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ABSTRACT

Modern language models have demonstrated remarkable reasoning capabilities
by using chain-of-thought (CoT). One hypothesis about the inner workings of
CoT is that it breaks down originally complex tasks into smaller subtasks that
are more amenable to learning. We formalize this by showing possibility and
impossibility results of learning from in-context demonstrations with and without
CoT. In particular, with CoT, we examine a family of learning algorithms that
learn a task step-by-step, capable of composing simpler functions from individual
reasoning steps to form an overall complex function. This process reduces the
difficulty of learning a task to that of the hardest reasoning step in the chain.
Moreover, we prove Transformers can express this algorithm and thus they can
efficiently in-context learn arbitrary tasks as long as these tasks can be decomposed
into a finite number of subtasks, each of which are efficiently learnable. In contrast,
without CoT, we demonstrate that there exist tasks that are inherently unlearnable
by the same algorithm. Overall, our results suggest several provably effective ways
for decomposing target problems to instantiate CoT. Empirically, we demonstrate
our proposed CoT construction significantly enhances the reasoning capabilities
of real-world LLMs in solving challenging arithmetic reasoning tasks, including
learning polynomials and Boolean formulas.

1 INTRODUCTION

Complex problem solving often involves breaking down an originally challenging task into smaller,
more manageable subtasks, learning from these subtasks, and then composing the acquired skills
to address the overall task — a strategy that reflects how humans naturally solve problems. One
empirically-successful method that mimics this process is called Chain-of-Thought (CoT) (Wei
et al., 2022; Reynolds & McDonell, 2021; Nye et al., 2021), whereby a model is provided with
demonstrations involving detailed reasoning steps and subsequently instructed to generate thoughts
step-by-step before yielding the final answer. Modern language models rely on CoT or variants
thereof (Yao et al., 2024; Besta et al., 2024) to tackle complex tasks ranging from commonsense
reasoning to mathematical proofs (Cobbe et al., 2021; Rae et al., 2021; Srivastava et al., 2022),
sometimes even exceeding the capabilities of human experts.

Despite the empirical success of CoT, theoretical investigation thus far has remained relatively sparse.
Some previous efforts have made strides from the perspective of Transformer expressiveness (Li
et al., 2024; Feng et al., 2024) or through case studies of in-context learning MLPs (Li et al., 2023b).
However, these works either focus on mostly generic cases without specifying concrete/actionable
ways of actually decomposing a task, or involve quite restricted scenarios where both the task and
the CoT are predetermined. Since in practice not all intermediate steps in CoT are equally useful,
e.g. Zhang et al. (2022); Press et al. (2022), and the target tasks are typically diverse, there still exists
a considerable gap between current theory and practical scenarios. In targeting this gap, we ask the
following core question:

How do task decompositions affect the ability of a model to learn complex reasoning tasks,
and what principles can guide the corresponding optimal CoT design?

∗Work was done during author’s internship at Amazon Web Services.
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Figure 1: An overview of our analysis. Arrow length indicates the difficulty of learning a step.

One possible explanation for the efficacy of CoT is that it reduces the difficulty of learning a complex
task to the level of learning a series of subtasks. The implication here is simply that, assuming these
subtasks are suitably designed and orchestrated, then the necessary skills acquired at the subtask level
through CoT will suffice to outperform attempts at learning directly from the overall task. In this
work, we formalize these intuitions in a mathematically rigorous way, and take initial steps towards
quantifying the benefits of different task decomposition schemes.

Problem Setup. To define a notion of learnability in the context of language modeling, we adopt
the classic PAC learnability (Valiant, 1984) in the setting where the learner is associated with a
parametric model — a setting known as in-context learning (Brown et al., 2020; Garg et al., 2022).
Unlike conventional supervised learning, the learning considered here occurs during test time, which
a highly useful feature enabling the model to adapt to new tasks that were not explicitly seen in
pre-training. Concretely, we say a task is in-context learnable by a parametric modelM if there
exists a parameter configuration θ such that, for arbitrary distribution from the task, the model can,
upon receiving a set of i.i.d. demonstrations/samples D and a query/test sample x, output a prediction
for the query, i.e. Mθ(D,x), that is close to the ground-truth y with high probability. A learning
algorithm A is implicit in this process, which takes D as input and outputs a predictor or hypothesis
hD : X → Y . The relation between the algorithm and the modelMθ can be written as

Mθ(D,x) = A(D)(x) = hD(x). (1)

To account for the effects of CoT, we also formalize the notion of ‘task decomposition’ as transforming
the distribution from which D is generated into a sequence of distributions that generate D with
detailed intermediate steps. (Section 2)

1.1 CONTRIBUTIONS

Main Results. To formally answer whether or not CoT can help a model learn complex reasoning
tasks, we investigate the in-context learnability of tasks w.r.t. different decomposition schemes. We
find the answer is often affirmative depending on the task decomposition and summarize our findings
via the following two informal statements:

1. Regardless of how complex a reasoning task is, it can be efficiently learned by Transformers
in-context as long as it can be decomposed into a finite number of reasoning steps, each of
which is efficiently learnable by a learner Transformers can perform. (Section 3)

2. There exist inherently hard tasks that are not learnable without CoT regardless of the sample
size, and yet nonetheless become learnable by using CoT with specific decomposition
schemes we introduce. (Section 4)

In aggregate, our results suggest a broad range of scenarios where CoT can indeed effectively reduce
the hardness of learning, from that of the overall task to that of the hardest reasoning step in the chain,
or even from an unlearnable level to the learnable level. These results also suggest several actionable
ways to form effective intermediate steps of CoT.

To obtain the above results, we introduce a class of learning algorithmsACoT enabled by CoT, dubbed
step-by-step learning. This class of algorithms takes as input CoT examples, and outputs a complex
predictor hD by composing predictors {hi}i∈[k] obtained from k individual algorithms, where k
is the number of reasoning steps (Algorithm 1). Given a fixed k, the expected overall prediction
error made by hD can be upper bounded by the individual errors made by predictors {hi}i∈[k] on
their respective reasoning steps (Lemma 2). Leveraging this fact, we prove that the difficulty of
learning the overall task can be reduced to that of the hardest constituent step of CoT, since the sample
complexity of this step determines the sample complexity of learning the overall task (Theorem 3).

Furthermore, we establish that the capabilities of ACoT described above can be achieved by Trans-
formers — the de facto parametric modelM used in language modeling. Specifically, we show
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that a linear depth (w.r.t. k) and constant embedding size Transformer is sufficient to express ACoT

in an end-to-end manner, if the individual algorithms for learning each step are instantiated as
kernel gradient descent that produces a predictor hi : x 7→ Wϕ(x) with a non-linear feature map
ϕ(·) (Lemma 1). Combining these results suggests that a reasoning task is efficiently learnable by
Transformers in-context as long as each subtask is efficiently learnable by these individual algorithms.

Within the same analytical framework, we further present impossibility results illustrating the hardness
of learning without CoT. Particularly, we consider the task of learning a Boolean function class called
sparse parity. Without CoT, this task is impossible to learn by the variant of algorithm ACoT with
k = 1 due to limited approximation power of the hypothesis class that is used to learn a single step,
whereas if we enable CoT with specific intermediate reasoning steps, the task becomes learnable with
guarantees of smaller errors (Theorem 4 & Corallary 5).

Experiments. For empirical verification, we consider new arithmetic reasoning tasks and test if
the decomposition schemes from our analysis are practically effective (Section 5). Specifically,
we propose to construct complex reasoning tasks with varying overall hardness and hardness of
subtasks. We observe that the performance of real-world LLMs improve significantly as the difficulty
of the hardest step in the CoT reduces, regardless of the overall task complexity. Additionally, on
learning two inherently hard Boolean functions, we demonstrate that our introduced CoT significantly
enhances reasoning performance, sometimes improving accuracy from nearly random guessing to
nearly perfect.

1.2 RELATED WORK

CoT has been analyzed through the lens of the expressiveness of finite-precision Transformers Feng
et al. (2024); Li et al. (2024) . In particular, Feng et al. (2024) proves CoT can enable Transformers to
solve some specific tasks such as basic arithmetic and linear equations, while Li et al. (2024) proves
that increasing the step number in the CoT allows them to emulate circuits of increasing depth. More
closely related to ours, Li et al. (2023b) studies a scenario in which the intermediate steps of CoT are
intermediate layers of an MLP, showing that Transformers can in-context learn the MLP. We also
note that there are many recent papers that empirically analyze CoT, e.g. (Wang et al., 2022; Fu et al.,
2023b; Madaan & Yazdanbakhsh, 2022; Turpin et al., 2024; Prabhakar et al., 2024) among others.
However, previous works are generally limited in one of two ways: 1) either the problem setting
is overly restricted, focusing on fixed tasks and specific forms of decomposition, such as solving
arithmetic equations (Feng et al., 2024) or learning MLPs (Li et al., 2023b), 2) or in a more complex
regime (Li et al., 2024), where though the possibility for improvement is shown, the effects of specific
intermediate steps are not quantified. In contrast, our work introduces a new setting, one which is
general enough to encompass learning all distribution families, while also explicitly accounting for the
effects of specific decomposition schemes. Our contribution is also related to a recent line of work on
ICL (Akyürek et al., 2023; Von Oswald et al., 2023; Dai et al., 2023; von Oswald et al., 2023; Cheng
et al., 2024; Li et al., 2023a), particularly demonstrations of how Transformers with certain weight
constructions perform ICL similarly to optimization algorithms like gradient descent (Von Oswald
et al., 2023) or its variants (Giannou et al., 2024; Fu et al., 2023a). Notably, Cheng et al. (2024)
proves that Transformers could implement kernel gradient descent, which is closely related to ours.
The idea of task decomposition and generalizing from easier to harder tasks has also been explored in
other works of learning theory, e.g. Natarajan (1989); Tadepalli (2008); Wies et al. (2022).

