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ABSTRACT

Human-centric perception with radio frequency (RF) signals has recently entered
a new era of end-to-end processing with Transformers. Considering the long-
sequence nature of RF signals, the State Space Model (SSM) has emerged as a
superior alternative due to its effective long-sequence modeling and linear complex-
ity. However, integrating SSM into RF-based sensing presents unique challenges
including the fundamentally different signal representation, distinct frequency re-
sponses in different scenarios, and incomplete capture caused by specular reflection.
To address this, we carefully devise a dual-branch SSM block that is characterized
by adaptively grasping the most informative frequency cues and the assistant spatial
information to fully explore the human representations from radar echoes. Based
on these two branchs, we further introduce an SSM-based network for handling
various downstream human perception tasks, named RFMamba. Extensive experi-
mental results demonstrate the superior performance of our proposed RFMamba
across all three downstream tasks. To the best of our knowledge, RFMamba is the
first attempt to introduce SSM into RF-based human-centric perception.

1 INTRODUCTION

Despite significant advancements in vision-based human perception (Cao et al., 2023), optical
cameras face fundamental limitations when perceiving human motion in non-line-of-sight (NLoS)
or low-lighting scenarios (Geng et al., 2021; 2022). In contrast, radio frequency (RF) signals are
illumination-robust and can penetrate through non-metallic materials such as concrete walls (Li et al.,
2024a;b; Song et al., 2022a; Ding et al., 2023; Wang et al., 2021). Existing studies have utilized
various RF signals for human sensing, including Stepped-Frequency Continuous Wave (SFCW) radar,
Frequency-Modulated Continuous Wave (FMCW) radar, WiFi, and LoRa signals. Among these,
SFCW and FMCW signals are particularly well-suited for fine-grained human sensing because their
larger bandwidth. Leveraging those signals reflecting off human body, we can track suspects hidden
inside a building or quickly locate victims trapped within collapsed structures, making it vital for
anti-terrorism and rescue operations.

Prior works on RF-based human-centric perception (HCP) predominantly follow two paradigms.
The first approach follows a multi-stage pipeline, where RF heatmaps are first generated from radar
signals and subsequently fed into neural networks to perform human perception. This multi-stage
process, however, requires complex data preprocessing that results in reduced efficiency. The second
approach employs a single-stage framework, exemplified by the RadarFormer model proposed by
(Zheng et al., 2023b). They utilize a Transformer-based architecture (Vaswani et al., 2017) to directly
extract human representations from radar echoes, thereby eliminating the need for intermediate
heatmap generation. This end-to-end process enables more efficient handling of various HCP tasks.

However, due to the long-sequence nature of radar echoes Geng et al. (2023), a single-stage framework
that adopts a Transformer-based architecture suffers from quadratic computational overhead, resulting
in prohibitively high computational complexity. Therefore, a natural question arises: can a more
efficient yet effective solution be developed to capture the long-range dependencies across large-
sequence RF? The recently popular State Space Model (SSM) with linear complexity could be a
promising answer to this question. Nevertheless, due to the inherent physical characteristics of RF
signals, three key challenges arise when adapting the SSM architecture for RF-based sensing:
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(a) Variance Distribution Across Different Frequency Ranges (b) Transformer-based Method (c) Our Mamba-based Method
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Figure 1: (a) illustrates the variance response across different frequency in the human motion
scenarios, where higher variance indicates more captured human information. (b) and (c) illustrate the
effective receptive field (ERF) of the transformer-based model and our SSM-based model, respectively.
The ERF demonstrates the model’s response to diverse frequency ranges. Notably, only the proposed
RFMamba can adaptively select the most informative frequency cues for different scenarios.

Signal Representation: The representation of RF signals is fundamentally different from images
or text. RF signals consist of amplitude and phase information, with amplitude denoting target
reflectivity while phase enables precise distance and velocity estimation.

Frequency Response: The signals in different frequency bands have varying abilities to penetrate
obstacles, resulting in different frequency responses between the free-space scenario and the wall-
occlusion scenario. As shown in Figure 1, the human motion information tends to concentrate in all
frequency bands in free space, while concentrating in low-frequency bands under wall occlusion.

Specular Reflection: The human body acts as a reflector rather than a scatterer in the lower RF
frequency range, causing a single RF echo can only capture partial human limbs. Such specular
reflections render the problem of RF-based human perception inherently ill-posed.

Expanding upon these signal characteristics, we first attempt to extend Mamba from the perspective
of frequency analysis and propose a frequency-aware Mamba for RF-based HCP, termed RFMamba.
Specifically, we devise a RF-State Space Model (RF-SSM) block with two core branches modeling in
the frequency domain and spatio-temporal domain, respectively. Due to the three-dimension nature of
RF, the frequency modeling branch correlates frequency cues in the amplitude and phase dimensions,
and a six-way (omni-dimensional) scanning strategy is adopted to ensure each element in the echoes
integrates information from all other locations in different dimensions. Additionally, a frequency
adaptive feed-forward network is designed to adaptively identify the most informative frequency
cues. Aside from the frequency branch, we also develop a spatio-temporal modeling branch to better
facilitate the learning process from the perspective of the spatial domain. Finally, the frequency
information and the spatial assistant information are comprehensively interacted to enhance RF-based
human perception. With an elaborate model design, our model can handle variable input sequence
lengths, relying on multiple echoes to alleviate the problem of specular reflection when using a single
echo. RFMamba outperforms state-of-the-art methods by locating human key points with an average
error of 5.06 cm, identifying person ID and action category with a mean average precision of 0.9991
and F1 score of 0.9994, respectively.

