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Abstract

Uncertainty quantification (UQ) is crucial for deploying machine learning models
in high-stakes applications, where overconfident predictions can lead to serious
consequences. An effective UQ method must balance computational efficiency
with the ability to generalize across diverse scenarios. Evidential deep learning
(EDL) achieves efficiency by modeling uncertainty through the prediction of a
Dirichlet distribution over class probabilities. However, the restrictive assumption
of Dirichlet-distributed class probabilities limits EDL’s robustness, particularly in
complex or unforeseen situations. To address this, we propose flexible evidential
deep learning (F-EDL), which extends EDL by predicting a flexible Dirichlet
distribution—a generalization of the Dirichlet distribution—over class probabil-
ities. This approach provides a more expressive and adaptive representation of
uncertainty, significantly enhancing UQ generalization and reliability under chal-
lenging scenarios. We theoretically establish several advantages of /-EDL and
empirically demonstrate its state-of-the-art UQ performance across diverse evalu-
ation settings, including classical, long-tailed, and noisy in-distribution scenarios.

1 Introduction

Machine learning models have achieved remarkable predictive performance in diverse fields, includ-
ing computer vision and natural language processing. However, their deployment in high-stakes
applications—autonomous driving, medical diagnosis, and manufacturing—remains limited due to
concerns about reliability and overconfident predictions [[I]. Robust uncertainty quantification (UQ)
is essential for ensuring safer, more trustworthy decision-making in such contexts.

Effective UQ methods must meet two fundamental requirements: (i) computational efficiency, en-
abling integration into real-time systems, and (ii) generalizability to diverse and unforeseen sce-
narios. Classical UQ methods—Bayesian neural networks [], Monte Carlo dropout [B], and deep
ensembles [#]—are well established but computationally intensive, as they require multiple forward
passes. In response, single forward pass UQ methods [5, B, 1] have emerged as efficient alternatives,
among which evidential deep learning (EDL) [8, G, 10, IT] stands out. EDL predicts a Dirichlet
distribution over class probabilities to quantify uncertainty, leveraging the conjugate prior struc-
ture of the Dirichlet distribution and its closed-form uncertainty measures. This approach enables
computationally efficient UQ and demonstrates strong performance in downstream tasks, such as
out-of-distribution (OOD) detection [IT].

Despite these advantages, EDL may struggle to provide robust uncertainty estimates in complex or
unforeseen scenarios, leading to suboptimal UQ performance. This is shown in Figure D(a), which
illustrates the epistemic uncertainty distributions for EDL trained on the Dirty-MNIST (DMNIST)
dataset [[7]. DMNIST combines clean MNIST (blue), representing clean in-distribution (ID) sam-
ples, with Ambiguous-MNIST (AMNIST, green), a noisy ID dataset containing ambiguous samples.
Additionally, Fashion-MNIST (FMNIST, red) serves as an OOD dataset. To ensure a fair compar-
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Figure 1: Epistemic uncertainty distributions with DMNIST as the ID dataset. The top row presents sample
images from three datasets: MNIST, AMNIST, and FMNIST. Panels (a) and (b) display histograms depicting
the epistemic uncertainty distributions obtained by the EDL and F-EDL (proposed) models, respectively, across
these datasets.

ison, we adopt a standard uncertainty metric used in EDL [8]. An ideal UQ model should assign
progressively higher epistemic uncertainty from clean ID to noisy ID and OOD samples, as intended
in the DMNIST benchmark [7]. However, EDL exhibits substantial overlap between noisy ID and
OOD distributions, and even assigns high uncertainty to some clean ID samples, indicating limited
generalization in noisy ID scenarios. In contrast, our proposed model, described below, achieves
the desired separation among these datasets, as shown in Figure Mi(b), demonstrating robust UQ and
improved generalization under noisy conditions. We hypothesize that EDL’s limitation stems from
its core assumption that the class probabilities for each data point follow a Dirichlet distribution.
While this assumption facilitates computational efficiency, it restricts the model’s ability to express
complex or ambiguous forms of uncertainty. This motivates the need for more flexible yet efficient
UQ methods.