2 PRELIMINARIES

Chain-of-Thought (CoT). We follow the commonly-adopted few-shot CoT setting, where demon-
strations are augmented with intermediate steps and the prediction is also in the format of CoT. In
particular, for k reasoning steps, we denote each demonstration as

e = (x, z1, · · · , zk−1, y) ∈ X × Z1 · · · Zk−1 × Y (2)

where zt ∈ Zt represents the t-th intermediate reasoning step. For convenience, we also let z0 = x

and zk = y. Let d(Zi) be the dimension of Zi, and d =
∑k

i=0 d(Zi).

In-Context Learning (ICL). In ICL, the base model is provided with N demonstrations or in-
context examples e(i) = (x(i), y(i)) for i ∈ [N ] where x ∈ X and y = f(x) ∈ Y . We denote
a learning algorithm or learner as A : (X × Y)N → H, which takes a set of demonstrations
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as input and outputs a predictor or hypothesis h : X → Y from a hypothesis class H. Given a
set of demonstrations and a query x(N+1) (which we assume is from the same distribution as the
demonstrations), the goal of the base model is to learn a predictor h and use this predictor to make
predictions on the query x(N+1). For base model Transformer TFθ(·) with parameters θ, we have

TFθ({(x(i), y(i)) : i ∈ [N ]}, x(N+1)) = A({(x(i), y(i)) : i ∈ [N ]})(x(N+1)) = h(x(N+1)). (3)

Transformers. Let E = {e(i) : i ∈ [N ]} ∈ Rd×N be the concatenation of samples, and
let e(N+1) = (x(N+1), 0) ∈ Rd whose dimension aligns with other examples. Following prior
work (Von Oswald et al., 2023; Ahn et al., 2023; Cheng et al., 2024; Zhang et al., 2023), a single-head
self-attention layer with weights WK ,WQ,WV ∈ θ updates e(N+1) as

e(N+1) ← e(N+1) +WV Eσ(E⊤W⊤
KWQe

(N+1)), (4)

where σ is non-linearity that could be specified as Softmax, ReLU or some kernel functions,
e.g. (Choromanski et al., 2021; Katharopoulos et al., 2020; Wang et al., 2020; Peng et al., 2021).
Stacking multiple self-attention layers (with or without an MLP module applied between each self-
attention layer) gives us the Transformer considered in this paper. Following (Von Oswald et al.,
2023), and for subtle technical reasons related to the construction in Sec 3.2, we exclude the query
token when computing the attention.

Our Setup. We are now ready to formally define the problem setup. Let D be a distribution over
X , and f : X → Y a target function. An input distribution and target function pair (f,D) defines the
generating process of in-context examples, namely examples are drawn based on x ∼ D, y = f(x).
Let P be a family of distributions defined as a set of (f,D) pairs, representing a certain task a model
aims to solve. For instance, the target functions in P could be defined as all polynomials, Boolean
functions, etc. The following error quantifies how successfully an algorithm can learn the task:

∆(P,A) ≜ max
(f,D)∈P

Ex∼D [l (h(x), f(x))] (5)

where l is the squared loss (which could be extended to other convex loss functions), h is the predictor
given by a learner A on N i.i.d. examples from (f,D). Minimizing this error guarantees successful
learning of all target functions within the family P .
Definition 1 (In-Context Learnability). We say a parametric modelM : θ 7→ Mθ (i.e. a functional
mapping from parameter space to function space) can learn task P if there exists a learning algorithm
A and a function NA : (0, 1)2 → N, such that for any confidence and accuracy parameters
δ, ϵ ∈ (0, 1):

1. Under a certain parameter choice θ, we haveMθ(·, x) = A(·)(x) for any query x.
2. Given NA(δ, ϵ) i.i.d. examples, the algorithm A returns a predictor h such that with

probability of at least 1− δ, ∆(P,A) ≤ ϵ.

Moreover, we say P can be efficiently in-context learned byM if both the running time of A and
the sample size NA(δ, ϵ) are polynomial in δ−1 and ϵ−1. Note that the notion of learnability here is
different from the classic PAC learnability (Shalev-Shwartz & Ben-David, 2014) in the sense that,
per in our definition, the model itself acts not as a predictor, but a learner. This is a highly desirable
property for modern language models as it allows them to meta-learn out-of-distribution tasks that
were not available during pre-training (Brown et al., 2020). In the rest of this paper, we stipulate the
model as a Transformer TFθ as defined via (4), unless otherwise stated.

Moving forward, we focus on whether or not CoT can improve the in-context learnability of different
reasoning tasks. In principle this can be studied from multiple vantage points, such as the the effect of
CoT on the sample efficiency NA(δ, ϵ), or the existence of cases where a task is initially not learnable
but becomes so once CoT is enabled, etc. Notably, addressing these issues depends critically on the
specific forms of intermediate CoT steps involved. To accommodate this aspect, we next formalize
the notion of a task decomposition.
Definition 2 (Task Decomposition). A decomposition operator T is such that, for every (f,D) ∈ P ,
a target function can be decomposed as T (f) = (f2, f1) subject to f = f2 ◦ f1, where f1 : X → Z
and f2 : Z → Y for another space Z . This operation induces two new distribution families

P1 = {{(f1,D) : (f2 ◦ f1,D) ∈ P}} and P2 = {{(f2,D′) : (f2 ◦ f1,D) ∈ P}} (6)

where {{·}} is multiset allowing repeating elements, and D′ : Z → R is determined by f1 and D.
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The decomposition always exists and is not unique (e.g. f1 can be arbitrary bijection). Particularly
when f1 is specified as the identity mapping, we have P2 = P , in which case CoT is unlikely to work.
For each decomposition, we can associate it with the generating process of demonstrations (denoted
as z), i.e. x ∼ D, z = f1(x), y = f2(z). This affects how examples are generated in Definition 1,
and thus could impact the learnability of a task. Note that this definition can be generalized to CoT
with k > 2 steps by sequentially applying the decomposition.

3 IMPROVED LEARNABILITY BY TASK DECOMPOSITION

To demonstrate how CoT improves learnability by task decomposition, we will first define a learning
algorithm ACoT (Sec 3.1) and prove that it can be expressed by Transformers with linear depth
(Sec 3.2). Then, we derive an upper bound for the overall error, which allows us to show CoT can
adjust the learnability of a complex task to the learnability of simpler subtasks (Sec 3.3).

3.1 LEARNING ALGORITHMS ENABLED BY CHAIN-OF-THOUGHTS

Consider a class of learning algorithms ACoT enabled by CoT, which involves several individual
algorithms {Ai}ki=1 and learns increasingly complex compositional functions with more CoT steps:

Algorithm 1: Step-by-Step Learning with CoT (ACoT)

Input: Demonstrations {(z(j)0 , z
(j)
1 , · · · , z(j)k )}Nj=1, individual learning algorithms {Ai}ki=1.

Output: Predictor h : X → Y
for i = 1, · · · , k do

hi ← Ai({(z(j)i−1, z
(j)
i )}Nj=1)

h← hk ◦ · · · ◦ h2 ◦ h1

This class of algorithms take as input a set of demonstrations, where each demonstration contains
k reasoning steps, and outputs a predictor h : X → Y . The learning is performed in a step-by-step
manner; that is, for each reasoning step i ∈ [k], an individual algorithmAi is used to learn a predictor
hi : Zi → Zi−1 ∈ Hi. The learned predictors h1, h2, · · · , hk are then composed to obtain the
desired overall predictor. Note that the algorithm can be naturally extended to scenarios where each
step is a function of all preceding steps, by redefining zi in the algorithm as a concatenation of
{zj}j≤i in the initial CoT. Therefore, without loss of generality, we assume that the CoT satisfies the
Markov property, meaning that each step is conditionally dependent only on the last step.

3.2 EXPRESSIVENESS OF TRANSFORMERS

Next, we demonstrate parameter choices θ that connect Transformers TFθ and algorithm ACoT

instantiated in a certain way.