Our main contribution can be summarized as:

• We pioneer the first state space model for RF-based human perception, demonstrating the potential
of Mamba for efficient yet effective global modeling in long-sequence RF signals.

• We introduce a novel RF-SSM block which integrates both frequency domain and spatio-temporal
domain modeling to effectively capture critical characteristics of RF signals for human perception.

• We propose a six-way scanning strategy in the frequency modeling branch, which ensures com-
prehensive interaction of amplitude and phase information across all dimensions and is capable of
adaptively selecting the most informative frequency cues.
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2 RELATED WORK

Radio Frequency Sensing. Traditional RF sensing methods primarily rely on advanced signal
processing techniques to develop explicit models that link signal variations to human behaviors.
However, as the complexity of sensing tasks increases, these models often fall short. Consequently,
learning-based RF sensing, driven by machine learning techniques, has emerged as a promising
alternative (Zhao et al., 2018a; Xie et al., 2023; Gong et al., 2024). Recent advancements have
explored various RF modalities: WiFi-based methods like GoPose (Ren et al., 2022) and Person-in-
WiFi 3D (Yan et al., 2024) achieve accurate 3D pose estimation using commodity devices. MmWave
approaches such as mmPose-NLP (Sengupta & Cao, 2023) and HuPR (Lee et al., 2023) leverage
point clouds for precise pose reconstruction. Expanding on these, milliFlow (Ding et al., 2025)
enhances motion sensing with scene flow estimation, mmDiff (Fan et al., 2025) uses diffusion models
to improve pose estimation in noisy environments, and RadarOcc (Ding et al., 2024) processes 4D
radar data to deliver robust 3D occupancy predictions. The MM-Fi dataset (Yang et al., 2023) further
accelerates progress in RF sensing by offering a multi-modal benchmark for various perception tasks.
UWB systems like UWB-Pose (Song et al., 2022b) and MD-Pose (Zhou et al., 2023) exploit wide
bandwidth for through-wall applications. While these methods have progressed, they often rely on
complex preprocessing (Wu et al., 2022) or struggle with long sequence efficiency (Zheng et al.,
2023b). Recent RadarFormer (Zheng et al., 2023b) introduced end-to-end processing of radar echoes
but only utilized amplitude information. Our work addresses these limitations by introducing a novel
state space model, efficiently processing both amplitude and phase information in long RF sequences.
State Space Models. State Space Models (SSMs) have emerged as a powerful alternative to traditional
architectures like Transformers, particularly for tasks involving long-range dependencies due to their
linear complexity and efficient scalability with input length (Gu et al., 2020; 2021). Initial work such
as S4 (Gu et al., 2022) and S5 (Smith et al., 2023) laid the foundation for deep state-space models,
demonstrating their ability to model sequences efficiently. This was followed by the introduction
of Mamba (Gu & Dao, 2024), which enhanced SSMs by incorporating a selective scan mechanism
and efficient hardware design, making it highly competitive in various domains. Recent works have
adapted Mamba for diverse tasks, including vision (Zhu et al., 2024), medical imaging (Ma et al.,
2024; Liu et al., 2024a), and video understanding (Chen et al., 2024). However, these adaptations
primarily focus on single-modality data or specific domain applications. RFMamba distinguishes
itself as the first to optimize SSMs for RF-based human-centric perception.
Unlike existing Mamba-based models, RFMamba addresses the unique challenges of RF signals
through novel components like the RF-SSM block and omni-dimensional scanning strategy. This
approach enables efficient processing of both amplitude and phase information in long RF sequences,
a crucial aspect not addressed by Mamba models in other domains.
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Figure 2: The overview of our state space model for RF-based HCP. RFMamba consists of a 3D
patch embedding module, a two-stage encoder, and a task-specific head.
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3 METHOD

3.1 PRELIMINARY

3.1.1 FREQUENCY AND SPATIAL ANALYSIS IN RF SENSING

In RF-based human sensing, Stepped-Frequency Continuous Wave (SFCW) signals are widely used
due to their high range resolution and penetration capabilities. The SFCW signal model can be
expressed as:

s(t) =

N−1∑
n=0

ane
j2πfnt, (1)

where N is the number of frequency steps, an is the amplitude, and fn = f0 + n∆f is the frequency
at the n-th step, with f0 being the start frequency and ∆f the frequency step size.

The received RF signal can be formulated as X = R+ j · I ∈ CA×F , where A represents the number
of antennas and F the number of frequency samples. The corresponding amplitude spectrogram A
and phase spectrogram P can be extracted by:

A(u, v) =
√
R2(u, v) + I2(u, v), P(u, v) = arctan[

I(u, v)
R(u, v)

], (2)

where u and v indicate the indices in the frequency domain. The inverse Fourier transform converts
X to the spatial domain S(h,w):

S(h,w) =
1√
AF

A−1∑
u=0

F−1∑
v=0

X(u, v)e
j2π

(
h
Au+w

F v

)
. (3)

This transformation allows analysis in three critical dimensions: angle (h), range (w), and velocity
(from range variations across frames). Our RFMamba leverages this multi-dimensional information,
incorporating both frequency and spatial domain features through the proposed RF-SSM block and
omni-dimensional scanning strategy, enabling comprehensive modeling of human motion information.

