
SURFBOARD: REPRODUCIBLE PERFORMANCE ANALYSIS

FOR DISTRIBUTED MACHINE LEARNING WORKFLOWS

Anonymous authors
Paper under double-blind review

Abstract
Large-scale HPC infrastructures are enablers for scientific
research in many domains. The recent advances in machine
learning (ML) have led to an ever increasing demand for
computation power, as well as the design of complex op-
erational workflows. Understanding the performance and
efficiency of these workflows is key to productivity, knowl-
edge and model sharing, and energy efficiency. Even though
there have been efforts in studying and designing portabil-
ity protocols, performance analysis of large-scale ML is still
an expert-driven task, tightly locked-in to specific physical
and software infrastructure. Much like in other domains, this
hinders reproducibility of both results and overall workflow
performance. To overcome this challenge, we propose the
design of a container-based framework for reproducible per-
formance analysis of ML workflows at scale. We validate
our framework using a case-study on two different large-scale
production systems running ML workflows. We show empiri-
cally that our containerized approach is portable and allows
arbitrarily low-level performance evaluation when run on two
different, production-based HPC clusters with hundreds of
GPUs. We report our findings on widely-used open-source
software stacks and datasets and offer practitioners insights
into what types of analyses our framework enables. To benefit
the community, we open-source our software and results.

1 Introduction

The rapid advancements in hardware performance in recent
years have enabled the operation of machine learning (ML),
and especially deep learning (DL) [34]. This field has gained
immense traction and interest, and made important contri-
butions to many other domains such as medicine [56] or
physics [11]. This led to an abundance of trained models
or systems [1, 8, 29, 41] to run such models. Dean et al. [15]
show that articles published per year in the field grow faster
than compute power per Moore’s law, up to 100 articles per
day at the end of 2018. Naturally, domain scientists and prac-
titioners need to use such models and techniques to solve
problems (more efficiently), and hence need to replicate the
findings and setups of large amounts of ML published work.

Reproducibility [27, 46] is the Achilles’ heel in computer
science in general, and is much more difficult to achieve in
large-scale computer systems [19, 53]. This is because the

sheer complexity of the involved physical infrastructure, in-
terconnected through large-scale networks and many layers
of software. ML scientists and practitioners not only need
reproducible results, but also reproducible performance anal-
ysis. Understanding the performance of ML models and
frameworks is key to achieving productivity, knowledge and
model sharing, as well as energy efficiency. This is especially
important since training has been shown to have significant
environmental impact [49] for several ML models.

Although reproducible results are generally difficult to
achieve, seminal work [47, 48] has been steering the com-
munity toward achieving this goal. Instead, in this paper we
explore the domain of reproducible performance analysis in
large-scale distributed ML. This is a significant and challeng-
ing problem exacerbated by two aspects. First, most of the
tools and systems involved are locked-in to specific infras-
tructure, such as HPC clusters and supercomputers. Second,
large-scale infrastructure is intrinsically variable in hardware
performance [17, 37], which subsequently affects application
performance. Although guidelines for reproducible perfor-
mance evaluation exist [40, 52], it is unclear whether these
are sufficient for ML performance evaluation.

Due to their high demand of compute power, ML and DL
workloads are naturally suited for deployment in large-scale
HPC clusters equipped with special hardware, such as GPUs,
FPGAs, or TPUs [15]. Being deployed in HPC infrastructure,
ML frameworks such as pytorch [41] or Tensorflow [1] have
evolved to run through specialized, tightly-coupled MPI [45]
interfaces. Although several performance evaluation frame-
works for MPI applications exist, like Tau [44], Scalasca [22],
or VAMPIR [31], these are insufficient to assess the perfor-
mance of ML workloads on HPC clusters. This is because
ML and DL frameworks have many levels of complexity and
use specialized hardware for which practitioners have to un-
derstand bottlenecks as well. Special lower-level profilers
like nvprof [10], or pyprof1 are needed to gather lower level
metrics. Finally, all these metrics and measurements have
to be combined at arbitrary levels in the software stack to
understand the performance of specific components.

Moreover, reproducible performance analysis has become
even more difficult due to the novel development of com-
plex ML workflow pipelines. These workflows tend to con-
tinually expand and include increasingly complex models,

1https://github.com/NVIDIA/PyProf

https://github.com/NVIDIA/PyProf


Submitted to the Journal of Systems Research (JSys) 2021

pre-processing pipelines for data augmentation [13], diverse
data formats and dimensionality, or even complex simula-
tors [4, 9]. The hardware ecosystem used for training these
complex systems is evolving and becoming more diverse and
heterogeneous, making reproducible performance analysis
difficult. Furthermore, the low-level kernels implementing
key ML primitives, on which high-level frameworks depend,
are also in continuous development and contribute to the com-
plexity of these workflows. The previously-reported artificial
intelligence reproducibility crisis [27] is growing at an accel-
erated pace and covers the whole spectrum: from numerical
reproducibility to performance reproducibility. In this work
we focus on addressing the latter.

Although several steps have been taken toward achieving
in-depth performance evaluation for ML workloads, these
are not fully reproducible and do not support complex work-
flows. Building blocks for performance evaluation include
visualization techniques [32], lower level performance char-
acterization [5, 28], or benchmarking efforts [7, 30]. To en-
able practitioners to use such systems and benchmarks over a
variety of infrastructure and with better reproducibility guar-
antees, in contrast, in this paper we present a framework for
reproducible performance analysis of ML workloads.

Our contribution is a containerized profiling framework,
called SURFBoard, that operates on all modern container-
enabled large-scale HPC infrastructure. In this paper we
focus on performance analysis for computer vision DL work-
flows. However, our work is modular and highly configurable
and thus can be adapted to more general ML pipelines. As
a consequence, the user can extend it using other profiling
tools next to our current toolkit: pytorch [41], NVIDIA DALI,
Horovod [33], OpenMPI [20], TAU [44], NVProf [10]. Us-
ing this toolset, we show that we can perform performance
analysis at arbitrary levels of the software stack. Users can
easily answer questions such as what is the training time scal-
ability?, what parameters affect batch duration?, or what are
the most time-consuming CUDA kernels per batch?.

In helping practitioners with performing reproducible per-
formance analysis on complex ML/DL workflows, we show
that SURFBoard is able to capture complex performance
behavior on two different production-based GPU-enabled
clusters. Our experiments focus on implementing typical,
real-world analyses that practitioners use to search for bot-
tlenecks and inefficiencies in their training workflows. To
enable reproducible performance evaluation in ML workflows
on large-scale HPC infrastructure, our contributions are:

1. We present the design and implementation of SURF-
Board, a containerized profiling framework for ML work-
loads. To benefit the community, we open source2 our
work as well as the visualization notebooks and collected
performance datasets (Section 2).

2https://anonymous.4open.science/r/
1116c4aa-7342-45d2-b03a-e602e387cd3b/

Figure 1: SURFBoard in the typical ML Pipeline life-cycle.

2. To validate our work, we present a case-study of per-
formance analysis for DL workloads on two large-scale
GPU-enabled clusters. We provide an in-depth exper-
iment design showcasing the features of our profiling
framework when running typical performance analysis
that practitioners do when benchmarking their DL work-
flow. (Sections 3- 4).

3. We present an in-depth performance analysis on the
two clusters using real-world open-source frameworks,
workloads, and datasets. We show the portability and
reproducibility of our results, discuss the main findings
of our experiments, and show how practitioners can use
SURFBoard to identify bottlenecks and performance
issues (Section 5).

