
Under review as a conference paper at ICLR 2023

NETWORK CONTROLLABILITY PERSPECTIVES ON
GRAPH REPRESENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph representations in fixed dimensional feature space are vital in applying
learning tools and data mining algorithms to perform graph analytics. Such repre-
sentations must encode the graph’s topological and structural information at the
local and global scales without posing significant computation overhead. This
paper employs a unique approach grounded in networked control system theory
to obtain expressive graph representations with desired properties. We consider
graphs as networked dynamical systems and study their controllability properties
to explore the underlying graph structure. The controllability of a networked dy-
namical system profoundly depends on the underlying network topology, and we
exploit this relationship to design novel graph representations using controllability
Gramian and related metrics. We discuss the merits of this new approach in terms
of the desired properties (for instance, permutation and scale invariance) of the
proposed representations. Our evaluation of various benchmark datasets in the
graph classification framework demonstrates that the proposed representations
either outperform (sometimes by more than 6%), or give similar results to the
state-of-the-art embeddings.

1 INTRODUCTION

The graph-theoretic framework provides means to analyze network characteristics and examine
the influence of local interactions on global network behavior. In recent years, various data-driven
approaches have been developed to solve real-world graph problems like graph classification, link
prediction, community detection, and network evolution. Applying prevalent data mining techniques
and learning algorithms to solve graph problems is not a straightforward task. The classical methods
are designed for vector-valued data requiring graphs to be embedded in vector spaces. In other
words, we need to define vector representations of graphs with some desired properties, such as
permutation-invariance, expressiveness, and accuracy.

In this paper, we design a novel graph representation grounded in the network controllability paradigm
(Mesbahi & Egerstedt, 2010). We perceive graphs as networked dynamical systems in which each
vertex is an agent (dynamical unit) that maintains a state. Every agent updates its state through some
dynamical process and interacts with other agents in its neighborhood defined by the underlying
network graph. The states of all agents define the overall network’s state. The network controllability
paradigm concerns steering a network from one state to another by injecting some control signals into
the system through a subset of agents. The network’s ability to be manipulated and controlled through
such external inputs directly depends on the underlying network graph (Ahmadizadeh et al., 2017;
Egerstedt et al., 2012; Liu et al., 2011; Pasqualetti et al., 2014; Rahmani et al., 2009). As a result, by
studying the controllability properties of dynamical processes over networks, one can gather valuable
insights into the underlying graph’s structure that are distinct from other approaches. We propose to
understand and harness the relationship between graph topology and networked dynamical system
behavior to design expressive graph representations in this work.

The controllability of networked dynamical systems has been a fundamental topic in control theory.
In recent years, many studies have established profound connections between network controlla-
bility and the underlying graph-theoretic constructs, such as matching (Liu et al., 2011), graph

1

Under review as a conference paper at ICLR 2023

distances (Yazıcıoğlu et al., 2016), dominating sets (Nacher & Akutsu, 2014), equitable parti-
tions (Egerstedt et al., 2012), and zero forcing sets (Monshizadeh et al., 2014). At the same time,
graph-theoretic characterization of controllability for various families of network graphs, such as
paths, cycles, trees, complete graphs, random graphs, symmetric graphs, circulant graphs, bipartite
graphs, and product graphs, have been reported (Mesbahi & Egerstedt, 2010).

This paper demonstrates that by exploring controllability properties of networks, including how ‘much’
of the overall network can be controlled from a given set of input nodes, how ‘easy’ it is to steer the
network towards desired states, how the ‘location’ of input nodes affect the controllability, and how the
network topology influences these behaviors, we can construct effective graph representations (CTRL
and CTRL+). We evaluate the proposed representations for the classification problem on several
standard datasets and report improved or competitive classification accuracy compared to the existing
approaches. We also discuss the expressiveness and invariance to node orderings of the proposed
graph embeddings. This network control systems perspective to design graph representations is
studied for the first time to the best of our knowledge.

2 NETWORKS AS DYNAMICAL SYSTEMS

A network of inter-connected entities is represented by a graph G = (V,E), where the vertex set
V = V (G) = {v1, v2, . . . , vN} represents the entities, and the edge set E = E(G) ⊆ V × V
represents the pairs of related entities. We use the terms vertex, node and agent alternatively. The
neighborhood of a vertex vi is the set Ni = {vj ∈ V : (vj , vi) ∈ E}. The degree of vi, denoted
by δi, is the size of the neighborhood Ni. A graph with N nodes is represented by the adjacency
matrix J ∈ {0, 1}N×N , where Ji,j = 1, if and only if (vj , vi) ∈ E, and Ji,j = 0, otherwise. The
degree matrix of G, denoted by D, is a diagonal matrix with Di,i = δi. The Laplacian matrix of a
graph is defined as L = D − J . The transpose of a matrix X is denoted by XT . An N -dimensional
vector with all zero entries is denoted by 0N , and a vector with all 1’s is represented by 1N . We
consider undirected graphs here for the ease of exposition; however, all the methods and results are
also applicable to directed graphs. We provide the details for directed graphs in Appendix B.

2.1 PROBLEM DESCRIPTION

A graph embedding is defined as a function ϕ(G) : G → Rd, from the family of graphs, G, to a
d-dimensional Euclidean space. The objective of the graph embedding problem is to find suitable
embeddings for the graphs, where the suitability of embeddings is driven by a few design goals
discussed here. Most importantly, ϕ should be able to retain information about the structural
similarities between pairs of graphs at both local and global scales, i.e., if two graphs are structurally
similar, then their embeddings should generate vectors that are nearby with respect to the Euclidean
distance in the target vector space. Note that the concept of similarities between two graphs is
not a universal notion but rather depends on a particular application (e.g., graph classification,
nearest neighbor search, clustering) and the family of graphs considered (e.g., chemical compounds,
social networks). Furthermore, ϕ should be permutation-invariant in the sense that ϕ should return
identical vectors for two graphs, G,H , with the same set of edges on a permuted vertex set, i.e.,
∃π : V (G)→ V (H), (u, v) ∈ E(G)⇔ (π(u), π(v)) ∈ E(H), then we should have ϕ(G) = ϕ(H).
Another important design goal for graph embeddings is scale-adaptiveness. Not only should a
graph embedding be able to map graphs of varying sizes to a fixed dimensional space, but mapping
should also transcend the graph size to capture its structural properties. For example, an ideal graph
embedding would map a cycle on ten nodes closer to the mapping of a cycle on twenty nodes as
compared to the mapping of a wheel on fifteen nodes. In this paper, we address the problem of finding
graph embedding while keeping the above-mentioned design goals in perspective.