3.1.2 STATE SPACE MODELS

As a novel basic operation, State Space Models (SSMs) capture long-term dependencies similar to
self-attention but benefit from linear complexity, which shows efficient scalability with input length.
By leveraging the content of linear ordinary differential equations to translate one-dimensional inputs
into outputs via latent states, SSMs operate with high efficiency. For a system with input x(t) and
output y(t), SSMs can be formulated as a linear ordinary differential equation:

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t) +Dx(t), (4)

where h(t) is the hidden state that accumulates historical information, and h′(t) describes its temporal
evolution. A ∈ RN×N governs state transitions,B ∈ RN maps inputs to state updates, C ∈ RN

projects states to outputs, and D ∈ R1 provides direct input-output connections. For the through-wall
radar system, the SFCW signals are processed using zero order hold (ZOH) discretization, enabling
adaptive scanning of RF data for human motion reconstruction. This adaptability is particularly
useful in RF sensing to reconstruct human motion from long-sequence discrete RF signals.

3.2 OVERALL ARCHITECTURE

As is illustrated in Figure 2, RFMamba is a multi-stage network consisting of a 3D patch embedding
module, a two-stage encoder, and a task-specific head. Specifically, to alleviate the problem of
fragmented target information in a single frame due to specular reflection, we input T sequential
radar echoes with the shape Fe ∈ C(T×A×F ) into the patch embedding module, which can preserve
the structural and sequential relationships of echoes. Then, a two-stage encoder is employed to
obtain the high-dimensional representation. Each stage consists of a down-sampling layer and an
RF-SSM block. The down-sampling operation is implemented using a complex convolution layer

4
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(c)(b)(a)

Figure 3: The proposed omni-dimensional scanning strategy. In the frequency domain, (a), (b), and
(c) represent scanning methods along the slow-time, fast-time, and antenna dimensions, respectively.
In the spatial domain, (a) corresponds to scanning along the temporal dimension, while (b) and (c)
represent scanning along different spatial dimensions.

with a kernel size of 1 × 3 × 3 and a stride of 1 × 2 × 2, resulting in a 2x down-sampling of the
resolution F

2 × A
2 . The RF-SSM block includes the frequency modeling branch which captures

long-term dependencies from amplitude and phase domain, and the spatiotemporal modeling branch
which extracts distance, angle, and velocity features. The outputs from these branches are integrated
into a unified high-dimensional representation, which is processed by a lightweight task-specific head
to generate predictions for downstream tasks.

3.3 3D PATCH EMBEDDING MODULE

To better utilize the temporal (slow-time dimension) information, we merge the 12 sequential radar
echoes as the layout in Figure 3 (a), which can realize a fixed scanning interval along the temporal
dimension. After the merge operation, the shape of Fe becomes Fe ∈ C(A·T1)×(F ·T2). We adopt 2D
complex convolution to project the input Fe into N non-overlapping 2D patches Fp ∈ C(H×W×N),
where H = 32 and W = 39. Note that the 2D patches are not further flattened into a 1D sequence,
which can preserve the 2D structure of the radar echoes. Furthermore, to preserve the information
regarding the spatial and temporal positions, we further incorporate a learnable spatial position
embedding, denoted as ps ∈ C1×A×F , alongside an additional temporal position embedding,
represented as pt ∈ CT×1×1. Then, ps and pt are expanded into the same shape T × A × F by
broadcast operation. The patches Fp are initially rearranged into the shape at T ×A×F , after adding
the learnable spatial and temporal position embedding, the patches Fp are rearranged into the shape
at H ×W ×N . This procedure is encapsulated as:

Fp = Fp + ps + pt. (5)

3.4 RF-STATE SPACE MODEL BLOCK

The detailed structure of RF-SSM block is shown in Figure 2, which contains two parallel frequency
and spatiotemporal branches to extract frequency and spatiotemporal information. The frequency
branch captures long-term dependency from the amplitude and phase of RF signals, while the
spatiotemporal branch captures the spatio-temporal information (range, angle, and velocity) from
the RF signal with an additional FFT operation. The frequency information and the spatiotemporal
information interact with each other to generate the high-level semantic representations, significantly
improving the performance of RF-based human-centric perception.

3.5 FREQUENCY MODELING BRANCH

3.5.1 OMNI-DIMENSIONAL SCANNING MECHANISM

Existing Mamba architectures(Zhu et al., 2024) highly depend on scanning directions, such as
scanning natural language from left to right and scanning natural images from four directions. The
radar signals are 3-dimension data, consisting of the fast-time dimension with distance information,
the antenna dimension with azimuth and elevation information, and the slow-time dimension with

5
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velocity information. To scale the Mamba for radar signals, we propose a scanning strategy that
encapsulates comprehensive omni-dimensional information while maintaining linear computational
complexity. Specifically, we combined 12 consecutive radar echoes as shown in Figure 3. The
scanning strategy along the slow-time dimension is illustrated in Figure 3 (a), and the scanning
strategy along the fast-time dimension and antenna dimension is shown in Figure 3 (b). The omni-
dimensional scanning mechanism includes six scanning directions: forward antenna dimension,
forward fast-time dimension, forward slow-time dimension, backward antenna dimension, backward
fast-time dimension, and backward slow-time dimension. Subsequently, the features from six
scanning directions are merged to form the final features, allowing the model to effectively capture
global frequency information.

