

Neural View Synthesis Beyond RGB Captures. Several works have investigated how neural fields
can be used for view synthesis from non-traditional captures. For example, [27, 47] investigate raw
captures and [9, 54] low-light captures. Closer related to us, [6, 13, 15, 16, 47] investigate how
tonemapping of HDR representations can be learned. HDRNeRF [15] proposes to condition a NeRF
model on exposure by transforming the radiance to the log domain, achieving impressive results for
HDR data. Nevertheless, HDRNeRF requires commercial 2D tonemapping software [14] and is also
not 3D consistent. In [16], this model is extended with a field to predict local exposure. However,
they require two training stages leading to excessive training times and rely on pseudo ground truth
generated by the trained NeRF model to supervise the local exposure module, hence being restricted to
synthetic, small-scale scenes. In contrast, our method is trained end-to-end by jointly optimizing the
NeRF model and the neural exposure field. Further, our model produces high-quality, 3D consistent
results even for challenging and large-scale captures with varying exposure.

Neural View Synthesis for In-the-Wild Data. While first view synthesis works were evaluated
mostly on synthetic or very clean real-world captures, latter works shifted focus towards more in-the-
wild data. The pioneering work NeRF-W [21] proposes to use Generative Latent Optimization (GLO)
embeddings [5] to factor out per-image appearance variations. At test time, novel views are rendered
with a fixed embedding (usually the zero vector) to generate a 3D consistent appearance. In [4], this
approach is improved by optimizing an affine GLO transformation applied to the bottleneck of the
MLP. While producing 3D consistent results, there is no direct control over the final predicted color
and in the presence of strong exposure changes, it approaches a mean prediction which can produce
over and underexposure for parts of the scene (see Fig. 1b). In Bilarf [49], per-view 3D bilateral
grids are optimized and at test time, the appearance of a target image can be lifted to 3D in a second
optimization stage. While producing good results, this is memory-heavy, time-consuming, and further
requires a reference image that needs to be created by a professional artist or commercial HDR
software [1]. In this work, we optimize a neural exposure field along with the scene representation
that by design produces 3D consistent and high-quality, well-exposed colors without the need of an
additional postprocessing step or a professionally-created reference image.

3 Method

We first describe our scene representation and latent exposure conditioning in Sec. 3.1. Next, we
explain our neural exposure field along with the weighting criteria in Sec. 3.2. Finally, in Sec. 3.3 we
outline the optimization strategy and implementation details. In Fig. 3, we show an overview over
our method.

3.1 Neural Radiance Fields

A radiance field f maps a point in 3D space x ∈ R3 together with a viewing direction d ∈ S2 to a
volume density σ ∈ R+ and an RGB color value c ∈ R3. The final color prediction for a pixel is
approximated via quadrature using Ns sample points along the ray [17]:

cpixel =

Ns∑
j=1

τjαjcj , τj =

j−1∏
k=1

(1− αk) , αj = 1− e−σjδj , δj = ∥xj+1 − xj∥2

2Our model can directly be combined with distillation approaches such as [32].
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Figure 3: Method Overview. Our method takes as input a set of RGB images {Ii}i with exposure
times {∆ti}i and outputs a neural representation that produces high-quality, well-exposed appearance
in a 3D consistent manner from arbitrary viewpoints. More specifically, during training, points are
sampled along the ray and for each point x, viewing direction d, and input exposure ∆t, the neural
field fθ predicts a density σ and a color c. The final color prediction cpixel is obtained via volume
rendering and the model is trained with the MSE loss on the input views with varying exposure.
Similarly, the neural exposure field is trained by volume rendering the 3D predictions ∆t̂ to the image
plane and backpropagating the reconstruction loss wrt. the input exposure weighted by how well the
pixel is exposed and saturated. At test time, the neural field fθ is instead conditioned on the neural
exposure field predictions ∆t̂, producing high-quality, well-exposed novel views that are consistent
in 3D where no 2D tonemapping nor target appearance produced by a professional is required.

where τj is transmittance, αj is the alpha value for xj , and δj is the distance between neighboring
samples.