2 SURFBoard: Containerized Profiling Work-
flow Design

In this section we describe in detail the design and imple-
mentation of our containerized profiling framework called
SURFBoard. Our work is able to integrate with any ML or
DL framework running on high-end HPC infrastructure. We
show how we integrate our profiling workflow with state-
of-the-art ML software stacks, such as pytorch, openMPI,
DALI,3 or Horovod [43]. We show how ML workflows can
be reproduced and ported to large-scale infrastructures that
differ in software and hardware through containerization, and
how users can perform parameter sweeps over important pa-
rameter spaces.

Figure 1 illustrates the typical life-cycle of a ML pipeline.
The pipeline consists of training scripts and possibly container
definitions for training a specific ML model, such as ResNet-
50. Starting from the initial pipeline, profiling is performed
at scale, using some representative dataset, and the pipeline
is optimized until performance meets some user-defined cri-
teria. SURFBoard helps automate this part of the life-cycle.

3https://github.com/NVIDIA/DALI

2

https://anonymous.4open.science/r/1116c4aa-7342-45d2-b03a-e602e387cd3b/
https://anonymous.4open.science/r/1116c4aa-7342-45d2-b03a-e602e387cd3b/
https://github.com/NVIDIA/DALI


Submitted to the Journal of Systems Research (JSys) 2021

Figure 2: Software stack for profiling ML workflows.

Subsequently, the optimized ML pipeline can be deployed to
train ML models many times, on various datasets.

In most cases, profiling starts with the user requesting a
job orchestrator, e.g. SLURM, for a node allocation and sub-
sequent execution of the training algorithms needed to run.
Developers and practitioners may want to perform a param-
eter sweep over the possible parameter space: input dataset,
number of I/O workers, number of GPUs per node, batch size,
gradient precisions etc. To enable this, we implemented a
Sweep Orchestrator with a specified set of YAML configu-
ration files. The orchestrator utilizes the application-specific
Sweep Plugin to generate a set of command line invocations
of the training script inside a containerized environment, us-
ing MPI for inter-process communication.

To achieve portability and performance reproducibility over
an extensive set of large-scale infrastructure, different in both
hardware and software deployments, we created a container-
ized environment that can run state-of-the-art ML training
stacks on most (high-end) HPC infrastructures. One of the
most challenging issues in performance reproducibility is
achieving similar setups on different infrastructure. We solve
this by creating our containerized approach to ML training
performance analysis.

Figure 2 illustrates the software stack involved in execut-
ing profiling experiments with our workflow. The stack is
roughly divided into two sections consisting of code running
in a host environment and code executed inside a Docker or
Singularity container. The container is configured to provide
communication and profiling infrastructure in addition to the
training capability of Pytorch and associated libraries for neu-
ral network training. The specific capabilities of the container
are:

1. Training with Pytorch and optionally using the Nvidia
Data Loading Library, DALI. Compared to the Pytorch built-
in dataloader library, Torchvision, DALI offers multiple ad-
vantages: input from folders of images or Tensorflow Records
(TFRecords), various levels of GPU offloading of the prepro-
cessing, and advanced profiling. We provide a custom-built
version of DALI with NVTX annotations enabled, which
allows GPU profilers to inspect the details of preprocessing-
related computation. It is important to note here that our
entire pipeline is configurable, and the user can add different

training frameworks, like Tensorflow [1].
2. Communication over OpenMPI, which can be lever-

aged from Pytorch either through the Pytorch built-in na-
tive multi-node training module, Pytorch DDP, or through
Horovod. We include Horovod specifically for its capability
for explicit gradient quantization, i.e. casting the Pytorch-
computed FP32 gradients to FP16 before invoking MPI to
perform all-reduce for data-parallel training. We configure
Horovod to perform all its operations with MPI even when
transferring from GPU memory, which enables MPI profilers
to inspect the traffic.

3. Profiling at multiple levels, targeting compute and com-
munication. The MPI-profiler leveraged in this work is
TAU [44], used for detailed communication profiling. NVProf
and NSys are leveraged for detailed compute kernel profiling
on the GPU, and Pyprof for linking GPU profiling data to the
Python execution graph and neural network model.

We stress that the tools used in our work are mere exam-
ples of what practitioners can achieve with a containerized
framework for reproducible performance evaluation. In fact,
all three layers of our containerized design are highly con-
figurable, and other types of tools could be integrated. For
example, one can gather CPU performance counters using
PAPI [55], or use VAMPIR [31] instead of TAU.

2.1 Sweep orchestrator
We denote a profiling sweep as the set of profiling exper-
iments which traverses all possible application parameter
combinations. As this set can be relatively large and varies
between neural networks, we provide experiment orchestra-
tion infrastructure based on Hydra4 designed to enable auto-
matic generation of command line arguments for a profiling
sweep. We note that each experiment command follows the
structure: mpirun <MPI args> singularity exec <singularity
args> <profiler args> main.py <application args>

The orchestrator defines a base Python class Experiment,
initialized with the complete set of possible experiment pa-
rameters, as well as necessary abstract functions for param-
eter combination filtering and command string generation.
For non-numeric parameters, the orchestrator defines Enums
which constrain the parameter values. The possible applica-
tion parameters are defined in Table 1, and divided into four
classes corresponding to the four types of CLI arguments in
the command structure:

1. Scale and infrastructure parameters, which manifest
in the MPI arguments, include the number of nodes, GPUs per
node, CPUs per process, and the networking fabric utilized
for communication (Infiniband or Ethernet)

2. Container parameters include, for example, the sin-
gularity container itself (SIF file), as well as the locations
of training data and TFRecord index, if needed. These are

4https://github.com/facebookresearch/hydra

3

https://github.com/facebookresearch/hydra


Submitted to the Journal of Systems Research (JSys) 2021

Possible Values in YAML Config High-level Description

Ranks Numeric Total number of MPI Processes executed

GPU per Node Numeric Processes allowed per-node, each of which maps to one GPU

Profile Level
None,

tau_exec, tau_python, tau_python_cuda,
nsys, nvprof

No profiling
Use TAU for mpi, python and GPU profiling respectively

Use NVidia tools for GPU profiling

Network Backend ib, eth Data transfer fabric (InfiniBand or Ethernet)

Repetitions Numeric Number of runs of each experiment configuration

Gradient Precision fp16, fp32 Precision of the communicated gradients.

Compute Precision fp16, fp32, mixed Precision of Compute

Batch size per GPU Numeric Size of per-GPU batches

Data Loader
pytorch,
dali-gpu,

dali-cpu-to-gpu

Use Torchvision dataloader
Perform all preprocessing on GPU

Perform all preprocessing on CPU, then move data to GPU

Data Format
folder,

tfrecord
Use compressed images in specified folder

Use pre-packaged Tensorflow Records

Workers Numeric Number of preprocessing worker threads

Communication Backend Horovod [43] Gradient synchronization framework

Table 1: Typical parameters that DL practitioners consider in their performance evaluations and their high-level description.

mounted into the Singularity container at pre-defined mount
points.

3. Profiler parameters define the profiler to be utilized as
well as any parametrization of the profiler. Profiler options
are TAU, TAU-Python (with optional CUDA support), or
NVProf/NSys CUDA profilers.

4. Training parameters configure the NN training flow
itself: input data format (folder of images or TF records),
data loader (torchvision, DALI CPU, DALI GPU), execution
precision – fp32, fp16, or mixed, gradient precision between
fp32 and fp16, and distribution backend (Horovod).

2.2 Implementing New Training Workflows
We offer the user the possibility to define new types of ex-
periments to enable novel training workflows while retaining
the capability of achieving portable and reproducible perfor-
mance evaluation. To plug a new training flow into the Orches-
trator, the user must define a new class inheriting Experiment
and implement the cmd() method which produces a command
from the relevant parameters as well as the is_legal() method,
which filters out parameter combinations that the target train-
ing flow cannot implement.