2.2 CONTROL DYNAMICS PROPERTIES OVER NETWORKS

We design distinctive graph representations by studying controlled dynamical processes over networks
and mapping the control behavior to the network topology. Consider a network graph in which
each agent vi is a dynamical unit with a state xi(t) ∈ R at time t that the agent also shares with its
neighbors Ni. Each agent updates its state by following some dynamics (e.g., consensus dynamics)
while incorporating its neighbors’ states during the state update process. The state of the overall

2

Under review as a conference paper at ICLR 2023

system at time t is a vector of the states of all the agents, i.e., x(t) = [x1(t) x2(t) · · · xN (t)]T .
Each agent updates its state by the consensus dynamics given by

ẋi(t) =
∑

vj∈Ni

(xj(t)− xi(t)) . (1)

The system level dynamics (evolution of the state x(t)) is then defined by the following linear system:

ẋ(t) = −Lx(t), (2)

where L is the Laplacian matrix of the underlying network graph. It is well known that if G is
connected, then state of each agent will eventually converge to the average of the initial states of all
agents (Mesbahi & Egerstedt, 2010). Thus, if xi(0) is the initial state (at t = 0) of agent vi, then

xi(t) → x̄ ≜
1

N

∑
vj∈V

xj(0), as t→∞, (3)

∀vi ∈ V . It means the overall network state x(t) will be [x̄ x̄ · · · x̄]T = x̄1N ∈ RN , as t→∞.
Thus, under the consensus dynamics in equation 2, all agents converge to the same state. The linear
system defined over G in equation 2 is autonomous as the system’s state is updated without any
external input. We have no control over the state’s evolution in the sense that we cannot steer the
system to some desired state, say x∗(tf) ∈ RN at time tf . For this purpose, external control signals
are injected into the system through a small subset of agents called leaders. Through these exogenous
signals, leaders’ states can be directly manipulated, i.e., ẋl = ul(t), where ul(t) is the input signal
to the leader agent vl. The non-leader agents, often called followers, continue to update their states
using equation 1.

By feeding appropriate control signals to leaders, which are typically very few, the network’s overall
state x(t) ∈ RN can be manipulated. As a result, we get certain control over the system’s (state)
evolution. The set of states that can be achieved, that is, to which the system can be driven, depends
on the underlying network graph, the number of leaders, and their locations within the network. This
ability of a network to be controlled through external inputs is called network controllability. By
studying network controllability, we can gather valuable information about the network’s structure as
the two are deeply connected. By studying the control-related properties of the network, for instance,
the number of leaders needed to completely control it, the dimension of the subspace consisting of
controllable states, and the amount of control energy needed to steer the system from one state to
another, one can thoroughly examine the graph structure and design effective graph representations.

3 NETWORK CONTROLLABILITY AND GRAPH REPRESENTATION

In this section, we define network controllability and discuss various measures to quantify it. In the
later sections, we use these measures to design graph representations.

3.1 NETWORK DYNAMICS

For a network graph G = (V,E), we partition V into follower and leader nodes, denoted by Vf and
Vℓ, respectively, i.e., V = Vf ∪ Vℓ. Here, |Vf | = Nf and |Vℓ| = Nℓ. Without loss of generality, we
assume that Vf = {v1, v2, · · · , vNf

} and Vℓ = {vNf+1, · · · , vN}. The subgraph induced by Vf is
called the follower graph and is denoted by Gf . The Laplacian matrix of G is partitioned as

L =

[
A B
BT C

]
, (4)

where A ∈ RNf×Nf , B ∈ RNf×Nℓ and C ∈ RNℓ×Nℓ . An external input signal ul is given to leader
agent vl ∈ Vℓ. The follower nodes update their states according to equation 1. The state vector
corresponding to follower nodes is denoted by xf (t) ∈ RNf , and is updated by the following system.

ẋf (t) = −Axf (t)−Bu(t), (5)

where A and B are in equation 4 and u(t) = [uNf+1(t) · · · uN (t)]T ∈ RNℓ is a control signal at
time t. We note that the system matrices −A and −B in equation 5 directly depend on the underlying

3

Under review as a conference paper at ICLR 2023

network structure and the selection of leader agents. As a result, the evolution of xf is a function
of the network graph and the control mechanism, which includes external inputs and the selection
of leader agents in the network. From the control perspective, we are interested in knowing if it is
possible to steer the system equation 5 from an arbitrary initial state to an arbitrary final state in a
finite amount of time t1. If it is possible, then how much control energy E(u), defined below, would
be required.

E(u) =
∫ t1

τ=0

∥u(τ)∥2dτ. (6)

Similarly, if all states are not reachable, then what is the dimension of the subspace consisting of
reachable states? How these control properties vary as a result of a change in leader agents? Answers
to these questions encode information that could be conducive to learn the graph structure. For this,
we need metrics to quantify various aspects of network controllability. These measures can then be
used to obtain graph embeddings. Controllability of linear systems is a fundamental topic in Control
theory and we use results from there to quantify the controllability properties of networks.

3.2 NETWORK CONTROLLABILITY METRICS

Controlling a network corresponds to driving a network from a given initial state to a desired final
state by applying control inputs to leaders in the network. If xf (ti) is the initial state at time ti, then
under the dynamics equation 5, the state at time ts is

xf (ts) = e−A(ts−ti)xf (ti) +

∫ ts

ti

e−A(ts−τ)(−B)u(τ)dτ. (7)

A state x∗
f ∈ RNf is called reachable if there exists an input that can drive the network from origin

0Nf
to x∗

f in a finite amount of time. The set of all reachable states constitutes the controllable
subspace.1 The dimension of the controllable subspace is an important control-theoretic property and
can be computed by the rank of the Controllability matrix below, (Rahmani et al., 2009).

C =
[
−B (−A)(−B) · · · (−A)Nf−1(−B)

]
. (8)

The rank of the above matrix depends on A and B, which in turn depend on the network graph
and the selection of leaders. The network is completely controllable if and only if rank(C) = Nf .
Controllability Gramian is an important mathematical object that provides crucial information about
the control behavior of the network (Pasqualetti et al., 2014; Summers et al., 2015; Wu-Yan et al.,
2018). Using controllability Gramian, we can quantify how ‘easy’ it is to go from one state to another
in terms of the required control energy equation 6. For the system in equation 5, the infinte horizon
controllability Gramian is defined as (Summers et al., 2015; Pasqualetti et al., 2014),

W =

∫ ∞

0

e−Aτ (−B)(−B)T e−AT τdτ ∈ RNf×Nf . (9)

If the system is stable, that is, all eigenvalues of −A have negative real parts, then W converges
asymptotically and can be computed by the Lyapunov equation,

(−A)W +W(−A)T + (−B)(−B)T = 0, (10)

which is a system of linear equations and is therefore easily solvable. For the solution of equation 10
to exist, −A must be a stable matrix, which is true for connected graphs.

Lemma 1. If we partition the Laplacian matrix L of an undirected connected graph as in equation 4,
then the matrix A is positive definite (Mesbahi & Egerstedt, 2010).

As a result, −A is negative definite in the case of connected graphs and the system in equation 5
is stable, and the correspondingW can be computed. Controllability Gramian provides an energy-
related quantification of controllability, and we can obtain several controllability statistics fromW
(Pasqualetti et al., 2014; Summers et al., 2015; Wu-Yan et al., 2018). We discuss some of them below.

1In continuous linear time-invariant systems, as in equation 5, if a state x∗
f is reachable from the origin, then

x∗
f is also reachable from an arbitrary initial state in any duration of time.

4

Under review as a conference paper at ICLR 2023

• Trace ofW: The trace of the controllability Gramian is inversely related to the average control
energy over random target states. It can also be considered as a measure of average controllability
in all directions in the state space.

• Minimum eigenvalue ofW : It is the worst-case metric that is inversely proportional to the control
energy required to steer the network in the least controllable direction in the controllable subspace.

• Rank ofW: The rank ofW is the dimension of the controllable subspace.

• Determinant ofW: The quantity ld(W) = log
(∏

j µj(W)
)

, where µj(W) is a non-zero eigen-
value ofW , is a volumetric measure of the controllable subspace reachable with one unit or less of
control energy. If the system is completely controllable, then ld(W) is the log determinant ofW .