3.5.2 FREQUENCY MAMBA MODULE

The feature map Fp in the frequency domain consists of two parts, i.e., amplitude spectrogram A(Fp)
and the phase spectrogram P(Fp). These two spectrograms are processed individually using the
progressive frequency scanning branch depicted in Figure 2 to obtain A′(Fp) and P ′(Fp).

A′(Fp) = FreqScan(A(Fp)), P ′(Fp) = FreqScan(P(Fp)). (6)
where FreqScan indicates the frequency scanning process. The detailed of FreqScan is shown
in Figure 3. The FreqScan contains a series of operations: Linear → DWConv → SiLU →
SS2D → LayerNorm → Linear. Unlike the vanilla scanning strategy (Liu et al., 2024b), our
scanning strategy is the omni-dimensional frequency learning. The amplitude and phase scanning
information are further integrated by frequency summarization module as

Fp = Linear(A′(Fp)) + j · Linear(P ′(Fp))). (7)

3.5.3 FA-FFN MODULE

Not all low- and high-frequency information contributes to latent human perception. To address
this, we propose a Frequency Adaptive Feed-Forward Network (FA-FFN) module, which adaptively
identifies the relevant frequency components to focus on. The FA-FFN can be formulated as follows:

X3 = DWConv(Conv1×1(Fp)⊙Wfft), Fp = GELU(X3) ·X3. (8)
The input feature map Fp is first passed through a 1× 1 complex convolution layer, which projects it
into a higher-dimensional space.

The transformed features are element-wise multiplied by a learnable weight matrix Wfft, followed
by complex depthwise convolution (DWConv) to generate X3. Subsequently, the GELU activation
function is applied to introduce non-linearity, and the result is further multiplied by X3, producing
the final output Fp.

3.6 SPATIOTEMPORAL MODELING BRANCH

The heatmaps in the spatial domain are considered to contain latent information related to distance,
angle, and velocity. In light of this, we design a spatiotemporal modeling branch, which assists the
learning process from a spatial domain perspective. The detailed structure of the spatiotemporal
branch is shown in Figure 2.

3.6.1 SPATIAL MAPPING MODULE

By converting radar echoes from the frequency domain into heatmaps in the spatial domain, the
spatial mapping module, which utilizes both IFFT and FFT, enables detailed local analysis. The radar
echoes captured by the radar system are denoted as Fe ∈ CT×F×A1×A2 , where A1 ×A2 = A. First,
a 1D IFFT is applied along the fast-time dimension F to extract the target’s distance information.
Then, a 1D FFT is applied along the antenna dimensions A1 and A2 to capture angle information
of azimuth and elevation. The spatial mapping module performs these transformations along the
fast-time dimension, transmitting antenna array, and receiving antenna array, respectively. The
absolute value function is then applied to obtain the spatial heatmap Fs, formulated as:

Fs = ABS(
(
F−1
F (Fe) , FAT (Fe) , FAR (Fe)

)
). (9)

By stacking T spatial heatmaps Fs , the spatiotemporal heatmap Fst, which contains both spatial
and temporal information, is obtained. The arrangement of multi spatial heatmaps can be seen in
Figure 3. The Fst is then fed into the spatiotemporal scanning module.
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3.6.2 SPATIOTEMPORAL MAMBA MODULE

To achieve a better fusion of frequency components and spatial components, the layout of 12
consecutive spatial heatmaps and the scanning strategy are the same as those in the frequency
scanning branch. Then the spatiotemporal heatmap Fst, which is a combination of multi spatial
heatmaps Fs, is obtained. Following the design in (Zhu et al., 2024), the Spatiotemporal Mamba
Module STScan is adopted to capture spatiotemporal features, formulated as

Fs = STScan(Conv(Fs))⊙ SiLU(Fs), (10)

where Conv represents a 1×1 convolution and STScan refers to the spatiotemporal Mamba mentioned
earlier, the spatial Mamba module follows a similar operational sequence to the frequency Mamba
module. Since the Fourier domain possesses global properties, where each pixel in the Fourier
space interacts with all spatial pixels, it is natural to explore the HCP task using Fourier transforms.
Therefore, the FFT is employed to transform the spatial heatmaps from the spatial domain to the
Fourier domain Fs, which encapsulates global characteristics.

Finally, the outputs from the frequency and spatiotemporal modeling branches are concatenated,
followed by a 1× 1 convolution to harmonize the features. An element-wise addition of a residual
connection branch is then performed, yielding the final output.

3.7 LOSS FUNCTION

To enable joint learning across multiple tasks, we define the total loss function Ltotal, which consists
of three components: pose estimation loss Lpose, action recognition loss Laction, and ReID loss
Lreid. For Lpose, we use the Mean Per Joint Position Error (MPJPE) (Ionescu et al., 2013), which
calculates the average Euclidean distance between the predicted joints k̂ and the ground truth joints k.
Both Laction and Lreid are optimized using cross-entropy loss (Zhang & Sabuncu, 2018). During
evaluation, action recognition performance is assessed using accuracy and F1 score, while ReID
performance is measured using mean average precision (mAP) and the cumulative matching curve
(CMC) at rank-1. Therefore, the joint training loss function can be formulated as:

Ltotal = Lpose + Laction + Lreid. (11)

Besides, we assess the model size by evaluating the total number of trainable parameters (Params).