Instantiation of ACoT. While the algorithm could have many different instantiations, in this paper,
we define Ai as empirical risk minimization: using gradient descent to minimize a squared loss Li

over in-context examples to learn a predictor from a hypothesis classHi, which is defined as a linear
model on fixed non-linear features. Specifically,

Li =
1

2

N∑
j=1

∥hi(z
(j)
i−1)− z

(j)
i ∥

2
2, hi ∈ Hi = {zi−1 7→Wiϕi(zi−1) : ∥Wi∥2 ≤ B}, (7)

where ϕi : Zi−1 → RK is a non-linear feature map to a K-dimensional space, and Wi ∈ Rd(Zi)×K

are learnable weights initialized to zero and subsequently with norm bounded by B. Therefore, the
overall predictor h obtained from this composition can be written as a stacked sequence of multiple
non-linearities and linear transformations, i.e.

h = Wkϕk(· · · (W2ϕ2(W1ϕ1(x)))) ∈ H = Hk ◦ · · · ◦ H2 ◦ H1. (8)

For example, if ϕ1 is specified as the identity mapping, whereas ϕi for i ̸= 1 are conventional
activation functions, (8) could represent a k-layer deep neural network. And beyond this, for generic
feature maps, h could represent more powerful functions. As the step number k increases, the
predictor h also becomes more complex. Below, we connect the algorithm with Transformers.
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Lemma 1 (Transformers Learn Step-by-Step). For any k > 1, given a set of CoT demonstrations
with k reasoning steps as per (2) and a query x(N+1), Transformers with linear depth kt and constant
embedding size 2d can express ACoT, where Ai is t steps of GD on a squared loss and Hi is the
hypothesis class defined in (7) whose feature map aligns with the attention as is specified in the
Appendix A.1.

Proof Sketch. Consider a simplified case k = 1. The loss is L =
∑

i∈[N ] ∥Wϕ(x(i))− y(i)∥22/2,
and GD with a fixed step size updates the weights as W ←W − η∇WL. This process also induces
dynamics in function space, i.e. the evolution of the learned predictor h as the weights update. For
query x(N+1), the function-space dynamics could be written as (see derivation in the proof)

(GD Dynamics) h(x(N+1))← h(x(N+1)) + η (Y − Ŷ ) ϕ(X)⊤ϕ(x(N+1)), (9)
Kernel FunctionResidualsPredictions

where Y = [y(i)]Ni=1 ∈ Rd(Y)×N , Ŷ = [h(x(i))]Ni=1, ϕ(X) = [ϕ(x(i))]Ni=1 ∈ RK×N . The residuals
Y − Ŷ are equivalent to Y at initialization as the weights are initialized to zero. The last term
represents a kernel function w.r.t. the feature map ϕ, quantifying the similarity between the test (i.e.
query) and training examples (i.e. demonstrations).

For comparison, we also rewrite the self-attention layer, where e(i) is reinterpreted as a concatenation
of input and the residual (x(i), y(i) − h(x(i))), which at initialization is equivalent to (x(i), y(i)):

(Transformer Layer) e(N+1) ← e(N+1) + WV E σ(E⊤W⊤
KWQe

(N+1))), (10)
Attention ModuleEmbeddingSkip Connection

where the last term is the attention module. As is specified in Appendix A.1, with simple choices
of WV ,WK ,WQ ∈ θ, one can show (10) subsumes (9); that is, Transformers can perform kernel
regression in their forward pass. The key here is the connection between the kernel function and the
attention matrix, which has been widely studied in previous literature, e.g. (Tsai et al., 2019; Wright
& Gonzalez, 2021; Chen et al., 2024; Choromanski et al., 2021; Katharopoulos et al., 2020; Wang
et al., 2020; Peng et al., 2021) and also discussed in the setting of ICL (Von Oswald et al., 2023;
Cheng et al., 2024; Guo et al., 2024). In Appendix B, we provide a comprehensive discussion of their
connections and how the feature map ϕ is related to Transformer parameter and architectural choices.

Extension to k > 1. To extend this result to CoT, we define k loss functions {Li}i∈[k] associated
with k reasoning steps. Each loss function is convex w.r.t. the weights of the corresponding predictor.
In the forward pass, similar with (9), Transformers implement (kernel) GD dynamics in function
space to minimize these loss functions. One challenge of retaining the connection between (9) and
(10) while further incorporating CoT is that, for compositional non-linear predictors h in (8), updating
weights in a prior-step predictors (e.g. W1 in h1) could introduce non-linear dynamics in the final
prediction h(x) from (8). We show that this issue can be circumvented if the learning is done in a
step-by-step manner as in ACoT, namely Transformers first learn a preceding reasoning step using t
layers, then proceed to learn the next step using t layers. This results in a total of kt layers for k steps.
Note that the construction here is not unique and similar conclusions could be drawn from other
setups, such as recurrently making k predictions (Li et al., 2023b) in k forward passes, which would
additionally require the Transformer to perform the so-called filtering process but could potentially
reduce the depth requirement to a constant. Our construction differs from Von Oswald et al. (2023);
Cheng et al. (2024) by extending their proof to the case where CoT is used.

3.3 EFFECTS OF TASK DECOMPOSITION

We now proceed to answer when and how CoT improves the learnability of a task by studying the
in-context learnability of a distribution family P w.r.t. different task decomposition schemes. Before
presenting the main result, we analyze how well can the predictor h generalizes to unseen queries.
This is accomplished by studying the final error ∆(P,A) made by the learning algorithm ACoT and
its relation with individual errors made by individual algorithms at each step.

Consider a fixed number of steps k. According to Definition 2, applying a sequence of decomposition
operators {Ti}i∈[k−1] on P produces k new distribution families {Pi}i∈[k], where Pi is the induced
distribution family that generates the i-th reasoning step. As per equation (5), ∆(Pi,Ai) refers to the
error of learning Pi using the individual algorithm Ai. The following lemma upper bounds the final
error ∆(P,A) by the individual errors.
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Lemma 2 (Error Upper Bound). Fix k > 1. Then for any distribution family P and any decomposition
operators {Ti}i∈[k−1] applied on P , the predictor returned by ACoT has an error upper bound

∆(P,A) ≤ ck
∑k

i=1 ∆(Pi,Ai), ck = 2maxj
∏k

i=j+1 2B
2 Lip(ϕi)

2 (11)

where ck is a constant depending on the hypothesis classHi and the step number k.

Note that this result does not rely on the specific individual algorithm we choose in ACoT as long as
the predictor for each step has a Lipschitz constant and the loss function is convex. The upper bound
suggests that, to minimize ∆(P,A), it suffices for each individual algorithm to minimize the error
made at its corresponding step. In fact, it actually suffices to minimize the largest error made at the
hardest reasoning step argmaxi {∆(Pi,Ai)}, as is revealed by the following result.
Theorem 3 (Improved Learnability with CoT). With CoT, any distribution family P is efficiently
in-context learnable by the Transformer in Lemma 1, if there exists a finite sequence of decomposition
operators {Ti}i∈[k−1] such that each induced Pi if efficiently PAC learnable by the individual
algorithm Ai. Particularly, the sample complexity is NA(ϵ, δ) = maxi∈[k] NAi

(δ/k, ϵ/ck) where
NAi is the sample complexity for learning Pi by Ai.

Theoretical / Practical Implications. This result indicates that, regardless of how complex the
original reasoning task P is, in order for a Transformer to efficiently learn this task, it is sufficient to
make each subtask Pi efficiently learnable. In other words, CoT can reduce the difficulty of learning
a task to the difficulty of learning the hardest subtask in the chain; here, the hardest step refers to the
least sample-efficient one. This result also leads to a simple practical lesson for designing CoT: an
effective way to form a CoT is by decomposing the hardest reasoning step into smaller steps that are
easier to learn. Such a result aligns with existing empirical practices of decomposing challenging
tasks, e.g. (Zhou et al., 2022; Khot et al., 2022; Zhang et al., 2022), and will be validated in greater
depth by new experiments in Section 5.1.

To understand this result, notice that in ACoT each subtask shares the same sample size, and thus one
has to choose this size based on the hardest step to ensure each individual step can be successfully
learned so that the overall task can be successful learned. Another way to view this is through the
lens of error (Lemma 2): in the limit of large sample size N , the individual error at the step with the
worst rate will dominate the overall error, regardless of the constant coefficient associated with each
∆(PT,i, hi); therefore, the hardest step becomes the bottleneck.

Compounding Error Issue. Nevertheless, we note one caveat of Lemma 2 is that it is not asymp-
totic in k which has been treated as a constant. Therefore, the result in this section does not hold if k
scales up, in which case errors could accumulate over reasoning steps and grow exponentially in the
horizon. This implies a trade-off between the step number and hardness of subtasks: decomposing the
hardest subtask improves the learnability, but also introduces the risk of compounding error, which
renders scaling up k a practical challenge despite the theoretical merit. Aligned with our theory,
the compounding error issue has indeed been widely observed in practice, and approaches such
as self-correction or refinement have been proposed to mitigate this issue, e.g. (Wang et al., 2023;
Yao et al., 2024; Madaan et al., 2024). From our experiments in Section 5.1, we also find when the
hardness of each reasoning step is approximately the same, increasing k increases the overall task
hardness and could hurt performance; however, for fixed overall task hardness, reducing the hardness
of the hardest step can significantly improve the performance, which aligns with Theorem 3. We
also note that the required GD steps t for each step depends on parameters ϵ and δ and depth of the
constructed Transformer in Lemma 1 could increase for harder tasks.