3.3 POTENTIAL OF NETWORK CONTROLS FOR GRAPH REPRESENTATION

The controllability metrics, as defined in the above section, have the capability to capture the
underlying local and global network topology and merit to distinguish certain graph families. For
instance, Wang in (Wang, 2013) proves that every graph G satisfying a constraint on the determinant
of the controllability matrix C can be distinguished by the collective spectrum (eigenvalues) of the
adjacency matrix A ∈ RN×N of graph G and its complement. Theorem 1 in (Wei, 2017) states:

Theorem 3.1. Every graph in family FN can be determined completely by its generalized spectrum,
where

FN = {G | det(C)
2⌊

N
2 ⌋

is an odd square-free integer} (11)

Wang et al. extends this theorem and proves in (Wang & Qiu, 2022) that the tournament networks
belong to FN and can be identified from the adjacency spectrum exhibiting the usefulness of con-
trollibility metrics in distinguishing graphs. Similarly, there are numerous results in the literature
providing insights into the relationship between the network topology and the controllability proper-
ties, thus, establishing the potential of controllability ideas to distinguish graphs in various families.
Some simple examples to further illustrate the differentiating capabilities of the control metrics are
presented below.

Examples: We illustrate through examples that network controllability depends on the topological
organization of the network and the location of leaders in it. Figure 1 shows various networks,
each of which has eight agents, including a single leader agent. The controllability properties of
the resulting follower networks, for instance, the rank and the trace of the controllability Gramian,
denoted by rank and tr, respectively, vary in networks. The path network in Figure 1(a) is completely
controllable with a single leader agent, which is one of the end nodes. At the same time, the complete
network in Figure 1(c) is least controllable as the rank of the controllability Gramian is 1. Similarly,
in other networks, the controllability attributes are functions of the network graph. Along with the
network topology, leader selection also affects the network controllability, as illustrated in Figure
2. We consider a network of 10 agents, of which one is a leader agent, which means Nf = 9.
In Figure 2(b), the dimension of the controllable subspace is 9, which means that the follower
network is completely controllable. The edges between a leader and follower nodes, which decide
the structure of B matrix in equation 5 are shown in red. In Figure 2(c), we choose a different
leader and observe that the network remains completely controllable; however, the trace ofW changes.

(a) rank = 7, tr = 0.5 (b) rank = 4, tr = 1 (c) rank = 1, tr = 3.5 (d) rank = 5, tr = 2 (e) rank = 7, tr = 1.5

Figure 1: Controllability metrics are functions of the underlying network graph.

To collect valuable information about the graph structure, we need to probe the network effectively.
This can be achieved by varying the number and locations of leader nodes and observing the resulting
controllability behavior using measures tr(W), µj(W), rank(W) and ld(W). In the next section,

5

Under review as a conference paper at ICLR 2023

(a) input G (b) rank = 9, tr = 1.5 (c) rank = 9, tr = 2.5 (d) rank = 8, tr = 2

Figure 2: Controllability metrics vary with leader selection

we use these controllability metrics collected by various choices of leader selection to construct useful
graph representations.

Remark 1. The consensus dynamics over the network can be defined in several other ways, for
instance, by considering the overall state of the network (instead of only the followers’ states xf)
and therefore, selecting −L as the system matrix.

4 GRAPH REPRESENTATION DESIGN

This section describes how we design our graph representation based on controllability characteristics
defined in the previous section. If the graph is not connected, then the systems matrix−A in equation 5
might not be stable for some choice of leader agents. Consequently, the solution of equation 10
might not exist. Therefore, we assume that the input network graph is connected. However, some
real-world phenomena may generate networks that are disconnected. To handle such cases, we
perform a preprocessing step in which we introduce a new vertex in such a graph and add an edge
from this new vertex to all other vertices in the graph. This ensures that the graph becomes connected.
Similarly, for extremely tiny graphs (with less than ten vertices), we perform a cloning step in which
multiple copies of the original graph are generated to ensure that the input graph contains at least
ten vertices. This is not an ideal solution as it tampers with the graph’s structure, but we believe this
preprocessing is rarely needed, and it retains enough structural information from the original graph,
as we illustrate in the evaluation section.

We have two main probes to explore the controllability aspects of a network graph: the number of
leader agents and their locations in the network. For molecular datasets, we utilize node information
and the leader selection process is deterministic. For the rest of the datasets, the leader selection
process is uniformly random and the features of the Gramian are calculated for several different
number of leaders. The details of this selection process for all datasets are provided in Section 5.

For a given set of leader agents, we first compute the corresponding system matrices, i.e., −A
and −B by partitioning the Laplacian matrix as in equation 4. Then, we compute the correspond-
ing controllability Gramian W as in equation 10. We note that to solve the Lyapunov equation
equation 10, efficient algorithms and solvers exist that scale well to large networks (Li & White,
2002; Vandereycken & Vandewalle, 2010). We record the trace, rank, minimum (non-zero), and
maximum eigenvalues of the Gramian. Along with these controllability measures, we also include
a few easy-to-compute statistics about the input graph in our embedding. A step-wise description
of this embedding, which we call CTRL, is given in Algorithm 1 in the Appendix C. We cater any
structural changes to the input graph due to the preprocessing step by also designing an enhanced
version, called CTRL+ . In CTRL+ , we simply concatenate the information in CTRL with another
graph embedding that may have better expressiveness for disconnected and small graphs. For this
work, we use a recent graph embedding called Higher-Order Structure Descriptor (HOSD), which is
easy to implement and contains the count of various small subgraphs present at multiple scales in the
network (Ahmed et al., 2020). Since CTRL is reasonably sized, concatenating with HOSD does not
create any severe computational overheads.

Next, we analyze some of the properties of CTRL that are vital for the network classification task as
discussed in Section 2.1.

Permutation Invariance: The CTRL uses the spectrum (set of eigenvalues) of the controllability
Gramian to calculate the feature descriptors of the given graph G. For a given graph G with N nodes
and given leaders Vl, the Gramian is defined as:

W(Vl)
G =

∫ ∞

0

e−Aτ (−BVl
)(−BVl

)T e−AT τdτ (12)

6

Under review as a conference paper at ICLR 2023

(a) (b) (c) (d)

Figure 3: (a) & (b) show the mean and variance of the Rank and Trace obtained for the ER graphs
with N = 30 for all combinations of leaders. (c) & (d) show the same features for the ER graphs
with N = 100 for uniformly randomly selected 50000 leader sets.

where BVl
∈ RNf×Nl for Vl leaders. We show that when we select the leader nodes uniformly at

random, the expectation of spectrum of the Gramian remains independent of the permutation of
vertices in the adjacency and Laplacian matrices.

Theorem 4.1. The expected spectrum of the Gramian of follower dynamics (as in equation 12)
of a leader-follower network G, in which the leaders selection is uniform random, is permutation
invariant.

