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GOAL: Grounded text-to-image Synthesis with
Joint Layout Alignment Tuning

Anonymous Authors

A girl, dressed in a yellow long skirt, is strolling along the beach with a man clad in a blue T-shirt. The sand is marked with a blue heart.

A dog is teaching math in a classroom, with the blackboard written with some mathematical formulas and the classroom packed with students.

dog

formulas

classroom

blackboard

students

girl with long 
yellow skirt

boy with 
blue T-shirt

beach

heart

A painting of a cat riding a motorcycle flying over clouds, with two suns in the sky.

clouds

cat

flying motorcycle 

sun sun

Layout Ours GLIGEN Attention Refocusing

Figure 1: Given a user-specified text prompt and layout condition of complex scenes, baseline models (e.g., GLIGEN [26],
Attention Refocusing [34]) fail to solve text-image misalignment problems such as attribute errors and relation mistakes. Our
method exhibits outstanding generation performance for text-to-image synthesis task, which generates images faithfully
capturing the details of text prompts.

ABSTRACT
Recent text-to-image (T2I) synthesis models have demonstrated
intriguing abilities to produce high-quality images based on text
prompts. However, current models still face Text-Image Misalign-
ment problem (e.g., attribute errors and relation mistakes) for com-
positional generation. Existing models attempted to condition T2I
models on grounding inputs to improve controllability while ignor-
ing the explicit supervision from the layout conditions. To tackle
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classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
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republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
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© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

this issue, we propose Grounded jOint lAyout aLignment (GOAL),
an effective framework for T2I synthesis. Two novel modules, dis-
criminative semantic alignment (DSAlign) and masked attention
alignment (MAAlign), are proposed and incorporated in this frame-
work to improve the text-image alignment. DSAlign leverages dis-
criminative tasks at the region-wise level to ensure low-level seman-
tic alignment. MAAlign provides high-level attention alignment
by guiding the model to focus on the target object. We also build
a dataset GOAL2K for model fine-tuning, which composes 2000
semantically accurate image-text pairs and their layout annota-
tions. Comprehensive evaluations on T2I-Compbench, NSR-1K,
and Drawbench demonstrate the superior generation performance
of our method. Especially, there are improvements of 19%, 13%,
and 12% in color, shape, and texture metrics for T2I-Compbench.
Additionally, Q-Align metrics demonstrate that our method can
generate images of higher quality.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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KEYWORDS
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1 INTRODUCTION
Recently, text-to-image (T2I) diffusion models have made tremen-
dous progress in generating high-fidelity and diverse images in
response to textual prompts [8, 13, 19, 40–42]. However, models still
struggle with the Text-Image Misalignment problem [4, 9, 15, 29]
for compositional T2I generation, which means they often fail to
compose multiple objects with various attributes (e.g., color, shape,
texture) and complex spatial relations, as shown in the failure cases
of GLIGEN [26] in Figure 1.

Previous works exploring compositional T2I generation can
be classified into two main groups: training-free [9, 21, 34] and
training-based approaches [26, 42, 52]. Specifically, training-free
methods [9, 21] focus on directly altering the latent and cross-
attention maps or adding objects by continuous editing [27, 53].
For instance, Attention Refocusing [9] employs inference-time opti-
mization on the cross-attention map to align intermediate outputs
with the layout conditions. However, it adds considerable cost dur-
ing inference and may lead to image quality degradation, as shown
in the last column of Figure 1.

Meanwhile, other training-based methods [42, 52] incorporate
additional modules for controllable image generation. For exam-
ple, as shown in Figure 2(b), GLIGEN [26] integrates grounding
information into designed gated self-attention layers, supporting
existing T2I models on layout inputs. Nevertheless, these layout-
aware models ignore inherently explicit supervision in layout con-
ditions, leaving them only as guidance for estimating the added
global noise during training. We hypothesize that this objective
is insufficient for complex generation tasks. Therefore, a natural
question arises: Can we find fine-grained and explicit supervision
with layout conditions as auxiliary training objectives to enhance
text-image alignment? To achieve this, we adopt multiple phrase-
region pairs in layout conditions as ‘ground truth’ labels, allowing
the diffusion model to learn region-wise information within the im-
age’s context in an atomistic manner. Given that annotation of the
"ground-truth" labels (e.g., layout) from human is costly, we borrow
large language model’s (e.g., GPT-4 [2]) strong scene understanding
ability for layout planning.