Parameterization. A neural radiance field [26] optimizes an MLP fθ parameterized by network
weights θ using gradient descent with a reconstruction loss:

Lf (θ) =
∑

r∈Rbatch

∥∥cθpixel(r)− cGT(r)
∥∥2
2

(1)

where r ∈ Rbatch are sampled batches of rays. Using multisampling and a multi-resolution back-
bone [28], Zip-NeRF [4] produces state-of-the-art performance in view synthesis and we therefore
adopt this architecture in our work. For complex real-world scenes like [51], we add affine GLO
embedding vectors as proposed in [4] to increase robustness. Furthermore, we find that for forward-
facing scenes, as present in the HDRNeRF [15] dataset, modifications for view-dependent color
predictions are required to prevent overfitting. More specifically, for such scenes, we adjust the
view-dependent branch from three layers with 256 hidden units to only two layers with 64 hidden
units. We also reduce the bottleneck dimensionality to 15 and remove the skip connection to the
second layer.

Latent Exposure Conditioning. Many real-world captures contain significant exposure variations
and provide a per-image ground-truth exposure value. This lets us use per-image exposure as an input
to our model alongside the RGB images, and condition the color prediction on exposure. We follow
the classical nonparametric Conditional Random Fields (CRF) calibration [10, 15] and perform
the conditioning in the logarithm radiance domain. Unlike prior works, however, we apply the
transformation to the bottleneck vector of the MLP:

fθ(x,d,∆t(r)) = fview
θ (fpos

θ (x) + ln∆t(r),d) , (2)
where x is the sample point, d the viewing direction, ∆t(r) the exposure of corresponding ray r, and
f pos
θ (x) the bottleneck vector. Crucially, we assume that fpos

θ (x) predicts log radiance so that we do
not require any transformation (see Fig. 5). We find that this latent conditioning leads to improved
performance compared to prior works [15]. During training, we condition our NeRF fθ on the input
exposure to correctly reconstruct the input images following (1). However, at test time we condition
on the neural exposure field prediction, which we will discuss in the following section.

3.2 Neural Exposure Fields

We propose to optimize a per-scene neural exposure field to predict the optimal exposure for each 3D
point:

eϕ : R3 → R , x 7→ ∆t̂(x) (3)
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(a) RGB Prediction. (b) Exposure Prediction.

Figure 4: Exposure Visualization. Instead of a single
exposure per image as commonly done, we optimize a
3D neural exposure field predicting optimal exposure
in 3D leading to well-exposed colors for all parts of the
scene (see e.g. short exposure (dark) for outdoor and
longer exposure (white) for darker indoor parts above).

(a) Exposure Conditioning [15].

(b) Latent Exposure Conditioning (Ours).

Figure 5: Exposure Conditioning. While
prior works [15] condition the color pre-
diction on the log exposure by adding it
onto the radiance (5a), we also perform the
log transformation but condition in latent
space instead (5b), leading to improved
performance and more stable optimization.

where ϕ indicates the network parameters and ∆t̂(x) the predicted exposure at 3D point x. It is
important to note that, in contrast to the conventional formulation of exposure, we define exposure
not as a function of the camera location and viewing direction, but as a function of 3D position.
This is based on the hypothesis that there exists an optimal exposure value for each 3D point for
which the predicted color is well-exposed (see Fig. 4). This lets us learn high-quality appearances
for high-dynamic range scenarios that are consistent in 3D, in contrast to prior works [6, 15] that
perform tonemapping on the 2D image plane leading to inconsistent synthesis across views.

Parameterization. We parameterize our neural exposure field e as a fully-connected MLP. We
optimize this neural exposure field alongside our scene representation fθ. As we aggregate exposure
information in 3D, in contrast to prior works and capturing devices that operate in 2D, we can define
criteria to obtain the best-possible “ideal” exposure per point which we will do in the following.

Objective 1: Well-Exposedness. A pixel’s color is often referred to as over- or underexposed if the
color value is close or at the clipping boundaries. More specifically, we measure well-exposedness as

wexp(c) =
∏
i

exp

(
− (ci − 1/2)2

σexp

)
, (4)

where σexp is a hyperparameter controlling the sharpness of the weight curve.

Objective 2: Saturation. While our main focus lies on learning ideal exposure per 3D point, we
draw inspiration from classical image processing [23] and further integrate an objective that aims to
obtain well saturated colors. More specifically, we define

wsat(c) =

√
1

3

∑
i

(ci − µc)
2 , (5)

where µc defines the mean of the R, G, and B value of c.