We prove Theorem 4.1 in the Appendix, which theoretically proves the convergence of the expected
spectrum of the Gramian. Additionally, we perform a simple numerical analysis on Erdős-Rényi
(ER) graphs that shows that the CTRL descriptor converges towards the mean value with fairly low
variance for uniformly random leader selection. We randomly generate 25 graphs with N = 30 nodes
and the probability p of an edge between any two nodes to be 0.18. We plot the mean and variance
of rank and trace of the Gramian for all the leaders combinations from 1 to 5 as shown in Figures
3a and 3b. We also generate 25 ER graphs with N = 100 and p = 0.18. For these larger graphs,
we uniformly randomly select 50000 leaders sets for number of leaders from 1 to 30 and plot the
mean and variance values of rank and trace of the Gramian shown in Figures 3c and 3d, respectively.
Interestingly, the rank has very low variance for both graphs sizes. The variance of the trace value is
relatively high for lower number of nodes (because of lower number of leaders combinations), but
drops for higher number of leaders.

Scale Invariance: Another desirable property of graph descriptors is the scale invariance. Previous
studies show that for certain families of graphs, some of the control descriptor features have the
capability to be consistent with the variation of the size of the graphs. For instance, the Gramian is
full rank when either terminal node of a path graph is selected as a leader (Rahmani et al., 2009).
Liu et al. (Liu & Ji, 2018) provided ample theoretical evidence on scale invariance of the control
properties. We provide some of the relevant theoretical results in appendix.

5 EXPERIMENTAL EVALUATION

We evaluate the performance of the proposed embeddings on graph classification tasks and compare
the results with the state-of-the-art graph representation methods. We consider classification accuracy
as an evaluation metric and use 10-fold cross-validation in our experimental setting. We repeat
the experiments ten times and report the mean of the best results of each iteration. CTRL and
CTRL+ embeddings are implemented in Python and all the experiments are performed on the
Amazon Web Services instance (c5.24xlarge) with 96-cores and 192 GB of RAM.

Datasets: We perform experiments on 10 standard graph classification benchmark datasets. MUTAG,
PTC MR, PROTEINS, ENZYMES, NCI1, and DD, are six bioinformatics datasets. IMDB-BINARY,
IMDB-MULTI, REDDIT-BINARY, and REDDIT-MULTI-5K are four social network datasets (Morris
et al., 2020). The bioinformatics datasets describe small molecules and chemical compounds that
belong to two classes except for the ENZYMES dataset which consists of six classes. Among the
social network datasets, IMDB-BINARY and IMDB-MULTI describe actors’ ego-networks while
REDDIT-BINARY and REDDIT-MULTI are chosen subreddits from an online social network. The
graphs in IMDB-BINARY and REDDIT-BINARY are labeled with two classes and there are three

7

Under review as a conference paper at ICLR 2023

and five classes in IMDB-MULTI and REDDIT-MULTI datasets, respectively. Source code and data
are also made available for foster reproducibility of the results2.

Table 1: Graph classification accuracy comparison of CTRL and CTRL+ against spectral and
statistical graph representation methods. Top three results are highlighted by First, Second and Third.
OME is out of memory and > D indicates computations exceeds 24 hours.

Dataset SP SVM theta GK NetSIMILE NetLSD FGSD CTRL CTRL+
MUTAG 87.28 75.06 79.8 84.63 85.28 88.07 90.99 89.94
PTC MR 62.50 58.40 64.87 59.09 61.19 58.91 65.70 62.78
PROTEINS 72.68 68.64 72.51 71.15 74.63 70.18 75.2 74.76
ENZYMES 36.33 17.50 34.33 42.10 44.25 33.95 69.67 65.17
NCI1 68.69 50.68 61.22 73.96 76.31 79.60 81.31 81.8
DD 77.51 58.66 71.54 74.72 77.27 76.60 76.23 78.19
IMDB-B 72.40 50.0 76.60 74.41 73.79 73.88 74.8 75.0
IMDB-M 48.73 41.13 49.66 49.32 50.57 50.55 48.0 49.0
REDDIT-B 85.30 50.4 > D 89.53 89.12 81.60 95.9 96.05
REDDIT-M-5K 44.95 20.0 > D 52.78 53.58 OME 52.91 54.69

Baselines: We consider six graph embeddings methods: Shortest Path (SP)(Borgwardt & Kriegel,
2005), SVM theta (Johansson et al., 2014) , GK (Shervashidze et al., 2009), NetSIMILE (Berlingerio
et al., 2013), NetLSD (Tsitsulin et al., 2018), and FGSD (Verma & Zhang, 2017) for comparing the
performance of the proposed method. Among them, the first three are state-of-the-art graph kernel
methods while the later are recently proposed graph descriptors. NetLSD and FGSD use graphs’
spectral features to extract graph information. NetSIMILE is a graph descriptor that is based on seven
simple graph statistics including average vertex degree, average clustering coefficient, and standard
deviation of the two-hops neighborhood. To evaluate the performance against state-of-the-art and
recent GNN methods, we also consider nine Graph Neural Networks (GNNs) models: DGCNN
(Zhang et al., 2018), DiffPool (Ying et al., 2018), ECC (Simonovsky & Komodakis, 2017), GIN
(Xu et al., 2018), Nested Graph Neural Network (NGNN) with GIN (Zhang & Li, 2021), Cell
Isomorphism Networks (CIN) (Bodnar et al., 2021a), Message Passing Simplicial Networks (SIN)
(Bodnar et al., 2021b), Structural Semantic Readout (SSRead) (Lee et al., 2021) with SUM, and
RepPool (Li et al., 2020) for comparison. The GNNs models chosen for comparison include earlier
well-known models and recent models showing promising results on the graph classification task.

Experimental setup:

To obtain the control features, we consider different leader selection techniques. The leader set
selection process is as follows:

• For molecular datasets i.e. MUTAG, PTC, and NCI1, we use node types for leaders selection
process. We take all the nodes as leaders of the same type and repeat for all the distinct
types of nodes in the dataset. For the ENZYMES dataset, the first node feature is considered
as node type.

• For the rest of the datasets, the leader selection process is random. There are exponentially
many choices to select Nl leaders among a set of N vertices. Therefore, we make this
choice randomly. Formally, we uniformly select Nl leader nodes from the vertex set and
repeat this random selection process c times for a given number of leaders. We first consider
a fixed number of leaders, i.e., 1, 2, 5, 9, and then consider a fraction of overall nodes to be
leaders, that is, 2%, 5%, 10%, 20%, 30% of the total nodes. For each random leader sets
choice, we repeat the experiment 30 times. Every time a set of leader nodes is selected, we
record graph measurements presented in the Algorithm 1 in Appendix C. We use minimum,
maximum, and average values of these measures over c iterations in our graph embedding.