In this work, we propose Grounded jOint lAyout aLignment
(GOAL), an effective framework that utilizes layout conditions to
provide explicit region-wise supervision for text-image alignment.
It is achieved by incorporating discriminative semantic alignment
(DSAlign) and masked attention alignment (MAAlign) as auxiliary
training objectives. As shown in Figure 2(c), GOAL obtains a de-
noised version of the clean image via a single denoising step during
training, DSAlign then utilizes discriminative tasks at the region-
wise level to refocus on refining the generated context, ensuring
low-level semantic alignment.

Considering that a more detailed denoised image can provide
richer information for semantic alignment, we refine image details
by applying region-wise MAAlign in high-level feature space. This

U-Net

MSE Loss

+

U-Net

MSE Loss

+

U-Net

MSE Loss

+

…

DSAlign

MAAlign

Noise image

Noise image

Layout

Noise image

Layout

Denoised image

Attention map

G
SA G

SA

G
SA

G
SA

(a) Stable Diffusion

(b) GLIGEN

(c) Ours

Figure 2: (a) Stable Diffusion [40] is optimized to estimate
the added noise with MSE loss. (b) GLIGEN [26] integrates
grounding information into designed gated self-attention
(GSA) layers, supporting existing T2I models on layout in-
puts. (c) GOAL provides explicit region-wise supervision by
incorporating discriminative semantic alignment (DSAlign)
and masked attention alignment (MAAlign).

process involves shifting attention towards the target region while
suppressing the attention of unrelated areas. As a result, sharper and
more detailed images are generated, making semantic alignment
more effective and further enhancing text-image alignment.

By conducting extensive experiments, the model exhibits signifi-
cant improvement on several benchmarks, including T2I-Compbench
[20], NSR-1K [16] and Drawbench [42]. Importantly, these enhance-
ments are achieved without incurring additional inference costs.
Along with our proposed training framework, we also publish a
curated dataset GOAL2k for training, which consists of 2000 multi-
modal samples with layout annotation for improving text-image
alignment especially in complex scenes. Moreover, images included
in GOAL2k are generated by outstanding T2I model DALLE-3 [39],
demonstrating both high-detail and semantically accurate charac-
teristics.

The main contributions of this paper are summarized as follows:
• We propose a Grounded jOint lAyout aLignment (GOAL),
which is a novel layout-aware training framework. Discrimi-
native semantic alignment (DSAlign) and masked attention
alignment (MAAlign) are incorporated in this framework to
improve the text-image alignment.

• We build a dataset GOAL2K to study the effectiveness of our
alignment-based objectives, which composes 2000 semanti-
cally accurate image-text pairs and their layout annotations
for model fine-tuning.

• We conduct comprehensive experiments on existingmethods
of T2I generation on T2I-Compbench, NSR-1K and Draw-
bench, and show that ourmethod compares favorably against
the state-of-the-art models.
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Figure 3: An overview of the grounded joint layout alignment (GOAL) framework, which provides explicit region-wise alignment
by discriminative semantic alignment (DSAlign) and masked attention alignment (MAAlign). GOAL obtains a denoised version
of the clean image through a single denoising step and performs DSAlign by directly optimizing low-level semantic alignment.
Furthermore, MAAlign is employed for high-level attention alignment, jointly optimizing the U-Net with DSAlign and its
original denoising objective.

2 RELATEDWORKS
2.1 Text-to-Image Models
Early methods to text-to-image (T2I) generation primarily relied on
Generative Adversarial Networks (GANs) [1, 12, 38, 44, 51]. How-
ever, recent advancements have shifted the focus towards diffusion
models [8, 13, 19, 32, 45], which have gained prominence due to
their exceptional capabilities in generating high-quality images.
The Denoising Diffusion Probabilistic Model (DDPM) [19, 33, 46]
introduces standard noise in the forward process and reconstructs
the image from noise in the reverse process. Unlike denoising in
the pixel space, the Latent Stable Diffusion Model (LDM) [40] con-
ducts the denoising process in latent space, significantly reducing
computational costs. Due to this remarkable progress, LDM has
found wide application across various tasks, including image edit-
ing [7, 11, 18], image super-resolution [24, 43], inpainting [31, 50]
and semantic segmentation [3, 6]. Building upon these state-of-the-
art models, our work aims to enhance the capabilities of text-image
alignment according to given layouts.