4 THP DATASET

TxRx

Target Persons

Concrete Wall

Rx
Tx

Camera Node

Antenna Array

Figure 4: Experiment scenario and multi-modal
dataset collection system. Rx are the receiving
antennas, and Tx are the transmitting antennas.

While numerous RF-based human perception
datasets exist, they predominantly focus on free-
space scenarios. The unique challenges posed
by through-wall environments, such as signal at-
tenuation and multipath propagation, necessitate
a specialized dataset. To address this critical
gap, we introduce the Through-Wall Human-
Centric Perception (THP) dataset, a comprehen-
sive dataset for the through-wall human-centric
perception tasks.

Data Collection System. We designed a multi-
modal data collection system, as illustrated in
Figure 4, comprising two primary components.
The through-wall radar system, designed for
transmitting and receiving RF signals to per-
ceive human motion, consists of a multi-input
multi-output (MIMO) antenna array and a vector network analyzer (VNA). The MIMO antenna array
layout is optimized to mitigate sidelobe effects, effectively forming an array of 144 virtual antennas.
The VNA generates stepped-frequency continuous wave (SFCW) signals within the 0.8-2.8 GHz
range, enabling a range resolution of approximately 75 mm.

To provide accurate ground truth labels, we implemented a multi-camera system with 12 nodes, each
composed of a Raspberry Pi, a camera module, and an Ethernet-powered module. We employ the
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calibration technique from (Zhang, 2000) to perform pairwise calibration between adjacent cameras,
aligning all cameras to a unified world coordinate system.

THP Dataset Description. We introduce the THP dataset contains approximately 351,000 pairs
of RF frames with corresponding 3D human keypoints, person identity labels, action category
labels, and optical images. THP comprising two distinct subsets: THP-W (Wall-Occlusion) and
THP-F (Free-space). (1) THP-W consists of 255000 pairs of RF frames collected in wall-occlusion
environments, featuring 10 individuals performing 19 action categories, including both dynamic
actions and static poses. The primary obstacle is a 23 cm concrete wall, presenting a significant
challenge for through-wall human perception methods. (2) THP-F consists of 96000 pairs of RF
frames collected in free-space environments, maintaining similar data structure and action categories
as THP-W. This subset allows for evaluating model performance without wall occlusion.

Both subsets share common characteristics, including a scanning rate of 12 frames per second
(FPS), single radar echo dimensions of 201 × 144, and optical image resolution of 1640 × 1248.
The subjects in the dataset exhibit diverse physical characteristics, enhancing the robustness of the
data. This comprehensive dataset enables rigorous evaluation of RF-based human sensing methods
across various environmental conditions, from occluded to free-space scenarios, providing a valuable
resource for advancing research in this field.

5 EXPERIMENTAL RESULTS

Implementation Details. All baselines and our RFMamba are trained using an Nvidia RTX4090
GPU and implemented with PyTorch. We used the Adam optimizer with an initial learning rate of
2e-3, which decays by a factor of 0.5 (gamma) every 10 epochs using the StepLR scheduler. The
batch size was set to 50, and training epochs were set to 50 for all models except RadarFormer (1000
epochs due to slower convergence). For RFMamba, we stacked 12 consecutive frames as input. The
dataset was split into a 4:1 training-testing ratio, using a fixed random seed of 42.

Baselines. To demonstrate the superiority of the proposed RFMamba framework, we compare it with
various RF-based human perception baselines, including (1) RadarFormer (Zheng et al., 2023b), (2)
RFPose3D (Zhao et al., 2018b), (3) mmPose (Sengupta et al., 2020), and (4) ResNet3D-50 (Hara
et al., 2018). RadarFormer is the first end-to-end transformer network in through-wall scenarios.
RFPose3D is the state-of-the-art(SOTA) method for human pose estimation utilizing 2D horizontal
and vertical RF heatmaps. As a majority of through-wall perception methods (Zheng et al., 2023a)
can be considered as variants of ResNet3D, we choose ResNet3D-50 as the backbone and MLP as
the task-specific heads to perform human perception using 3D radar heatmaps.

Method Nose Neck Shoulder Elbow Wrist Hip Knee Ankle Eye Ear Mean (mm) ↓ Params (M)
RF-Pose3D 81.30 62.98 78.95 96.93 122.06 75.84 80.47 83.44 78.63 79.67 85.35 10.91

ResNet3D-50 105.26 86.10 98.38 114.51 161.95 88.62 87.35 97.82 106.13 97.60 105.34 352.30
mm-Pose 160.92 147.69 159.82 189.97 247.54 145.57 138.19 140.37 161.65 156.41 165.98 22.07

RadarFormer 281.26 239.97 248.36 277.24 344.03 231.88 221.23 208.42 280.02 258.29 258.90 12.88
RFMamba 51.85 41.31 44.03 52.73 68.89 41.53 46.32 55.18 53.30 47.24 50.64 1.94

Table 1: Quantitative Evaluation Results for Pose Estimation Task. The notation ’↓’: lower is better.