4 HARDNESS OF LEARNING WITHOUT CHAIN-OF-THOUGHT

In this section, we will present impossibility results demonstrating that there exist inherently hard
tasks that are not learnable without CoT but learnable after being decomposed.

4.1 LOWER BOUND

We begin by presenting a general lower bound on the error ∆(P,A). This bound applies to both the
case where there is no CoT (k = 1), and the case of CoT with one intermediate step (k = 2) — each
demonstration is in the form of (x, z, y). The proof is based on the limited power of the hypothesis
classH to approximate the target functions in P (see Appendix A.4).
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Theorem 4 (Error Lower Bound). For any distribution family P and decomposition operator T ,
suppose ACoT returns a first-step predictor h1 from a finite setH′

1 ⊆ H1. Then the overall error has
a lower bound given by1

∆(P,A) ≥ 1

2
−B

√
K|H′

1|Var(P), (12)

where B and K are constants depending on the definition of the hypothesis class as per (7). Var(P)
is a certain variable depending on P , we defer its definition to Appendix A.4.

We discuss the implications of this theorem in two separate cases: when CoT is used and not used.

w/ CoT. In this case, the bound is generally loose or even uninformative, because the term |H′
1|

is typically expected to be large. This makes sense since when CoT is used, the hypothesis class
H = H2 ◦ H1 per equation (8) can potentially approximate a wide range of functions analogous to
what a two-layer neural network can approximate. Despite this, the bound is still useful to identify
cases where the CoT is suboptimal. For instance, consider a dummy CoT where the first step is
the identity mapping (i.e., x = z), and assume the learner has successfully learned this step, which
indicates that h1 is also an identity mapping, and hence |H′

1| = 1. In this case, the lower bound
would increase and potentially become positive depending on Var(P) which will be discussed below,
suggesting this dummy CoT is suboptimal.

w/o CoT. A more interesting scenario is when there is no CoT. In this case the lower bound from
(12) reduces to 1/2−B

√
K Var(P) (Malach & Shalev-Shwartz, 2022), quantifying how hard it is

to approximate P using the hypothesis class H = {x 7→ Wϕ(x) : ∥W∥2 ≤ B} per definition in
(7). The key quantity in the lower bound is Var(P), which indicates the intrinsic complexity of the
task; the more complex P is, the smaller Var(P) is. In the next subsection, we will discuss learning
a specific family of Boolean functions called parities; these functions underpin a concrete scenario
whereby the task is unlearnable without CoT but becomes learnable when CoT is used.

4.2 ILLUSTRATIVE EXAMPLE: LEARNING PARITIES

Boolean functions are mappings from an input space X = {±1}n of n binary bits to an output
space Y = {±1}. In particular, parities are a family of functions that compute the exclusive-or
(XOR) of bits at some predefined positions in the input, which are notoriously hard to learn (Kearns,
1998; Shalev-Shwartz et al., 2017; Daniely & Malach, 2020). The specific form of a parity function
is determined by a subset S ⊆ [n]. For each S, the corresponding parity function is defined as
χS(x) =

∏
i∈S x[i] where x[i] is the i-th bit of the input. The distribution family is defined as

PXOR(n) ≜ {(χS ,D) : S ⊆ [n]} (13)

where D is a fixed input distribution uniform over {±1}n. Particularly, applying the lower bound to
learning parities, we have the following result:
Corollary 5 (Learning Parities). For any hypothesis class defined in (7), there exists some sufficiently
large n ∈ N such that PXOR(n) is not learnable by the corresponding algorithm ACoT when k = 1,
but learnable after using the following decomposition to form the CoT (k = 2):

1st Step: z[i] = χ1,S(x)[i] =

{
x[i] for i ∈ S
1 for i /∈ S

, 2nd Step: y = χ2,S(z) =
∏
i

z[i]. (14)

where the first step χ1,S(x) learns to select relevant features from x while masking irrelevant ones,
and the second step χ2,S(z) computes XOR of all bits in z.

The proof is deferred to Appendix A.5. Intuitively, parities are hard to learn without CoT because
the 2n target functions in the family form an orthogonal basis for the space of all Boolean functions.
Consequently, a linear function class with a fixed feature space dimension K can not approxi-
mate all parities, as this is as hard as approximating all Boolean functions. Concretely, we have
Var(PXOR(n)) = 2−n and thus the lower bound will become positive for sufficiently large n; this
implies there always exists at least one target function in PXOR(n) and some ϵ0 > 0 such that ϵ ≥ ϵ0
holds true, and thus the task is not learnable per definition in Section 2 regardless of the sample size.
CoT resolves this issue, since the first-step predictor with learnable weights can adapt to the relevant

1Note that in the case of no CoT, by default |H′
1| = 1 and the bound still applies.
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Figure 2: Success rate of GPT-4o and GPT-3.5-turbo for learning compositional functions. H denotes
the number of elementary functions used to construct the target function; Hmax denotes the maximal
number of elementary functions to construct a reasoning step.

bits in the input x (determined by S), such that the second-step only needs to learn a fixed XOR
function. In particular, with CoT, both steps or subtasks become learnable by a linear function class
with a fixed feature space dimension. Therefore, we have illustrated such a setting where successful
learning is impossible without CoT. The effectiveness of the designed CoT is verified in Section 5.2.

5 EXPERIMENTS

As empirical verification, we consider new arithmetic reasoning tasks and evaluate the performance
of real-world LLMs, including GPT-4o and GPT-3.5-turbo. Sec 5.1 studies the connection between
the hardest step and the overall reasoning performance. Sec 5.2 tests whether the specific forms of
CoT we introduced can improve the performance. See detailed experimental setups in Appendix C.
Codes are available at https://github.com/chr26195/CoT-ICL.

5.1 INCREASINGLY COMPLEX FUNCTIONS

Since benchmarks are lacking where one can precisely control the hardness of tasks and CoT steps,
we first present a method to construct such tasks by incrementally building upon challenging subtasks.

Constructing Highly Challenging Tasks. Let us consider a class of elementary functionsFe where
each function maps from the input space X to itself. In general, these elementary functions should be
considered equally easy to learn. Then, we sample a sequence of these functions f1, f2, . . . , fT ∼ Fe;
composing them gives us a target function f = fT ◦ · · · ◦ f2 ◦ f1 : X → X whose complexity
increases as H increases. We consider an instantiation by defining the input space as the space of
two integers x ∈ Z2. The elementary functions are defined as choosing one integer and using it to
perform a basic arithmetic operation (drawn from +, − or ×) with another number. Therefore, Fe

consists of

z[0]← z[0] + z[1], z[0]← z[0]− z[1], z[0]← z[0]× z[1],

z[1]← z[1] + z[0], z[1]← z[1]− z[0], z[1]← z[1]× z[0].
(15)

While each elementary function in (15) is simple, the overall target function f can become highly
complex, possibly representing polynomial functions on z[0] and z[1] up to an arbitrary order and
number of terms. Moreover, to quantify the hardest step, we do not reveal all intermediate steps of f
in the demonstrations provided to LLMs. Instead, we stipulate that there exists at least one step i ∈ [k]
where the function from zi−1 to zi is constructed from Hmax elementary functions, whereas all other
steps use fewer of them. For example, given H = 3 elementary functions f1 : z[0] ← z[0] + z[1],
f2 : z[1]← z[1]× z[0] and f3 : z[1]← z[1]− z[0], the hardest step can be expressed as f3 ◦ f2 ◦ f1 :{

zi[0] = zi−1[0] + zi−1[1]
zi[1] = (zi−1[0] + zi−1[1]) (zi−1[1]− 1)

(16)

Results. We test the performance of real-world LLMs on the reasoning task described above with
respect to different overall hardness H and the hardest step Hmax. We report their success rates

9
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(n, k)-Parities (10,1) (10,2) (10,3) (10,4) (10,5) (10,6) (10,7) (10,8) (10,9) (10,10)

GPT-4o w/o CoT 87 69 63 54 51 48 50 52 47 51
GPT-4o w CoT 92 95 97 94 87 73 66 58 62 50

GPT-3.5-turbo w/o CoT 75 62 60 47 59 58 51 56 55 54
GPT-3.5-turbo w CoT 80 76 72 74 75 69 57 63 57 57

Table 1: Success rate (%) of GPT-4o and GPT-3.5-turbo of learning (n,k)-parities.

3-Term DNF Width 3 Width 4 Width 5 Width 6 Width 7 Width 8 Width 9 Width 10

GPT-4o w/o CoT 85 81 77 73 68 66 62 74
GPT-4o w CoT 96 87 86 88 81 80 80 84
GPT-3.5-turbo w/o CoT 74 68 67 62 55 58 64 53
GPT-3.5-turbo w CoT 90 78 87 81 65 73 70 73

Table 2: Success rate (%) of GPT-4o and GPT-3.5-turbo of learning 3-term DNF.

across 100 i.i.d. sampled target functions for each H and Hmax. And for each target function, the
LLMs are provided with 10 demonstrations and asked to infer the computation process and apply it
to derive the output for an unseen input. As shown in Fig. 2 (and more results in Appendix C.1), the
success rate of LLMs quickly drops as Hmax increases. In particular, GPT-4o can successfully learn
the target function in most cases when H = 1; however, it performs significantly worse as Hmax

increases from 1 to 4, then fails as Hmax becomes even larger. These phenomena corroborate our
result that reducing the complexity of the hardest step is critical to successfully handle the task.