2.2 Training-Free Layout-Aware Generation
Despite the remarkable image generation capabilities demonstrated
by Diffusion models, they encounter challenges in compositional
generation, particularly within complex scenes. Recent methods
[9, 34] primarily tackle this issue during the inference stage by
incorporating layout-aware attention supervision at specific steps.
BoxDiff [49] controls the noise map by adjusting cross-attention
and self-attention layers. Attend-and-Excite [9] improves the gen-
eration of missing objects by maximizing the attention score for
each object. Attention Refocusing [9] employs guidance functions

to align intermediate outputs with layout conditions. Paint-with-
words [5] enhances the cross-attention scores between image and
text tokens corresponding to the same object based on segmenta-
tion masks. Continuous Layout Editing [53] disentangles various
object concepts and facilitates continuous editing to align images
with layouts. However, these methods incur computational costs
during inference. Moreover, due to the direct optimization in the
attention map without training, they may cause image distortion.

2.3 Training-Based Text-image Alignment
Several works aim to improve text-image alignment by fine-tuning
diffusion models [10, 14, 26, 52] to integrate layout conditions.
GLIGEN [26] integrates grounding information by the gated self-
attention mechanism, enabling existing pre-trained T2I diffusion
models to be conditioned on grounding inputs. LayoutLLM-T2I [36]
introduces a relation-aware attention module, integrating seman-
tic relation to generate high-fidelity images. Frido [14] performs
multi-scale coarse-to-fine denoising to generate images of complex
scenes. ReCo [52] incorporates spatial coordinates to achieve pre-
cise region control for arbitrary objects. Inspired by these works, we
propose layout alignment at the semantic and attention level simul-
taneously to effectively fine-tune pre-trained T2I models without
non-negligible costs.

3 METHOD
3.1 Preliminaries
Latent Diffusion Models (LDM) [40] are widely used in conditional
image generative tasks. Given an image 𝑥0 ∈ R𝐻×𝑊 ×3, VAE E is
adopted to encode image into latent space as 𝑧0 = E (𝑥0). Then
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Gaussian noise 𝜖 is added to the latent 𝑧0 with a randomly sampled
timestep 𝑡 , yielding 𝑧𝑡 as:

𝑧𝑡 =
√
𝛼𝑡𝑧0 +

√
1 − 𝛼𝑡𝜖, (1)

where 𝛼𝑡 defines the level of noise. To achieve conditional image
generation, the caption describing the image is encoded by text
encoder 𝜑 as the text embedding 𝜑 (𝑦) and then injected into the
U-Net via cross-attention. Then U-Net 𝜖𝜃 is trained to predict the
added noise 𝜖 , following the objective as:

L𝐿𝐷𝑀 = EE(𝑥 ),𝑦,𝜖∼N(0,1),𝑡
[
∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝜑 (𝑦))∥2

2
]
. (2)

To ground the generation process via the additional condition,
GLIGEN [26] incorporates the semantic information of grounding
entity and spatial configurations through gated self-attention as:

𝜈 = 𝜈 + 𝑡𝑎𝑛ℎ(𝛾) · (𝑆𝑒𝑙 𝑓 𝐴𝑡𝑡𝑛[𝜈, ℎ]), (3)

where 𝜈 is the visual feature, 𝛾 is a learnable scalar which is initial-
ized as 0 and ℎ is the added condition such as layout. Following
GLIGEN [26], we optimize gated self-attention for stable training.

3.2 Discriminative Semantic Alignment
In the current layout-aware LDM, which incorporates additional
layout conditions and optimizes the loss function L𝐿𝐷𝑀 for noise
prediction, the relationships within the bounding box, such as at-
tributes and objects, are not explicitly optimized. As depicted in
Figure 1, this results in poor semantic-level alignment in specific
regions. Particularly, when different layouts overlap, the fusion
of multiple conditions may result in a dissonant visual compo-
sition. Therefore, we propose discriminative semantic alignment
(DSAlign), leveraging discriminative tasks at the region-wise level
to refocus on refining the generated context. Specifically, with the
noise predictor 𝜖𝜃 and 𝑧𝑡 , we reconstruct the latent noise 𝑧0 via
a single denoising step using the reverse of Equation 1, and then
obtain the denoised version of the clean image 𝑥0 by VAE decoder
D. The formulation is:

𝑥
(𝑡 )
0 = D

(
𝑧
(𝑡 )
0

)
= D( 𝑧𝑡 −

√
1 − 𝛼𝑡𝜖𝜃 (𝑧𝑡 , 𝑦, 𝑡)√

𝛼𝑡
) . (4)

