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ABSTRACT

Document-level Event Argument Extraction (EAE) is hampered by two key chal-
lenges in long texts: ambiguity among co-occurring events and noise from irrel-
evant content. To address these issues, we propose CsEAE, a unified framework
that comprises two synergistic modules. The co-occurrence-aware module delin-
eates ambiguous event boundaries by modeling dependencies among co-occurring
events, while the structure-aware module filters noise by modeling trigger-centric
sentence relations. We further extend this framework to Large Language Models
(LLMs) with CsLLM, which distills these structural and co-occurrence cues into
tailored prompts. Trained on multiple datasets, CsLLM enhances the generaliza-
tion and performance of LLMs on the EAE task. On the RAMS, WikiEvents, and
MLEE benchmarks, CsEAE improves Arg-C F1 scores over the PAIE baseline by
2.1%, 2.3%, and 3.2%, respectively. Our LLM-based approach, CsLLM, achieves
even greater performance, demonstrating the effectiveness of our framework.

1 INTRODUCTION

Event Argument Extraction (EAE), the task of identifying arguments for specific event roles, aims
to extract structured event information from text Peng et al. (2024b;a). As shown in Figure1, given
a trigger, an event type, and a predefined list of roles for that event type, the model is required
to extract corresponding text spans as arguments for each role. This structured information can
significantly enhance the performance of downstream tasks such as dialogue systems Zhang et al.
(2020) and recommendation systems Han et al. (2025).

 

[3] Police say there are an unspecified number of casualties including police 
officers in a " terrorist incident " close to the British parliament in London .

[4] Eyewitnesses say a car crashed into pedestrians on nearby Westminster

 bridge before an assailant stabbed a policeman and was shot by police 

outside the parliament building . Two people were killed , according to Sky 

News , including a police officer .

[5] March 18 , 2017 - A man attempts to snatch gun from female soldier on 
patrol at Orly airport south of Paris ; man , who interior ministry spokesman 
says had earlier fired a potshot at police during an identity check before 
fleeing , is shot dead in the Orly incident by other members of soldier patrol 
unit .

...

Conflict.Attack.Unspecified

Conflict.Attack.Unspecified

Life.Die.Unspecified

Conflict.Attack.Unspecified

Instrument
Target

Target Attacker

Attacker Target

Victim

Victim

Figure 1: An EAE instance.

However, as the length of document-level
input texts increases, document-level EAE
faces two critical challenges: (1) Ambi-
guity among co-occurring events He et al.
(2023). As illustrated in Figure1, the four
trigger words crashed, stabbed, shot, and
killed each trigger distinct events. The
arguments of these events exhibit an ex-
tremely dense distribution, and different
events may share identical text spans as
arguments for different roles. This dense
overlapping obscures the semantic bound-
aries. (2) Noise from irrelevant content.
The volume of information received by the
model increases significantly, including both data useful for extraction and a large amount of irrel-
evant content that hinders task execution Xu et al. (2022). For example, in sentence [5], person
nouns like man, female, and soldier may mislead the model in extracting the Victim role for the
Life.Die.Unspecified event triggered by killed. Notably, prior work has failed to address both chal-
lenges simultaneously Ma et al. (2022); He et al. (2023); Liu et al. (2024).

To address these challenges simultaneously, we propose CsEAE, a co-occurrence-aware and
structure-aware framework for EAE. The core of CsEAE employs two synergistic modules to help
the model capture event boundaries and focus on critical information. 1. Co-occurrence-aware mod-
ule that captures interactions among co-occurring events to delineate semantic boundaries, by ex-
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plicitly marking all triggers and encoding relevant templates. 2. Structure-aware module that filters
redundant information by focusing on trigger-centric content. We observe a high locality of event
information: over 94% (WikiEvents), 82% (RAMS), and 99% (MLEE) of arguments reside in the
same sentence as triggers. This underscores the importance of the trigger’s sentence. Consequently,
this module constructs trigger-centric sentence-level relation to guide the model to selectively attend
to the trigger sentence and its most relevant neighboring sentences, while reducing irrelevant noise.

Building on the design of CsEAE, we extend this framework to LLMs by introducing CsLLM.
This method encodes the core strategies validated in CsEAE, namely co-occurrence awareness and
structure awareness, into the prompt space. Rather than altering the LLM’s architecture, CsLLM
guides its reasoning by encoding co-occurrence signals and reinforcing a structural focus within the
prompt itself. This prompt-based distillation, combined with a multi-dataset fine-tuning strategy
to enhance generalization, showcases an effective path for applying complex EAE strategies to the
LLM paradigm. Our contributions are summarized as follows:

• We propose CsEAE, a framework with co-occurrence-aware and structure-aware modules that for
the first time provides a unified solution to the intertwined challenges of event boundary ambiguity
and information redundancy.

• We introduce CsLLM, which demonstrates that the core strategies from CsEAE can be effectively
distilled into prompts to steer LLMs. This approach, combined with multi-dataset training, signifi-
cantly improves the performance and generalization of LLMs on the document-level EAE task and
offers a novel, architecture-agnostic path for complex EAE tasks.

• Experiments on the RAMS, WikiEvents, and MLEE benchmarks show that CsEAE improves upon
the PAIE baseline by 2.1%, 2.3%, and 3.2% in Arg-C F1 scores, respectively. CsLLM also achieves
superior performance, further validating the effectiveness of our core strategies.