At run-time, the orchestrator leverages Hydra to assemble
a sweep configuration from YAML files as follows: a main
configuration file defines which parameters have constant
values across all runs in a sweep and which cycle through
multiple values. The possible values of non-constant parame-

ters are defined in a second YAML configuration file. Hydra
assembles the information about parameter values, calculates
possible parameter value combinations as the Cartesian prod-
uct of possible values for each parameter, checks the legality
of the parameter combination using is_legal(), and executes
the command produced by cmd() from the specified param-
eter values. To define a new sweep, the user only needs to
define the two YAML configuration files.

2.3 Open Source Commitment
Our work is implemented in python. Development took ap-
proximately 6 person-months, most of which was spent de-
bugging the various components of the deep software stack
illustrated in Figure 2, setting up the NVTX profiling infras-
tructure, and to ensure portability of containers and experi-
ment orchestrator between various systems.

The experimental data gathering and visualization took
another 6 person-months. We release both the source code of
our reproducible performance analysis framework, as well as
all the performance data and visualization scripts. Since the
start of the project in 2019, approximately 50,000 core hours
were spent for debugging and initial framework calibration,
while 300,000 core hours have been utilised on the Cartesius
cluster and 50,000 core hours have been used on the LISA
cluster (see Section 4 for an in-depth description of these
clusters) for running profiling experiments. In the following
sections of this paper we present our validation of SURFBoard

4



Submitted to the Journal of Systems Research (JSys) 2021

using a case-study of large-scale training experiments on two
production HPC infrastructures.

3 Case Study: Experiment Design

In this section we describe in detail the design of the experi-
ment we perform to validate SURFBoard. We seek to empiri-
cally show that our performance analysis framework adheres
to reproducibility standards and is able to help ML practition-
ers answer valuable questions about the performance of ML
training workflows. We describe the high-level goals of our
experiment, which are typical questions a ML practitioner
would ask when assessing the performance of a ML workflow.
We focus on the methodology of performing the performance
analysis of the high-level goals, and we describe in detail the
DL model used in our study.

3.1 Case Study High-level Goals
The goal of this profiling exercise is to evaluate compute and
communication efficiency for data-parallel distributed train-
ing of ResNet50 on SURFSara infrastructure, and quantify
the contribution of each training pipeline stage (batch prepro-
cessing, training, communication) to the total runtime, under
various configurations of each stage. Furthermore, we wish to
construct a performance model enabling performance extrap-
olation. We separate this goal into three large sub-objectives:

1. Scalability. We aim to determine the effect of various
training configurations on the scalability of training up to
the maximum sizes permitted by the hardware. We measure
the scaling efficiency itself but also how each configuration
option affect the scaling efficiency at each scale.

2. Computation Efficiency. We measure each stage in the
training process: forward, backward, and model update, as
well as the total batch duration, and calculate the overall
compute efficiency of the GPU, as well as the overall memory
bandwidth efficiency achieved by the GPU.

3. Preprocessing Computation. We compare CPU and
GPU preprocessing via total application run-time at various
scales in order to determine the effect of the number of pre-
processing workers and preprocessing offload on run-time at
various scales.

4. Adhering to Reproducibility Standards. We seek to
determine whether our performance analysis framework is
able to run and achieve significant results on multiple types
of infrastructure. We compare the results of our framework
on two different large-scale production HPC systems. The
practical details of these systems are detailed in Section 4.

3.2 Performance Analysis Method
1. Important Parameters. When performing DL perfor-
mance analysis, practitioners usually focus on several im-
portant parameters. In this study, we consider the impact

of the following parameters: gradient and compute preci-
sion, size of the batches, data loader, and number of workers.
These parameters are described and explained in Table 1.

2. Scalability. To study the scalability we measure both the
duration of the experiments at various scales and the scaling
efficiency (SE) for N GPUs. The duration of one experiment
is measured using the data from TAU as the duration of the
.tau application. Since the application is running on several
GPUs, the maximum duration over all GPUs is used as the
final measure. The scaling efficiency is measured as the ratio
between the experiment duration using a baseline number of
GPUs (e.g., one GPU) over the duration of the same experi-
ment using N GPUs:

SEN =
tbaseline

tN

3. Efficiency. To study the computational efficiency, we
perform deeper analysis by measuring the batch duration and
the duration of the three stages of each training iteration:
forward pass, backward pass, parameters update. During
the forward pass, the DNN makes a prediction of the labels
associated with each image in the input batch, and an error
is calculated by comparing the known correct labels with the
predicted ones. In the backward pass, the error gradients
are calculated and propagated through each network layer.
Finally, the gradients are utilized to update each network
parameter to minimize the error.

We use NVProf along with NVTX annotations to delimit
the previous stages. We also calculate the overall compute
efficiency of the GPU using the CUDA-kernel-level data from
Pyprof. The number of floating points operation per second
is measured as the ratio of the sum of the FLOPs over the
sum of the duration of each kernel. To obtain the compute
efficiency of the GPU, we divide the measured value by the
theoretical value of the given GPU. Similarly, the memory
bandwidth efficiency is computed as the ratio of the measured
bandwidth (ratio of total amount of bytes in and out of the
GPU over the sum of the duration of each kernel) of the GPU
over its theoretical bandwidth.

4. Sensitivity Analysis. We study the impact of the con-
figuration parameters over the scaling efficiency of the ap-
plication by using Taguchi Methods [50]. The goal of such
methods is to reduce the number of experiments needed to
be performed in order to determine which factor(s) impacts
a predetermined target variable the most. We do not use the
method to design our experiment but only to evaluate the pa-
rameter importance given our experimental results. For that,
for a given experiment, we use the signal to noise ratio (SN)
defined as follows for the Taguchi Methods:

SN =−10log
(

1
N ∑

N
i=1

1
y2

i

)
N: Number of repetitions of the given experiment;

yi: Target variable value for repetition i of the experiment.

5



Submitted to the Journal of Systems Research (JSys) 2021

3.3 DL Model Used in the Study
We perform our experiments on a state-of-the-art, industry-
standard model and dataset: ResNet50 v1.5. We use training
scripts implemented by Nvidia as part of their state-of-the-art
reference examples in Pytorch [39]. The model and train-
ing scripts are configured for image classification with the
ImageNet dataset.

Compared to the original definition [23], ResNet50 v1.5
has stride = 2 in the 3x3 convolutions, rather than in the 1x1
convolutions, in the bottleneck blocks that require downsam-
pling. This comes at a small increase in terms of computa-
tional cost, but is beneficial in terms of accuracy. This modifi-
cation was first introduced in a Lua Torch re-implementation
of ResNet from Facebook [18], and has since been widely
adopted. A more detailed overview of ResNet variants can be
found in [24], where ResNet 1.5 is referred to as ResNet-B.

Nvidia’s scripts provide an implementation that is highly
tuned both in terms of hyper-parameters and final accuracy, as
well as training-time performance. As such, it is more repre-
sentative of the current state-of-the-art compared to Pytorch’s
reference ImageNet training implementation [42].

With respect to performance, Nvidia’s implementation
tightly integrates with the DALI library for data loading and
pre-processing. DALI has multiple advantages over Pytorch’s
own dataloaders: it provides support for reading input data
stored in the Tensorflow TFRecord format, which we lever-
age as part of our setup; it provides partially GPU-accelerated
JPEG decoding and end-to-end GPU-accelerated preprocess-
ing for the ImageNet dataset. With respect to accuracy, they
implement all the strategies described in [24], that together
contribute to pushing the top-1 ImageNet accuracy to around
78.4%.

It is important to note that DL model described above is
used as an example for validation study and to showcase ca-
pabilities of the framework and type of the analysis integrated
within the framework.The framework is designed with prin-
ciple of extensibility and will require some effort from ML
practitioners / developers to integrate their model within the
framework. The focus of this research is to highlight the ap-
proach and the methodology rather than the results themselves
on a specific DL model.