Given the spatial layout defined by 𝐵 bounding boxes 𝑏𝑖 ∈(
Z+

)1×4, where 𝑖 ∈ [0, 𝐵), we perform DSAlign by minimizing
the distance between the image embeddings of the target region
and the corresponding phrase 𝑝𝑖 describing the region of 𝑏𝑖 . To crop
the region from the image, we construct the 𝑀𝑖 from the box 𝑏𝑖
and obtained the masked image as 𝑥 (𝑡 )0 ·𝑀𝑖 , which is then encoded
by the image encoder of CLIP, denoted by 𝐶𝐿𝐼𝑃𝑖𝑚𝑔 . We adopt the
text encoder from CLIP, denoted by 𝐶𝐿𝐼𝑃𝑡𝑒𝑥𝑡 , to encode the cor-
responding phrase captions 𝑝𝑖 . Then a normalization operation is
performed to align the two embeddings within a unified semantic
space. This process is formulated as follows:

𝑥
(𝑡 )
0,𝑚𝑖

= 𝑛𝑜𝑟𝑚(𝐶𝐿𝐼𝑃𝑖𝑚𝑔 (𝑥 (𝑡 )0 ·𝑀𝑖 )), (5)

𝑝𝑖 = 𝑛𝑜𝑟𝑚(𝐶𝐿𝐼𝑃𝑡𝑒𝑥𝑡 (𝑝𝑖 )) . (6)
Subsequently, the distance between the two normalized embeddings
is computed using spherical distance as follows:

𝐷𝑠𝑝

(
𝑝𝑖 , 𝑥

(𝑡 )
0,𝑚𝑖

)
= arcsin ©­«

∥(𝑝𝑖 ) − (𝑥 (𝑡 )0,𝑚𝑖
)∥2

2
ª®¬

2

. (7)

A blue dog is 
chasing a frisbee
in the air.

A red banana 
is placed on a 
worn-out book.

dog

frisbee banana

book

dog frisbee denoised image denoised imagebanana book

+ℒ!"#

+ℒ!"#
+𝓛$%%

+ℒ!"#

+ℒ!"#
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Prompt Layout Image Prompt Layout Image

+𝓛&'%

Figure 4: Visualization of the attention maps and denoised
images obtained from a single denoising step during training
with different loss compositions.

The average distance between all the 𝐵 target regions and the
corresponding phrases is:

𝐷𝑙𝑜𝑐𝑎𝑙 =
1
𝐵

∑𝐵
0𝐷𝑠𝑝

(
𝑝𝑖 , 𝑥

(𝑡 )
0,𝑚𝑖

)
, (8)

where 𝐷𝑙𝑜𝑐𝑎𝑙 represents the local-level semantic alignment guid-
ance between target regions and local phrases. Moreover, we eval-
uate the global-level semantic alignment between the entire image
and the text as follows:

𝐷𝑔𝑙𝑜𝑏𝑎𝑙 = 𝐷𝑠𝑝

(
𝑦, 𝑥

(𝑡 )
0

)
= arcsin

(
∥(𝑦) − (𝑥 (𝑡 )0 )∥2

2

)2

, (9)

where 𝑦 = 𝑛𝑜𝑟𝑚(𝐶𝐿𝐼𝑃𝑡𝑒𝑥𝑡 (𝑦)) and 𝑥 (𝑡 )0 = 𝑛𝑜𝑟𝑚(𝐶𝐿𝐼𝑃𝑖𝑚𝑔 (𝑥 (𝑡 )0 )).
To ensure the text-image alignment, we directly optimize local-level
and global-level semantic alignment by L𝐷𝑆𝐴:

L𝐷𝑆𝐴 = 𝐷𝑙𝑜𝑐𝑎𝑙 + 𝐷𝑔𝑙𝑜𝑏𝑎𝑙 . (10)

3.3 Masked Attention Alignment
Given that a more detailed denoised image can provide richer infor-
mation for semantic alignment performed by DSAlign, we refine
image details through region-wise masked attention alignment
(MAAlign) in high-level feature space. This process involves shift-
ing attention towards the target region while suppressing the at-
tention of unrelated areas. Specifically, for each cross-attention
layer, let 𝑄 ∈ Rℎ𝑤×𝑑 be the input intermediate feature to the cross
attention layer, which is obtained from the feature map of size
ℎ × 𝑤 with feature dimension 𝑑 , and let 𝐾 ∈ R𝑛×𝑑 be the trans-
formed text embedding with 𝑛 tokens via a linear map, we can
obtain cross-attention map 𝐴𝑡 at the step 𝑡 as follows:

𝐴𝑡 = softmax
(
QK⊤
√
𝑑

)
. (11)
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To ensure high responses within the masked regions, we shift at-
tention towards the target regions by boosting the values of the
masked attention map:

L𝑀𝐴𝐴−𝑖𝑛 =
1
𝐵

∑︁
𝑖∈𝐵

(
1 − max

(
𝐴𝑡𝑗 ·𝑀𝑖

))
, (12)

where 𝑗 ∈ [0, 𝑛) is the token index describing the content of 𝑀𝑖 ,
and 𝐴𝑡

𝑗
represents the corresponding attention map. Moreover, we

suppress attention on irrelevant areas by preventing attention from
extending beyond the target regions:

