
HiLD 2024: 2nd Workshop on High-dimensional Learning Dynamics

On the metastability of learning algorithms in physics-informed neural
networks: a case study on Schrödinger operators

Alessandro Maria Selvitella ASELVITE@PFW.EDU

Department of Mathematical Sciecnes & Laboratory of Data Science, Purdue University Fort Wayne, Fort
Wayne (IN), USA; eScience Institute, University of Washington, Seattle (WA), USA; NSF-Simons Center for
Quantitative Biology, Northwestern University, Evanston (IL), USA.

Abstract
In this manuscript, we discuss an interesting phenomenon that happens in the training of physics-
informed neural networks: PINNs seem to go through metastable states during the optimization
process. This behaviour is present in several dynamical systems of interest to physics and was first
noticed in the Fermi-Pasta-Ulam-Tsingou model, in which the system spends a lot of time in an
intermediate state, before, eventually, reaching thermalization. We concentrate on some examples of
Schrödinger equations in spatial dimension n = 1, including the nonlinear Schrödinger equation
with quintic polynomial nonlinearity, the linear Schrödinger equation with trapping potential, and
and the linear Schrödinger equation with asymptotically constant potential.
Keywords: Metastability, physics-informed neural networks, Schrödinger operators.

1. Introduction

In the past few years, scientific and physics informed machine learning have emerged as powerful
tools in the search for solutions to many scientific problems in areas such as physics, engineering,
and biology. Among the most important new methodologies, physics-informed neural networks
(PINNs) and derived algorithms have been powerful strategies for the understanding of the dynamics
of solutions to partial differential equations (PDEs) and for the discovery of PDEs from data [7, 11].
PINNs encode physical laws as regularizers and are good approximators in the small-data regime
[3, 7, 11]. Key questions in PDEs concern the long-time dynamics of solutions and the problem of
singularity formation. Global solutions exist for all time in the functional space of interest, while
blow-solutions stop to belong to the functional space of the initial datum in finite time [12, 13]. This
dicothomy is a fundamental question in PDE research and, actually, at the heart of the Navier Stokes
Millenium problem [5]. It is still unknown if smooth solutions exist for all times for the 3D Navier
Stokes system. Several PDEs admit equilibrium solutions, namely solutions that are constant in time
[2]. Often, these solutions appear as attractors in the long-term dynamics of a physical system or as
stable states [13, 14]. It is often harder (and less studied) to understand the properties of dynamical
systems in intermediate time ranges, but there are fundamental examples of systems in which some
important dynamical features emerge.

In a celebrated computational experiment involving the simulation of a vibrating string with
cubic interaction, Fermi, Pasta, Ulam, and Tsingou (FPUT) noticed that a system of nonlinearly
interacting particles on a line exhibited a complicated quasi-periodic behavior, instead of the expected
ergodic one [6]. Instead of quickly converging towards equipartition, the energy, initially distributed
to the lowest frequency modes remains in the lower frequency modes for long times [6]. The
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energy does eventually equipartition, but after long periods spent around the so-called metastable
states. This phenomenon fascinated people for decades and it is still of interest [4]. Metastability
is intrinsically nonlinear. In fact, in the case of quadratic potentials, the FPUT system can be
transformed into a linear one with independent harmonic oscillators. Metastability seems appearing
also in optimization trajectories of PINNs and, in this manuscript, we bring some information
regarding this possibility through a series of experiments. We concentrate on some examples of
Schrödinger equations in spatial dimension n = 1, including the nonlinear Schrödinger equation
(NLS) with quintic polynomial nonlinearity, the linear Schrödinger equation with trapping potential,
and and the linear Schrödinger equation (LS) with asymptotically constant potential. The LS is the
fundamental equation in quantum mechanics, while the NLS appears, among the others, in nonlinear
optics, small-amplitude gravity waves, plasma physics [9], and Bose–Einstein condensation [10].
Given their importance in physics, it is interesting to understand PINNs’ behaviour on LS and NLS.

2. Methods

Physics Informed Neural Networks. We consider PINNs’ loss Loss = Loss1 + Loss2, with

Loss1 =
1

N1

N1∑
i=1

|u(ti1, xi1)− ui|2 and Loss2 =
1

N2

N2∑
i=1

|f(ti2, xi2)|2.

Here f := ut + N [u] is a differential operator, u is a neural network,
{
ti1, x

i
1, u

i
}N1

i=1
denote the

initial/boundary training data on u(t, x), and
{
ti2, x

i
2

}N2

i=1
specify the collocation points for f(t, x).

Optimization. A 4-th order Runge-Kutta method with 1000 steps has been implemented to compute
the exact solutions to the PDEs of interest. The hypothesis class included a feed-forward neural
network with 1 hidden layer with 32 nodes and tanh as activation function. Loss was optimized
with the Adam algorithm with learning rate 5 ∗ 10−4. We chose (both uniformly) N1 = 2, N2 = 40
for the NLS with p = 5, N1 = 20 and N2 = 100 for the LS with trapping potential, and N1 = 20
and N2 = 40 for the LS with potential constant at infinity.

The Linear and Nonlinear Schrödinger Equations. The LS in 1d (n = 1) is given by

iψt = ψxx + V (x)ψ,

with V (x), a real-valued potential. The NLS governs the dynamics of mutual interacting particles:

iℏ
∂ψ

∂t
= −ℏ2∆ψ + λ|ψ|p−1ψ.