2 CSEAE MODEL

2.1 MODEL ARCHITECTURE OVERVIEW

CsEAE’s architecture processes the input document D in two primary stages.

Stage 1: Event-Oriented Context Representation. This stage, with its data flow depicted by the
green arrows in Figure 2, generates the event-oriented context representationHD, which is designed
to be aware of sentence structure and event co-occurrence. We first use a structure-aware encoder
EncoderSap on the input D to produce an initial representation Henc

D . This is then passed to a
co-occurrence-aware decoder DecoderCap to generate the final HD.

Henc
D = EncoderSap(D),

HD = DecoderCap(H
enc
D , Henc

D ).
(1)

Stage 2: Context-Oriented Prompt Representation. This stage, following the orange arrows,
generates the context-oriented template representation Hpt, a specialized query for the target event
role. A structure-aware decoder DecoderSap produces this representation by taking the event-type
template pen as its input query, while using the document representation Henc

D from Stage 1 as its
cross-attention context.

Hpt = DecoderSap(H
enc
D , pen). (2)

Finally, HD and Hpt are jointly fed into the final span selection module, as detailed in Section
2.4. The specific implementations of our structure-aware and co-occurrence-aware mechanisms are
detailed in Sections 2.2 and 2.3.

2.2 CO-OCCURRENCE-AWARE MODULE

The co-occurrence-aware module is designed to model dependencies among co-occurring events.
It consists of three key components: context labeling, co-occurring template encoding, and prefix
generation.

2
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Figure 2: An overview of CsEAE, which enhances a standard encoder-decoder backbone with two
synergistic modules. The co-occurrence-aware module leverages templates of co-occurring events
to generate prefixes, creating the DecoderCap. The structure-aware module uses a structure-aware
self attention mask over the document to generate another set of prefixes, producing the EncoderSap

and DecoderSap. The prefix generation mechanism serves to inject this specialized knowledge into
the backbone. These customized components are then utilized to generate two key representations
in two stages:HD and Hpt. Finally, both representations are fed into the span selection module for
argument extraction.

2.2.1 CONTEXT LABELING

Given the input of the model D = {t1, t2, . . . , tn}, where ti represents the i-th token in the input.
Given E = {e0, e1, . . . , el}, where ei represents one event appearing in D, and l represents the
number of events appearing in D. Given all the triggers T = {et0, et1, . . . , etl}, where eti represents
the trigger corresponding to event ei, and eti corresponds one-to-one with ei. We annotate all token
spans corresponding to triggers in D according to the order in which the triggers eti appear in D.
Specifically, for the trigger etn corresponding to the event en being extracted, we will annotate its
appearance in D using special characters <t- -1>and </t- -1>.

For triggers etj corresponding to other events existing in D, we will annotate them according to
the order of appearance in D using <t-k>and </t-k>, where k is calculated starting from 0 and
incremented by 1.

2.2.2 CO-OCCURRING TEMPLATE ENCODING

Given Pe = {pe1 , pe2 , . . . , pel}, where pei represents the template corresponding to event ei. As pei ,
eti, and ei are uniquely paired. In this paper, we utilize templates proposed in PAIE Ma et al. (2022)
for the RAMS and WikiEvents datasets and TabEAE He et al. (2023) for the MLEE dataset. To
fully utilize the semantic information provided by the templates, we first concatenate all templates
Pe corresponding to events mentioned in D. Then, we encode them into the backbone to obtain
dense vector representations WC for all co-occurring event templates. Finally, the information of
WC is integrated into the prefixes.

2.2.3 PREFIX GENERATION

After constructing the co-occurrence-aware matrix WC , we condense WC into a set of prefixes Li
& Liang (2021); Hsu et al. (2023b). These prefixes are then injected into the backbone’s decoder
to make it co-occurrence-aware, a process visualized by the yellow arrows in Figure 2. Firstly,
we define a learnable vector of length len, which serves as the Q vector for multi-head attention,
where len is a tunable hyperparameter controlling the final length of the prefixes to be fed into
the backbone, we set it as 40. Then, WC is used as the K and V vectors in multi-head attention
computation, which is computed with the Q vector. After multi-head attention computation, we
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obtain a set of compressed dense vector P , which then undergoes a series of linear layers. Finally,
P is evenly split into c segments P = {P1,P2, . . . ,Pc}, each with a length of len, where c is the
number of transformer layers in the backbone. This results in prefixes that can be concatenated into
the backbone for computation, and the decoder augmented with these co-occurrence prefixes is thus
denoted as DecoderCap.

2.3 STRUCTURE-AWARE MODULE

The structure-aware module aims to filter irrelevant noise by focusing on trigger-centric content. It
achieves this through two mechanisms: structural relationship and structure prefixes.

2.3.1 STRUCTURAL RELATIONSHIP

For different document inputs D, as shown in Figure2, we designed a structure-aware self-attention
mask Ms, which treats sentences as units and trains the model to be structure-aware across the
entire document. Specifically, given the document-level input D = {S1, S2, . . . , Sm}, where Si

represents the i-th sentence in D, and given the trigger etn of the current event to be extracted,
located in sentence Sn, Ms restricts the receptive field of all sentences except Sn, allowing these
sentences to focus only on themselves and Sn. In contrast, Sn can attend to all sentences.