L𝑀𝐴𝐴−𝑜𝑢𝑡 =
1
𝐵

∑︁
𝑖∈𝐵

max
(
𝐴𝑡𝑗 · (1 −𝑀𝑖 )

)
. (13)

The overall masked attention alignment loss is defined as:

L𝑀𝐴𝐴 = L𝑀𝐴𝐴−𝑖𝑛 + L𝑀𝐴𝐴−𝑜𝑢𝑡 . (14)

In this way, MAAlign provides attention alignment by guiding the
model to focus on the target object. Finally, the training objective
is as follows:

L = L𝐿𝐷𝑀 + 𝛼L𝐷𝑆𝐴 + 𝛽L𝑀𝐴𝐴, (15)

where 𝛼 and 𝛽 are trade-off parameters to balance the contributions
of the L𝐷𝑆𝐴 and L𝑀𝐴𝐴 .

Figure 4 illustrates the attention map𝐴𝑡 and denoised image 𝑥 (𝑡 )0
with various combinations of loss terms. It’s clear that when em-
ploying L𝐷𝑆𝐴 (3rd row), the cross-attention maps exhibit a closer
alignment with the real image. Furthermore, when adding L𝑀𝐴𝐴

alongside L𝐷𝑆𝐴 (4th row), the maximum value of the attention
map is boosted, indicating an enhanced focus on the target object,
thus resulting in a clearer denoised image. This enhances the effec-
tiveness of DSAlign and further improves text-image alignment.

4 EXPERIMENT
4.1 Dataset Construction
To study the effectiveness of our alignment-based objectives, we
construct a compact yet robust dataset called GOAL2k to fine-tune
our model. Initially, we first select common objects from COCO
dataset [28]. Subsequently, leveraging in-context learning, we de-
vise various templates encompassing different categories (e.g., color,
shape and spatial). Then we employ GPT-4 [2] to generate relational
captions according to the templates and objects, resulting in a set
of 1,000 template-based prompts. Additionally, we directly choose
1,000 captions from COCO dataset [28] that contain multiple ob-
jects or spatial relations as natural prompts. To guarantee the high
quality and semantic accuracy of images incorporated in GOAL2K,
we employ DALLE-3 [39] for generating images in the training set.
Subsequently, we utilize GroundingDINO [30] to produce layout
annotations. Ultimately, we manually verify the generated image-
text pairs alongside the layout annotations to ensure their fidelity
to accurate semantic information. More details about dataset
construction can be found in supplemental materials.

4.2 Evaluation Metrics
Building upon existing works [16, 20, 35], we evaluate the preci-
sion of layout-to-image generation across various widely-adopted
benchmarks, such as T2I-CompBench [20], NSR-1K [16] and Draw-
bench [42]. For the evaluation of text-image alignment, we adopt

the recommended protocols in T2I-CompBench [20]. For NSR-1K
[16], we utilize cross-modal similarities, indicated by CLIP score
[37], and detection-based similarities, denoted by GLIP score [25].
As Drawbench [42] doesn’t provide labels or metrics for automatic
assessment, we conduct evaluator-based evaluation via user study.
To evaluate the image generation quality, we calculate Q-Align [48]
as image quality score and aesthetic score. Additionally, PickScore
[22] is employed to evaluate human preferences regarding the qual-
ity of generated images. Furthermore, NSR-1K [16] is also utilized
to evaluate the accuracy of the layout generated by different text-
to-layout models [2, 17, 47] across spatial and counting scenarios.

4.3 Implementation Details
Our experiments are performed using GLIGEN [26], a popular
layout-to-image diffusion model built upon Stable Diffusion v1.4
[40]. GPT-4 [2] is employed for layout planning during inference.
We use L𝐷𝑆𝐴 and L𝑀𝑆𝐴 as alignment-based objectives alongside
the original denoising objective L𝐿𝐷𝑀 to train our model. The
weights (𝛼 and 𝛽) for these objectives are set as 1e-2 and 1e-3, re-
spectively. CLIP ViT-L/14 [37] is employed in discriminative seman-
tic alignment (DSAlign) as the encoder for the image and text. We
select the attention map with size 16×16 obtained from the decoder
of the U-Net to perform masked attention alignment (MAAlign).
We employ the AdamW optimizer with a constant learning rate
of 5e-5 over 14,000 steps, with a batch size of 1. During training,
we fine-tune the gated self-attention layers following GLIGEN [26].
Additionally, to fully exploit DSAlign and MAAlign, we fine-tune
both self-attention and cross-attention layers.