4 Experiment Setup

For our experiment we target two production-grade distributed
infrastructures The two large-scale HPC clusters we run our
experiments on are LISA5 and Cartesius,6 specifically their
GPU islands. Note that both hardware and software stacks
of the two systems are highly different. We show empirically
that the containerized performance analysis workflow we
propose is portable and produces reproducible results that

5https://userinfo.surfsara.nl/systems/lisa
6https://userinfo.surfsara.nl/systems/cartesius

Software / Library Version

PyTorch 1.2.0
Python 3.6
CUDA 10.0
DALI 0.18.0
TAU 2.28.1
PyProf 3.6.0
CuDNN 7
OS Ubuntu 18.04

Table 2: Software versions for the container environment.

Cartesius LISA

Nodes 8, 16, 32, 48 1, 4, 8
GPU per Node 2 4
Gradient Precision fp16, fp32 fp16, fp32
Compute Precision fp32 fp32
Batch size per GPU 32, 64 32, 64

Data Loader
dali-gpu,

dali-cpu-to-gpu
dali-gpu,

dali-cpu-to-gpu
Workers 2, 8 2, 4

Table 3: Parameters considered for the experiment on both
Cartesius and LISA systems.

could be compared between the two. Note that these two
types of production-ready clusters are comparable to what
ML and DL practitioners use in practice to deploy training
workflows. We have not chosen any more clusters in our
results because we would like to focus more on showcasing
methodology and approach using SURFboard than the results
themselves. We would like to encourage HPC community to
expand and validate this approach on more infrastructures.

4.1 Cartesius Hardware Specification
The Cartesius GPU island consists of 66 Bullx B515 process-
ing nodes. Each node is equipped with a 16-core E5-2450
v2 Intel CPU (Ivy Bridge microarchitecture), operating at 2.5
GHz, and 96 GB of memory. Each node is also equipped
with two K40m GPUs, and two Mellanox Connect-X3 Infini-
band adapters, with a maximum throughput of 56 Gbps each.
For our experiments we utilized up to 48 nodes. Cartesius
is maintained with RedHat 4.8.5-39, Linux version 3.10.0-
1127.8.2.e17.x86_64. We have used CUDA enabled Open-
MPI/3.1.2 for transferring data buffers directly between GPUs
using Infiniband network.

4.2 LISA Hardware Specification
The LISA cluster consists of 25 GPU-accelerated nodes, each
equipped with Intel Xeon Bronze 3104 CPUs (12-core, 1.7
GHz), 256 GB of memory, and four GPU accelerators, either

6

https://userinfo.surfsara.nl/systems/lisa
https://userinfo.surfsara.nl/systems/cartesius


Submitted to the Journal of Systems Research (JSys) 2021

NVIDIA GeForce 1080Ti or NVIDIA Titan V GPUs. The
nodes are connected through 40Gbps Ethernet. LISA is main-
tained with Debian GNU version 10 (buster). We have used
OpenMPI/3.1.4 for multinode scaling experiments.

4.3 Software Environment inside the Con-
tainer

Table 2 outlines the software environment inside the con-
tainer for both LISA and Cartesius. This is one of the main
advantages of using containers. It enables the use of the
same software environment on both HPC clusters, enabling
reproducibility over many types of software and hardware
infrastructure.

4.4 Achieving Empirical Reproducibility
We profile the communication of the application with TAU
both on Cartesius and LISA using combinations of the param-
eters presented in Table 3. In order to gather a statistically
valid sample, we conduct at least 10 experiments for each
combination of parameters, each of them being run for a total
of 50 batches. Since our analysis is performed by gathering
metrics at batch level, we ensured that in total 500 batches per
experiment achieves statistical significance and is in check
with current reproducibility standards [37, 40, 52]. In our
figures, we present the median of a given metric over the 10
experimental runs along with the 95% confidence interval
for the communication data. Additionally, we conduct GPU
profiling on Cartesius gathering 10 experiments for each com-
bination of parameters in Table 3 for a total of 25 batches
using NVProf, and 25 batches using NVProf and enabling
kernel profiling via Pyprof.

5 Results and Visualization

In this section, we showcase results and visualizations of data
that can be produced using the framework presented in this
paper. We present the data from higher (experiment duration
and communication) to lower (GPU efficiencies and CUDA
kernels) levels of the software stack. The experiments we
performed are typical analyses performed by DL practition-
ers and the conclusions we draw can help practitioners build
training infrastructure that is suitable to their workloads, iden-
tify bottlenecks, and identify what are important parameters
in their setups. Moreover, this kind of analysis shows that
SURFBoard is useful in helping practitioners analyze the per-
formance of their DL workflows in a reproducible manner,
across multipe types of infrastructure.

Lessons Learned. The main lessons learned from analyz-
ing the empirical experiments performed in our study are the
following:

1. We confirm that Pytorch, when coupled with Horovod,
achieves a good scalability (> 90%) for ResNet-50-like
workloads, see Figures 3, 4.

2. On infrastructure like LISA and Cartesius, where re-
sources are not shared, there is not much overall per-
formance variability, especially on the MPI collective
operations, see (for example, whiskers in) Figures 5, 6.

3. The computation throughput of ResNet-50-like work-
loads is neither memory-bound, nor compute-bound.
The bottlenecks lie in waiting for remote data from other
GPUs to be transferred by the DL framework, see Sec-
tion 5.3.

4. On some types of machines, the CPU-to-GPU ratio is im-
portant, as the GPUs need to be fed data quickly enough
to achieve good performance. Our framework can be
used by system designers to detect bottlenecks like these
and areas of improvement. Users could perform similar
steps of analysis using their own workloads to determine
an appropriate ratio of CPUs to GPUs, see Section 5.4.

5. The number of preprocessing workers has more impor-
tance than the batch size on LISA. However, the opposite
behavior is true in architecture like Cartesius. Practition-
ers should perform similar types of analyses to decide
what parameters are most important in their workloads
and how the performance could be improved by using
this knowledge, see Section 5.4.

6. SURFBoard is able to be deployed on two different large-
scale HPC infrastructures. It can further help practition-
ers identify behavioral differences on large-scale infras-
tructures and what deployment parameters cause these.

5.1 Scalability
Execution Time. We measure the duration of the experiments
as the total runtime of the TAU application on a GPU involved
in the computation. Experiment durations for both Cartesius
and LISA are presented in Figures 3 and 4 respectively. For
both systems, the duration scales linearly with the number
of GPUs. This is likely due to the communication overhead
being increasingly more significant for higher numbers of
GPUs used. On Cartesius, experiments using fp32 gradients
all take longer than the ones with fp16 gradient. This behavior
is the opposite on LISA.

Since gradient casting requires additional CPU cycles, and
the GPU to CPU thoughput ratio on LISA is higher than on
Cartesius, we hypothesize that this difference in behaviour
on the two systems is caused by a CPU-induced bottleneck
on LISA. These results illustrate the utility of our framework
to system designers, e.g. our results would indicate provi-
sioning more CPUs to LISA as a relatively inexpensive way
to increase DL performance. Alternatively, gradient casting

7



Submitted to the Journal of Systems Research (JSys) 2021

Figure 3: Duration and scaling efficiencies of 50-batch experiments on Cartesius with different configurations. Experiments
depicted uses 32 images per batch. Legend reads as follows: <number of workers>w,<preprocessing>,<gradient precision>.
Note: the vertical axis does not start at 0 for better visibility.