5.2 CANONICAL BOOLEAN FUNCTIONS

We further evaluate LLMs on two families of Boolean functions: parities and disjunctive normal form
(DNF), which are known hard to learn (Daniely & Vardi, 2021; Malach & Shalev-Shwartz, 2022).

Task Descriptions. An (n, k)-parity function computes the XOR (⊕) of a subset of k variables
from a total of n input binary bits (n is 10 in our experiments). It outputs 1 if an odd number of the k
relevant variables are 1, and 0 otherwise. Meanwhile, a DNF function is a disjunction (logical OR) of
conjunctions (logical ANDs) of literals; and in the experiments, we consider a family of 3-term DNFs
f(x) = ∨3i=1 ∧wj=1 (xij ∨mij) where w is the width and m ∈ {±1}3w is a latent variable whose
value determines the target function (i.e. mij = 1 invalidates xij).

Results. For each k in parities and w in DNFs, we similarly i.i.d. sample 100 target functions.2 For
each function, we provide LLMs with 100 in-context examples, ask them to find patterns in these
examples, and return the output for each query. Tables 1 and 2 report the success rates. Particularly n
terms of parities, we find even GPT-4o generally performs no better than random guessing (with an
expected accuracy of 50%) when k > 3. Then, we provide LLMs CoT examples with intermediate
steps that are provably effective by applying our results derived in Section 4: for parities, the
intermediate step is defined as z[i] = x[i] if i ∈ S otherwise 0; for DNFs, z[i, j] = x[i, j] if
m[i, j] = 0 otherwise 1. Results in Tables 1 and 2 clearly demonstrate the designed CoT significantly
improves the performance, e.g. GPT-4o achieves an almost perfect success rate of 94 on (10, 4)-parity,
while without CoT the success rate is 54, which is close to random guessing.

6 CONCLUSION AND DISCUSSION

In this paper, we quantify the benefits of task decompositions within the setting of learning tasks in-
context by Transformers. We note that a limitation of our work thus far is that, despite quantifying the
potential for a Transformer to efficiently learn a complex task by CoT, it nonetheless remains unclear
on a case-by-case basis whether real-world LLMs will actually achieve success in practice. This is
because of confounding issues related to model training procedures, including dataset properties, the
actual optimization process, and fine-tuning. Hence an interesting future direction is to delve more
deeply into these issues.

2For parities, we sample from a uniform distribution; for DNF, we sample from a non-uniform distribution to
ensure the label (0/1) is balanced for w ≥ 3.
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A PROOFS

A.1 LEMMA 1: EXPRESSIVENESS OF TRANSFORMERS

Given demonstrations {(z(j)0 , z
(j)
1 , · · · , z(j)k−1, z

(j)
k )}Nj=1, we could create k training sets, each of

which defines a loss function quantifying the error of a particular predictor hi. These loss functions
are {

Li =
1

2

N∑
j=1

∥∥∥hi(z
(j)
i−1)− z

(j)
i

∥∥∥2
2
: i ∈ [k]

}
. (17)

Note that while the overall predictor

h = hk ◦ · · · ◦ h2 ◦ h1 = Wkϕk(· · · (W2ϕ2(W1ϕ1(x)))) (18)

is a non-linear function, loss functions in (17) are convex with respective to the weights of their
corresponding linear predictors {Wi : i ∈ [k]}. Let us also denote h≤k′ = hk′ ◦ · · · ◦ h2 ◦ h1 for
k′ ≤ k. Using gradient descent to minimize Li with fixed step size η induces the following training
dynamics in weight space

Wi ←Wi − η∇Wi
Li = Wi + η (Zi − hi(Zi−1))ϕi(Zi−1)

⊤ (19)

where hi(Zi−1) = [hi(z
(j)
i−1)]j∈[N ] ∈ Rd(Zi)×N , ϕi(Zi−1) = [ϕi(z

(j)
i−1)]j∈[N ] ∈ RK×N . Note that

difference between our setup and the conventional supervised learning setup is that, the latter is
interested in the variation of output with different weights, while in this paper, we are also interested
in the dynamics of intermediate steps. Particularly:

• For i′ < i, the dynamics of intermediate steps induced by GD is

h≤i′(x
(N+1))← h≤i′(x

(N+1)), (20)

namely the variation of upper layer weights does not affect lower layer representations (i.e. interme-
diate steps).

• For i′ = i, the dynamics is

h≤i(x
(N+1)) = Wiϕi(h≤i−1(x

(N+1)))

← (Wi − η∇Wi
Li)ϕi(h≤i−1(x

(N+1)))

= h≤i(x
(N+1)) + η (Zi − hi(Zi−1))ϕi(Zi−1)

⊤ϕi(h≤i−1(x
(N+1))).

(21)

Let κi be the kernel function defined by the feature map ϕi, we have

h≤i(x
(N+1))← h≤i(x

(N+1)) + η (Zi − hi(Zi−1))κi(Zi−1, h≤i−1(x
(N+1))). (22)

• For i′ > i, the dynamics is

h≤i′(x
(N+1)) = hi ◦ · · · ◦ hi′+1 ◦ h≤i′(x

(N+1))

← hi ◦ · · · ◦ hi′+1

(
h≤i(x

(N+1)) + η (Zi − hi(Zi−1))κi(Zi−1, h≤i−1(x
(N+1)))

)
(23)

which in general intractable since hi ◦ · · · ◦ hi′+1 is non-linear. However, if upper layer weights in
hi, · · · , hi′+1 are 0, h≤i′(x

(N+1)) will become 0 as well and thus we can circumvent (23).

Recall also that based on the definition in Section 2, the self-attention layer can be written as

(Self-Attention) e(N+1) ← e(N+1) +WV Eσ
(
E⊤W⊤

KWQe
(N+1)

)
. (24)

where e = (x, z1, · · · , zk−1, zk) ∈ Rd at the input layer, d =
∑k

i=0 d(Zi).

In the following construction, we show that in the forward pass of Transformer, (24) could express
dynamics of all intermediate steps, including (20), (22) and (23), based on a certain order in which
minimization of losses in (17) is performed. Particularly, in our construction, Transformer will
sequentially minimize loss functions in (17). In other words, the lower layers of the Transformer
learn prior reasoning steps, while upper layers of the Transformer learn later reasoning steps.
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Expanded Embedding Construction. Let d =
∑k

i=0 d
(
Zi

)
be the total dimension of the original

demonstration (z0, z1, . . . , zk) where z0 = x ∈ Z0 and zk ∈ Zk. Let d′ = 2d − d
(
Z0

)
− d
(
Zk

)
which will be the dimension of our expanded embedding. We now construct a projection matrix
P ∈ Rd′×d to map each demonstration into an expanded embeddings that keeps track of inputs and
residuals in a single vector. Concretely, we partition P to perform the following transformation:

P =



Id(Z0) 0 · · · 0 0
0 −Id(Z1) · · · 0 0
0 Id(Z1) · · · 0 0
0 0 −Id(Z2) · · · 0
0 0 Id(Z2) · · · 0
...

...
...

. . .
...

0 0 0 · · · −Id(Zk)


, (25)

where each I d(Zi) denotes a d(Zi)× d(Zi) identity block (or negative identity block). Applying this
P to a vector (z0, z1, . . . , zk) ∈ Rd yields an expanded embedding

e = P
(
z0, z1, . . . , zk

)⊤ ∈ R d′
. (26)

At initialization, each hi

(
zi−1

)
is zero, so the rows with −I d(Zi) produce residuals

(
hi(zi−1)− zi

)
which initially reduce to (0− zi) = −zi. Hence, for a demonstration (x, z1, z2, . . . , zk) with x = z0,
we explicitly obtain

e =
(
x, h1(x) − z1, z1, . . . , hk−1

(
zk−2

)
− zk−1, zk−1, hk

(
zk−1

)
− zk

)
∈ Rd′

(27)

Similarly, for the query x(N+1)∈Z0, we have the expanded embedding

e(N+1) =
(
x(N+1), h1

(
x(N+1)

)
, 0, . . . , h≤k−1

(
x(N+1)

)
, 0, h≤k

(
x(N+1)

))
∈ Rd′

, (28)

reflecting that for the query we store prediction h≤i(x
(N+1)) at each layer in its own coordinate, with

zeros in place of zi or differences as needed to run gradient-based updates in the Transformer. Here
we leverage the fact that z1, · · · , zk−1, zk are all-0 vectors since they are unknown.

Weight Matrices Construction. For layers that minimize the i-th step’s loss function Li, we
construct Transformer weights in the corresponding self-attention layer as follows.

WV =

0 dl(i) 0 0

0 − η I d(Zi) 0

0 0 0 dr(i)

 , (29)

where

dl(i) = 2

i−1∑
j=0

d(Zj) − d(X ), dr(i) = 2

k∑
j=i

d(Zj) − d(Zk) − d(Zi),

selecting the residual coordinates in the expanded embedding (i.e. zi − hi(zi−1)). This extracts those
residuals, multiplies them by −η, and writes them into the sublayer prediction coordinate.