Building upon this insight, we propose flexible evidential deep learning (F-EDL), a novel UQ frame-
work that extends EDL by predicting a flexible Dirichlet (FD) distribution [T7] over class probabili-
ties. The FD distribution generalizes the Dirichlet, enabling a more expressive representation of un-
certainty while retaining the computational efficiency of EDL through its conjugate prior—allowing
a single forward pass UQ suitable for real-time applications. This expressiveness improves the
model’s generalizability, enabling robust UQ across diverse and challenging scenarios such as noisy
ID data, tail classes, and distribution shifts. Beyond the FD-based structure, F-EDL introduces a
tailored objective function for uncertainty-aware classification and label-wise variance-based uncer-
tainty measures for robust, generalizable UQ.

F-EDL introduces several theoretical advancements that strengthen its UQ capabilities. First, we
prove that the FD distribution serves as a conjugate prior to the categorical likelihood. Building on
this, we prove that F-EDL predicts the posterior FD distribution for each input by employing an
improper prior with parameters learned from the data, addressing the limitations of fixed priors in
traditional EDL. Second, we prove that F-EDL converges to standard EDL under specific parameter
settings, establishing it as a generalization of EDL. Third, we prove that /-EDL can generate mul-
timodal class probability distributions on the simplex, allowing it to capture complex and nuanced
uncertainty patterns. Fourth, we prove that -EDL functions as a mixture model that adaptively com-
bines EDL and softmax predictions using input-dependent mixture weights, demonstrating how it
leverages the strengths of both approaches to achieve optimal predictions and enhanced UQ. Finally,
we prove that F-EDL admits a generalized subjective logic interpretation, modeling uncertainty as
a structured mixture of class-specific opinions that capture the model’s hesitation among plausible
hypotheses.

We empirically evaluate F-EDL across a wide range of UQ-related downstream tasks, including
classification, misclassification detection, OOD detection, and distribution shift detection. Notably,
F-EDL consistently achieves state-of-the-art performance across diverse settings, including classi-
cal, long-tailed, and noisy ID scenarios, highlighting its robustness and generalizability. In addition,
qualitative analyses show that F-EDL captures interpretable multimodal uncertainty reflecting am-
biguity across plausible classes, while demonstrating faithful epistemic behavior that decreases with
more data.



2 Preliminaries

2.1 Evidential Deep Learning

Evidential deep learning (EDL) quantifies uncertainty in classification tasks by predicting a Dirichlet
distribution over class probabilities. Introduced by Sensoy et al. [8], EDL is grounded in Dempster-
Shafer Theory of Evidence (DST) [I3] and subjective logic (SL) [T4]. DST represents subjec-
tive beliefs by assigning belief masses to classes, capturing both class likelihoods and uncertainty.
SL extends DST by formalizing these subjective beliefs using a Dirichlet distribution—enabling
uncertainty-aware classification within a principled framework.

The core innovation of Sensoy et al. [R] is using a neural network to predict Dirichlet parameters.
Let D denote the input dimensionality and K denote the number of classes. For a given input
x € RP, the class probability distribution is represented as 7w ~ Dir(cax), where the concentration
parameters & € RY are defined as a = 1 + ReLU(fg(x)). Here, 1 = (1,...,1) € R¥ is a vector
of ones, and fg : RP — RX represents the neural network parameterized by 6. The objective
function of EDL for a given data point (x,y), where y is the one-hot encoded label, consists of
two components: the expected mean squared error (MSE) and a Kullback-Leibler (KL) divergence
penalty. It is formulated as follows:

L = Erpire[lly — 73] + ADxe [Dir(é)|| Dir(1)),

Expected MSE over Dirichlet KL divergence penalty

where & = a ® (1 — y) +y, and ) is a regularization parameter.