Figure 4: Duration and scaling efficiencies of 50-batch experiments on LISA with different configurations. Experiments depicted
uses 32 images per batch. Legend reads as follows: <number of workers>w,<preprocessing>,<gradient precision>. Note: the
vertical axis does not start at 0 for better visibility.

should be offloaded to the GPU or some other accelerator to
relieve the bottleneck.

Scaling efficiency. We compute and present the scaling
efficiencies of the application for both Cartesius and LISA
in Figures 3 and 4, respectively. The efficiencies are com-
puted as the ratio of the duration of the given experiment over
the baseline experiment. For the experiment on Cartesius,
the baseline was taken as the expriment using 8 nodes (16
GPUs) whereas the baseline on LISA was taken as the exper-
iment using 1 node (4 GPUs). We used different baselines
for computing scalability to show the flexibility of our frame-
work, and to model practitioners’ behavior when scaling DL
computations: for large-scale training, using few resources
it too time-consuming and early scale-out is needed. Our
experiments also show that using fp32 gradients results in
lower scaling efficiency while using CPU preprocessing gives
a larger one on both systems.

5.2 Communication
Our framework uses TAU to profile communication through
several MPI call metrics. Figure 6 and 5 presents the sum of
the duration of MPI_Allreduce, MPI_Bcast and MPI_Gather

across all GPUs. All of these are considered extremely impor-
tant for DL performance by practitioners. It is also possible
to gather other metrics such as number of MPI calls, and total
volumes of messages sent across GPUs, see Figures 7, 8,
9 and 10. MPI_Allreduce is used during the model update
phase to share the gradients of each weights of the neural
network. Resnet50 has approximately 23 million parameters.
The experiment runs on each GPU for 50 batches and the
gradients are stored using 2 or 4 bytes (half or full-precision
floating point precision format). As a consequence, we expect
the total volume of message exchanged for MPI_Allreduce to
be:

Volume = Nweights×grad_prec×Nbatches×NGPU ,

where grad_prec is the number of bytes used to store each
gradient (4 bytes for fp32 gradients); Nbatches is the number
of batches (50); NGPU is the number of GPUs. The total
volume of messages exchanged for MPI_Allreduce presented
on Figure 9 and 10 is in line with the expected volume.
Using similar types of analyses, practitioners can identify
bottlenecks or ill-behavior at the MPI collective operation
and networking layer when performing large-scale training.

8



Submitted to the Journal of Systems Research (JSys) 2021

Figure 5: MPI calls durations on LISA for 2 workers, CPU
preprocessing, 32 images per batch, gradient fp32. Note: bars
are the median values over 10 runs, whiskers 95% confidence
interval, vertical axis is logarithmic, lower is better.

Figure 6: MPI calls durations on Cartesius for 2 workers, CPU
preprocessing, 32 images per batch, gradient fp32. Note: bars
are the median values over 10 runs, whiskers 95% confidence
interval, vertical axis is logarithmic, lower is better.

5.3 Compute and Memory Efficiency
Batch duration. Our framework combines NVProf along
with NVTX annotations to delimit the training stages (for-
ward, backward, update) and obtain more details about the
training. The batch duration and training-stages duration can
be visualized in Figure 11. We observe that the duration of the
batches scales with the number of nodes/GPUs. In particular,
the backward phase of the training, which includes gradi-
ent synchronization over InfiniBand, takes longer for larger
number of GPUs whereas the forward and update phases stay
constant. We also note the increased variability in batch dura-
tion at larger scales, caused by corresponding variability in the
time required for gradient synchronization over the network
fabric and the effect of uncorrelated performance jitter be-
tween the GPU workers, which can have a variety of causes -
OS scheduling, resource contention, garbage collection. Prac-
titioners can make use of this type of analysis to decide which

Figure 7: Number of MPI messages exchanged across all
GPUs on Cartesius for 2 workers, CPU preprocessing, 32
images per batch, gradient fp32. Note: bars are the median
values over 10 runs, whiskers 95% confidence interval, verti-
cal axis is logarithmic, lower is better.

Figure 8: Number of MPI messages exchanged across all
GPUs on LISA for 2 workers, CPU preprocessing, 32 images
per batch, gradient fp32. Note: bars are the median values
over 10 runs, whiskers 95% confidence interval, vertical axis
is logarithmic, lower is better.

parts of the per-batch computation are bottlenecks or variable
in performance.

GPU performance metrics. Using Pyprof, we measure
kernel-level data and compute the utilized memory bandwidth
and utilized compute capacity of the GPUs on Cartesius. We
present the results in Table 4 along with the efficiencies rela-
tive to the theoretical performance of the specific GPU model
we run experiments on. NVIDIA Tesla K40m has a peak
memory bandwidth of 288.4 GB/s and a theoretical compute
performance using fp32 float of 5.046 TFLOP/s. Table 4
shows that both memory and compute efficiency are low (be-
low 18%). This is due to the mismatch in model (imple-
mentation) and the hardware we tested on. Given the low
computed memory bandwidth and compute efficiencies, each
below 20%, it seems that the application is neither memory
nor compute bound. Low GPU utilization (below 50%) is

9



Submitted to the Journal of Systems Research (JSys) 2021

Figure 9: Volume in bytes of MPI messages exchanged across
all GPUs on Cartesius for 2 workers, CPU preprocessing, 32
images per batch, gradient fp32. Note: bars are the median
values over 10 runs, whiskers 95% confidence interval, verti-
cal axis is logarithmic, lower is better.

Figure 10: Volume in bytes of MPI messages exchanged
across all GPUs on LISA for 2 workers, CPU preprocessing,
32 images per batch, gradient fp32. Note: bars are the me-
dian values over 10 runs, whiskers 95% confidence interval,
vertical axis is logarithmic, lower is better.

expected for deep learning frameworks, as noted in [12, 57].
Using this kind of analysis, practitioners can identify which
parts of the GPU implementation represent bottlenecks.

CUDA kernels. Pyprof also allows to retrieve a detailed
kernel summary containing, among other metrics, the time
elapsed, number of bytes in and out of the GPU, number of
floating points operations performed during the execution of a
given kernel. Table 5 presents the duration of the 10 most used
kernels during a single batch. According to [16], the top four
kernels in Table 5 correspond to backwards pass convolution,
forward pass convolution, fully connected layer (forward and
backward), and element-wise addition respectively. These
results are in accordance with expectations given the structure
of the ResNet50 DNN. Using this type of analysis, practi-
tioners can visualize what GPU kernels take the most GPU
computation time and identify potential bottlenecks.

Figure 11: Scaling of training stages duration on Cartesius.
Configuration presented: 2 workers, dali-cpu-to-gpu, 32 im-
ages per batch, gradients fp32, compute fp32. lower is better.

GB/s Bandwidth efficiency TFLOPs/s Compute efficiency

51.16 16.23 % 0.6964 17.77 %

Table 4: NVIDIA Tesla K40m GPU performance measures
on Cartesius for 8 nodes, 2 workers, CPU preprocessing,
32 images per batch, gradient fp32. Both efficiencies are
computed with respect to the theoretical performance of the
GPU.