We let WK and WQ select the appropriate coordinates for zi−1 (from demonstrations) and
h≤i−1(x

(N+1)) (from the query):

WK =

0 d′
l(i)

0 0

0 I d(Zi−1) 0

0 0 0 d′
r(i)

 , (30)

WQ =

0 d′′
l (i)

0 0

0 I d(Zi−1) 0

0 0 0 d′′
r (i)

 , (31)
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where

d′l(i) = 2

i−1∑
j=0

d(Zj) − d(X ) − d(Z i−1), d′r(i) = 2

k∑
j=i

d(Zj) − d(Zk), (32)

and similarly d′′l (i), d
′′
r (i) define the row/column slices for the query coordinate. Stacking t self-

attention layers (each with the above WV , WK , WQ for subtask i) carries out t gradient steps on
Li. Finally, iterating over i = 1, . . . , k in ascending order completes minimization of all losses in
equation 17, yielding the final predictor that includes all intermediate and final predictions.

Extension to kernel regression follows from Proposition 2 in Von Oswald et al. (2023) and Proposi-
tion 1 in Cheng et al. (2024). Refer also to Appendix B for a discussion of the connection between
kernel and attention.

A.2 LEMMA 2: UPPER BOUND

Given a target function f and an input distribution D(x), the algorithm A returns a predictor h based
on N i.i.d. samples, whose expected error is defined as Ex∼D[l(h(x), f(x))]. Let us first consider a
single step of task decomposition.

Lemma 6. For any distribution family P and decomposition operator T , the predictor returned by
ACoT on demonstrations sampled from the corresponding distributions in P1 and P2 has an error
upper bound

∆(P,A) ≤ 2max{1, cB,ϕ}(∆(P1,A1) + ∆(P2,A2)) (33)

where cB,ϕ = B2 Lip(ϕ)2 is a constant determined by the hypothesis classH in (7).

Proof. For a family of distributions P , the error is defined as

∆(P,A) ≜ max
(f,D)∈P

Ex∼D [l (h(x), f(x))] , (34)

where we slightly abuse notation here as h is also dependent on the distribution (f,D) and the
learning algorithm. For a certain decomposition operator T , the target function can be expressed as
f = f2 ◦ f1 and the predictor h = h2 ◦ h1. We have

∆(P,A) = max
(f,D)∈P

Ex∼D

[
1

2
((h2 ◦ h1)(x)− (h2 ◦ f1)(x) + (h2 ◦ f1)(x)− f(x))

2

]
(35)

Suppose the feature map ϕ(x) for h2 has Lipschitz constant

Lip(ϕ) = sup
x ̸=x′

∥ϕ(x)− ϕ (x′)∥2
∥x− x′∥2

, (36)

and by Jensen’s inequality, we have

∆(P,A) ≤ max
(f,D)∈P

Ex∼D

[
((h2 ◦ h1)(x)− (h2 ◦ f1)(x))2 + ((h2 ◦ f1)(x)− f(x))

2
]

(37)

≤ max
(f,D)∈P

Ex∼D

[
B2 Lip(ϕ)2∥h1(x)− f1(x)∥22 + (h2(z)− f2(z))

2
]

(38)

≤ B2 Lip(ϕ)2 max
(f,D)∈P

Ex∼D
[
∥h1(x)− f1(x)∥22

]
+ max

(f,D)∈P
Ex∼D

[
(h2(z)− f2(z))

2
]

(39)

where B2 Lip(ϕ)2 is a constant determined by the definition of hypothesis class. Given decomposition
operator T , the distribution family can be decomposed into P1 and P2. It follows that

∆(P,A) ≤ 2B2 Lip(ϕ)2∆(P1,A1) + 2∆(P2,A2) (40)

Let cB,ϕ = max{1, B2 Lip(ϕ)2}, we get the desired upper bound.
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To extend this lemma to the case where there are more reasoning steps, i.e. k > 2, let

Individual Error: ∆(Pi,Ai) = ∆i = max
(f,D)∈Pi

Ezi−1∼D[l (hi(zi−1)− zi)]

Accumulated Error: ∆̇(P, {Aj}j∈[i]) = ∆̇i = max
(f,D)∈P

Ex∼D [l ((hi ◦ · · · ◦ h1)(x)− zi)] .

(41)

∆i is the error of learning an individual reasoning step i, which is consistent with its definition in
Section 2, ∆̇i is the accumulated error from the first step to step i. Note that we slightly abuse the
notation here since ∆(P,A) is actually equivalent to ∆̇k. We also have ∆̇1 = ∆1. Therefore

∆̇k = max
(f,D)∈P

Ex∼D

[
1

2
∥(hi ◦ · · · ◦ h1)(x)− zi∥22

]
(42)

= max
(f,D)∈P

Ex∼D

[
1

2
∥(hi ◦ · · · ◦ h1)(x)− hi(zi−1) + hi(zi−1)− zi∥22

]
(43)

≤ 2B2 Lip(ϕk)
2 · ∆̇k−1 + 2∆k (44)

≤ · · ·

≤ 2

k∑
j=1

 k∏
i=j+1

2B2 Lip(ϕi)
2

∆j (45)

We use the lemma from (43) to (44). Therefore, we have the following upper bound

∆(P,A) = ∆̇k ≤ ck

k∑
i=1

∆(Pi,Ai) (46)

where ck = 2maxj
∏k

i=j+1 2B
2 Lip(ϕi)

2 is a constant depending on the hypothesis classHi and k.

Note that in the derivation, we could remove max(f,D)∈P and directly analyze the expected error
Ex∼D[l(h(x), f(x))], which will give us a similar result: the final error is upper bounded by the sum
of individual errors up to a constant.

A.3 THEOREM 3: COT IMPROVES LEARNABILITY

Recall the definition of in-context learnability: we say a parametric modelM can learn task P if
there exists a learning algorithm A and a function N : (0, 1)2 → N, such that for any confidence and
accuracy parameters δ, ϵ ∈ (0, 1):

1. Under a certain parameter choice θ, we haveMθ(·, x) = A(·)(x) for any query x.

2. Given NA(δ, ϵ) i.i.d. examples, the learning algorithm A returns a predictor h such that
with probability of at least 1− δ, ∆(P,A) ≤ ϵ.

Moreover, we say P can be efficiently in-context learned byM if both the running time of A and the
sample size NA(δ, ϵ) are polynomial in δ−1 and ϵ−1.

To see how it can be reduced to the learnability of subtasks after using CoT, recall the definition of
PAC learnability:

Definition 3. We say a subtask Pi can be efficiently learned by an algorithm Ai if its sample
complexity and time complexity scale as poly(δ−1

i , ϵ−1
i ), where δi and ϵi are confidence and accuracy

parameter for the subtask.

Since by Lemma 1, we know there exists such a parameter choice such that TFθ(·, x) = ACoT(·)(x),
our goal is then to show: if every subtask Pi is efficiently learnable by its corresponding individual
algorithm Ai, the overall task is also efficiently learnable by ACoT.

By Lemma 2, we know that for fixed k, the accuracy parameter ϵ of the overall task is upper bounded
by the sum of the accuracy parameters of subtasks {ϵi}ki=1 up to a constant coefficient. Additionally,
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notice that, given n (not necessarily independent) events A1,A2, . . . ,An, each occurring with
probability P (Ai) = 1− δi, we have

P

(
n⋂

i=1

Ai

)
≥ max

(
0, 1−

n∑
i=1

δi

)
. (47)

This means the confidence parameter of the overall task δ is also upper bounded by the sum of
confidence parameters of all subtasks {δi}ki=1. Namely

ϵ ≤ ck

k∑
i=1

ϵi, δ ≤
k∑

i=1

δi (48)

In terms of the time complexity ofACoT, since each individual algorithmAi runs in time polynomial
in δ−1

i and ϵ−1
i , we have Time(Ai) = poly(δ−1

i , ϵ−1
i ). Moreover, one can choose δ1 = δ2 = · · · =

δk = δ′, ϵ1 = ϵ2 = · · · = ϵk = ϵ′, correspondingly we have δ′ ≥ δ/k and ϵ′ ≥ ϵ/ck. Since ACoT is
a simple combination of all individual algorithms {Ai}ki=1, we have

Time(ACoT) =

k∑
i=1

Time(Ai) ≤ poly(δ−1, ϵ−1), (49)

meaning the learning algorithm is also computationally efficient.

In terms of the sample complexity of ACoT, we also let δ1 = δ2 = · · · = δk = δ′ ≥ δ/k and
ϵ1 = ϵ2 = · · · = ϵk = ϵ′ ≥ ϵ/ck. Note that in the case of CoT, all individual algorithms use the same
number of samples as the algorithm ACoT. To show the algorithm is sample-efficient, we can simply
choose NA(δ, ϵ) to be the largest among {NAi(δ

′, ϵ′)}ki=1, i.e.

NA(δ, ϵ) = max
i∈[k]

NAi
(δ′, ϵ′) (50)

which ensures that ACoT can achieve high accuracy with high probability. Since any NAi(δi, ϵi) is
polynomial in δ′−1 and ϵ′−1, it holds that NA(δ, ϵ) is also polynomial in δ−1 and ϵ−1. However, if
NA(δ, ϵ) < maxi∈[k] NAi(δ

′, ϵ′), we have no guarantee that each step can successfully learn their
corresponding reasoning step. From here, we also proved that the sample efficiency of the overall
step is that of the hardest step in the CoT.