4.4 Quantitative results
To evaluate the text-image alignment, we compare the proposed
method with other state-of-the-art methods in two aspects: with
text-to-image (T2I) methods such as Stable Diffusion v1.4 [40], DPT
[35], Attn-Exct v1 [9], and layout-to-image methods such as GLI-
GEN [26], LayoutLLM-T2I [36], LayoutGPT [16] on T2I-Compbench
[20]. Table 1 illustrates that our proposedmethod surpasses all other
methods in all metrics. Particularly, GOAL achieves improvements
of 19%, 13%, and 12% in color, shape, and texture metrics respec-
tively, compared to GLIGEN. This verifies that discriminative tasks
utilized by DSAlign could ensure region-wise semantic alignment
between objects and corresponding attributes, and attention align-
ment performed by MAAlign allowing the model focusing on the
target object, which is a prerequisite for attribute binding.

Additionally, we present the results of counting and spatial eval-
uation on the NSR-1K [16] benchmark in Table 2. The improvement,
particularly in the GLIP [30] score (4% in counting and 3% in spa-
tial metrics), further demonstrates the effectiveness of our method.
From Table 1 and Table 2, we observe that layout-to-image methods
outperform T2I methods in spatial and counting relationships by a
large margin. This illustrates that employing layouts as an inter-
mediate representation can significantly improve the controllable
generation, particularly in scenarios involving counting and spatial
relationships.

Moreover, we demonstrate the results of the proposed method
compared with training-free methods such as Structure v2 [15],
BoxDiff [49], Attend-and-Excite [9], and Attention Refocusing [34]
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Table 1: Comparison to the state-of-the-art text-to-image methods and layout-to-image methods on T2I-Compbench.

Method Color Shape Texture Spatial Non-Spatial Complex
Text-to-Image Methods

Stable v1.4 [40] 37.65 35.76 41.56 12.46 30.79 28.18
HN-DiffusionITM [23] 36.71 35.48 39.84 11.22 30.91 28.05
Composable v2 [29] 40.63 32.99 36.45 8.01 29.80 28.98

DPT [35] 48.84 38.93 50.1 14.63 30.83 30.05
DPT+SC [35] 51.51 39.61 49.38 15.45 30.84 30.29

Layout-to-Image Methods
GLIGEN [26] 34.41 38.61 46.34 35.42 30.42 28.96

LayoutGPT [16] 33.86 36.35 44.07 35.06 30.31 26.36
LayoutLLM-T2I [36] 37.98 39.78 47.62 31.97 29.24 27.66

Ours 53.55 51.19 58.37 37.28 30.94 32.48

Table 2: Comparison to the state-of-the-art text-to-image
methods and layout-to-image methods on NSR-1K.

Numerical Reasoning SpatialReasoning
Method Acc. (GLIP) CLIP Sim. Acc. (GLIP) CLIP Sim.

Text-to-Image Methods
Stable v1.4 [40] 32.22 0.256 16.89 0.252
Stable v2.1 [40] 42.44 0.256 17.81 0.256
Attn-Exct v1 [9] 38.96 0.258 24.38 0.263
Attn-Exct v2 [9] 45.74 0.254 26.86 0.264

Layout-to-Image Methods
LayoutLLM-T2I [36] 57.89 0.261 49.25 0.267
LayoutGPT [16] 55.64 0.261 60.64 0.268

Attention Refocusing [34] 57.26 0.244 61.23 0.251
GLIGEN [26] 56.02 0.258 60.03 0.265

Ours 60.25 0.263 63.12 0.271

Table 3: Comparison to the state-of-the-art training-free
methods on T2I-Compbench.

Component Color Shape Texture Spatial Time (s)
Structured v2 [15] 49.90 42.18 49.00 13.86 4.23

Box Diff [49] 50.26 45.11 53.18 33.01 4.11
Attn-Exct v1 [9] 53.31 38.51 56.13 10.06 5.13

Attention Refocusing [34] 45.38 43.04 50.62 36.01 5.29
Ours 53.55 51.19 58.37 37.28 2.03

on T2I-Compbench. Additionally, the inference time for generat-
ing an image is presented in Table 3. While these methods do not
need additional training, they incur considerable computational
costs during inference. For instance, Attention Refocusing [34] and
Attend-Excite [9] take ×2.61 and ×2.52 times longer, respectively,
to generate a single image compared to the proposed method. Our
proposed method enables efficient inference and consistently out-
performs baseline methods across all evaluation metrics.