5.1 QUANTITATIVE RESULTS ON DIVERSE DOWNSTREAM TASKS

Performance of Pose Estimation. As shown in Table 1, RFMamba achieves a state-of-the-art
MPJPE of 50.64 mm, significantly outperforming all baselines. This superior performance stems
from three key innovations: (1) Comprehensive temporal modeling via 3D spatial-temporal volumes,
surpassing RadarFormer’s limited two-frame approach; (2) Advanced multi-scale feature extraction
through synergistic frequency selective and spatiotemporal assistant modeling branch, addressing the
temporal limitations of ResNet3D-50; and (3) Efficient information utilization via omni-dimensional
frequency scanning strategy, preserving critical motion cues lost in RFPose3D’s 2D heatmaps and
mm-Pose’s sparse point clouds. These architectural advancements enable RFMamba to effectively
tackle the unique challenges of through-wall human pose estimation across diverse scenarios.
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Method Action Recognition Person Re-ID
Accuracy F1 Score mAP CMC-1

ResNet3D-50 0.9871 0.9820 0.8575 0.8979
RadarFormer 0.8918 0.7020 0.4817 0.8986

RFMamba 0.9997 0.9994 0.9991 0.9967

Table 2: Evaluation of Action Recognition and
Person Re-ID.

Performance of Activity Recognition. Table 2
presents the quantitative comparison for human
activity recognition. Existing methods show lim-
itations in temporal modeling: ResNet3D-50 re-
lies on single-frame inputs, while RadarFormer
uses only two successive frames, both resulting
in suboptimal performance due to insufficient
temporal information. In contrast, RFMamba
significantly outperforms these baselines by em-
ploying an omni-dimensional scanning mecha-
nism that captures informative cues. Specifically, our model processes sequences of 12 frames,
striking an optimal balance between inference efficiency and performance. This strategy allows
RFMamba to accurately identify complex action patterns, even in challenging through-wall scenarios.

Performance of Person ReID. Table 2 reveals a strong correlation between ReID performance
and accuracy in pose estimation and action recognition tasks. This correlation stems from the fact
that individuals possess unique skeletal structures and exhibit distinctive behavioral patterns, which
serve as crucial cues for ReID. Notably, RFMamba outperforms both CNN-based ResNet3D-50
and Transformer-based RadarFormer in ReID tasks. This superior performance can be attributed
to RFMamba’s advanced temporal modeling and feature extraction capabilities, which effectively
capture these individual-specific characteristics.

(a) Wall-Occlusion Scenarios. (b) Free-Space Scenarios.

Figure 5: Qualitative results of 3D human pose estimation. Top row: RGB images showing various
human actions. Bottom row: Corresponding 3D pose reconstructions by RFMamba.

5.2 QUALITATIVE ANALYSIS

Qualitative Analysis of 3D Joint Reconstruction. Figure 5a presents a qualitative evaluation
of RFMamba in various wall-occlusive scenarios. RFMamba demonstrates superior accuracy in
reconstructing detailed joint positions, particularly in challenging areas such as wrists and ankles.

(a) CNN-based ResNet3D-50 (b) Transformer-based RadarFormer (c) Mamba-based RFMamba

Figure 6: t-SNE visualization of learned features from different models. Each point represents a
feature vector, color-coded by action category. Note the superior cluster separation and definition in
RFMamba, particularly for minority classes and similar action types.

Feature Space Visualization. We employ t-distributed Stochastic Neighbor Embedding (t-SNE)
to project decoder output features onto a 2D plane, as shown in Figure 6. RFMamba’s encoder
demonstrates superior feature separation, forming well-defined clusters even for minority classes and
tail-end categories of our long-tailed distribution dataset. This capability is particularly evident in
static pose category 16, highlighting RFMamba’s ability to learn discriminative features across diverse
action types. In contrast, ResNet3D-50 struggles to differentiate between dynamic scenarios like
waving and walking, while RadarFormer fails to distinguish similar minority poses (e.g., static poses

9
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5 and 14) from dynamic waving actions. These visualizations underscore RFMamba’s effectiveness
in capturing subtle, action-specific features, directly contributing to its superior performance in action
recognition tasks.

5.3 GENERALIZATION CAPABILITY

To demonstrate the versatility of our approach, we evaluated its performance in free-space (unoc-
cluded) settings using the THP-F dataset. The model achieves a MPJPE of 60.69 mm, a mAP of
1.0 and an F1 score of 1.0. The results demonstrate effective generalization to conditions different
from its primary training environment. Figure 5b provides qualitative evidence of accurate pose
reconstructions and action classifications in free-space environments. These results highlight the
potential for applications where line-of-sight is unimpeded.

Additionally, experiments indicate that the proposed method maintains high accuracy in multi-person
scenarios. Detailed results for multi-person environments are presented in Appendix A.1.

The consistent performance across varying conditions - from through-wall to free-space, and from
single-person to multi-person scenarios - underscores the versatility of our approach and its potential
for diverse real-world applications.