2.2 Flexible Dirichlet Distribution

The flexible Dirichlet (FD) distribution [[?] is a generalization of the Dirichlet distribution. The
FD distribution is derived by normalizing a flexible Gamma (FG) basis. Specifically, the FG basis,
denotedas Y = (Y7,...,Yk), is constructed as follows:

Y, =W+ Z, U, Vk € [K],

where Wj, ~ Gamma(ay),Vk € [K], are independent Gamma random variables, and U ~
Gamma(7) is another independent Gamma random variable sharing the same scale parameter as
each Wy, Here, the parameters satisfy a, > 0,Vk € [K] and 7 > 0. The vector Z = (Z1,...,Zk)
follows a multinomial distribution, Z ~ Mu(1, p), where p = (p1,...,pk), 0 < pr. < 1,Vk € [K],
and Zszl pr = 1. This FG basis is denoted as Y ~ FG® (o, p, 7), where & = (o, ..., ax). By
combining independent Gamma random variables with a shared random component, the FG basis
introduces flexibility, effectively modeling dependencies among components.

The FD distribution, denoted as X ~ FD®(a,p,7) ¥, is defined as X = (X,..., Xx) with

Xy =Yy/ Zle Y%, Vk € [K]. Due to its ability to capture complex dependencies and multimodal
behavior, the FD distribution is well-suited for compositional data analysis [I3, T2]. While previ-
ously unexplored for UQ, its flexibility makes it a compelling candidate for modeling uncertainty.

3 Flexible Evidential Deep Learning

The F-EDL framework introduces an efficient and generalizable UQ methodology by leveraging the
FD distribution to model a distribution over class probabilities. The adoption of the FD distribution
in F-EDL represents a principled generalization of EDL, rather than an ad-hoc extension of model
flexibility. By introducing additional parameters (p, 7), the model governs how evidence is allocated
across classes (via p) and concentrated in magnitude (via 7), thereby enabling structured and inter-
pretable uncertainty modeling—particularly for ambiguous inputs where multiple class hypotheses
may be simultaneously plausible. Furthermore, the FD-based formulation offers an input-adaptive
mechanism for evidence extraction, capturing how uncertainty evolves dynamically in response to
the characteristics of each input. A detailed theoretical discussion is provided in Appendix O.

To operationalize this formulation within a neural framework, F-EDL consists of three key compo-
nents: (i) a distinctive model structure (Section Bl), (ii) a tailored objective function (Section B),
and (iii) label-wise variance-based uncertainty measures (Section B3).

'We refer to this distribution as FD, omitting the superscript when the dimensionality K is clear from the
context.
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Figure 2: (a) Graphical model and (b) generative process of the proposed F-EDL framework.

3.1 Model Structure

Let x € R denote an input with dimension D, and let z = fg(x) € R denote its feature
representation, where fg : RP? — R is a feature extractor parameterized by 8 and H is the
feature dimension. From z, the model predicts the parameters of the FD distribution: concentration
parameters o € Rf , allocation probabilities p € AX~!, and dispersion 7 € R, which together
define a distribution over class probabilities m € AX~1, from which the label y is sampled. These
parameters are computed by three neural heads: g, : R — RE, g4, : RE — RE and gy, :
R7 R, parameterized by ¢1, ¢2, and ¢3, respectively.

To ensure the non-negativity and stability of o, we use exp activation, following prior work [[I6, [IT].
To map p onto the probability simplex, we use the softmax function. For 7, we use the softplus
activation for smoother gradients and improved empirical performance. We also apply spectral
normalization [I'7] to fg and g4, to improve the robustness of o and enhance the quality of UQ
[§, [1]. This normalization further enforces Lipschitz continuity and constrains the magnitudes of
network outputs, thereby implicitly regularizing o without requiring explicit penalty terms.

The overall structure is illustrated in Figure D, with the graphical model in panel (a) and the genera-
tive process in panel (b).

3.2 Objective Function

The F-EDL framework is optimized using an objective function consisting of two components:
(i) the expected MSE with respect to the FD distribution, following standard EDL practice for
uncertainty-aware classification, and (ii) a Brier-score-based regularization term for p, to promote
input-dependent calibration and prevent degenerate solutions.

For a given data point (x,y), where y is the one-hot encoded representation of the label y, the
objective function is defined as follows:

L =Errpapnllly =75+ |ly —pl3
———

Expected MSE over FD Regularization term

F-EDL enables analytic training due to the closed-form moments of the FD distribution, eliminating
the need for sampling. It also simplifies optimization by reducing sensitivity to hyperparameters,
unlike recent EDL methods that require careful tuning [9, I0].