We ensure through a preprocessing step that each graph has at least 10 nodes and is connected. We use
the Random Forest (RF) algorithm with grid search for the classification and reported 10−fold cross
validation accuracy and their standard deviation. In the hyper-parameter setting of RF, we choose

√
d

features for building a tree, where d is the feature vector’s size, and the classical Gini impurity is used

2https://anonymous.4open.science/r/Control-Descriptor_ICLR-D1D3/README.
md

8

https://anonymous.4open.science/r/Control-Descriptor_ICLR-D1D3/README.md
https://anonymous.4open.science/r/Control-Descriptor_ICLR-D1D3/README.md

Under review as a conference paper at ICLR 2023

Table 2: Graph classification accuracy with standard deviation comparison against GNNs. Top
three results are highlighted by First, Second and Third. OME is out of memory and N/A is the
unavailability of the reproduced results (see Section 5). > 3D indicates training time exceeds 3 days.

datasets DGCNN DiffPool ECC GIN NGNN CIN SIN SSRead(SUM) RepPool CTRL CTRL+
ENZYMES 38.9 ± 5.7 59.5 ± 5.6 29.5 ± 8.2 59.6 ± 4.5 33.0 ± 6.1 N/A N/A 43.83 ± 8.8 50.76 ± 7.9 69.67 ± 4.8 65.17 ± 5.9

NCI1 76.4 ± 1.7 76.9 ± 1.9 76.2 ± 1.4 80.0 ± 1.4 78.6 ± 1.2 84.13 ± 1.6 80.26 ± 1.8 82.70 ± 1.84 79.53 ± 3.4 81.31 ± 2.1 81.8 ± 1.6

PROTEINS 72.9 ± 3.5 73.7 ± 3.5 72.3 ± 3.4 73.3 ± 4.0 74.1 ± 3.7 73.24 ± 5.5 76.30 ± 4.0 73.76 ± 4.8 77.78 ± 3.7 75.2 ± 3.1 74.76 ± 2.9

DD 76.6 ± 4.3 75.0 ± 3.5 72.6 ± 4.1 75.3 ± 2.9 76.0 ± 4.3 N/A N/A 70.23 ± 1.0 79.77 ± 4.8 76.23 ± 3.0 78.19 ± 2.2

IMDB-B 69.2 ± 3.0 68.4 ± 3.3 67.7 ± 2.8 71.2 ± 3.9 72.0 ± 4.2 73.90 ± 6.0 75.5 ± 3.8 71.4 ± 2.0 73.93 ± 4.7 74.8 ± 2.3 75.0 ± 2.6

IMDB-M 45.6 ± 3.4 45.6 ± 3.4 43.5 ± 3.1 48.5 ± 3.3 50.9 ± 3.4 50.93 ± 2.6 52.06 ± 3.4 48.66 ± 2.8 47.03 ± 3.8 48.0 ± 3.9 49.0 ± 3.7

REDDIT-B 87.8 ± 2.5 89.1 ± 1.6 OME 89.9 ± 1.9 > 3D 92.4 ± 2.1 93.0 ± 5.9 93.8 ± 3.5 90.58 ± 4.5 95.9 ± 1.3 96.05 ± 1.5

REDDIT-5K 49.2 ± 1.2 53.8 ± 1.4 OME 56.1 ± 1.7 > 3D 31.8 ± 3.1 57.09 ± 1.7 53.25 ± 2.0 N/A 52.91 ± 1.7 54.69 ± 2.2

as a metric to build the tree. The number of estimators is chosen from {50, 100, 500} and total number
of samples for a split in a tree is chosen from the set {2, 3, 4, 5}. In FGSD experiments, we set 0.0001
bin-width as recommended in (Tsitsulin et al., 2018). For NetLSD, we use all variants mentioned
in their paper and report the best results by utilizing the entire eigenspectrum. For NetSIMILE, we
use their publicly available source codes and reproduce the results using our experimental setup.
For graph kernel results, we use GraKel (Siglidis et al., 2020) library for computing kernel matrices
and then use RF with the same setting for the classification. For GNNs, we reproduced the result
of NGNN, CIN (Bodnar et al., 2021a), SIN (Bodnar et al., 2021b), GCN-SSRead (Lee et al., 2021)
and RepPool (Li et al., 2020) with 10-fold cross validation using the source codes made publicly
available by the authors. The hyper-parameters are same as in the original papers. Here, we would
like to note that due to the unavailability of a few datasets in the desired formats, we were not able to
reproduce some of the results, hence N/A is reported. For DGCNN (Zhang et al., 2018), DiffPool
(Ying et al., 2018), ECC (Simonovsky & Komodakis, 2017) and GIN (Xu et al., 2018), we consider
the results in (Errica et al., 2019) that are obtained through identical frameworks.

Classification results:

We present the classification results of our evaluation in Table 1 and Table 2. We conclude from the
results that the proposed embeddings either outperform or achieve comparable performance in terms
of prediction accuracy on all benchmarks. Specifically, in comparison to the embedding methods,
CTRL and CTRL+ rank top on eight out of ten datasets. On the remaining datasets, the results are
within 2% of the top results. In comparison to GNN models in Table 2, we observe the superior
performance of both CTRL and CTRL+ on ENZYMES and REDDIT-B datasets. On the remaining
datasets except IMDB-M, CTRL and CTRL+ achieve second or third place. Although the proposed
descriptor did not place in the top three on the IMDB-M dataset, the results are within 3% of the
top results. These results clearly demonstrate the effectiveness of the proposed descriptor for graph
classification.

We expect the results to further improve when combined with existing graph embeddings (spectral,
statistical or GNNs). Our results empirically confirm that the spectral information of the network
Gramian is effective for constructing graph representations.

6 CONCLUSION AND FUTURE WORK

This work asserts that the networked dynamical system perspective, in particular, the network
controllability paradigm offers a unique approach to encode the network structure and obtain effective
graph representations. There are several directions to advance the controllability framework for graph
representations. For instance, instead of Laplacian dynamics, one can consider different dynamical
processes over networks. Similarly, we can use other controllability notions, such as, structural
controllability, output, or target controllability, which concerns controlling a focused set of (target)
nodes instead of the entire network (Van Waarde et al., 2017; You et al., 2019). Also, there are
alternative metrics that can be used to express the network’s dynamical behavior, for instance, control
centrality (Liu et al., 2012), Gramian-based edge centrality, control range index (Wang et al., 2012),
and others (e.g., (Commault & Dion, 2013; Wu-Yan et al., 2018)). Network control and graph
learning communities share several scientific grounds, and viewing graph learning problems from the
lens of control theory offers fresh perspectives and approaches to advance the field.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Saeed Ahmadizadeh, Iman Shames, Samuel Martin, and Dragan Nešić. On eigenvalues of Laplacian
matrix for a class of directed signed graphs. Linear Algebra and its Applications, 523:281–306,
2017.

Ammar Ahmed, Zohair Raza Hassan, and Mudassir Shabbir. Interpretable multi-scale graph descrip-
tors via structural compression. Information Sciences, 533:169–180, 2020.

Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos. Network similarity
via multiple social theories. In Proceedings of the 2013 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, pp. 1439–1440. ACM, 2013.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Advances in Neural
Information Processing Systems, 2021a.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio, and
Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial networks.
In International Conference on Machine Learning, pp. 1026–1037. PMLR, 2021b.

Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In IEEE International
Conference on Data Mining (ICDM), pp. 74–81. IEEE Computer Society, 2005.

Xiaodong Cheng and Jacquelien MA Scherpen. Novel Gramians for linear semistable systems.
Automatica, 115:108911, 2020.

Christian Commault and Jean-Michel Dion. Input addition and leader selection for the controllability
of graph-based systems. Automatica, 49(11):3322–3328, 2013.

Magnus Egerstedt, Simone Martini, Ming Cao, Kanat Camlibel, and Antonio Bicchi. Interacting
with networks: How does structure relate to controllability in single-leader, consensus networks?
IEEE Control Systems Magazine, 32(4):66–73, 2012.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. arXiv preprint arXiv:1912.09893, 2019.

Fredrik Johansson, Vinay Jethava, Devdatt Dubhashi, and Chiranjib Bhattacharyya. Global graph
kernels using geometric embeddings. In International Conference on Machine Learning, pp.
694–702. PMLR, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
International Conference on Learning Representations, 2017.