We can obtain the structure-aware dense vector representation WS for the inputs D as follows:

WS = Decoder(Encoder(D,Ms)). (3)

Finally, following the same procedure described in Section 2.2.3, WS is condensed into a set of
structure-aware prefixes. As depicted by the blue arrows in Figure 2, these prefixes are injected into
the backbone’s standard encoder and decoder, forming the EncoderSap and DecoderSap.

2.4 SPAN SELECTION

After obtaining Hpt, we extract the slot representation ψk corresponding to the pre-defined roles
from Hpt, where k represents the k-th slot. Then, we convert ψk into a span selector specific to
that slot θk Ma et al. (2022); Du & Cardie (2020b). Next, apply the span selector θk directly to the
event-oriented context representation HD to determine the argument’s token span [p

(start)
k ; p

(end)
k ].

ψ
(start)
k = ψk ◦ w(start) ∈ Rh,

ψ
(end)
k = ψk ◦ w(end) ∈ Rh,

logit
(start)
k = ψ

(start)
k HD ∈ RL,

logit
(end)
k = ψ

(end)
k HD ∈ RL,

p
(start)
k = Softmax(logit(start)k ) ∈ RL,

p
(end)
k = Softmax(logit(end)k ) ∈ RL.

(4)

Where θ = [w(start);w(end)] ∈ Rh×2 is a learnable parameter matrix shared by all span selectors,
◦ represents element-wise multiplication. θk = [ψ

(start)
k ;ψ

(end)
k ] is the span selector specific to the

slot corresponding to the role, L denotes the context length. We define the loss function L as:

Lk(D) = −(log p
(start)
k (sk) + log p

(end)
k (ek)),

L =
∑
D∈B

∑
k

Lk(D). (5)

Where B ranges over all context in dataset and k ranges over all slots in template pen for D, and
(sk, ek) represents the token span of the most likely argument corresponding to the role in HD.

During the inference phase, we predefine spans C that cover all possible spans within a predefined
length and include a special span (0, 0) to represent the absence of any corresponding argument.
Then, we utilize the span selector θk to compute scores for all spans using the following method:

scorek(i, j) = logit
(start)
k (i) + logit

(end)
k (j). (6)
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Where i and j represent the start and end indices of each span in the set of spans.

Based on the scores, we determine the predicted final span by selecting the span with the highest
score: (ŝk, êk) = argmax(i,j)∈C scorek(i, j).

For the issue of multiple arguments of the same role, we utilize the Hungarian algorithm Kuhn
(1955). For the problem of allocating multiple slots corresponding to a single role, we employ
Bipartite Matching Carion et al. (2020); Yang et al. (2021).

3 CSLLM: LLM ENHANCEMENT

3.1 PROMPT DESIGN

You will perform event argument extraction tasks in the news domain. Please follow the steps 
below to identify the arguments corresponding to the given roles in the document marked by 
<doc>. If a role does not have a corresponding argument, strictly output None.  In step 4, I will 
provide you with an example marked by <eg>.

1 - The trigger word 'explosion' marked with <t> triggers a Conflict.Attack.DetonateExplode event 
and all trigger words that trigger other events are marked by <T>. Additionally, you need to pay 
close attention to the sentence marked by <s> in the document.
2 - The event 'Conflict.Attack.DetonateExplode' corresponds to the list of roles: Attacker, Target, 
Instrument, ExplosiveDevice, Place. 

3 - Please output the role names and their corresponding arguments in JSON format.
4 - I will give you an example as follows: 
<eg> Given a document: ... 
Denis Broliquier , the city ' s district mayor , told press that " the charge was too small to kill , " 
and a government source told AFP news agency it had been a " relatively weak explosive charge 
" ... 
You need to output: {"Attacker": "Jihadist", "ExplosiveDevice": "bomb", "Instrument": "gun", 

"Target": "people", "Place": "France"} <eg>.

Document: <doc> ...  a senior defense official said . <s> " We have information that 126 people have 
been <T> killed <T> in the <t> explosion <t> inside the military training center , eight special 
commandoes are among the dead , " said a senior official in the defense ministry in Kabul , 
speaking on condition of anonymity . <s> The official said the assault began on Monday morning 
when the attackers rammed a car full ... <doc>

Figure 3: The blue parts represent I, the yellow
parts represent E , the green parts represent Q and
the red parts represent co-occurrence-aware and
structure-aware interactions.

Given the input D, we designed a correspond-
ing prompt PL(D) for LLMs. As shown in Fig-
ure3, the prompt PL(D) is divided into three
parts:

PL(D) = [I; E ;Q]. (7)

The first part is the instruction I, which de-
scribes the task and provides basic information
such as the trigger, roles, and output format.
The second part is the example E , which pro-
vides a single example to the LLMs. We iden-
tified corresponding examples for each event
type from the training set and the example
should include as many arguments as possible
from the input. The third part is the question
Q. We use <doc>for input to separate the Q
from other components in the prompt.

3.2 STRATEGY-DRIVEN PROMPT ENHANCEMENT

The standard prompt design provides a foundation. To address the core challenges of ambiguity
and noise within the LLM paradigm, we enhance this prompt by injecting the co-occurrence and
structure-aware principles validated in CsEAE. This approach translates our framework’s core logic
from the parameter space of smaller models to the prompt space of LLMs.