Regularization. Given that there is no target ground truth 3D exposure available, we find that adding
regularization in 3D space leads to better results. Intuitively, we hypothesize that the ideal exposure
changes smoothly in 3D space as close-by 3D points are presumably well-exposed at similar exposure
times. More specifically, we calculate the squared distance between predicted exposure of nearby 3D
points

∆tdiff = ∥eϕ(x)− eϕ(x+ ϵ)∥22 , (6)

where ϵ ∼ N (0, 0.05) is a small 3D normally-distributed noise vector. As outlined next, we penalize
∆tdiff to regularize our neural exposure field that in turn leads to improved performance.
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3.3 Optimization

We do not assume to have a target RGB or HDR appearance but rather to learn optimal exposure from
2D observations to produce high-quality, 3D consistent appearance. Our key idea is to selectively
backpropagate the exposure of input views only if the color is well exposed and well saturated,
according to our objective functions. This way, we do not need to assume that every pixel is well
exposed in certain views which is often not the case, but rather only need to make the assumption that
most areas in the 3D scene show well exposed colors in some view. More specifically, we observe
that we can render predicted exposure similarly to color as ∆tpixel =

∑Ns

j=1 τjαj∆t̂j where τ , α,
and δ are the same as in (3.1). Next, we define a per-pixel weight

w(c) = wexp(c)
λexp · wsat(c)

λsat , (7)

where λexp and λsat are hyperparameters controlling the influence of the respective mask. For
regularization, we can similarly render the exposure difference of nearby sample points ∆treg =∑Ns

j=1 τjαj∆tjdiff. We train our neural exposure field eϕ with the input exposure

Le(ϕ) =
∑

r∈Rbatch

w(c(r)) ·
∥∥∥∆t̂ϕpixel(r)−∆t(r)

∥∥∥2
2
+∆tϕreg(r)

Joint Optimization. We train our neural scene representation fθ and exposure field eϕ end-to-end
from the input captures and the full loss formulation becomes

L(θ, ϕ) = Lf (θ) + Le(ϕ) . (8)

It is important to note that we only require RGB images with exposure as input and no additional
labels are required. Using our color-based criteria, we produce high-quality 3D consistent view
synthesis results in high dynamic range scenarios while prior works require, e.g., a target HDR image
from an artist or access to professional HDR software.

Implementation Details. We parameterize our neural exposure field as a fully-connected MLP
with ReLU activation and four hidden layers with a hidden dimension of 128. For rendering the
predicted exposure to the image plane, we re-use the alpha blending weights calculated for the RGB

(a) Clipped HDR. (b) Single Exposure. (c) Exposure Fusion.

(d) Varying Exposure Values.

Figure 6: Exposure Fusion. During training, each input
image is observed with only a single randomly-sampled ex-
posure (6d). For evaluation, we apply exposure fusion (6a)
to obtain higher-quality and well-exposed target images (6c)
compared to the default single exposure images (6b).

rendering pass (see (3.1)) for faster
performance and detach the gradients
so that the scene geometry predic-
tion is not affected by the exposure
field prediction branch. In the NeRF
model, we use a bottleneck vector di-
mension of 256 per default except for
forward-facing scenes where we use
a dimension of 15. We train both
models jointly for 10, 000 iterations
( approx. 10 min.) on forward-facing
and for 25, 000 iterations (approx. 30
min.) on room- and apartment-sized
scenes on 8 V100 GPUs. For addi-
tional details on the NeRF parameter-
ization, we refer the reader to [4]. We
set the weighting-related hyperparam-
eters as σexp = 0.05, λexp = 0.1, and
λsat = 1.

4 Experiments

Data. To evaluate our neural scene
representation with the latent ex-
posure conditioning, we report re-
construction results on the HDRN-
eRF [15] dataset (MIT). To further evaluate our model on real-world and scene-level captures,
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we also report results on the recently proposed Eyeful Tower dataset v2 [51] (CC BY-NC I 4.0). In
contrast to other common view synthesis benchmarks like [3], the Eyeful Tower dataset contains
HDR images that we can use to simulate varying exposure and to produce meaningful target images.
Finally, we test our model on in-the-wild phone captures from [49] (Apache 2.0) and a large-scale
scene from [4] (CC-BY).