Beyond the above evaluation, we also assessed the quality of
images generated by different models using the PickScore [22]
test-unique set. Results suggest that training-free methods, which
directly intervene with cross-modal attention and latent noise maps
during sampling, may degrade image quality. For instance, the
PickScore of Attend-Excite [9] decreased by 3% compared to its
baseline model Stable Diffusion v1.4 [40]. In contrast, our proposed
method demonstrates exceptional performance for both text-image
alignment and image quality.

Table 4: Comparison to the state-of-the-art text-to-layout
methods on PickScore test-unique set.

Method PickScore Quality Aesthetic
Stable v1.4 [40] 0.2481 3.79 3.08
Attn-Exct v1 [9] 0.2152 3.71 2.89

Attention Refoucsing [25] 0.1518 3.83 2.83
GLIGEN [26] 0.1686 3.96 3.05

Ours 0.2561 4.42 4.14

4.5 Qualitative results
Figure 5 demonstrates some cases from the T2I-Compbench [20]
and NSR-1K [16] benchmarks across attributes such as color, spatial
layout, shape, counting, and texture. We observe that 1) Layout
conditions, serving as an intermediate representation, can enhance
the generation controllability in scenes involving counting and
spatial relationships. As shown in the last row, the T2I models Sta-
ble Diffusion [40] and Attend-and-Excite [9] fail to generate the
correct number of animals, while other layout-to-image models
achieve better control over the counting through guidance from
the layout. 2) Our proposed method demonstrates outstanding per-
formance across all attributes, generating images that faithfully
capture semantic details. This can be attributed to the incorporation
of DSAlign and MAAlign, which ensure region-wise semantic and
attention alignment, respectively. 3) Compared with other meth-
ods, our proposed method can generate high-quality and aesthetic
images, which verifies the improvement in text-image alignment
does not result in a loss of image quality.

4.6 Ablation studies
Effect of loss terms. To explore the contribution of the loss terms
L𝐷𝑆𝐴 and L𝑀𝐴𝐴 , we conduct experiments in T2I-Compbench [20]
including color, shape, texture, spatial metrics. From Table 5, we
could see that both L𝐷𝑆𝐴 and L𝑀𝐴𝐴 could consistently promote
alignment performance for T2I gengeration. Specifically, L𝐷𝑆𝐴

shows considerable improvement in shape and texture metrics,
while L𝑀𝐴𝐴 exhibits significant enhancement in color metrics. It
can be attributed to the fact that discriminative loss provided by
semantic alignment improves shape and texture metrics, whereas
attention-level alignment guides the model to focus on the target
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Figure 5: Qualitative results from T2I-Compbench and NSR-1K for various attributes such as color, spatial, shape, counting and
texture. We demonstrate the effectiveness of the proposed method in text-image alignment compared with Stable Diffusion
v1.4 [40], GLIGEN [26], LayoutLLM-T2I [36], BoxDiff [49], Attend-and-Excite [9] and Attention Refocusing [34].

Table 5: Effect of loss terms.

Component Color Shape Texture Spatial
frozen 34.41 38.61 46.34 35.42
L𝐿𝐷𝑀 44.17 44.27 53.86 36.42

L𝐿𝐷𝑀 + L𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 49.83 46.89 55.21 36.77
L𝐿𝐷𝑀 + L𝑝𝑖𝑥𝑒𝑙 47.69 50.01 56.28 37.02

L𝐿𝐷𝑀 + L𝑝𝑖𝑥𝑒𝑙 + L𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 53.55 51.19 58.37 37.28

object and binds accurate attributes such as color. By incorporat-
ing both L𝐷𝑆𝐴 and L𝐷𝑆𝐴 , text-image alignment can be further
enhanced.

Effect of different level of semantic alignment. DSAlign
utilizes both local-level and global-level semantic alignment. To
assess the effectiveness of semantic alignment at different levels,
we conducted a detailed analysis using T2I-Compbench. Compar-
ing the 2nd and 3rd rows of Table 6, it’s evident that local-level

Table 6: Effect of different level of semantic alignment.

𝐷𝑙𝑜𝑐𝑎𝑙 𝐷𝑔𝑙𝑜𝑏𝑎𝑙 Color Shape Texture Spatial
49.83 46.89 55.21 36.77

✓ 52.08 51.12 57.03 37.10
✓ 50.02 48.49 56.51 36.99

✓ ✓ 53.55 51.19 58.37 37.28

semantic alignment plays a more significant role in enhancing text-
image alignment. This can be attributed to the fact that local-level
semantic alignment provides region-wise alignment, enabling fine-
grained supervision for the denoising process. As a result, the model
can learn region information in a more detailed manner. Further-
more, by incorporating both local-level and global-level semantic
alignment, we consistently achieve improvements in text-image
alignment, which verifies the effectiveness of global-level semantic
alignment.