3.3 Label-Wise Variance-Based Uncertainty Measures

After training, the predicted label for a testing example x* is determined by assigning
the class with the highest expected class probability under the FD distribution: g§(x*) =
argmaxycg) ErFD(a,p,7) [x], where e, p, and T are predicted parameters for x*.

To quantify uncertainty, we adopt a label-wise variance-based approach [[[H], replacing the Dirichlet
with the FD distribution, enabling robust and interpretable UQ consistent with established axioms
[M9]. For each class k € [K], the predictive uncertainty for x*, denoted by TUj(x*), is defined
as the variance of the class label: TUy(x*) = Var(yg|x*). This quantity is decomposed via the
law of total variance into aleatoric and epistemic components, denoted by AUy (x*) and EU(x*),



respectively:
Var(yi|x*) = Ex[Var(yg|m, x*)] + Var . (Elyg |7, x*]) .

TUk(x*) AUk(x*) EUk(x*)

The total, aleatoric, and epistemic uncertainties for x* are computed by summing the respective
class-wise uncertainties and substituting the moments of the FD distribution.

BUGe) = 3 Erlmil(L = Eelra]) | i — i)

—  (a+T+1) (ap+7)(ap+T7+1)’

K
TU(x") =1 (Ex[m])?, AU(x*) = TU(x*) - EU(x"),
k=1

where ap = Zszl ay and B [mg] = %,Vk € [K].

Detailed derivations of the closed-form expressions for the objective function and uncertainty mea-
sures are presented in Appendix @, while the algorithms for /-EDL are provided in Appendix Bl.

4 Theoretical Analysis

F-EDL offers several theoretical advancements that enhance its UQ generalizability. First, we
prove that the FD distribution is a conjugate prior to the categorical likelihood (Lemma E).
Building on this, we prove that the class probability distribution for a given input x, derived
from F-EDL, corresponds to the posterior FD distribution for 7r, obtained with an improper prior
7(x) ~ FD(0, Pprior (X), Tprior (X)), Where the prior parameters ppyior (X) and Tpyior (X) are learned
from the data (Theorem EZ2).2 By introducing improper priors with input-dependent parameters,
F-EDL eliminates the need for manually specified priors required in traditional EDL.

Second, we prove that the class probability distribution for a given input derived from F-EDL is
equivalent to that of standard EDL under specific parameter settings: 7 = 1 and p, = ay/ Z,i(:l Qg
for all k € [K] (Theorem B=3). This establishes EDL as a special case of F-EDL, demonstrating
that our framework retains EDL’s strengths while enabling greater expressiveness when needed.

Third, we prove that the class probability distribution for a testing example derived from F-EDL
forms a multimodal distribution over the simplex, represented as a mixture of Dirichlet distribu-
tions, with the number of distinct modes determined by the cardinality of the allocation probability
vector p, denoted as ||p|lo (Theorem EQ). This allows F-EDL to capture complex, multimodal
uncertainty—particularly useful for handling ambiguous inputs.

Fourth, we prove that the predictive distribution for a testing example derived from F-EDL can
be decomposed into contributions from EDL and softmax, with input-dependent mixture weights
(Theorem B3). This demonstrates that /-EDL functions as a mixture model of EDL and softmax,
adaptively integrating their complementary strengths to achieve optimal performance in both pre-
diction and UQ. Specifically, the EDL component tends to dominate for clean ID data, whereas for
ambiguous or OOD inputs, the model interpolates between the two, maintaining robust performance
across varying uncertainty levels.

Finally, we prove that /-EDL admits a generalized subjective logic interpretation, modeling a mix-
ture of K class-specific subjective opinions (i.e., hypotheses), each defined by a shared base evi-
dence o and dispersion parameter 7, and weighted by the hypothesis selection probabilities p. ®
This perspective reveals that 7-EDL performs UQ via principled evidence aggregation grounded in
subjective logic [14], rather than simply adding flexibility.

Lemma 4.1. (Conjugacy of FD Prior) Let y; ~ Cat(w),Vi € [N], where w ~ FD(«t, p, 7). The
posterior distribution of 7 given {y;}X_, is also an FD distribution, w|{y;}Y, ~ FD(e/,p,7),
where o = (a,..., %) and o), = oy + sz\il 1¢y,=r}, VK € [K].