Metrics. For the exposure reconstruction experiments, we follow prior works [6, 15] and report view
synthesis metrics PSNR, SSIM, and LPIPS against the ground truth images for both in-distribution
and out-of-distribution exposure values. For evaluating our neural exposure field on room-level scenes,
we use the HDR data from the Eyeful Tower [51] dataset that allows us to generate tonemapped
images with different exposures. For the training set, for each view we sample an exposure value
from an exposure set ( 1

16 ,
1
8 ,

1
4 ,

1
2 , 1, 2) so that every pose is only observed once with one exposure.

For evaluation, we use the HDR data to generate each test view with all exposures from our exposure
set and then produce the target image by applying classical exposure fusion [23] as illustrated in Fig.
6. To measure how well our method and baselines produce well-exposed reconstructions, we report
PSNR, SSIM, LPIPS against these target images on the test set.

Baselines. For the exposure reconstruction experiments, we compare against state-of-the-art methods
NeRF [26], ZipNeRF [4], 3DGS [18], NeRF-W [21], HDRNeRF [15], and HDR-GS [6], where
HDR-GS is the only method that further requires the HDR captures as input, while all other methods
only use RGB at sampled exposure. For the results on the Eyeful Tower scenes, we report our
method and all baselines with the same ZipNeRF [4] backbone to enable a fair comparison. For these
experiments, we compare against ZipNeRF a.) without any modification to handle varying exposure
(“Ignore Exposure”), b.) with GLO embeddings [5, 21], c.) with affine GLO embeddings [4], d.)
HDRNeRF*[15] for which we train the NeRF model with exposure input and at test time, we render
with constant mean exposure over all input images.

4.1 View Synthesis with Input Exposure

In the first experiment, we evaluate the performance of our chosen neural scene representation and
the novel latent exposure conditioning mechanism. The task is to reconstruct test views at different
input exposures.

Table 1: Comparison on HDRNeRF. We find that for both in-distribution (IN) and out-of-distribution
(OOD) exposure values, our method overall performs best while training significantly faster than
prior works. *Note that HDR-GS [6] uses the HDR data during training, while all other methods only
rely on RGB images at sampled exposure.

Time ID Exposure (t1, t3, t5) OOD Exposure (t2, t4)
min. PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF [26] 405 13.97 0.555 0.376 14.51 0.522 0.428
ZipNeRF [4] 11 19.00 0.682 0.142 19.73 0.724 0.125
3DGS [18] 38 19.46 0.690 0.276 18.97 0.778 0.309
NeRF-W [21] 437 29.83 0.936 0.047 29.22 0.927 0.050
HDRNeRF [15] 542 39.07 0.973 0.026 37.53 0.966 0.024
HDR-GS* [6] 34 41.10 0.982 0.011 36.33 0.977 0.016
Ours 11 42.54 0.988 0.014 38.36 0.984 0.021

Quantitative Results. In Tab. 1 we observe that our method overall leads to the best performance
while training 3× faster than the fastest baselines. Compared to HDRNeRF [15], the prior state-of-
the-art that also uses only RGB sampled at exposure values during training, we improve by 3.5 PSNR
from 39.07 to 42.54 on the in-distribution (ID) exposure values and by 0.8 PSNR from 37.53 to 38.36
on the out-of-distribution (OOD) exposure values. Compared to HDR-GS [6] that requires not only
sampled RGB but the full HDR capture during optimization, we also improve in PSNR (by 1.4 on ID
and 2.0 on OOD exposure) and SSIM while achieving a slightly higher LPIPS value. It is crucial to
note that RGB input sampled at different exposures is a common scenario for real-world captures,
while HDR captures require a professional setup and usually are only available for professionally
captured or synthetic environments. We conclude that our method performs best for view synthesis
with input exposure compared to SOTA baselines while training at least 3× faster.
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Table 2: Ablation on HDRNeRF. We ablate our proposed view-dependent MLP architecture for
forward-facing scenes (w/o Our View. MLP) and the latent exposure conditioning (w/o Lat. Con.).
Our full model leads to the best results on all metrics.