As highlighted in red in Figure 3, these enhancements are implemented through targeted markings.
We introduce co-occurrence awareness by explicitly annotating all event triggers within the input
context Q. This provides the LLM with a clear map of all co-occurring events. Structure awareness
is similarly encoded by marking the entire sentence that contains the target trigger. These markings
are complemented by modifications to the instruction I, which now guides the LLM to focus its
reasoning on these highlighted triggers and sentences.

This strategy offers a flexible, architecture-agnostic path for enhancing LLMs on complex EAE tasks
while fully leveraging their in-context learning capabilities. To further bolster the performance and
generalization of our final model, CsLLM, we also adopted a multi-dataset fine-tuning approach,
training the model on a composite dataset to expose it to a wider range of event patterns.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

We used the three most commonly employed datasets for document-level EAE: RAMS Ebner et al.
(2020), WikiEvents Li et al. (2021), and MLEE Pyysalo et al. (2012). To further enhance model
training, we also incorporated sentence-level EAE datasets, specifically ACE Doddington et al.
(2004) and GENEVA Parekh et al. (2023). Additionally, to more comprehensively validate the ef-
fectiveness of CsEAE, we applied the data processing methods used in TextEE Huang et al. (2024)
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to WikiEvents and RAMS. These methods included standardization of data assumptions, normal-
ization of data processing steps, and standardization of 5 times dataset splits. We leave the dataset
details in Appendix B, and the implementation details in Appendix C.

4.2 BASELINES

We compare CsEAE and CsLLM against the following two types of baselines: (1) PLM-based
methods: EEQA Du & Cardie (2020a), TSAR Xu et al. (2022), TagPrime-C/CR Hsu et al. (2023a),
Bart-Gen Li et al. (2021), PAIE Ma et al. (2022), TabEAE He et al. (2023), DEEIA Liu et al.
(2024), Fusion Ding et al. (2025), HMPEAE Zhang et al. (2024), HD-LoA Zhou et al. (2024). (2)
LLM-based methods: Chat-GPT, GPT4o, GPT4o-mini 1 (In-Context Learning), and Llama3-8B,
Llama3-8B-Instruct Touvron et al. (2023) (SFT).

4.3 EVALUATION METRICS

Following previous works Ma et al. (2022), we used Arg-I F1 and Arg-C F1 metrics to evaluate
performance on argument identification and classification. Note that in all experiments, Arg-I and
Arg-C are equivalent to Arg-I+ and Arg-C+ as defined in TextEE. More details in Appendix D.

4.4 MAIN RESULTS

4.4.1 CSEAE

We evaluate the proposed model CsEAE and baseline methods under all benchmarks. In Table1, our
model outperformed all baselines on all datasets. Compared to the baseline PAIE Ma et al. (2022),
CsEAE achieves improvements on the RAMS dataset, with increases of 2.2% in Arg-I and 2.1% in
Arg-C F1 scores, respectively. On the WikiEvents dataset, CsEAE shows improvements of 2.0% in
Arg-I and 2.3% in Arg-C metrics. Similarly, on the MLEE dataset, CsEAE achieves improvements
of 3.0% in Arg-I and 3.2% in Arg-C metrics. The consistent improvements of 2% or more across all
datasets demonstrate the effectiveness of the structure-aware and co-occurrence-aware modules.

Table 1: Overall performance of various models. All experiments utilized a large-scale backbone.
The highest scores are colored red, and the second-highest are colored orange. For prompt-reliant
methods, we did not replicate dataset metrics (marked with * in table) when original publications
lacked the specific prompts.

Model RAMS WikiEvents MLEE
Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

EEQA 50.2 46.8 59.7 55.4 69.1 66.9
TSAR 56.2 50.9 69.8 64.4 71.9 70.1
BART-Gen 51.6 48.2 65.4 60.9 71.1 69.2
DEEIA 55.9 51.3 68.2 63.0 73.5 72.5
TabEAE-m2s 56.2 51.4 69.7 64.9 - -
TabEAE-m2m 55.9 50.9 70.3 64.6 74.0 72.9
PAIE 55.3 51.0 68.9 64.2 71.3 70.1
Fusion* 48.8 43.1 60.6 55.5 - -
HMPEAE* 57.0 52.6 69.7 63.7 - -
HD-LoA* 52.1 46.9 - - - -
CsEAE 57.5 53.1 70.9 66.5 74.3 73.3

We also utilized the data preprocessing method provided by TextEE. The final results, shown in
Table 2, represent the average performance across these five splits. Even under such uniform ex-
perimental conditions with robustness validation, CsEAE consistently outperforms all baselines on
Arg-C, demonstrating its superior effectiveness.

4.4.2 CSLLM

1https://openai.com
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Table 2: All experiments in table below used the data pro-
cessing methods described in TextEE, and the results are
averaged over five data splits. * means the value from the
TextEE’s paper.