Since ACoT can efficiently learn P , and Transformer with linear depth and constant embedding size
can express ACoT, we complete the proof.

A.4 THEOREM 4: LOWER BOUND

The in-context learning error has approximation error lower bound, that is the minimum error
achievable by a predictor in the hypothesis classH = {h2 ◦ h1 : h1 ∈ H′

1, h2 ∈ H2}

max
(f,D)∈P

Ex∼D [l (h(x), f(x))] ≥ max
(f,D)∈P

min
(h1,h2)∈H′

1×H2

Ex∼D [l (h(x), f(x))] . (51)

Thus it suffices to lower bound the approximation error.

To do so, notice that the learned first-step predictor h1 is from finite function class H′
1, which is a

subset of the initial hypothesis classH1. We show the approximation power of h(x) with finite-sized
H′

1 is lower bounded by a linear class whose size depends onH′
1. In particular, suppose the hypothesis

class is
H′

1 = {h1,1, h1,2, · · · , h1,|H′
1|}, (52)

and based on the index of h1 inH′
1, the predictor h(x) can be re-written as

h(x, j) ≜ W2(ϕ ◦ h1,j)(x) =

K∑
i=1

W2,iϕi,j(x) (53)

=

K∑
i=1

|H′
1|∑

i′=1

Ui,i′ϕi,i′(x) (54)
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where ϕi,j = ϕi ◦ h1,j and Ui,i′ = W2,i if i′ = j otherwise 0. As (54) is an inner product of weight
vector U ∈ RK|H′

1| and feature vector ϕ(x) ∈ {±1}K|H′
1| in an expanded space, h(x, j) reduces to

a linear function.

Since the squared loss l(h(x, j), f(x)) is convex w.r.t. U for arbitrary x and j, its expectation
Lf,D(h) ≜ Ex∼D [l (h(x, j), f(x))] is also convex w.r.t. U . Moreover, h(x, j) = 0 when W2 or U
goes to 0. Therefore, given any (f,D) ∈ P and any predictor h with fixed W2 and j (and thus fixed
U ), by first-order condition, we have

Lf,D(h) ≥ Lf,D(0) + ⟨U − 0,∇ULf,D(h)|U=0⟩ (55)

≥ 1

2
− ∥U∥2 ∥∇ULf,D(h)|U=0∥2 (56)

where the last equation uses the fact Lf,D(0) = Ex∼D [l (0, f(x))] = 1
2 and inequality ⟨v, u⟩ ≥

−∥u∥2∥v∥2.

Notice U has the same norm as W2 and thus ∥U∥2 ≤ B. Moreover, we have

∇(f,D) ≜ ∥∇ULf,D(h)|U=0∥22 = ∥∇UEx∼D [l (h(x, j), f(x))] |U=0∥22 (57)

= ∥Ex∼D [∇U l (h(x, j), f(x)) |U=0]∥22 (58)

=

∥∥∥∥Ex∼D

[
∇U

1

2
(⟨U, ϕ(x)⟩ − f(x))2|U=0

]∥∥∥∥2
2

(59)

= ∥Ex∼D [ϕ(x)f(x)]∥22 (60)

=

K∑
i=1

|H′
1|∑

j=1

Ex∼D [ϕi,j(x)f(x)]
2 (61)

Subjecting it to (56) gives us that, for any (f,D) ∈ P and any predictor h(x) obtained from in-context
learning, i.e.

min
(h1,h2)∈H′

1×H2

Lf,D(h) ≥
1

2
−B · ∇(f,D) 1

2 (62)

Following from (51), the in-context learning error has lower bound

∆(P,A) ≥ max
(f,D)∈P

min
(h1,h2)∈H′

1×H2

Lf,D(h) (63)

≥ max
(f,D)∈P

[
1

2
−B · ∇(f,D) 1

2

]
(64)

≥ E(f,D)∈P

[
1

2
−B · ∇(f,D) 1

2

]
(65)

=
1

2
−B · E(f,D)∈P

[
∇(f,D) 1

2

]
(66)

By noting E[X 1
2 ] ≤ E[X]

1
2 , we have

∆(P,A) ≥ 1

2
−B · E(f,D)∈P [∇(f,D)]

1
2 (67)

=
1

2
−B · E(f,D)∈P

 K∑
i=1

|H′
1|∑

j=1

Ex∼D [ϕi,j(x)f(x)]
2

 1
2

(68)

Let
Var(P) ≜ sup

ϕ
E(f,D)∈P

[
Ex∼D [ϕ(x)f(x)]

2
]
, (69)

which is determined by target functions and distributions in P , and could be understood as the
intrinsic complexity of the distribution family (i.e. the more complex P is, the smaller Var(P) is). It
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follows that,

∆(P,A) ≥ 1

2
−B

√√√√√ K∑
i=1

|H′
1|∑

j=1

E(f,D)∈P

[
Ex∼D [ϕi,j(x)f(x)]

2
]

(70)

≥ 1

2
−B

√
K|H′

1|Var(P), (71)

completing the proof.

A.5 COROLLARY 5: LEARNING PARITIES

w/o CoT. The distribution family of parities with input size n is defined as

PXOR(n) ≜ {(χS ,D) : S ⊆ [n]} where χS(x) =
∏
i∈S

x[i]. (72)

Based on (69), we can derive an upper bound on Var(P) for parities, i.e.

Var(PXOR(n)) = sup
ϕ

E(χ,D)∈PXOR(n)

[
Ex∼D[ϕ(x)χ(x)]

2
]

(73)

= sup
ϕ

1

|PXOR(n)|
∑
S⊆[n]

Ex∼D[ϕ(x)χS(x)]
2 (74)

where |PXOR(n)| = 2n and 2[n] is the power set of [n]. Note that {χS : S ⊆ [n]} forms a Fourier
basis of Boolean functions, meaning that for any pair of different subsets S1, S2 ⊆ [n], we have

Ex∼D[χS1
(x)χS2

(x)] = 0. (75)

Therefore Ex∼D[ϕ(x)χS(x)] is exactly the Fourier coefficient of Boolean function ϕ(x) correspond-
ing to S, which we denote as ϕ̂(S). Therefore

Var(PXOR(n)) =
1

2n

∑
S⊆[n]

ϕ̂(S)2 =
1

2n
. (76)

Since, when there is no CoT, the error lower bound is

∆(Var(PXOR(n)), h) ≥
1

2
−B

√
K Var(PXOR(n)) =

1

2
−B

√
K

2n
, (77)

we can choose n > 2 + log2 B
2K such that this lower bound is always positive (regardless of the

sample size).

w/ CoT. Consider the following CoT

1st Step: z[i] = χ1,S(x)[i] =

{
x[i] for i ∈ S
1 for i /∈ S

, 2nd Step: y = χ2,S(z) =
∏
i

z[i], (78)

we show each step can be approximated by the hypothesis class defined in (7)

Hi = {zi−1 7→Wiϕi(zi−1) : ∥Wi∥2 ≤ B} (79)

where ϕi : Zi−1 → RK is a non-linear feature map to a K-dimensional space, and Wi ∈ Rd(Zi)×K

are learnable weights. We do this by construction. For the first-step predictor χ1,S(x), we let ϕ1(x) =
(x, 1) be the connection of x and 1; for the second-step predictor χ2,S(x), we let ϕ2(z) =

∏
i z[i].

With these features, both steps can be learned by a simple linear model Wx, which also means the
expected error could be arbitrarily small with sufficiently large sample size. The sample complexity
follows the standard analysis for linear regression.

In contrast, when there is no CoT, ∆(P,A) has a positive lower bound, meaning there always exists
at least one (f,D) ∈ P such that the expected error is greater than the lower bound.

21



Published as a conference paper at ICLR 2025

B BACKGROUND: CONNECTION BETWEEN ATTENTION AND KERNEL

As the background knowledge for understanding the construction of Transformers in Lemma 1,
here we provide a non-exhaustive summary of the connections between the attention matrix in
Transformers and the kernel method from previous works (Von Oswald et al., 2023; Cheng et al.,
2024; Guo et al., 2024; Tsai et al., 2019; Wright & Gonzalez, 2021; Chen et al., 2024). We rewrite
the kernel gradient descent dynamics and the Transformer layer here for reference

(GD Dynamics) h(x(N+1))← h(x(N+1)) + η (Y − Ŷ ) ϕ(X)⊤ϕ(x(N+1)), (80)
Kernel FunctionResidualsPredictions

(Transformer Layer) e(N+1) ← e(N+1) + WV E σ(E⊤W⊤
KWQe

(N+1))), (81)
Attention ModuleEmbeddingSkip Connection

Here, the kernel is induced by κ(x, y) = ϕ(x)⊤ϕ(y). The definition of σ could be flexibly chosen
depending on the practical implementation of Transformers.