Method Pose Action Re-ID
MPJPE (mm)↓ Accuracy↑ mAP↑

RFMamba 50.64 0.9994 0.9991
w/o FMB + 9.07%(55.24) -0.16% (0.9978) -0.63% (0.9928)
w/o SMB + 2.53%(51.92) -0.13% (0.9981) -0.61% (0.9930)

w/o FA-FFA + 1.14%(51.22) -0.51% (0.9943) +0.06% (0.9997)

Table 3: Ablation studies and analysis. The w/o indicates “without”. FMB is the frequency modeling
branch. SMB is the spatiotemporal modeling branch. FA-FFA is the FA-FFN module.

5.4 ABLATION STUDY.

We conduct ablation studies to evaluate the effectiveness of three key components in RFMamba.
Table 3 summarizes the results across all three downstream tasks.

Frequency Modeling Branch. This core component of the RF-SSM block correlates RF frequency
information from amplitude and phase dimensions. Removing it led to significant performance
drops across all tasks, with pose estimation error increasing by 9.07%. This underscores the critical
importance of frequency information modeling in RF-based tasks.

Spatiotemporal Modeling Branch. This branch enhances the learning process by modeling spa-
tiotemporal features from the frequency analysis perspective. Its removal resulted in a 2.53% increase
in pose estimation error, a 0.13% decrease in action recognition accuracy, and a 0.61% decrease in
person ReID accuracy.

FA-FFN Module. The FA-FFN module adaptively identifies the most informative frequency cues,
addressing the varying relevance of low and high-frequency information in human-centric perception
tasks. Replacing it with a vanilla FFN led to performance degradation in pose estimation and action
recognition, while maintaining similar performance in person ReID. This validates the module’s
effectiveness in enhancing task-specific feature extraction.

6 CONCLUSION

This paper introduces RFMamba, a novel approach for through-wall human sensing using RF signals.
Our method incorporates an advanced architecture with omni-dimensional frequency scanning, sig-
nificantly improving performance in pose estimation, action recognition, and person re-identification
tasks. Comprehensive evaluations demonstrate RFMamba’s superior performance and generalization
capabilities across various scenarios, including free-space and multi-person environments. These
advancements open new possibilities for privacy-preserving applications in healthcare, smart homes,
and security systems.
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A APPENDIX

In this appendix, we provide additional details and analyses to supplement our main findings on
RFMamba for through-wall human-centric perception. The contents are organized as follows:

• Section A.1: Evaluation of RFMamba’s performance in multi-person scenarios, including
quantitative results and visual demonstrations.

• Section A.2: Detailed analysis of pose estimation performance across different action
scenarios, comparing RFMamba with baseline methods.

• Section A.3: Qualitative evaluation results, presenting visual comparisons of 3D pose
estimation across different methods.

• Section A.4: Analysis of action recognition performance using confusion matrices, high-
lighting RFMamba’s capabilities in handling imbalanced data distributions.

Nose Neck Shoulder Elbow Wrist Hip Knee Ankle Eye Ear Average
Person 1 142.30 137.61 149.24 173.12 211.15 144.49 143.56 167.17 145.46 143.11 157.47
Person 2 146.84 117.41 114.59 122.12 144.50 125.48 125.47 132.27 152.49 118.32 129.71
Average 144.57 127.51 131.92 147.62 177.83 134.99 134.52 149.72 148.98 130.72 143.59

Table 4: Quantitative Evaluation Results of Human Body Joint Reconstruction Error (Unit: MM).

Figure 7: Qualitative Evaluation Results Under Multi-Target Scenarios.

A.1 MULTI-PERSON SCENARIO EVALUATION

To comprehensively evaluate RFMamba’s performance in multi-person scenarios, we conducted
experiments with both two-person and three-person interactions. We expanded RFMamba’s output
dimensionality to accommodate different numbers of targets in multi-person prediction.

A.1.1 TWO-PERSON INTERACTION

We first collected a dataset of approximately 35,000 pairs of RF frames featuring two-person inter-
actions. This dataset includes corresponding optical images, action labels, and human keypoints
extracted using AlphaPose. Our evaluation focused on a challenging scenario where Person 1 per-
forms walking while Person 2 executes a marching-in-place action. This setup captures complex
spatial displacements and joint dynamics.

Table 4 presents the pose reconstruction errors for this two-person scenario. While there is a
slight increase in reconstruction error compared to single-person scenarios, RFMamba maintains
competitive performance. Person 1 exhibits higher reconstruction errors due to increased motion
complexity.

Figure 7 illustrates RFMamba’s effective simultaneous reconstruction of two targets. These findings
demonstrate RFMamba’s capability to handle basic multi-person interactions effectively.

A.1.2 THREE-PERSON INTERACTION

To further validate the generalization capability, we extended our evaluation to more complex
scenarios with three individuals. We collected a comprehensive dataset comprising 48000 pairs of
RF frames across different temporal periods, environments, and occlusion conditions (with/without
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wooden board obstruction). The dataset includes corresponding optical images, action categories,
and human keypoints extracted using AlphaPose. The data was split into a training set and a test set
at a 4:1 ratio.

The individuals engaged in three complex dynamic activities simultaneously: walking freely, wav-
ing hands, and transitioning between standing and sitting positions. This setup provides a more
challenging test of the model’s capabilities in handling multiple targets with diverse motions.

Table 5: Pose reconstruction errors (mm) in three-person scenario without wooden board obstruction.