Model RAMS WikiEvents
Arg-I Arg-C Arg-I Arg-C

TagPrime-C∗ 54.4 48.3 68.6 64.0
TagPrime-CR∗ 54.1 49.7 68.4 65.5
EEQA∗ 48.9 44.7 48.4 46.1
BART-Gen∗ 50.4 45.4 68.1 63.9
PAIE∗ 55.2 50.5 69.8 65.2
CsEAE 56.8 52.3 69.3 65.7

As shown in Table 3, further im-
provements were achieved when the
model was fine-tuned on WikiEvents,
RAMS and MLEE, demonstrating
that LLMs can effectively lever-
age their robust memory capacity to
learn generalizable extraction capa-
bilities across diverse sources. In-
corporating two additional sentence-
level datasets further boosted per-
formance. Moreover, introducing
co-occurrence-aware and structure-
aware module into the prompts led
to additional gains over models fine-
tuned on single datasets without such enhancements, suggesting that insights effective in smaller
models also benefit LLMs. However, CsLLM (ALL) performed worse on RAMS than CsEAE,
likely due to the limited structural encoding in prompts. Unlike CsEAE, which integrates structure-
aware mechanisms directly, LLMs rely on implicit prompt-based guidance. This soft constraint
has two limitations: 1. the model may over-attend to high-frequency or superficial features due to
pretraining biases, and 2. structural relationships are hard to encode effectively via prompts.

For further experimental analysis under the ICL setting, please see Appendix F. We also present
additional generalization experiments in Appendix G.

Table 3: Overall performance of LLMs. Doc represents training using the WikiEvents, RAMS, and
MLEE. ALL signifies that all five datasets were used. CsLLM used Llama3-Instruct as the LLMs.

Model WikiEvents RAMS MLEE
Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

In-context Learning
GPT-3.5 18.12 16.04 34.30 27.64 21.16 15.46
GPT4o-mini 20.42 17.99 35.47 30.04 25.85 22.34
GPT4o 25.58 23.37 41.58 35.70 28.04 24.92
Fine-tuning
Llama3 65.82 60.68 37.00 33.26 72.63 71.09
Llama3-Instruct 65.88 60.54 55.06 49.82 70.85 69.76
CsLLM 66.33 62.80 55.35 50.25 74.80 73.87
CsLLM (Doc) 69.92 65.66 56.14 50.99 75.34 74.10
CsLLM (ALL) 70.89 66.53 57.19 51.84 75.93 74.89

5 ANALYSIS

5.1 ABLATION STUDIES

Table 4: Ablation study on all benchmarks, str: structure-aware, occur: co-occurrence-aware.

Model RAMS WikiEvents MLEE
Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

w/o str&occur 55.3 51.0 68.9 64.2 71.3 70.1
add str 55.8 52.0 70.5 64.8 72.0 70.9
add occur 55.9 51.6 70.5 65.9 73.9 72.9
CsEAE 57.5 53.1 70.9 66.5 74.3 73.3

As shown in Table 4, both structure-aware and co-occurrence-aware module independently improve
performance across all datasets. The structure-aware module significantly boosts Arg-C on the
RAMS dataset (+1.0%), likely due to its stable sentence structure, with each document consist-
ing of five sentences. In contrast, the co-occurrence-aware module brings greater improvements on
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the WikiEvents and MLEE datasets (Arg-C increases of +1.7% and +2.8%, respectively), attributed
to the higher event density and structural complexity. By integrating both interaction mechanisms,
CsEAE achieves the best overall performance, with average improvements of 2.4% in Arg-I and
2.53% in Arg-C.

5.2 CAPTURING THE EVENT SEMANTIC BOUNDARY

Following TabEAE, we analyzed CsEAE’s ability to capture event semantic boundaries on the
WikiEvents and MLEE datasets. These datasets were chosen due to their larger number of events
and more complex event relationships. Our analysis was conducted from two perspectives: inter-
event and intra-event semantics.

Inter-event semantics. We categorized dataset instances by event overlap (shared argument spans)
and non-overlap (N O). As Figure 4 shows, CsEAE improved overall across both datasets, excelling
particularly with overlap instances. For example, on WikiEvents’ overlap instances, CsEAE’s Arg-C
performance improved by 5.4% over TabEAE and 3.4% over PAIE.

Inner-event semantics. We categorized argument roles by their distance from the trigger, defined
as the maximum head word index difference (argument - trigger) for all arguments of a role d. Fig-
ure 4 illustrates this, with negative values indicating arguments left of the trigger. CsEAE achieved
superior performance across various distance ranges on both datasets, showing a trend of increasing
improvement with greater distances. For instance, on the WikiEvents dataset, when the distance
d≥15, CsEAE’s Arg-C performance improved by 14.0% over TabEAE and 6.9% over PAIE, con-
firming its strong ability to capture event semantics. Additionally, in Appendix E, we demonstrate
the model’s improved robustness to noise.
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Figure 4: Detailed performance analysis on inner-event and inter-event semantics.

5.3 TRANSFER CAPABILITY

To further evaluate the model’s transferability, we conducted a one-shot transfer experiment, with
detailed results in Table 5. In this setup, the model is evaluated directly on unseen datasets. The
results show that after multi-dataset fine-tuning, the model exhibits exceptional generalization ca-
pabilities, with its performance on MLEE even surpassing that of GPT-4o. The model trained on
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DOCw/o MLEE achieved the best performance, confirming the effectiveness of multi-dataset training
in enhancing transferability. This suggests that: 1. multi-dataset fine-tuning promotes a deeper un-
derstanding of core patterns in event argument extraction; and 2. the learning process transcends
memorizing dataset-specific features in favor of abstracting generalizable rules.

Table 5: One-shot transfer experiments.