5.4 Parameter Sensitivity
To get a more detailed understanding on the effect of each
parameter we considered in this work, we study the impact of
the number of GPUs, number of workers, type of dataloader,
size of the batches, and gradient precision on the scaling effi-
ciency using Taguchi Methods, as described in Section 3.1.
To do so, we compute the range of SN ratio for each of the
parameters based on the set of experiment configuration per-
formed. Since the goal is to determine the ranking of the
parameters for each system, we normalize the range of SN
ratio and present the order of importance on Figure 12a for
Cartesius and Figure 12b for LISA. The larger the range
of the SN ratio is, the more impactful a parameter is. Dis-
regarding the number of GPUs which is obviously the most
impactful parameter of the scaling efficiency, on both systems,
the gradient precision is the second-most important param-
eter. Because the gradients are sent between nodes/GPUs,
smaller precision gradient results in lower overall volume of
data exchanged via MPI and therefore a better scalability of
the application. The least impactful parameter on both sys-
tem is the dataloader. Interestingly, batch size and number of
workers switch places in their effect on scaling efficiency on
the two systems under analysis (note the different coloring
scheme for number of workers and batch size in Figures 12a
and 12b). Conceptually, batch size should be the more im-
portant parameter to scalability, as it directly correlates to

10



Submitted to the Journal of Systems Research (JSys) 2021

Kernel name Time (s) % total

cudnn::detail::wgrad_alg0_engine 0.2597 15.37
cudnn::detail::implicit_convolve_sgemm 0.2395 14.17
sgemm_sm35_ldg_nt_64x16x64x16x16 0.1679 9.935
elementwise_kernel 0.1522 9.009
sgemm_largek_lds64 0.1332 7.882
cudnn::detail::dgrad_engine 0.1181 6.989
sgemm_sm35_ldg_nn_64x16x64x16x16 0.1023 6.055
cudnn::detail::dgrad_alg1_engine 0.0933 5.521
cudnn::detail::bn_bw_1C11_kernel_new 0.0913 5.402
cudnn::detail::bn_fw_tr_1C11_kernel_NCHW 0.0415 2.457

Table 5: Duration and percent of total runtime of the 10 most
used kernels during a single training batch on Cartesius for 2
workers, CPU preprocessing, 32 images per batch, gradient
fp16.

the time spent in computing and decreases the relative impor-
tance of communication to the total application time. This
expectation is confirmed on Cartesius. On LISA, the relative
under-provisioning of CPU compute to GPU compute may
cause the difference in relative importance of the number
of preprocessing workers to scalability, although it must be
noted that the absolute differences between configurations in
this respect are small (see Figure 4). Using this type of analy-
sis, practitioners can perform in-depth analysis on what kind
of parameters are most important for their DL training work-
flows and decide on which type of other analysis to zoom-in
to identify possible bottlenecks and places of improvement.

6 Limitations

We discuss limitations and threats to validity of our work. The
scope and goal of this work is to provide practitioners with a
framework for the reproducible performance analysis of ML
workloads, and not in presenting an in-depth performance
analysis and tuning of a given workload. Instead, we provide
a case-study on a workload and two different clusters, show-
casing the reproducibility of our work and the differences
in performance obtained in the two clusters. SURFBoard is
extensible and can be tuned to accept novel workloads, ML
frameworks and container orchestration tools. To this end, we
identify the following limitations of our work.

1. Single Model We only validated our framework on the
de-facto computer vision workload and dataset. This is a
widely-used workload in the ML community and we chose
this because the results we gathered can be compared by prac-
titioners against their own results. However, adding other
models and datasets is feasible. We are working toward
adding new models and open-sourcing our workflows and
results.

2. PyTorch Our case-study and results are obtained only
on PyTorch, which is widely used by practitioners. However,

(a) Cartesius.

(b) LISA.

Figure 12: Ranking of experimental parameters from most to
least important in order to maximize the scaling efficiency of
the application on both systems. Note that the most important
is the ordering of the parameters here, not their magnitudes
and that the two figures are not comparable in absolute values.

swapping PyTorch for Tensorflow in our workflows is only an
implementation effort. All other steps and components can
be re-used from our PyTorch proof-of-concept.

3. Difficulty of Extensibility We have built SURFBoard
with extensibility in mind, allowing each component to be
replaced by others. However, we have not studied in depth,
using independent programmers and practitioners how easy
it is to achieve extensibility. We plan to study this in the
future by performing user studies that can help us improve
our framework.

7 Related Work

In this section we discuss work related to our approach. We
identify four main categories of related work: (i) perfor-
mance reproducibility in large-scale systems; (ii) ML per-
formance analysis; (iii) ML workflows and orchestration;
and (iv) ML/DL benchmarks. We discuss each in detail and
contrast with our own approach.

Performance reproducibility in large-scale systems.
Performance reproducibility in large-scale systems is an elu-

11



Submitted to the Journal of Systems Research (JSys) 2021

sive task. There are no community-wide agreed methodolo-
gies to achieve it, although several authors have addressed
the topic. In HPC, Hoefler and Belli [26] propose a set of
12 principles to achieve credible performance evaluation. In
cloud computing, which is much more variable than HPC
environments [37], Papadopoulos et al. [40] propose a set
of methodological principles to achieve reproducible perfor-
mance evaluation. However, these seem insufficient as multi-
ple types of variability are identified by Uta et al. [52], which
highly affect reproducibility of results. In our work, we lever-
age all the findings of such types of work and perform sanity
checks on our results. We also adhere to reproducible meth-
ods for achieving performance results, like performing many
repeated experiments (during different days), computing non-
parametric confidence intervals for medians, and analyzing
variability.

ML performance analysis. Due to the inherent demands
in computational requirements, ML performance analysis is
currently of utmost importance. As outlined by Amodei and
Hernandez [3], the amount of compute used when training
the largest AI models increased exponentially with a 3.4-
month doubling time, far outpacing Moore’s law, resulting in
a 300,000x increase between 2012 and 2018. Furthermore,
Hernandez and Brown [25] estimate that the algorithmic effi-
ciency also improved by a factor of 25x in the same period,
leading to 7.5 million times increase in the effective training
compute available to the largest AI experiments. Dakkak
et al. [14] propose the MLModelScope toolkit that includes
performance analysis along with model evaluation, in a re-
producible, containerized fashion. However, the toolkit is
concentrated on non-distributed training only. Modern ML
models are trained in a distributed fashion, using a variety
of communication interconnects (e.g. NVLink, Infiniband,
OmniPath, Ethernet, PCIe), and employing different paral-
lelization strategies. Awan et al. [6] aim to measure these
characteristics and propose improvements to communication
patterns, with visualization tools for HPC GPU-based clusters
proposed by Kousha in [32]. Distributed ML training perfor-
mance is also analyzed in [28] and [5], and communication
however there is no complete framework that allows repro-
ducible performance analysis of ML workloads on modern
distributed systems. With SURFBoard, we offer a common
ground for all these types of analyses to be performed in
comparable settings and in a reproducible fashion.

ML workflows and orchestration. As depicted in Fig-
ure 1, Machine Learning workflows are composed of ele-
ments spanning a broad software stack, going from efficient
GPU kernel execution, CPU-GPU work partitioning, efficient
storage access, and multi-node orchestration. The interaction
between these elements often leads to complex systems pro-
ducing results that are very challenging to reproduce, both
from a numerical (i.e. model accuracy) perspective [27], as
well as from a performance perspective [7]. Typical train-
ing workflows, such as the computer vision one presented

in this work, include stages such as data preprocessing and
augmentation [13], hyperparameter tuning [2, 36], or model
interpretation [51]. The high computational complexity of the
training process often requires the workflow to be executed
in a distributed fashion, adding additional dependencies to
distribution mechanisms such as Horovod [43] or PyTorch
Distributed [35] and orchestration tools such as Kubernetes
or SLURM. SURFBoard offers practitioners an easy-to-use
and configurable framework for gathering performance data
from all the components of the training workflows.

ML/DL benchmarks. Benchmarking large-scale system
behavior under diverse workloads like HPC and big data is a
well-studied topic. Recently, with the highly increased inter-
est in ML and DL workloads, several benchmarks [7, 14, 21,
30, 38, 54] emerged to cover this need. However, due to the
relatively early days of the field, none of them have emerged
as a community- or industry-wide de-facto benchmark. It
is also unclear at the moment how easy it is to port these
benchmarks to all possible infrastructure that runs ML/DL
code. Our approach helps in this sense by being able to
build reproducible instances of these benchmarks to run on
many types of large-scale infrastructure. Moreover, our con-
tainerized approach would ensure an even playing field (i.e.,
common software infrastructure) to cut down on technology-
and software-induced performance differences.