ID Exposure (t1, t3, t5) OOD Exposure (t2, t4)
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

w/o Our View. MLP 33.85 0.928 0.104 28.20 0.880 0.170
w/o Lat. Con. 39.88 0.979 0.038 38.33 0.978 0.034
Ours 42.54 0.988 0.014 38.36 0.984 0.021

(a) GT. (b) Ours. (c) HDRNeRF*. (d) GLO. (e) Affine GLO. (f) Ignore Exp.

Figure 7: Qualitative Results on Eyeful Tower. Results from our model and baselines for the
office_view2 and riverview scenes.

Ablation. We additionally perform an ablation study in Tab. 2 for the exposure reconstruction
experiment to verify the relevance of important components. We find that our model without our
view-dependent MLP parameterization (see Sec. 3.1) leads to degraded results and tends to overfit to
input images. If we do not use our latent exposure conditioning in our model, we find that the quality
drops as the model is less expressive and predicted views are less sharp. Our full model leads to the
best results on all metrics and we conclude that both contributions are required for high performance.

4.2 View Synthesis with Neural Exposure Field

Table 3: Comparison on Eyeful Tower.
Also quantitatively, we find that our method
performs best compared to state-of-the-art
baselines that all share the same ZipN-
eRF [4] backbone.

PSNR ↑ SSIM ↑ LPIPS ↓
Ignore Exposure 16.72 0.682 0.444
Affine GLO [4] 20.13 0.815 0.263
GLO [21] 21.20 0.824 0.298
HDRNeRF∗ [15] 22.82 0.836 0.311
Ours 26.48 0.876 0.234

Table 4: Ablation on Eyeful Tower. We ablate our
two criteria for the exposure field optimization (w/o
Well-Exposedness and w/o Saturation), our regular-
ization strategy (w/o Regularization), and the affine
GLO embeddings (w/o A-GLO).

PSNR ↑ SSIM ↑ LPIPS ↓
w/o Well-Exposedness 25.92 0.868 0.247
w/o Saturation 24.30 0.867 0.241
w/o Regularization 24.84 0.856 0.258
w/o A-GLO 27.44 0.854 0.306
Ours 26.48 0.876 0.234
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Next, we evaluate how well our method performs at view synthesis with 3D consistent appearance on
room- and apartment-sized scenes with our neural exposure field. In contrast to before, the task is not
to reproduce the appearance at an input exposure, but rather to learn consistent and well-exposed
appearance across the entire scene.

Quantitative Results. We find that our method performs best compared to baselines in all metrics
(see Tab. 3). In PSNR and SSIM, HDRNeRF* [15] performs second best and we improve over it
significantly by 57% in MSE (+3.7 PSNR, +0.04 SSIM). In LPIPS, affine GLO [3] performs second
best and we improve over it by 12% (−0.03 LPIPS).

Qualitative Results. Qualitatively, we observe a similar trend (see Fig. 7). In particular, ignoring
exposure leads to floating artifacts and severe scene degradation. Further, all remaining baselines
exhibit over- and underexposure in various parts of the scene and lose fine details. In contrast, our
method produces well-exposed colors for the entire scene including fine details and far away regions.

Ablation. In Tab. 4, we ablate the main components of our method. We find that
both criteria, well-exposedness as well as saturation, are required to achieve high-quality re-
sults. Without the well-exposedness criterion, especially the LPIPS metric drops, proving
that well-exposed colors are perceptually very important. On the other hand, without the
saturation criterion, the PSNR metric drops, demonstrating its relevance for faithfully recon-
structing well-fused colors (GT). If we remove our proposed regularization, the neural expo-
sure field predictions do not generalize as well to novel views, causing a performance drop.

(a) GT Test Images.

(b) Our Exposure Field Predictions.

(c) Our RGB Predictions with 3D Consistent Exposure.

Figure 8: In-the-Wild Captures. For in-the-wild
captures [49], both training and test images exhibit
strong exposure changes (8a). Our method learns
a 3D consistent exposure field (8b) resulting in 3D
consistent high-quality view synthesis (8c).

Finally, without the affine GLO embeddings, we
find that while PSNR slightly increases, both
SSIM and LPIPS worsen significantly due to
overall more blurry results. Ultimately, we con-
clude that all components of our method are
crucial to achieve the best performance.