Model MLEE GENEVA
Arg-I Arg-C Arg-I Arg-C

GPT4o 28.04 24.92 42.98 39.55
WikiEvents 34.42 30.03 29.29 26.69
DOCw/o MLEE 39.06 36.84 29.24 27.11
DOC - - 16.75 15.61
ALLw/o MLEE 18.76 17.70 - -

Notably, when sentence-level dataset
were added to training data, transfer
performance declined. We initially
hypothesized that diverse datasets
could enhance performance in data-
scarce scenarios despite domain or
structural mismatches. Yet results
revealed challenges of heterogene-
ity: differing annotation schemes and
granularities caused negative transfer,
weakening generalization to unseen
domains. Our findings suggest that positive transfer in one-shot settings requires auxiliary and target
data to be homogeneous in domain and structure, such as both at document- or sentence-level.

On the GENEVA dataset, which involves fine-grained event classification, GPT-4o showed clear
superiority. This likely stems from GENEVA’s many semantically similar, easily confusable event
types, which GPT-4o’s scale and knowledge help distinguish more effectively.

5.4 ZERO-SHOT OF LLMS
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Figure 5: The zero-shot performance

To evaluate the model’s zero-
shot capability, we removed the
example part E from the prompt.
As shown in Figure 5, we
found that under multi-dataset
fine-tuning, performance on the
RAMS and WikiEvents datasets
degraded as more training data
was added, exhibiting negative
transfer. This stands in sharp
contrast to the results in the
one-shot setting. However, the
domain-distinct MLEE dataset
maintained its performance gains. We attribute this to domain confusion. In the zero-shot setting, the
model lacks the demonstrations needed to distinguish between domains. When the prompt for dif-
ferent datasets are identical (e.g., RAMS and WikiEvents), the model experiences representational
conflict. In contrast, MLEE’s prompt template contains unique medical terms that act as implicit
anchors, helping the model differentiate domain features and thereby avoiding negative transfer. In
Appendix H, we conduct experiments on transfer capabilities in a zero-shot setting.

6 CONCLUSION

In this paper, we addressed two critical and intertwined challenges in document-level Event Ar-
gument Extraction (EAE): the semantic ambiguity arising from co-occurring events and the infor-
mation noise from irrelevant content. We proposed CsEAE, a unified framework featuring two
synergistic modules. The co-occurrence-aware module helps the model capture event boundaries
by modeling interactions among co-occurring events, while the structure-aware module effectively
filters noise by focusing on trigger-centric sentence relations. Furthermore, we extended our frame-
work’s core principles to the LLM paradigm by introducing CsLLM. This approach innovatively
demonstrates that fine-grained strategies, validated in smaller models, can be effectively distilled
into the prompt space to steer powerful LLMs. Our experiments on the RAMS, WikiEvents, and
MLEE benchmarks confirm the effectiveness of our methods, with both CsEAE and CsLLM achiev-
ing significant performance gains.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide detailed information regarding our code,
experimental setup, and computational environment. Our source code, which includes the imple-
mentations for both CsEAE and CsLLM, is available in the supplementary materials. For a com-
prehensive list of hyperparameters, library versions, and specific training procedures for all models,
please refer to our implementation details in Appendix C. The appendix also specifies the hardware
used for our experiments.
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A RELATED WORKS

A.1 DOCUMENT-LEVEL EVENT ARGUMENT EXTRACTION
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ing attention. Some works leverage abstract meaning representation for this task Xu et al. (2022);
Yang et al. (2023). PAIE Ma et al. (2022) enhances this with manually designed slot prompts.
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TabEAE He et al. (2023) formulates EAE as a table-filling task, enabling simultaneous extraction of
all events. HMPEAE Zhang et al. (2024) mitigates intra-class variance by representing roles with
multiple prototypes on a hypersphere. Fusion-based methods Ding et al. (2025) integrate selective
and generative approaches using fusion prompts and a unified learning strategy.

A.2 LLMS FOR EVENT ARGUMENT EXTRACTION

To enhance LLM performance in information extraction, researchers have proposed various innova-
tive methods. LLM-IE Ma et al. (2023) adopts a ”filter-then-rerank” paradigm, where a fine-tuned
smaller model filters initial predictions, and an LLM reranks challenging cases. For data augmen-
tation, STAR Ma et al. (2024) uses a ”structure-to-text” strategy that generates data structures first,
then passages, refining them through self-reflection to improve low-resource performance. An-
other approach Chen et al. (2024) treats LLMs as expert annotators, generating data aligned with
benchmark distributions by incorporating training samples into prompts. To optimize prompting,
HD-LoA Zhou et al. (2024) formalizes example selection using task heuristics and analogy-based
prompting, helping LLMs generalize to new scenarios. GoLLIE Sainz et al. (2024), meanwhile,
fine-tunes LLMs on human annotation guidelines, enabling them to learn and follow complex rules.

B DATASETS

Table 6: Basic information for the datasets used. ”Args” stands for Arguments.

Statistic RAMS WikiEvents MLEE
Event types 139 50 23
Args per event 2.33 1.40 1.29
Events per text 1.25 1.78 3.32

Event Instance Counts
Train 7,329 3,241 4,442
Dev 924 345 -
Test 871 365 2,200

We evaluate on three document-level EAE benchmarks: RAMS (9,124 events from news, 39
types/65 roles) Ebner et al. (2020), WikiEvents (246 documents, 50 types/59 roles) Li et al. (2021),
and biomedical-domain MLEE (23 event types) Pyysalo et al. (2012). All follow standard prepro-
cessing Ma et al. (2022); Xu et al. (2022) with two adaptations: 1) For RAMS, we merge events
within the same document while retaining sentence segmentation; 2) For MLEE without validation
set, we follow He et al. (2023) to use training data for validation. Dataset statistics are in Table 6.