Risi Kondor, Nino Shervashidze, and Karsten M Borgwardt. The graphlet spectrum. In Proceedings
of the 26th Annual International Conference on Machine Learning, pp. 529–536. ACM, 2009.

Dongha Lee, Su Kim, Seonghyeon Lee, Chanyoung Park, and Hwanjo Yu. Learnable structural
semantic readout for graph classification. In 2021 IEEE International Conference on Data Mining
(ICDM), pp. 1180–1185. IEEE, 2021.

Jing-Rebecca Li and Jacob White. Low rank solution of Lyapunov equations. SIAM Journal on
Matrix Analysis and Applications, 24:260–280, 2002.

Juanhui Li, Yao Ma, Yiqi Wang, Charu Aggarwal, Chang-Dong Wang, and Jiliang Tang. Graph
pooling with representativeness. In 2020 IEEE International Conference on Data Mining (ICDM),
pp. 302–311. IEEE, 2020.

Xianzhu Liu and Zhijian Ji. Controllability of multiagent systems based on path and cycle graphs.
International Journal of Robust and Nonlinear Control, 28(1):296–309, 2018.

Yang-Yu Liu, Jean-Jacques Slotine, and Albert-László Barabási. Controllability of complex networks.
Nature, 473(7346):167–173, 2011.

10

Under review as a conference paper at ICLR 2023

Yang-Yu Liu, Jean-Jacques Slotine, and Albert-László Barabási. Control centrality and hierarchical
structure in complex networks. Plos One, 7, 2012.

Mehran Mesbahi and Magnus Egerstedt. Graph theoretic methods in multiagent networks, volume 33.
Princeton University Press, 2010.

Nima Monshizadeh, Shuo Zhang, and M Kanat Camlibel. Zero forcing sets and controllability of
dynamical systems defined on graphs. IEEE Transactions on Automatic Control, 59(9):2562–2567,
2014.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML 2020
Workshop on Graph Representation Learning and Beyond, 2020.

Jose C Nacher and Tatsuya Akutsu. Analysis of critical and redundant nodes in controlling directed
and undirected complex networks using dominating sets. Journal of Complex Networks, 2(4):
394–412, 2014.

Alessandro Negro. Graph-powered machine learning. Simon and Schuster, 2021.

Fabio Pasqualetti, Sandro Zampieri, and Francesco Bullo. Controllability metrics, limitations and
algorithms for complex networks. IEEE Transactions on Control of Network Systems, 1(1):40–52,
2014.

Thilo Penzl. A cyclic low-rank smith method for large sparse lyapunov equations. SIAM Journal on
Scientific Computing, 21(4):1401–1418, 1999.

Amirreza Rahmani, Meng Ji, Mehran Mesbahi, and Magnus Egerstedt. Controllability of multi-agent
systems from a graph-theoretic perspective. SIAM Journal on Control and Optimization, 48(1):
162–186, 2009.

Anwar Said, Saeed-Ul Hassan, Suppawong Tuarob, Raheel Nawaz, and Mudassir Shabbir. Dgsd:
Distributed graph representation via graph statistical properties. Future Generation Computer
Systems, 119:166–175, 2021.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In Artificial intelligence and statistics, pp.
488–495. PMLR, 2009.

Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstantinos Skianis, and
Michalis Vazirgiannis. Grakel: A graph kernel library in python. Journal of Machine Learning
Research, 21(54):1–5, 2020.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neural
networks on graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

Tyler H Summers, Fabrizio L Cortesi, and John Lygeros. On submodularity and controllability in
complex dynamical networks. IEEE Transactions on Control of Network Systems, 3(1):91–101,
2015.

Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alexander Bronstein, and Emmanuel Müller.
Netlsd: hearing the shape of a graph. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 2347–2356. ACM, 2018.

Henk J Van Waarde, M Kanat Camlibel, and Harry L Trentelman. A distance-based approach to
strong target control of dynamical networks. IEEE Transactions on Automatic Control, 62(12):
6266–6277, 2017.

Bart Vandereycken and Stefan Vandewalle. A Riemannian optimization approach for computing
low-rank solutions of Lyapunov equations. SIAM Journal on Matrix Analysis and Applications, 31
(5):2553–2579, 2010.

11

Under review as a conference paper at ICLR 2023

Saurabh Verma and Zhi-Li Zhang. Hunt for the unique, stable, sparse and fast feature learning on
graphs. In Advances in Neural Information Processing Systems, pp. 88–98. Curran Associates,
Inc., 2017.

Bingbo Wang, Lin Gao, and Yong Gao. Control range: a controllability-based index for node
significance in directed networks. Journal of Statistical Mechanics: Theory and Experiment, 2012
(04):P04011, 2012.

Wei Wang. Generalized spectral characterization of graphs: Revisited. Electronic Journal of
Combinatorics, 20(4), 2013.

Wei Wang and Lihong Qiu. Spectral characterizations of tournaments. Discrete Mathematics, 345(8):
112918, 2022.

Wang Wei. A simple arithmetic criterion for graphs being determined by their generalized spectra.
Journal of Combinatorial Theory, Series B, 122:438–451, 2017.

Elena Wu-Yan, Richard F Betzel, Evelyn Tang, Shi Gu, Fabio Pasqualetti, and Danielle S Bas-
sett. Benchmarking measures of network controllability on canonical graph models. Journal of
Nonlinear Science, pp. 1–39, 2018.

Weiguo Xia and Ming Cao. Analysis and applications of spectral properties of grounded laplacian
matrices for directed networks. Automatica, 80:10–16, 2017.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374.
ACM, 2015.

AY Yazıcıoğlu, Waseem Abbas, and Magnus Egerstedt. Graph distances and controllability of
networks. IEEE Transactions on Automatic Control, 61(12):4125–4130, 2016.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. arXiv preprint arXiv:1806.08804,
2018.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional
policy network for goal-directed molecular graph generation. In Advances in Neural Information
Processing Systems, pp. 6410–6421. Curran Associates, Inc., 2018.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In International
Conference on Machine Learning, pp. 7134–7143. PMLR, 2019.

Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information Processing
Systems, 34, 2021.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning archi-
tecture for graph classification. In Proceedings of the AAAI Conference on Artificial Intelligence,
2018.

12

Under review as a conference paper at ICLR 2023

APPENDIX A RELATED WORK

Graph representation methods can be divided into two main approaches: Graph kernels and Graph
Neural Networks (GNNs). Graph kernels are well-known and are historically dominant techniques for
graph comparison or graph classification, whereas GNNs are recent end-to-end deep learning models
for learning graph structures. We briefly survey both of these techniques in the following.

Graph Kernels: Graph kernels are widely known methods for learning graph-structured data.
Some of the most popular approaches include, shortest-path kernel (Borgwardt & Kriegel, 2005),
Weisfeiler Lehman kernel, deep graph kernel (Yanardag & Vishwanathan, 2015), and graphlet kernel
(Kondor et al., 2009). These methods use various graph-theoretic measures such as pairwise distances,
subgraphs mining, and neighborhood aggregation for extracting graph representations (Verma &
Zhang, 2017; Tsitsulin et al., 2018; Said et al., 2021). Graph kernel methods, though useful on the
graph classification tasks with attractive time complexities, have been outperformed by Graph Neural
Networks (GNNs) approach that we review below.