Theorem 4.2. (Bayesian Interpretation of F-EDL) The class probability distribution for a
given input x, derived from F-EDL, is equivalent to the posterior FD distribution of m, with

?See Appendix C2 for a more detailed explanation of the Bayesian interpretation of F-EDL.
3See Appendix C3 for a more detailed explanation of the subjective logic interpretation of F-EDL.



likelihood Zf\;l 1iy,—ry = (exp(9g,(fo(x))))r,Vk € [K], and an improper prior w(x) ~
FD(0, pprior (X), Tprior (X)), where Pprior(X) and Tprior (X) are input-dependent parameters learned
from the data.

Theorem 4.3. (Generalization of EDL) The class probability distribution for a testing example x*,
derived from F-EDL, is equivalent to the class probability distribution of EDL when 7 = 1 and

Pe = /S, o, Yk € [K].
Theorem 4.4. (Multimodality of F-EDL)® The class probability distribution for a testing example
x*, derived from F-EDL, is expressed as a mixture of Dirichlet distributions:

K

prEpL(m[x*) =Y pi Dir(w|a + rey),
k=1

where ey, represents the k-th standard basis vector in R . The number of distinct modes is deter-
mined by the cardinality of p, i.e., ||p||o-

Theorem 4.5. (Predictive Distribution Decomposition) Let prpr, (y|x*) and psm (y|x*) denote the
predictive distributions for a testing example x*, derived from the EDL and softmax models, respec-
tively. The predictive distribution for x*, obtained by the F-EDL framework, is decomposed into
the contributions of the EDL and softmax models as follows:

prepL(y[x*) = wepL(x*) X pepL(Y|x*) + wsm (x*) X psm(y]|x*),

where wgpL (x*) = ag /(o + 7) and wep (x*) = 7/ (g + 7) are input-dependent mixture weights.

Proposition 4.6. (Subjective Logic Interpretation of F-EDL) F-EDL admits a generalized subjec-
tive logic interpretation, representing K class-specific subjective opinions (i.e., hypotheses) defined
by shared base evidence o, dispersion parameter T, and hypothesis selection probabilities p.

For the proofs and additional insights about the theorems, refer to Appendix O.

5 Related Works

EDL methods. EDL [P0] refers to a family of UQ methods that predict a Dirichlet distribution over
class probabilities to estimate uncertainty in classification. KL-PN [Z1] encourages concentrated
Dirichlets for ID data and uniform Dirichlets for OOD data via KL divergence, while RKL-PN [27]
uses reverse KL to mitigate issues with unintended multimodal distributions. However, both rely on
OOD data, which is often unavailable in practice. To mitigate the reliance on OOD data, PostNet
[23] and NatPN [24] leverage feature space density estimated using Normalizing Flow [23] to predict
the posterior Dirichlet distribution. However, their performance heavily depends on accurate density
estimation, which remains challenging in high-dimensional settings.

Building on EDL [g], several methods have attempted to address its limitations. Z-EDL [H] incor-
porates Fisher information to account for varying levels of data uncertainty. R-EDL [[I0] treats a
prior parameter as a tunable hyperparameter and simplifies the loss by removing the variance term,
thereby relaxing EDL’s restrictive assumption—a motivation shared with our approach. DAEDL
[IT] uses feature space density during prediction with an alternative parameterization. However,
all these methods remain constrained by the Dirichlet assumption, limiting their generalization to
complex scenarios. Separately, distillation-based approaches [26, 271, 28] improve epistemic uncer-
tainty estimation but typically require multiple forward passes, reducing their practicality. Beyond
standard classification, EDL methods have also been extended to diverse tasks, including regression
[?Y9], domain adaptation [B{], semantic segmentation [E1, B7], calibration of large language models
[33], and multi-view learning [B4, BS, B6, 37]

On the other hand, recent studies have questioned the ability of EDL to represent epistemic uncer-
tainty. Bengs et al. [38, 39] showed that its second-order loss is not a strictly proper scoring rule,
leading to non-vanishing uncertainty. Jiirgens et al. [20] found that regularized EDL enforces a fixed
uncertainty budget, yielding relative rather than absolute uncertainty measures. Shen et al. [2&] fur-
ther unified these critiques, revealing that the EDL objective collapses to a sample-size-independent