In-Context Learning. Von Oswald et al. (2023) (Proposition 1) demonstrates in the most simple
case where both the non-linearity in Transformer σ and the feature map ϕ are identity mappings, the
weight constructions WV =

(
0d(X) 0

0 −ηId(Y)

)
and W⊤

KWQ =
(

Id(X) 0
0 0d(Y)

)
yields

E⊤W⊤
KWQe

(N+1) = X⊤xN+1, WV E = −η(0d(X ), Y − Ŷ ). (82)

In this case, κ(x, y) = x⊤y is the inner product kernel. Their Proposition 2 further discusses the case
which accommodates the role of the MLP module in the Transformer architecture. Specifically the
MLP module transforms the token e as MLPθ(e), and thus with the same WV , WK , WQ and identty
mapping σ, the kernel is

κ(x, y) = MLPθ(x)
⊤ MLPθ(y). (83)

Guo et al. (2024) also leverages the representation power of MLP and considers the case where
ϕ : Rd → RK is a fixed representation function, which can in principle be chosen arbitrarily as long
as the features can be represented by a MLP. Theorem 1 in this paper provides a construction where
σ is chosen to be the normalized ReLU and proves that Transformers can perform in-context ridge
regression. Following this work, more recently Kim & Suzuki (2024) similarly concluded that MLP
layer can extend the class of learnable functions of ICL to the Barron space.

Cheng et al. (2024) considers the case where σ is non-linear, and their Proposition 1 proves if the
non-linearity σ matches the kernel κ, the Transformers can perform functional (kernel) gradient
descent regression w.r.t. the reproducing kernel Hilbert space metric of this kernel; the proof is
exactly based on the relation between (80) and (81). For example, they demonstrate that the Softmax
attention corresponds to the exponential kernel

κ(x, y) = exp

(
− 1

σ2
x⊤y

)
. (84)

One caveat here is that the attention matrix in this case is asymmetric; to address this, one could
treat the normalization term as pre-conditioner of the optimization algorithm, and the construction of
Transformers should be modified accordingly. We refer the readers to more discussions in their paper.

General Discussions. Even before ICL, the connection between kernel and attention is a topic that
has been widely discussed (e.g. (Tsai et al., 2019; Wright & Gonzalez, 2021; Chen et al., 2024) etc.)
and references therein). For instance, Wright & Gonzalez (2021) proves that the standard attention
matrix is a reproducing kernel for a reproducing kernel Banach space and gives explicit formulation
of the feature maps (Proposition 1). Their Theorem 2 further demonstrates that Transformers can
learn any binary non-Mercer reproducing kernel Banach space pair.

In practice, variants of Transformers with kernelized attentions (e.g. (Choromanski et al., 2021;
Katharopoulos et al., 2020; Wang et al., 2020; Peng et al., 2021) etc.) such as those relying on random
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Fourier features are very popular and effective. These implementations are often considered for
efficiency considerations, since once the attention is kernelized, one can switch the order of matrix
multiplication to accelerate the computation and reduce the time complexity from quadratic to linear
w.r.t. the input length.
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C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

C.1 INCREASINGLY COMPLEX FUNCTIONS

Sampling. For this task, we sample a sequence of functions from a set of elementary functions with
the following probabilities:

P (z[0]← z[0] + z[1]) =
1

8
, P (z[0]← z[0]− z[1]) =

1

8
, P (z[0]← z[0]× z[1]) =

1

4
,

P (z[1]← z[1] + z[0]) =
1

8
, P (z[1]← z[1]− z[0]) =

1

8
, P (z[1]← z[1]× z[0]) =

1

4
.

Here, the multiplication operation is more likely to be sampled than addition or subtraction. For
the input values, we uniformly select two unique integers from the set {2, 3, . . . , 10}. This range is
chosen to avoid excessively large numbers, which are difficult to handle, and trivial cases, such as
when x[0] = x[1], which could result in zero values that are easily predictable by LLMs. For this
task, we explicitly ensure that each sample is unique to prevent repeated samples in training and
testing. This is done to avoid scenarios where LLMs could simply memorize the results from the
demonstrations and use them to answer the query.

CoT Prompting. Given a certain Hmax, namely the maximal number of elementary functions to
construct a reasoning step, we implement it by randomly masking H − 1 consecutive intermediate
steps. For example, when T = 6 and H = 3, an example prompt is given as follows:

Given two numbers, sequentially apply predefined arithmetic
operations (addition, subtraction, multiplication) to
transform them. Each step involves a specific predefined
operation on one of the numbers. If any operations or
intermediate results are missing, deduce these to complete the
transformation and arrive at the final output.

↪→

↪→

↪→

↪→

↪→

Input: 7, 5
Step1: 7, -2
Step2: 5, -2
Step3: missing
Step4: missing
Step5: 5, 75
Output: -70, 75

Input: 2, 3
Step1: 2, 1
Step2: 3, 1
Step3: missing
Step4: missing
Step5: 3, 36
Output: -33, 36

...

Input: 5, 8
What is the output? Your answer should end in the format 'Step1:

?, Step2: ?, ..., Output:?'.↪→

Note that the missing steps are consistent for one trial. We test 100 times to compute the success rate.

Additional Results. In addition to reporting the success rate of LLMs for predicting the final output
as presented in Section 5, we also evaluate their success rate for predicting intermediate steps. This
provides a more comprehensive assessment of the LLMs’ performance, as even they might fail to
predict the final step but could still succeed in predicting the intermediate steps.

24



Published as a conference paper at ICLR 2025

H
max=1

H
max=2

H
max=3

H
max=4

H
max=5

H
max=6

H
max=7

H
max=8

H=1

H=2

H=3

H=4

H=5

H=6

H=7

H=8

97 -- -- -- -- -- -- --

92 35 -- -- -- -- -- --

90 31 18 -- -- -- -- --

88 22 16 6 -- -- -- --

82 21 12 9 3 -- -- --

71 27 12 6 5 1 -- --

69 23 6 4 1 0 0 --

56 16 4 3 1 1 1 0
0

20

40

60

80

100

Success Rate (%
)

(a) GPT-4o

H
max=1

H
max=2

H
max=3

H
max=4

H
max=5

H
max=6

H
max=7

H
max=8

H=1

H=2

H=3

H=4

H=5

H=6

H=7

H=8

65 -- -- -- -- -- -- --

43 27 -- -- -- -- -- --

34 17 15 -- -- -- -- --

45 24 14 7 -- -- -- --

35 13 8 4 3 -- -- --

30 9 6 2 6 1 -- --

15 12 5 4 3 1 1 --

13 5 2 1 0 2 1 1
0

20

40

60

80

100
Success Rate (%

)

(b) GPT-3.5-turbo

Figure 3: Success rate for predicting the last step (i.e. namely the output).
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Figure 4: Success rate for predicting the second to last step.
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Figure 5: Success rate for predicting the third to last step.
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Figure 6: Success rate for predicting the fourth to last step.
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Figure 7: Success rate for predicting the fifth to last step.
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Figure 8: Success rate for predicting the sixth to last step.

26



Published as a conference paper at ICLR 2025

C.2 CANONICAL BOOLEAN FUNCTIONS

Examples of standard and CoT prompts for (10, 4)-parity and DNF with width 6 are given as follows:

• Standard prompt for parity:

Predict the output based on a pattern in the input binary string.

Input: 1010101100
Output: 0

Input: 0100000011
Output: 0

Input: 0110010000
Output: 1

Input: 1010100001
Output: 0

Input: 1010100001
Output: 0

...

Input: 1011000111
What is the output? Directly answer the question in the format

'Output:'.↪→

• CoT prompt for parity:

Replace some bits located at specific predefined positions in the
binary string with 0 to form a new string. Then, based on some
patterns in the new string to predict the output.

↪→

↪→

Input: 1000010001
New string: 0000010001
Output: 0

Input: 0100110111
New string: 0000110001
Output: 1

Input: 0101001000
New string: 0001000000
Output: 1

Input: 0100000010
New string: 0000000000
Output: 0

Input: 1011010000
New string: 0001010000
Output: 0

...

Input: 0100100110
What is the output? Directly answer the question in the format

'New string:, Output:'.↪→
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• Standard prompt for DNF:

Predict the output based on a pattern in the input binary string.

Input: 001010 000001 010011
Output: 1

Input: 100111 011001 010111
Output: 1

Input: 010010 011010 101011
Output: 1

Input: 010101 001101 001001
Output: 1

Input: 111110 011001 010111
Output: 1

...

Input: 010001 110101 011011
What is the output? Directly answer the question in the format

'Output:'.↪→

• CoT prompt for DNF:

Replace some bits located at specific predefined positions in the
binary string with 1 to form a new string. Then, based on some
patterns in the new string to predict the output.

↪→

↪→

Input: 000101 011111 011010
New string: 100111 111111 011111
Output: 1

Input: 001101 100111 000101
New string: 101111 110111 000101
Output: 0

Input: 100001 011001 001010
New string: 100011 111011 001111
Output: 0

Input: 001100 010100 101011
New string: 101111 110110 101111
Output: 0

Input: 010101 111011 100101
New string: 110111 111011 100101
Output: 0

...

Input: 000100 011110 100000
What is the output? Directly answer the question in the format

'New string:, Output:'.↪→
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