Graph Neural Networks (GNN): GNNs are useful tools for learning graph representations. The last
few years have seen a surge in GNNs approaches, introducing different techniques for improving
models’ capabilities. Recently, various graph representation approaches have been introduced
that focus on different aspects of the GNN methods i.e. scalability, robustness, generalizability,
and explanability (Negro, 2021). Such approaches include Graph Convolutional Networks (Kipf
& Welling, 2017), and Graph Reinforcement Learning (You et al., 2018). These graph neural
network approaches report a state-of-the-art classification accuracy on several standard graph datasets.
However, their sizable variance is of concern for certain applications (Xu et al., 2018). Additionally,
they utilize node features in the learning process, whereas the kernel methods usually work on
unlabelled graphs.

Unlike the existing works, we pursue a unique approach to seek expressive graph representation.
We consider graphs as networked dynamical systems and observe their controllability properties,
revealing the extent to which a network can be manipulated. Using control theory, we employ tools to
capture the relationship between networks’ control behavior and their underlying topologies. We then
propose a graph representation based on control properties that exhibit good classification accuracy
for a broad range of datasets.

APPENDIX B LAPLACIAN DYNAMICS IN DIRECTED GRAPHS

For a directed graph G = (V,E), the in-neighbors of vi are N i
i = {vj ∈ V : (vj , vi) ∈ E}.

Similarly, the out-neighbors of vi are N o
i = {vj ∈ V : (vi, vj) ∈ E}. The in-degree and out-degree

of vi are simply δii = |N i
i | and δoi = |N o

i |, respectively. For |V | = N , we define Laplcaian matrix L̃
(of dimensions N ×N) of the directed graph as below (Xia & Cao, 2017):

[L̃]i,j =

 −1 if (vj , vi) ∈ E and i ̸= j,
0 if (vj , vi) /∈ E and i ̸= j,
δii if i = j.

(13)

Note that L̃ is not a symmetric matrix here (unlike the undirected graphs). Suppose, we have a set of
Nf followers given by Vf = {v1, v2, · · · , vNf

} and Nℓ leaders denoted by Vℓ = {vNf+1, · · · , vN},
then we can partition L̃ as

L̃ =

[
Ã B̃

C̃ D̃

]
, (14)

where Ã ∈ RNf×Nf , B̃ ∈ RNf×Nℓ , C̃ ∈ RNℓ×Nf and D̃ ∈ RNℓ×Nℓ . Figure 4 illustrates an example
of the directed Laplacian matrix.

The follower nodes update their states xf (t) according to the following dynamics:

ẋf (t) = −Ãxf (t)− B̃u(t). (15)

13

Under review as a conference paper at ICLR 2023

v1

v2

v3

v4

v5 L̃ =


1 0 −1 0 0
−1 2 −1 0 0
0 0 1 0 −1
0 −1 0 1 0
0 0 0 −1 1



Figure 4: A directed graph with four followers Vf = {v1, v2, v3, v4} and one leader Vℓ = {v5} along
with the corresponding Laplacian matrix L̃ and its partition as in equation 14.

To obtain the infinite horizon controllability Gramian (defined in (9) in the main text) corresponding
to the above system, −Ã must be a stable matrix, i.e., the real parts of all eigen values of −Ã must
be negative. Under some connectivity condition on G (described in the Lemma below), we get a
stable −Ã (Xia & Cao, 2017). As a result, we can find the infinite horizon controllability Gramian
and obtain the controllability metrics defined previously.

Lemma Let G = (Vf ∪ Vℓ, E) be a directed graph such that for every follower node vi ∈ Vf , there
exists some leader node vj ∈ Vℓ such that there is a directed path from vj to vi. If L̃ is the Laplacian
matrix of G with Ã as defined in equation 14, then −Ã is stable (Xia & Cao, 2017).

Remark 1. If the systems matrix, for instance, −Ã in equation 15, is semistable instead of being
stable (may be due to graph connectivity conditions), then we can use the generalized controllability
GramianWg, instead ofW (Cheng & Scherpen, 2020). In other words, if −Ã has zero eigen value
such that the geometric multiplicity of zero eigen value coincides with the algebraic multiplicity, and
all the other eigen values have negative real parts, then we can compute the generalized controllability
GramianWg , which is given below for the system in equation 15 (Cheng & Scherpen, 2020).

Wg =

∫ ∞

0

(
e−Ãτ − J

)
(−B̃)(−B̃)T

(
e−ÃT τ − J

)
dτ, (16)

whereWg ∈ RNf×Nf and J = limτ→∞ e−Ãτ is a constant matrix. For a semistable system, the
generalized controllability Gramian is well defined and is a unique solution of the following linear
matrix equations (Cheng & Scherpen, 2020).

(−Ã)Wg +Wg(−Ã)T + (I − J)(−B̃)(−B̃T)(I − J T) = 0,

JWgJ T = 0.
(17)

Hence, we can useWg to compute the controllability metrics.

APPENDIX C ALGORITHM

To expand on graph representation design presented in section 4 of the main paper, here we present a
complete step-by-step description of the CTRL embedding in Algorithm 1. Starting from a given
graph G, the Algorithm presents all of the details to construct the desired CTRL embedding.

APPENDIX D PROSPECTIVE OF NETWORK CONTROL FOR GRAPH
REPRESENTATION

Permutation and scale invariance are two challenging but necessary properties of any graph embedding
method to posses. In this section, we provide a proof for permutation invariance as presented in
Theorem 4.1 and as well as report some theoretical results from the literature that demonstrate the
scale invariance properties for the control properties.

Permutation Invariance: Proof of Theorem 4.1 : For uniform random selection of leaders, the
expectation of the Gramian matrixW(j)

G is:

E[WG] =
1

Kl

Kl∑
j=1

∫ ∞

0

e−Aτ (−BVj
)(−BVj

)T e(−Aτ)T dτ (18)

14

Under review as a conference paper at ICLR 2023

Algorithm 1 CTRL: (Control embedding)

Input: Graph G = (V,E), |V | = N , num iterations
Output: Graph embedding R

1: L← Laplacian of G.
2: Initialize R as an empty list.
3: Create a list of leader sets using the leader selection strategy (see experimental setup).

4: for each Vl in the list of leader sets do
5: Compute the corresponding system matrices −A,−B (as in equation 5).
6: Compute the GramianW (as in equation 9 and equation 10).
7: Compute the rank, trace, minimum non-zero eigenvalue, µmin, and maximum eigenvalue,

µmax, ofW .
8: Compute the Resolvability (number of unique distance-to-leader vectors from (Yazıcıoğlu

et al., 2016)) of G corresponding to selected leader nodes
9: Compute rank, trace, µmin, µmax, Resolvability value and concatenate to the list R.

10: end for
(Adding some simple stats about the graph structure to R.)

11: Concatenate N , |E|, number of bi-connected components, the Laplacian spectrum. (We add
three smallest and largest eigenvalues), Laplacian energy, eccentricity spec-
trum, eccentricity energy, Wiener index, trace degree sequence of G, and cycles information.