For enhanced training, we incorporate two sentence-level datasets: ACE (English subset) Dodding-
ton et al. (2004) for news domain alignment, and multi-domain GENEVA Parekh et al. (2023). Both
are preprocessed following Wadden et al. (2019); Hsu et al. (2023b). This combination leverages
ACE’s event extraction prominence and GENEVA’s domain diversity.

All models are evaluated on test sets with standard metrics. Domain distribution:
RAMS/WikiEvents (news), MLEE (biomedical). Sentence counts per document vary in WikiEvents,
while RAMS uses fixed 5-sentence documents. Biomedical specificity makes MLEE particularly
challenging for Multi Events.Detailed statistics of the above datasets are listed in Table 6.

We included the ACE and GENEVA datasets in the SFT mainly because: the basic multiple dataset
SFT ,CsLLM (Doc), primarily validates the cross-dataset synergistic effects in document-level EAE.
In contrast, the extended strategy incorporating additional datasets carries dual groundbreaking sig-
nificance:

1. It verifies the feasibility of cross-data-level transfer that integrating sentence-level data into
document-level task training. Empirical studies demonstrate that annotation data of different granu-
larities can facilitate positive knowledge transfer.

2. It systematically demonstrates the effectiveness of cross-domain generalization mechanisms.
The inclusion of ACE (news domain) and GENEVA (general domain) proves that, even when the
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target domain lacks sufficient training data, auxiliary datasets from heterogeneous domains or with
heterogeneous structures (e.g., sentence-level) can significantly enhance model performance. This
finding provides crucial insights for researchers facing data scarcity in practical applications: strict
constraints on the domain relevance and structural consistency of auxiliary data are unnecessary, as
performance gains can be achieved through our multi-source fusion framework.

C IMPLEMENTATION

We used PyTorch and a single NVIDIA A40 Tensor Core GPU with 45GB to train all models and
reproduce experiments of other models. We fine-tune this LLM using LoRA Hu et al. (2021) with a
rank r = 8, scaling factor α = 32, and a dropout rate of 0.1. We use the AdamW optimizer, with an
initial learning rate set to 5× 10−5. We used BART Lewis et al. (2020) as the backbone for CsEAE,
and the number of parameters is around 406 millions. During model training the learning rate was
set to 2e-5. We used version 2.0.1 of Torch to build CsEAE. The training steps is 10000 and batch
size is 4 for all datasets.

D EVALUATION METRICS

Following the same evaluation metrics as in prior works Li et al. (2021); Hsu et al. (2022); Ma et al.
(2022); Yang et al. (2023); He et al. (2023); Xu et al. (2022) for all datasets, we used the Arg-I
F1 score and Arg-C F1 score to evaluate the model’s performance on Argument Identification and
Argument Classification tasks, respectively.

We considered TP as true positives, FN as false negatives, and FP as false positives. Recall (R) can
be calculated using TP / (TP + FP), and precision (P) can be calculated using TP / (TP + FN). The
F1 score combines both recall and precision, defined as F1 = 2 * P * R / (P + R).

• Arg-I: an argument is correctly identified from event mention.

• Arg-C: an argument is correctly classified if its offset and the role’s label both match the ground
truth.

Since the Arg-C score reflects whether the model extracts the correct arguments and associates
them with the appropriate roles to generate the correct structured events, the EAE task places more
emphasis on the Arg-C F1 score.

E STRUCTURE-AWARE INTERACTION

To analyze the effectiveness of the model in performing extraction centered around the sentence
containing the trigger word, we conducted an analysis on RAMS, which has the highest number of
cross-sentence arguments. We defined the distance D between a role and the trigger as the maximum
argument distance among all arguments for that role. When the trigger and the maximum argument
are in the same sentence, D=0; when they are not, D̸=0. In the Table 7, CsEAE achieved a 3.23%
improvement in the Arg-C metric compared to PAIE when D=0. This improvement significantly
contributed to CsEAE’s overall lead over PAIE in all datasets. The substantial improvement at
D=0 also demonstrates that the model’s approach of centering the document structure around the
trigger’s sentence effectively helps focus attention on the core content of the sentence, reducing the
distraction from redundant information. Furthermore, CsEAE also excelled when D̸=0, achieving a
3.77% improvement over TabEAE.

Table 7: Performance on cross-sentence arguments.

Model RAMS (Arg-C F1)
D=0 D̸=0 Overall

PAIE 58.7 35.3 51.0
TabEAE 61.2 31.8 51.4
CsEAE 61.9 35.5 53.1
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F IN-CONTEXT LEARNING WITH LLMS

As shown in the Table 3, in the ICL setting, the Open-AI series models demonstrated superior
performance compared to the Open-resource models. Notably, instruct-type models have shown
relatively poor performance during ICL. However, after fine-tuning, they outperformed base models
on some datasets.