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 7: Effect of different cross-attention layers.

Layer Resolution Color Shape Texture Spatial
middle block 8 × 8 49.50 50.02 55.48 36.24
decoder layer 64 × 64 51.60 49.85 56.58 35.21
decoder layer 32 × 32 49.76 49.10 55.95 35.79
decoder layer 16 × 16 53.55 51.19 58.37 37.28

Table 8: Comparison to the state-of-the-art text-to-layout
methods on NSR-1K.

Numerical Reasoning SpatialReasoning
Method Precision Recall Accuracy Accuracy

LayoutTransformer [17] 75.70 61.69 22.26 6.36
llama2-7B [47] 75.42 90.47 71.00 30.51
llama2-13B [47] 76.90 92.80 77.56 29.15
GPT-3.5 [2] 94.81 96.49 86.33 86.33
GPT-4 [2] 88.23 97.60 94.48 90.11

Effect of different cross-attention layers. We analyze the
effectiveness of employing different cross-attention layers with
MAAlign as shown in Table 7. It’s clear that MAAlign is most
effective when applied to the 16 × 16 attention map obtained from
the U-Net decoder, which is consistent with findings from previous
works [18, 25].

4.7 Text-to-Layout Model Evaluation
To evaluate the performance of text-to-layout models, we exam-
ine the transformer-based model LayoutTransformer [17], as well
as the latest large language models (LLMs) including GPT-4 [2],
GPT-3.5 [2], Llama 2-7B [47], and Llama 2-13B [47]. We assess
their ability to comprehend visual concepts through spatial and
counting scenes in the NSR-1K benchmark. From table 8, we know
that the GPT-4 outperforms all other models in both spatial and
counting scenes, thus it is employed for layout planning in this
work. Moreover, we observe that LLMs exhibit significantly supe-
rior performance compared to LayoutTransformer, highlighting its
robust cross-modal spatial reasoning abilities. Comparing Table 2
and Table 8, we observe that the text-to-layout process is proficient,
and the bottleneck of image generation in complex scenes primarily
lies in layout-guided image control.

4.8 User Study
While quantitative metrics have limitations in providing a com-
prehensive assessment, we complement our analysis with a user
study. We selected attributes including color, description, count-
ing, position, and conflicts from Drawbench [42], resulting in 94
prompts. For each prompt, two images were generated by different
models, which were then assigned to 20 individuals for evaluation.
Evaluation of the images by the participants focused on two as-
pects: semantic alignment and aesthetic quality. Semantic alignment
is utilized to assess whether the model can generate images that
faithfully capture the semantic details from the input text prompts.
Aesthetic quality is employed to determine if the images generated
by the model exhibit any incoherent parts or unnatural poses.

Our method is compared to several baseline models including
Stable Diffusion v1.4 [40], GLIGEN [26], Attend-and-Excite [9], and

Figure 6: User study on 94 prompts from Drawbench [42].
The ratios illustrate the participant preferences for the corre-
sponding model. GOAL demonstrated superior performance
in both image alignment and quality

A cat on the left of a dog.

A donut underneath a toilet.

Attention Refocusing Ours

Figure 7: Comparison with the training-free layout-aware
method Attention Refocusing [34].

Attention Refocusing [25]. Figure 6 shows that human preferences
are consistent with our evaluation outcomes both in text-image
alignment (e.g., Table 1) and aesthetic quality (e.g., Table 4), with
28.1% and 50.36% improvements compared to GLIGEN in align-
ment and quality respectively. Additionally, Figure 7 demonstrates
that some images generated by Attention Refocusing [25] exhibit
incoherent parts and unnatural poses, possibly attributed to the di-
rect intervention of latent noise maps during sampling. In contrast,
the proposed method enhances alignment without compromising
image quality.

5 CONCLUSION
In this work, we propose Grounded jOint lAyout aLignment (GOAL)
framework to handle Text-Image Misalignment issues in complex
scenes. Discriminative semantic alignment (DSAlign) and masked
attention alignment (MAAlign) are performed to provide explicit
supervision with the layout conditions. In addition, We build a
dataset GOAL2K to study the effectiveness of our alignment-based
objectives, which composes 2000 semantically accurate image-text
pairs and their layout annotations for model fine-tuning. Extensive
experiments demonstrate that the proposed method achieves state-
of-the-art performance on different benchmarks with improved
image quality.
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