4 Adapted from Proposition 4.1 of [I2].



Table 1: UQ-related downstream task results are reported using the CIFAR-10 and CIFAR-100 datasets as
the ID dataset. “Test.Acc.” denotes the test accuracy, “Conf.” denotes the AUPR scores for misclassification
detection based on aleatoric uncertainty, and “SVHN / C-100” and “SVHN / TIN” indicate AUPR scores for
OOD detection based on epistemic uncertainty, where the former corresponds to using CIFAR-10 as the ID
dataset with SVHN and CIFAR-100 as the OOD datasets, and the latter corresponds to using CIFAR-100 as
the ID dataset with SVHN and TinyImageNet as the OOD datasets. Baseline results for CIFAR-10 are sourced

from existing literature [9, [0, TT]. Bold numbers indicate the best performance for each metric.
ID: CIFAR-10 ID: CIFAR-100
Method  Test.Acc. Conf. SVHN / C-100 Test.Acc. Conf. SVHN/TIN

Dropout 82.84 +01  97.15 +00 51.39 +0.1/45.57 £10 6594 +06 92.00 +03  71.83 +2.0/74.93 +0.6
EDL 83.55 +06 97.86 +02 79.12 +37/84.18 07 4591 +56 91.28 08 56.21 £3.1/70.13 +2.0
Z-EDL 89.20 +03 98.72 +0.1  82.96 +22/84.84 +06 66.38 +05 92.84 +01 67.51 +29/75.86 +03
R-EDL  90.09 +03 9898 +01 85.00 +12/87.73 03 63.53 05 92.69 +02 61.80 +34/69.78 +13
DAEDL 91.11 +02 99.08 +t00 85.54 +14/88.19 01 66.01 +26 86.00 +03 72.07 +4.1/77.40 +1.6
F-EDL 91.19 02 99.10 +to0 91.20 +13/88.37 03 69.40 +02 94.01 o1 75.35 +2.3/80.58 +0.2

Table 2: AUPR scores for distribution shift detection from CIFAR-10 to CIFAR-10-C using aleatoric uncer-
tainty estimates. C € {1,2, 3,4, 5} denotes severity levels of corruption in CIFAR-10-C, averaged across 19
corruption types. Baseline results are sourced from [ILT].

Method c=1 C=2 cC=3 C=4 C=5

MSP 56.39 0.7 61.88 £1.1  65.86 +13 6991 +15 75.01 £1.8
EDL 5476 £03 59.01 +04 6246 +05 65.87 06 70.21 +038
Z-EDL 56.33 £02 61.52 +£05 65.44 +05 69.45 405 74.56 +05
R-EDL 57.37 405 6220 £1.0 6574 +14 69.33 +£19 73.58 £26
DAEDL 57.89 +03 63.23 +04 67.53 04 72.21 +04 77.74 +04
F-EDL 59.01 +08 65.11 +07 69.48 +05 73.88 +03 78.72 +04

Dirichlet target, behaving more like energy-based OOD detectors than true uncertainty estimators.
However, 7-EDL empirically mitigates these issues through a more expressive FD-based formula-
tion and distinct loss design, yielding better-calibrated epistemic uncertainty in practice.

Deterministic uncertainty methods. Beyond EDL, deterministic uncertainty methods (DUMs)
[31] offer computationally efficient UQ in a single forward pass. DUMs are designed with two
primary objectives: (i) applying regularization techniques to learn feature representations that dis-
tinguish between ID and OOD data, and (ii) quantifying uncertainty based on these regularized
representations. Regularization methods include spectral normalization [5, &1, &2, (1] and gradi-
ent penalties [A]. For uncertainty estimation, DUMs employ diverse strategies, including Gaussian
processes [0, B1], radial basis function networks [B], Gaussian discriminant analysis [Z], and ker-
nel density estimation [&2]. However, these methods often require significant modifications to the
neural network architecture, hindering their practical applicability.