In-the-Wild Captures. Finally in Fig. 8, we
additionally show qualitative results for the in-
the-wild phone capture statue from [49]. We
observe that while the input (both train and test)
images exhibit strong exposure changes, our
method is able to produce a 3D consistent expo-
sure that in turn leads to visually appealing, 3D
consistent view synthesis. Crucially, compared
to prior works, our method does not require ex-
posure as input at test time nor a reference target
appearance created by an artist with professional
software.

Large-Scale Reconstruction. In Fig. 9 and 10,
we additionally report qualitative results on
Alameda, a house-sized scene with varying in-
put exposure, from the ZipNeRF dataset [4]. For
all methods, we use the same ZipNeRF [4] back-
bone. We find that ignoring the input exposure
leads to degenerate view synthesis. Optimizing
affine GLO embeddings [4, 21] improves the
overall quality but the renderings can still suffer from over- and underexposure. Our method, in con-
trast, produces 3D consistent and well-exposed colors for all parts of the scene, while not requiring a
complex multi-exposure capture as input. It is wort noting that in Fig. 9 and 10, our method improves
over the ground truth view that was captured with a single exposure value.

3D Exposure. While in the traditional sense, exposure is a camera-dependent property, our method’s
"optimal exposure" is a conceptual departure acting as a spatially-varying variable. It is not directly a
physical property but rather a learned representation that guides our model to produce high-quality,
well-exposed images, similar to how a photographer might locally adjust exposure in high dynamic
range photography. By learning a 3D exposure field, our model finds a per-point exposure value that
prevents clipping and under or over-saturation for each point.
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(a) Ignore Exposure. (b) Affine GLO.

(c) Ours. (d) Ground Truth.

Figure 9: Large-Scale View Synthesis. While ignoring the input exposure (9a) leads to degenerate
view synthesis, optimizing affine GLO embeddings [4, 21] (9b) improves results but output images
still suffer from over- and underexposure. In contrast, our method (9c) achieves 3D consistent
and well-exposed color for the entire large-scale scene without requiring a complex multi-exposure
capture, and even improves over the GT test view that was captured with a single exposure (9d).

(a) GT Test View. (b) Our RGB Prediction. (c) Our Exposure Field Prediction.

Figure 10: High-Dynamic Range. While input train and test views might show over- or underexpo-
sure (10a) as no complex multi-exposure capture was performed, our model achieves well-exposed
colors (10b) for the entire scene thanks to the predictions of the 3D neural exposure field (10c).

Limitations. While our method produces state-of-the-art view synthesis for scenes with varying
exposure, results might degrade for extreme lighting conditions such as very low-light or extreme
over-exposed captures as well as for complex lighting effects such as semi-transparency and strong
reflections.

5 Conclusion

We presented Neural Exposure Fields (NExF), a novel method for view synthesis that produces
high-quality 3D-consistent appearances for high dynamic range scenarios. The key idea is to learn
a 3D neural exposure field from 2D observations by considering a pixel’s well-exposedness and
saturation for backpropagation, and to train it jointly with our neural scene representation with a
novel latent exposure conditioning. In contrast to previous works, our method does not require
HDR captures nor target appearances produced by professional artists and costly software. We find
that our method produces high-quality scene reconstructions with well-exposed colors for all parts
of the scene, even in challenging high dynamic range scenarios such as indoor rooms with large
window fronts overlooking outdoor areas. Also quantitatively, we find that our approach leads to
state-of-the-art performance improving by more than 55% over the best-performing baseline.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We introduce the context of our method and the key ideas of our method as
well as the main achievements in the introduction and abstract, hence the claims accurately
reflect the paper’s contribution and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In main paper (Sec. 4) as well as supplementary.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .
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Justification: Our manuscript does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We report all required information to perform and reproduce the experiments
that we conduct in the paper (see Sec. 3 and Sec. 4). We only draw conclusions from
conducted experiments, hence all experimental results and claims and be reproduced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Code release not possible right now due to institutional policies.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification:All training and test details are given in the manuscript (see Sec. 3 and Sec. 4).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Multiple runs per method and experiment to calculate error bars are infeasible
given the computational requirements.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details are given in the manuscript (see Sec. 3).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see supplementary material.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: Our manuscript does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All used assets are properly cited and licenses respected (see Sec. 4).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: Our manuscript does not involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: Our manuscript does not involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: Our method and paper creation did not involve any LLM usage.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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