Overall, SURFBoard presents a more holistic approach
at achieving performance reproducibility in large-scale sys-
tems when running ML workloads. Even though SURFBoard
is related and contains technologies from each of the afore-
mentioned categories, SURFBoard is more than the sum of
its components, as it is the first enabler of reproducible ML
performance analysis at scale.

8 Conclusion

Many large-scale software systems suffer from poor perfor-
mance reproducibility. Machine learning training workflows
are no exception as their performance analysis is largely an
expert-driven task, tightly-coupled to the underlying physical
and software ecosystems. This behavior hinders productivity,
knowledge sharing, and overall the notion of achieving energy
efficiency.

We presented our approach at supporting reproducible per-
formance analysis for machine learning workflows through a
containerized framework. This framework is able to run on
many container-ready types of infrastructure, such as HPC
clusters and even clouds. Moreover, it is able to gather perfor-
mance results at arbitrary levels in the software stack and is
extendable such that more experienced users are able to add
custom analyses.

We validated our framework through an empirical evalua-
tion on two GPU-enabled, large-scale production-based HPC
clusters, with different software stacks. Our analysis shows
that our framework is portable and is able to gather perfor-

12



Submitted to the Journal of Systems Research (JSys) 2021

mance data ranging from high-level MPI metrics, down to
FLOP efficiency for CUDA kernels, as well as kernel-level
data for each processing batch. For future work, we plan
to extend our framework with more types of analysis tools,
implement multiple types of workloads regarding state-of-the-
art benchmarks, as well as evaluate them on more types of
large-scale infrastructure.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In 12th {USENIX} symposium on operating systems de-
sign and implementation ({OSDI} 16), pages 265–283,
2016.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru
Ohta, and Masanori Koyama. Optuna: A next-
generation hyperparameter optimization framework. In
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 2623–2631, 2019.

[3] Dario Amodei and Danny Hernandez. Ai and compute.
Heruntergeladen von https://blog. openai. com/aiand-
compute, 2018.

[4] Kai Arulkumaran, Antoine Cully, and Julian Togelius.
Alphastar. Proceedings of the Genetic and Evolutionary
Computation Conference Companion, Jul 2019.

[5] Ammar Ahmad Awan, Jereon Bédorf, Ching-Hsiang
Chu, Hari Subramoni, and Dhabaleswar K Panda. Scal-
able distributed dnn training using tensorflow and cuda-
aware mpi: Characterization, designs, and performance
evaluation. In 2019 19th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CC-
GRID), pages 498–507. IEEE, 2019.

[6] Ammar Ahmad Awan, Arpan Jain, Ching-Hsiang Chu,
Hari Subramoni, and Dhableswar K Panda. Commu-
nication profiling and characterization of deep-learning
workloads on clusters with high-performance intercon-
nects. IEEE Micro, 40(1):35–43, 2019.

[7] Tal Ben-Nun, Maciej Besta, Simon Huber, Alexan-
dros Nikolaos Ziogas, Daniel Peter, and Torsten Hoe-
fler. A modular benchmarking infrastructure for high-
performance and reproducible deep learning. In 2019
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 66–77. IEEE, 2019.

[8] James Bergstra, Frédéric Bastien, Olivier Breuleux, Pas-
cal Lamblin, Razvan Pascanu, Olivier Delalleau, Guil-
laume Desjardins, David Warde-Farley, Ian Goodfellow,

Arnaud Bergeron, et al. Theano: Deep learning on gpus
with python. In NIPS 2011, BigLearning Workshop,
Granada, Spain, volume 3, pages 1–48. Citeseer, 2011.

[9] Christopher Berner, Greg Brockman, Brooke Chan,
Vicki Cheung, Przemysław Dębiak, Christy Dennison,
David Farhi, Quirin Fischer, Shariq Hashme, Chris
Hesse, et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019.

[10] Thomas Bradley. Gpu performance analysis and opti-
misation. NVIDIA Corporation, 2012.

[11] Juan Carrasquilla and Roger G Melko. Machine learn-
ing phases of matter. Nature Physics, 13(5):431–434,
2017.

[12] Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi
Nardi, Tian Zhao, Jian Zhang, Peter Bailis, Kunle
Olukotun, Chris Ré, and Matei Zaharia. Analysis of
dawnbench, a time-to-accuracy machine learning perfor-
mance benchmark. ACM SIGOPS Operating Systems
Review, 53(1):14–25, 2019.

[13] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay
Vasudevan, and Quoc V Le. Autoaugment: Learn-
ing augmentation policies from data. arXiv preprint
arXiv:1805.09501, 2018.

[14] Abdul Dakkak, Cheng Li, Jinjun Xiong, and Wen-mei
Hwu. Mlmodelscope: A distributed platform for model
evaluation and benchmarking at scale. arXiv preprint
arXiv:2002.08295, 2020.

[15] Jeff Dean, David Patterson, and Cliff Young. A new
golden age in computer architecture: Empowering the
machine-learning revolution. IEEE Micro, 38(2):21–29,
2018.

[16] Shi Dong and David Kaeli. Dnnmark: A deep neural
network benchmark suite for gpus. In Proceedings of
the General Purpose GPUs, pages 63–72. 2017.

[17] Dmitry Duplyakin, Alexandru Uta, Aleksander Maricq,
and Robert Ricci. In datacenter performance, the only
constant is change. In 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing,
CCGRID 2020, Melbourne, Australia, May 11-14, 2020,
pages 370–379. IEEE, 2020.

[18] Facebook. fb.resnet.torch. https://github.com/
facebookarchive/fb.resnet.torch.

[19] Dror G Feitelson. From repeatability to reproducibility
and corroboration. ACM SIGOPS Operating Systems
Review, 49(1):3–11, 2015.

13

https://github.com/facebookarchive/fb.resnet.torch
https://github.com/facebookarchive/fb.resnet.torch


Submitted to the Journal of Systems Research (JSys) 2021

[20] Edgar Gabriel, Graham E Fagg, George Bosilca, Thara
Angskun, Jack J Dongarra, Jeffrey M Squyres, Vishal
Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, et al. Open mpi: Goals, concept, and
design of a next generation mpi implementation. In
European Parallel Virtual Machine/Message Passing In-
terface Users’ Group Meeting, pages 97–104. Springer,
2004.

[21] Wanling Gao, Chunjie Luo, Lei Wang, Xingwang Xiong,
Jianan Chen, Tianshu Hao, Zihan Jiang, Fanda Fan,
Mengjia Du, Yunyou Huang, et al. Aibench: towards
scalable and comprehensive datacenter ai benchmarking.
In International Symposium on Benchmarking, Measur-
ing and Optimization, pages 3–9. Springer, 2018.

[22] Markus Geimer, Felix Wolf, Brian JN Wylie, Erika
Ábrahám, Daniel Becker, and Bernd Mohr. The scalasca
performance toolset architecture. Concurrency and
Computation: Practice and Experience, 22(6):702–719,
2010.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[24] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang,
Junyuan Xie, and Mu Li. Bag of tricks for image clas-
sification with convolutional neural networks. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 558–567, 2019.

[25] Danny Hernandez and Tom B Brown. Measuring the al-
gorithmic efficiency of neural networks. arXiv preprint
arXiv:2005.04305, 2020.

[26] Torsten Hoefler and Roberto Belli. Scientific bench-
marking of parallel computing systems: twelve ways to
tell the masses when reporting performance results. In
Proceedings of the international conference for high per-
formance computing, networking, storage and analysis,
pages 1–12, 2015.