6 Experiments

We conducted comprehensive experiments to evaluate the generalizability and effectiveness of F-
EDL in UQ. Our evaluation consists of two parts. First, we performed a quantitative study (Sec-
tion B7) across diverse ID scenarios—including classical, long-tailed, and noisy settings—focusing
on UQ-related downstream tasks. We further conducted an ablation study to assess the contribution
of each FD parameter. Second, we performed a qualitative analysis (Section B3) examining whether
F-EDL produces semantically meaningful uncertainty representations for ambiguous samples and
whether its epistemic uncertainty decreases with increasing training data, as theoretically expected.
The code for our model is publicly available at https://github.com/Taeseong Yoon/F-EDL.

6.1 Overview of Experiments

Tasks. For each scenario, we conducted three primary UQ-related downstream tasks: (i) classifica-
tion, (ii) misclassification detection, and (iii) OOD detection. In the classical setting, we additionally
included distribution shift detection. Classification performance was assessed using test accuracy.
Misclassification detection was evaluated using the area under the precision-recall curve (AUPR)


https://github.com/TaeseongYoon/F-EDL

Table 3: UQ-related downstream task results are reported using the CIFAR-10-LT dataset as the ID dataset
under both heavily (p = 0.01) and mildly (p = 0.1) imbalanced settings.

Heavy Imbalance (p = 0.01) Mild Imbalance (p = 0.1)
Method  Test.Acc. Conf. SVHN / C-100 Test.Acc. Conf. SVHN / C-100

Dropout 39.22 £31  63.62 +27 3333 +1.7/54.17 +11 70.87 +30 89.82 +23 37.37 +1.4/61.18 +13
EDL 42.62 27 82.63 +1.7  51.99 +38/66.86 £09 79.09 +04 95.36 0.1 72.18 +2.1/80.09 +o0.7
Z-EDL 57.88 £13 84.10 +13 52.85 +68/69.19 +13 84.86 +0.1  97.31 +02 79.83 +39/83.50 +0.4
R-EDL  63.36 £10 78.34 +10 48.71 £71/64.20 +14 8535 +02 94.35 +02 60.58 +50/69.53 +1.6
DAEDL 63.36 £14 82.15+10 51.03 +56/65.31 12 84.95 404 9522 404 69.40 +45/74.56 +1.7
F-EDL 63.73 £14 8599 +17 62.56 +28/70.18 +20 85.46 +02 97.60 +0.1 85.36 +1.5/83.64 +0.7

Table 4: UQ-related downstream task results are re- Table 5: Ablation study on F-EDL using the DM-
ported using the DMNIST dataset as the ID dataset.  NIST dataset as the ID dataset. “Fix-p (U), 7 and
“FMNIST” denotes AUPR scores for OOD detection  “Fix-p (N), 7” fix p to a uniform vector or normal-
based on epistemic uncertainty, with FMNIST as the  ized concentration parameters, respectively, and fix

OOD dataset. 7 = 1. “Fix-p (U)” and “Fix-p (N)” fix only p; “Fix-
7” fixes only 7. The full model learns both.

Method Test.Acc. Conf. FMNIST

MSP 83.90 +0.1  96.01 £00 98.10 +0.3  Variant TestAce. ~ Conf. ~ FMNIST

Dropout  84.13 £0.1  96.09 £00 94.68 £06  Fix-p (U),7 83.34 £02 95.62 01 97.22 %10
DDU 84.05 0.1 8273 £0.1 98.49 £04  Fix-p (N),7 83.27 £01 9559 204 97.91 £13
EDL 7737458 9319403 OLIILLT Gl ) 8339 c01 95.60 101 96.94 £11
Z-EDL 83.46 +0.2 95.58 +0.0 94.11 +09 .

Fix-p (N) 83.32 01 95.61 03 97.48 +18
R-EDL 83.41 0.1 95.58 +0.1  90.91 £5.6 Fix-r 8339 101 95.60 ~01  98.46 —o.1
DAEDL  84.12 +0.1 9593 00 99.44 +0.2 i i ' i i :
F-EDL 8428 t01 96.17 01 99.76 t01  F-EDL 84.28 01 96.17 01 99.76 +o0.1

score, with confidence defined as negative aleatoric uncertainty for ID samples (label: correct = 1,
incorrect = 0). OOD detection was also evaluated using AUPR, based on negative epistemic uncer-
tainty (labels: ID = 1, OOD = 0), assessing whether the model assigns higher uncertainty to OOD
examples. Distribution shift detection was formulated as OOD detection by applying varying levels
of corruption to a base dataset to simulate shifts. All AUPR scores were normalized to a 0-100 scale.