Here: i, the imaginary unit, ℏ the Planck constant, p ≥ 3, and ψ : Rn × R → C representing the
wave function. We will consider only the focusing case (λ = −1). Particles at rest are represented by
standing waves: ψ(x, t) := exp(iω/ℏ−1t)u(x) with u solving the elliptic PDE:

−ℏ2∆u+ ωu = up, u ∈ H1(Rn),

which, in scaled coordinates, becomes:

−∆u+ u = up, u ∈ H1(Rn).
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H1(Rn) represents the space of quadratic integrable functions in Rn with gradient quadratically
integrable in Rn, as well. In polar coordinates, this problem becomes:

u′′ +
n− 1

r
u′ − u+ up = 0, u′(0) = 0

For ground states, we have limr→+∞ u(r) = 0. For the purpose of orbital stability, it is important
to study the spectrum of the linearized operator around the ground state Q [12]:

−∆v + v − pQp−1v = νv,

with the eigenfunction v ∈ H1(Rn) and ν representing the corresponding eigenvalue. By decom-
posing the problem into spherical harmonics v(x) =

∑+∞
k=0 ψk(r)Yk(θ) with r > 0 representing the

radial component and Yk(θ) for θ ∈ SN−1 being the spherical harmonics, we obtain a sequence of
decoupled ODEs that take the following form (see [1]):

Ak(ψk) := −ψ′′
k − N − 1

r
ψ′
k + ψk +

λk
r2
ψk − pQp−1ψk = νψk,

with k = 0, 1, 2, . . . . Critical is the study of the kernel ν = 0, which is known to be spanned by the
following functions {Qxi : 1 ≤ i ≤ n} [1]. This is proven by showing that the only solutions of the
eigenvalue problem come from the mode k = 1. Solutions of the modes k > 1 are excluded using
Perron-Frobenius Theorem, while solutions of the case k = 0 are proven to be unbounded using
oscillation theory (See [1]). It is well known that the ground state of the NLS is smooth, positive,
exponentially decaying, radial, and unique up to translations [1, 2, 8]. In dimension n = 1, such a
solution has an explicit form: Q(r) =

√
2 sech(r). Solutions that at r = 0 start below Q(0), oscillate

around the stationary point u = 1, those starting above Q(0), become negative in finite time [13].

3. Experiments

In all figures/subfigures involving loss functions in this section, the number of epochs (x-axis) is
scaled down by a factor of 1500 (e.g. x = 30 refers to the epoch 45000).
NLS with p = 5. In Figure 1, we consider the NLS with p = 5 and only mode k = 0 of
the linearized problem around the grounds state Q. As expected, on unbounded domains the
convergence is lost, because of representation limitations of the chosen hypothesis class on unbounded
domains. However, another phenomenon appears. Although initially [Step=15000] the algorithm
seems converging towards the correct solutions on bounded subsets, already at intermediate steps
[Step=45000 and Step=48000], the algorithm starts to wiggle and seems deviating from the correct
solution (metastability).
LS with Trapping Potential. We consider the LS with trapping potential V (x) = (1 + x2), with
initial conditions (u(0), u′(0)) = (1, 0). Also in this case, we observe metastability. In Figure 2, we
can see that the fit of the solution seems going in the right direction until Step=36000, but already
at Step=42000, there is evidence of metastability between the first two collocation points and the
optimization trajectory continues to degenerate (see, for example, the fit at Step=198000).
LS with Potential Constant at Infinity. We consider the LS with a potential constant at infinity
V (x) = 1/(1 + |x|−0.5), with initial conditions (u(0), u′(0)) = (1, 0). In Figure 3, we see that the
presence of a Loss 2 (b) does not seem to substantially improve the fit with respect to the case Loss =
Loss 1 (a). Furthermore, the algorithms seems converging to the correct solution at Step=6000, but it
diverges from the metastable state to something highly oscillatory close to the first collocation points.
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(a) (b) (c)

(d)

Figure 1: Nonlinear Schrödinger Equation with p = 5: Linearization Mode 1.

(a) (b) (c)

(d)

Figure 2: Linear Schrodinger Equation: Trapping Potential

4. Discussion and Conclusions

Our experiments on Schrödinger equations show that PINNs seem to go through metastable states
during the optimization process, a behaviour that is present in several dynamical systems of interest
to physics and that was first noticed in the celebrated FPUT model, in which the system spends a lot
of time in an intermediate state, before, eventually, reaching equipartition of energy. We noticed that,
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(a) (b) (c)

(d)

Figure 3: Linear Schrodinger Equation: Potential Constant at Infinity.

after a long period in the metastable state, PINNs seem collapsing to the zero solution of the PDE
almost everywhere (everywhere, other than around collocation points). This is reminiscent of the
known problems with PINNs tending to prefer regular solutions concentrated on lower modes. Note
that, in our loss functions, nothing is present to force the solution to be positive. Recall that, in the
continuous limit, the FPUT system converges to the KdV equation, a completely integrable and highly
symmetric system, which possesses soliton solutions, namely solutions that travel at constant speed
without loosing energy [15]. We do not know what equation is the equivalent of the KdV equation for
PINNs. It would be interesting to see if such a limit-equation has any relationship with Neural ODEs.
It would be also interesting to understand if metastability is related to over-parametrization (the
network we used in the experiments is relatively small): Taking an over-parametrized network might
alleviate metastability. It is well-known that it is challenging to train PINNs [11] and researchers have
worked extensively to improve optimization methods. We took advantage of well-known results on
the qualitative behaviour of solutions to LS and NLS, including radiality of the ground state, to reduce
the problem to low-dimensional. The goal of this analysis was not to find optimal approximators,
but to illustrate the emergence of metastability in PINNs’ learning algorithms. We did not optimize
on architectures, hyperparameters, and grids. Our choices were made for simplicity. We expect the
main points of this manuscript to be valid also in more general cases.
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