[27] Matthew Hutson. Artificial intelligence faces repro-
ducibility crisis, 2018.

[28] Arpan Jain, Ammar Ahmad Awan, Quentin Anthony,
Hari Subramoni, and Dhableswar K DK Panda. Perfor-
mance characterization of dnn training using tensorflow
and pytorch on modern clusters. In 2019 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER),
pages 1–11. IEEE, 2019.

[29] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. Caffe: Convolutional archi-
tecture for fast feature embedding. In Proceedings of

the 22nd ACM international conference on Multimedia,
pages 675–678, 2014.

[30] Zihan Jiang, Wanling Gao, Lei Wang, Xingwang Xiong,
Yuchen Zhang, Xu Wen, Chunjie Luo, Hainan Ye, Xi-
aoyi Lu, Yunquan Zhang, et al. Hpc ai500: a benchmark
suite for hpc ai systems. In International Symposium
on Benchmarking, Measuring and Optimization, pages
10–22. Springer, 2018.

[31] Andreas Knüpfer, Holger Brunst, Jens Doleschal,
Matthias Jurenz, Matthias Lieber, Holger Mickler,
Matthias S Müller, and Wolfgang E Nagel. The vampir
performance analysis tool-set. In Tools for high perfor-
mance computing, pages 139–155. Springer, 2008.

[32] Pouya Kousha, Bharath Ramesh, Kaushik Kan-
dadi Suresh, Ching-Hsiang Chu, Arpan Jain, Nick
Sarkauskas, Hari Subramoni, and Dhabaleswar K Panda.
Designing a profiling and visualization tool for scalable
and in-depth analysis of high-performance gpu clusters.
In 2019 IEEE 26th International Conference on High
Performance Computing, Data, and Analytics (HiPC),
pages 93–102. IEEE, 2019.

[33] Thorsten Kurth, Mikhail Smorkalov, Peter Mendygral,
Srinivas Sridharan, and Amrita Mathuriya. Tensorflow
at scale: Performance and productivity analysis of dis-
tributed training with horovod, mlsl, and cray pe ml.
Concurrency and Computation: Practice and Experi-
ence, 31(16):e4989, 2019.

[34] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning. nature, 521(7553):436–444, 2015.

[35] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,
Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,
Brian Vaughan, Pritam Damania, et al. Pytorch dis-
tributed: Experiences on accelerating data parallel train-
ing. arXiv preprint arXiv:2006.15704, 2020.

[36] Richard Liaw, Eric Liang, Robert Nishihara, Philipp
Moritz, Joseph E Gonzalez, and Ion Stoica. Tune: A
research platform for distributed model selection and
training. arXiv preprint arXiv:1807.05118, 2018.

[37] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez,
Carlos Maltzahn, Ryan Stutsman, and Robert Ricci.
Taming performance variability. In 13th {USENIX}
Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 18), pages 409–425, 2018.

[38] Peter Mattson, Vijay Janapa Reddi, Christine Cheng,
Cody Coleman, Greg Diamos, David Kanter, Paulius
Micikevicius, David Patterson, Guenther Schmuelling,
Hanlin Tang, et al. Mlperf: An industry standard bench-
mark suite for machine learning performance. IEEE
Micro, 40(2):8–16, 2020.

14



Submitted to the Journal of Systems Research (JSys) 2021

[39] NVIDIA. Deeplearningexamples. https://github.
com/NVIDIA/DeepLearningExamples.

[40] Alessandro Vittorio Papadopoulos, Laurens Versluis,
André Bauer, Nikolas Herbst, Jóakim Von Kistowski,
Ahmed Ali-Eldin, Cristina Abad, José Nelson Amaral,
Petr Tma, and Alexandru Iosup. Methodological princi-
ples for reproducible performance evaluation in cloud
computing. IEEE Transactions on Software Engineer-
ing, 2019.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep
learning library. In Advances in neural information
processing systems, pages 8026–8037, 2019.

[42] Pytorch. Pytorch imagenet training. https://github.
com/pytorch/examples/tree/master/imagenet.

[43] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. arXiv
preprint arXiv:1802.05799, 2018.

[44] Sameer S Shende and Allen D Malony. The tau parallel
performance system. The International Journal of High
Performance Computing Applications, 20(2):287–311,
2006.

[45] Marc Snir, William Gropp, Steve Otto, Steven Huss-
Lederman, Jack Dongarra, and David Walker. MPI–the
Complete Reference: the MPI core, volume 1. MIT
press, 1998.

[46] Victoria Stodden, Peixuan Guo, and Zhaokun Ma. To-
ward reproducible computational research: an empirical
analysis of data and code policy adoption by journals.
PloS one, 8(6):e67111, 2013.

[47] Victoria Stodden, Friedrich Leisch, and Roger D Peng.
Implementing reproducible research. CRC Press, 2014.

[48] Victoria Stodden, Marcia McNutt, David H Bailey, Ewa
Deelman, Yolanda Gil, Brooks Hanson, Michael A Her-
oux, John PA Ioannidis, and Michela Taufer. Enhancing
reproducibility for computational methods. Science,
354(6317):1240–1241, 2016.

[49] Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. Energy and policy considerations for deep learning
in nlp. arXiv preprint arXiv:1906.02243, 2019.

[50] Genichi Taguchi. Quality engineering (taguchi methods)
for the development of electronic circuit technology.
IEEE Transactions on Reliability, 44(2):225–229, 1995.

[51] Erico Tjoa and Cuntai Guan. A survey on explainable
artificial intelligence (xai): towards medical xai. arXiv
preprint arXiv:1907.07374, 2019.

[52] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin,
Ivo Jimenez, Jan Rellermeyer, Carlos Maltzahn, Robert
Ricci, and Alexandru Iosup. Is big data perfor-
mance reproducible in modern cloud networks? In
17th {USENIX} Symposium on Networked Systems De-
sign and Implementation ({NSDI} 20), pages 513–527,
2020.

[53] Jan Vitek and Tomas Kalibera. Repeatability, repro-
ducibility and rigor in systems research. In 2011 Pro-
ceedings of the Ninth ACM International Conference on
Embedded Software (EMSOFT), pages 33–38. IEEE,
2011.

[54] Yu Emma Wang, Gu-Yeon Wei, and David Brooks.
Benchmarking tpu, gpu, and cpu platforms for deep
learning. arXiv preprint arXiv:1907.10701, 2019.

[55] Vincent M Weaver, Matt Johnson, Kiran Kasichayanula,
James Ralph, Piotr Luszczek, Dan Terpstra, and Shirley
Moore. Measuring energy and power with papi. In 2012
41st International Conference on Parallel Processing
Workshops, pages 262–268. IEEE, 2012.

[56] Derek Wong and Stephen Yip. Machine learning classi-
fies cancer, 2018.

[57] Hongyu Zhu, Mohamed Akrout, Bojian Zheng, An-
drew Pelegris, Amar Phanishayee, Bianca Schroeder,
and Gennady Pekhimenko. Tbd: Benchmarking and
analyzing deep neural network training. arXiv preprint
arXiv:1803.06905, 2018.

15

https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/pytorch/examples/tree/master/imagenet

	Introduction
	SURFBoard: Containerized Profiling Workflow Design
	Sweep orchestrator
	Implementing New Training Workflows
	Open Source Commitment

	Case Study: Experiment Design
	Case Study High-level Goals
	Performance Analysis Method
	DL Model Used in the Study

	Experiment Setup
	Cartesius Hardware Specification
	LISA Hardware Specification
	Software Environment inside the Container
	Achieving Empirical Reproducibility

	Results and Visualization
	Scalability
	Communication
	Compute and Memory Efficiency
	Parameter Sensitivity

	Limitations
	Related Work
	Conclusion