Additionally, we can see that Llama-Instruct scores 0 on all datasets. We analyzed that this result
is likely due to the fact that instruction-based models tend to generate safe and concise answers that
align with human feedback, which may suppress in-depth reasoning for complex problems. Lastly,
our instructions are more complex compared to general instructions, and EAE itself is a complex
extraction task. Therefore, without fine-tuning, the model’s performance is not satisfactory.

G GENERALIZATION OF LLMS

To analyze the generalization challenges of LLMs in broader domains and their applicability in real-
world scenarios, we conducted extensive experiments on the GENEVA dataset, which includes 115
event types and 220 distinct roles across general-domain, sentence-level data. The experimental re-
sults are presented in the Table 8. Surprisingly, unlike in domain-specific document-level datasets,
multiple datasets SFT does not enhance model performance on GENEVA. However, incorporat-
ing co-occurrence-aware and structure-aware interactions into the prompt improves the model’s
performance on document-level datasets, allowing for better extraction on GENEVA. This indi-
cates that the model learns to capture co-occurrence-aware and structure-aware information from
the three document-level datasets, such that, even though sentence-level datasets cannot directly
embed structure-aware information in prompt construction, the model can leverage what it learned
from document-level data to assist in extraction. Additionally, it becomes evident that LLMs do not
perform well on general-domain datasets like GENEVA. Its best performance, an Arg-C score of
64.71, falls short compared to best results of smaller model Huang et al. (2024). We attribute this to
the fact that many event types in GENEVA are quite similar, and fine-tuning an 8B-parameter model
using prompt + LoRA struggles to discern numerous labels and their subtle interactions during ex-
traction Ma et al. (2023).

Table 8: Overall performance of LLMs on GENEVA.
GENEVA

Model Arg-I Arg-C
In-Context Learning (ICL)
GPT-3.5 33.07 27.97
GPT4o-mini 35.17 31.06
GPT4o 42.98 39.55
Llama3 4.70 3.61
Llama3-Instruct 0.35 0.29
Supervised Fine-tuning
Llama3 28.98 27.88
Llama3-Instruct 66.07 62.42
CsLLMs (ALL) 67.99 64.71

H ZERO-SHOT TRANSFER CAPABILITY

Additionally, we conducted further investigations into zero-shot transfer capabilities, as summarized
in Table 9.

First, we validated the one-shot and zero-shot capabilities of the models under GPT4o and GPT4o-
mini. Using the same datasets as before, within the ICL framework, both GPT4o and GPT4o-mini
exhibited performance degradation in the zero-shot setting compared to their one-shot counterparts.

Unlike the one-shot scenario, in the zero-shot setting, even after SFT, the models failed to surpass the
performance of GPT4o when faced with general datasets. This indicates that without the dual role
of demonstration examples in the one-shot setting: (1) serving as task paradigm examples to guide
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the model in understanding extraction logic, and (2) acting as domain feature anchors to help the
model establish boundaries between event types and datasets—the fine-tuned models were unable
to outperform the larger model like GPT4o.

Table 9: Zero-shot transfer experiments on GENEVA.
GENEVA

Model Arg-I Arg-C
One-shot
GPT4o 42.98 39.55
GPT4o-mini 35.17 31.06
Zero-shot
GPT4o 38.73 35.69
GPT4o-mini 29.99 25.95
CsLLM (Doc) 23.09 20.72

I CASE STUDY

CsEAE:
Giver - Ukrainian businessman
Beneficiary - Yanukovych 's pro - Russia political party

Recipient - Yanukovych 's pro - Russia political party

   This is not the first time Manafort has been accused of trying to take 
advantage of Ukraine 's corrupt political environment for financial gain . 
Manafort also attempted to set up an offshore real - estate partnership 
with Dmitry Firtash , a notorious Ukrainian businessman who donated 
to Yanukovych 's pro - Russia political party , according to documents 
uncovered in 2014 ...
PAIE:

Place – Ukraine Giver - Dmitry Firtash , a notorious Ukrainian businessman
Beneficiary - Yanukovych 's pro - Russia political party
Recipient - Yanukovych 's pro - Russia political party

beneficiaryrecipient

giver

Wrong prediction

... Colombia has asked Cuba to hand over the rebels affiliated with 
National Liberation Army ( ELN ) , who were in Havana for peace talks , 
after a deadly car bombing in Bogota was blamed on the group . 
Conservative President Ivan Duque urged Communist - ruled Cuba ... 

Event type: Conflict.Attack.DetonateExplode
PAIE: Attacker - group     ExplosiveDevice - car     Place - Bogota

CsEAE:     Attacker - National Liberation Army     Place - Bogota

Event type: Contact.RequestCommand.Unspecified

PAIE: Communicator – Ivan Duque     Recipient - Cuba

CsEAE:     Communicator – Ivan Duque     Recipient - Cuba

Wrong prediction

Attacker

Place

Recipient
Communicator

Figure 6: Two test cases from RAMS and WikiEvents.

In the first case of Figure 6, PAIE incorrectly predicts the token span Ukraine from the previous
sentence of the correct argument’s sentence as the argument for the role Place. In contrast, CsEAE
avoids this error by leveraging the structure-aware module to enhance the model’s attention on the
sentence containing the trigger, thereby mitigating interference from redundant information in other
sentences. In the second example, PAIE erroneously identifies car as the argument for ExplosiveDe-
vice, while CsEAE avoids this mistake by incorporating information from co-occurring events and
utilizing strong causal relationships across multiple events.
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