Nose Neck Shoulder Elbow Wrist Hip Knee Ankle Eye Ear Average

Person 1 78.56 79.15 81.8 111.56 170.25 79.96 81.94 82.31 77.94 79.58 93.80
Person 2 50.49 39.33 40.97 41.13 46.22 36.63 36.14 35.86 49.87 51.37 42.57
Person 3 86.70 81.95 86.24 100.87 125.49 82.98 85.81 93.32 86.20 87.35 92.51
Average 71.92 66.81 69.67 84.52 113.99 66.52 67.96 70.5 71.34 72.77 76.29

Table 6: Pose reconstruction errors (mm) in three-person scenario with wooden board obstruction.

Nose Neck Shoulder Elbow Wrist Hip Knee Ankle Eye Ear Average

Person 1 108.60 94.01 99.90 116.17 140.15 93.66 93.48 102.19 108.76 102.82 106.49
Person 2 67.06 35.24 38.23 65.89 124.37 31.97 33.23 37.06 68.14 51.54 55.73
Person 3 96.44 94.37 94.92 96.09 99.82 90.31 81.25 78.33 98.59 99.05 92.64
Average 90.7 74.54 77.68 92.72 121.45 71.98 69.32 72.53 91.83 84.47 84.95

Tables 5 and 6 present the pose reconstruction errors for three-person scenarios without and with
wooden board obstruction, respectively. Despite the increased complexity, RFMamba maintains
robust performance across different individuals and occlusion conditions. The variations in error
rates can be attributed to different motion complexities and occlusion effects.

Figure 8 demonstrates RFMamba’s effective simultaneous reconstruction of three targets in both
unobstructed and obstructed scenarios. These comprehensive results further support RFMamba’s
potential for real-world applications involving multiple subjects.

Ground Truth Prediction ResultOptical Image Prediction ResultOptical Image Ground Truth

Ground Truth Prediction ResultOptical Image Prediction ResultOptical Image Ground Truth

Obstructed

Unobstructed

Figure 8: Qualitative results of three-person pose estimation in both unobstructed and obstructed
scenarios. For each case: optical image (left), ground truth pose (middle), and RFMamba prediction
(right).

A.2 POSE ESTIMATION PERFORMANCE ACROSS DIFFERENT ACTION SCENARIOS

We further provide a detailed analysis of RFMamba’s pose estimation performance across various ac-
tion scenarios, further illustrating its capabilities in diverse conditions. Table 7 presents a comparative
analysis of different methods for actions including walking, waving, sitting, and static poses.
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Method Walk Wave Sit Static Mean
RF-Pose3D 114.28 70.46 65.43 46.46 85.35
mm-Pose 225.69 110.21 141.00 132.88 165.98

ResNet3D-50 150.10 74.91 76.54 74.28 105.34
RadarFormer 443.87 117.09 164.17 86.26 258.90

RFMamba 72.08 34.81 38.97 31.17 50.64

Table 7: Detailed MPJPE (mm) Under Different Action Scenarios.

The results show that RFMamba consistently achieves lower reconstruction errors compared to
existing methods across all action categories. In particular, for challenging scenarios such as walking,
which involve complex non-rigid motions and significant variations in posture and position, RFMamba
maintains relatively low reconstruction errors. This performance indicates the model’s ability to
accurately capture and reconstruct human poses even in dynamic and complex environments.

(b) Ground Truth(a) Optical Image (c) ResNet3D-50 (d) RadarFormer (e) RFMamba

Figure 9: Qualitative comparison of 3D pose estimation results: (a) Optical image for reference, (b)
Ground truth pose, and estimated poses by (c) ResNet3D-50, (d) RadarFormer, and (e) RFMamba.

A.3 QUALITATIVE EVALUATION RESULTS OF DIFFERENT METHODS

Figure 9 provides a visual comparison of 3D pose estimation results from RFMamba and baseline
methods to complement the quantitative evaluations. These examples illustrate RFMamba’s improved
accuracy in pose reconstruction and temporal consistency across frames. While ResNet3D-50 shows
overall effectiveness, it exhibits notable deviations in extremities. RadarFormer, limited by its
simpler network structure and narrow temporal receptive field, struggles with complex poses, only
approximating body positions rather than precise joint locations. These visual results underscore
RFMamba’s ability to capture fine-grained spatial information and temporal dynamics.

(c) RFMamba(a) ResNet3D-50 (b) RadarFormer

Figure 10: Comparison of confusion matrices for activity recognition task: (a) ResNet3D-50, (b)
RadarFormer, and (c) RFMamba. Darker colors indicate higher prediction accuracy.
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A.4 EVALUATING REID PERFORMANCE WITH CONFUSION MATRIX

Figure 10 presents the average confusion matrices for ResNet3D-50, RadarFormer, and RFMamba,
providing insights into their action recognition performance. RFMamba demonstrates superior
accuracy across various actions, including those with fewer samples in the long-tailed data distribution.

ResNet3D-50, which infers action classes from single frames, shows a bias towards classifying
minority samples as the majority class (walking). RadarFormer performs well in distinguishing
dynamic actions but struggles with minority classes due to insufficient temporal information.

In contrast, RFMamba accurately recognizes both majority and minority classes, showcasing its
ability to learn effective classification boundaries and its strong generalization capability, even with
imbalanced data distributions.

Figure 11: Contribution of the neighbor to the current frame.(Zhao et al., 2018a)

Figure 12: Activity Distribution in the THP Dataset.
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