12: Return R

where Kl =
(
N
Nl

)
is the number of choices for a leader set of size Nl, and BVj is the input matrix

corresponding to Vj leader set. A permutation matrix Π is a square matrix, I , formed by a reordering
of the rows of the identity matrix of the corresponding dimensions. If G = (V,E) and G′ = (V ′, E′)
are isomorphic graphs, then there exists a permutation matrix Π such that Π L Π−1 = L′, where L
and L′ are the corresponding Laplacian matrices of G and G′ respectively. Recall that Π satisfies the
property Π ΠT = ΠTΠ = I . Let Πf ∈ RNf×Nf be an arbitrary permutation matrix corresponding
to the follower agents. The GramianWG′ of the follower dynamics obtained from a permuted copy
of the Laplacian matrix L′ = ΠLΠ−1 is

W(j)
G′ =

∫ ∞

0

e−A′τ (−B′
Vj
)(−B′

Vj
)
T
e(−A′τ)T dτ

=

∫ ∞

0

e−ΠfAτΠ−1
f (−B′

Vj
)(−B′

Vj
)
T
e(−ΠfAτΠ−1

f)T dτ

= Πf

∫ ∞

0

e−AτΠT
f (−B′

Vj
)(−BVj

)TΠfe
(Aτ)T dτΠT

f

where Π−T
f = (Π−1

f)T = (ΠT
f)

T = Πf . Further, we can write,

= Πf

(∫ ∞

0

e−Aτ (ΠT
f B

′
Vj
)(ΠT

f B
′
Vj
)TΠfe

(Aτ)T dτ

)
ΠT

f

Note that the summation of expectation in equation 18 is over all choices of leader sets of size Nl.
For each (ΠT

f B
′
Vj
), there is a unique 1 ≤ j′ ≤ Kl such that (ΠT

f B
′
Vj
) = BV ′

j
. Therefore,

E[WG′] =
1

Kl

Kl∑
j′=1

ΠfW(j′)
G ΠT

f

E[WG′] = Πf (E[WG]) Π
T
f .

Thus, the expected Gramian of a permuted graph is same as the the permutation of the expected
Gramian of the original graph. Since the spectrum of a matrix is invariant to linear transformations,
we conclude that the expected spectrum of the Gramian is preserved under vertex permutations.

Scale Invariance: As mentioned in Section 4, for certain families of graphs, some of the control
descriptor features have the capability to be consistent with the variation of the size of the graphs.

15

Under review as a conference paper at ICLR 2023

Liu et al. in (Liu & Ji, 2018) provides a relation for rank(W) for path graphs when Nl = 1 and the
leader is not a terminal node. Theorem 1 of (Liu & Ji, 2018) states that
Theorem D.1. Suppose PN = (V,E) be the path graph where V = {v1, . . . , vN}, and (vi, vi+1) ∈
E ∀i = 1, . . . , N , and FN = {f1, . . . , fm}, f1 > f2 > . . . > fm > 1, represent the set of the odd
factors of N except for 1. If there exists a set Mi whose element m belongs to {2, 3, . . . , N − 1} and
fi is the greatest common factor of 2m− 1 and N , and if j ∈Mk, where k ∈ {1, . . . ,m}, then the
rank(W) = N − (fk − 1)/2.

Hence, the rank(W) normalized by the size of the path graph N is fairly independent of the size of
the path graphs. Likewise, for cycle graphs CN with N nodes, the Gramian is strictly full rank if any
two adjacent nodes are selected as leader nodes whereas for a single leader, the rank(W) is always
⌊N/2⌋ (Liu et al., 2011). For the controllable subspace with two non-adjacent leaders in a cycle
graph, the parity is important. Liu et al. in (Liu & Ji, 2018) discuss this controllability of a cycle with
two leaders as a function of distances between the leaders. Theorem 4 of (Liu & Ji, 2018) states that
Theorem D.2. Suppose CN = (V,E) be the cycle graph where V = {v1, . . . , vN}, (vi, vi+1) ∈
E ∀i = 1, . . . , N , (v1, vN) ∈ E. Let Ik = {mk|m ∈ N+}, and Ink = {x|x ∈ Ik & x ≤ [N/2]}.
For even N , let FE

N = {f1, . . . , fm} denote all even factors of N except for 2, where N = f1 >
f2 > . . . > fm > 3 and let FE

1 = INf1/2, FE
k = INfk/2\∪

m
i=1F

E
i and k = 2, . . . ,m. Let d(vi, vj) be

the number of edges in the shortest path between vi and vj . If d(v1, v2) ∈ FE
k , where Vl = {v1, v2},

then rank(W) = N − fk/2 + 1.

The same procedure can be followed for odd N , thus, exhibiting the scale-invariance of the normalized
rank(W) for cycle graphs to large degree.

APPENDIX E LIMITATIONS

The results of our proposed method are encouraging for network classification. The approach to
consider networks as dynamical systems and study its classification properties is novel. However, it
has a few limitations discussed below.

Scalability – The major step involved in the computation of the proposed representations is the
computation of the infinite horizon controllability Gramian equation 9. Since it requires matrix
multiplication equation 10, the overall time complexity is super-quadratic in Nf . Though it was not
an issue for the graph classification tasks considered in the paper, the method could pose computational
challenges for very large graphs.

We note that the scalability issue was not the main focus of this work, instead, a new approach relying
on the control behavior of networks through external perturbations to encode graph structure was
the main consideration. Nonetheless, there are several ways to deal with it and would be included in
future extensions. Lyapunov equation, whose solution is the controllability Gramian, is a particular
case of a more general Sylvester equation. While solving the Sylvester equation through standard
methods (e.g., Bartels-Stewart, Hammarling) could be computationally expensive in large networks,
several techniques have been developed over the years to significantly improve the computation time
for approximately solving Lyapunov equations (LE) with reasonable accuracy. These techniques
utilize the additional structure of LE, which includes the low-rank condition of the matrix (as the
number of leaders is typically quite small), stability and sparsity of the system matrix, and so on.
Some of these methods include iterative methods (e.g., cyclic low-rank Smith method), alternating
directions implicit (ADI) methods, Krylov subspace methods, projection methods (e.g., extended
Arnoldi or Glarekin method), see (Penzl, 1999) and the references therein.

Leader Selection Mechanism –In the proposed work, we mainly considered random leader selection,
albeit there can be other systematic ways; one being leader selection based on node types used
for molecular datasets. Optimizing leader selection to maximize the performance for the task at
hand could pose a significant computation overhead as leader selection problems are typically
computationally challenging. For instance, it is NP-hard to determine if a graph with a fixed number
of leader nodes is completely controllable or not. Thus, we desire a simple and computationally
efficient scheme that gives good performance for a wide range of applications.

We note that in the control framework, leader nodes provide a mechanism to probe the network
externally so that we can record the network control behavior and use it for graph embedding. In the

16

Under review as a conference paper at ICLR 2023

absence of optimal leader selection, it is a reasonable proposition to probe the network fairly from
all directions to achieve this objective. Random leader selection achieves these objectives, that is,
efficient computation and fair probing of the network. However, improved results can be expected
with a more standardized leader selection. We note an increase of about 10% accuracy in NCI1
dataset with a systematic leader selection process defined in Section 5. It would be an interesting
question to devise an optimal leader selection problem for specific tasks and study rigorously the
trade-off between the accuracy and computational costs.

17

	Introduction
	Networks as Dynamical Systems
	Problem Description
	Control Dynamics Properties over Networks

	Network Controllability and Graph Representation
	Network Dynamics
	Network Controllability Metrics
	Potential of Network Controls for Graph Representation

	Graph Representation Design
	Experimental Evaluation
	Conclusion and Future Work
	Related Work
	Laplacian Dynamics in Directed Graphs
	Algorithm
	Prospective of Network Control for Graph Representation
	Limitations