Datasets. In the classical setting, CIFAR-10 and CIFAR-100 [#3] were used as the primary ID
datasets. For the long-tailed setting, we used CIFAR-10-LT [44], an artificially imbalanced version
of CIFAR-10, as the ID dataset. For the noisy setting, DMNIST, a variant of MNIST containing
ambiguous data points, was used as the ID dataset. For OOD detection, SVHN [43] and CIFAR-
100 served as OOD datasets when CIFAR-10 or CIFAR-10-LT was used as ID, while SVHN and
TinyImageNet (TIN) were used as the OOD datasets for CIFAR-100. FMNIST was used as the
OOD dataset for DMNIST. For distribution shift detection, we utilized CIFAR-10-C [46], a dataset
created by applying continuous distribution shifts to CIFAR-10, as the OOD dataset.

Baselines. We compared F-EDL against classical and state-of-the-art EDL methods, including
EDL [R], Z-EDL [U], R-EDL [I{], and DAEDL [I[T]. To highlight task difficulty, we also included
Dropout [B] as a traditional UQ baseline. For distribution shift detection, we compared with MSP
[26], a widely used benchmark. For the noisy setting, we evaluated both MSP and DDU [[7], with
DDU specifically introduced for DMNIST. All baselines were evaluated following the uncertainty
estimation protocols described in their original papers.

Implementation. We adopted VGG-16 [#7] for CIFAR-10 and CIFAR-10-LT, and ResNet-18 [2X]
for CIFAR-100. For DMNIST, we used a lightweight CNN with three convolutional and three
dense layers. To predict the FD parameters p and 7, we added two shallow MLPs with 1-2 layers
depending on the dataset, introducing minimal overhead (e.g., 1.8% for VGG-16). At inference time,
F-EDL remains highly efficient without any post-hoc processing, running only 1.3% slower than
EDL yet over 50% faster than DAEDL on CIFAR-10.

For clarity and brevity, we defer additional experimental explanations (Appendix B), extended re-
sults (Appendix B), and supplementary qualitative analyses (Appendix () to the appendix.
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Figure 3: Posterior class probability distributions for a DMNIST input (true label: 9), which is visually ambigu-
ous and resembles class 7. The leftmost panel shows the input image. The second and third panels display the
marginal distributions of the two most probable classes predicted by EDL (denoted as 7, for class k), while the
fourth and fifth panels show those predicted by F-EDL.
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Figure 4: Test accuracy (blue, solid line) and epistemic uncertainty (red, dashed line) of EDL (left), DAEDL
(middle), and F-EDL (right) across increasing training set sizes: {500, 1000, 2000, 5000, 10000, 25000,
50000}. Accuracy is plotted on the left y-axis, and uncertainty is plotted on the right y-axis in each subplot.

6.2 Quantitative Study: UQ-Related Downstream Tasks across Diverse Settings

UQ in Classical Setting. We first evaluate /-EDL in the classical setting, a standard benchmark for
UQ models, using CIFAR-10 and CIFAR-100 across four UQ-related downstream tasks described
in Section Bl. As shown in Table [ and Table [, F-EDL consistently outperforms competitive base-
lines across all tasks and datasets. These improvements in UQ performance are broadly attributed
to two key innovations: (i) enhanced expressiveness enabled by generalizing beyond the Dirichlet
family (Theorem B3), and (ii) the use of input-dependent improper priors that address the prior
specification issue (Theorem EZ). In addition, its strong performance in distribution shift detection
reflects the model’s ability to effectively combine the complementary strengths of softmax-based
(MSP) and evidential (EDL) approaches to achieve optimal UQ (Theorem E3).

UQ in Long-Tailed Setting. To evaluate robustness under class imbalance, we further test /-EDL
on CIFAR-10-LT with two levels of imbalance: (i) mild (p = 0.1) and (ii) heavy (p = 0.01), across
the three tasks described in Section Bl Effective UQ in long-tailed settings requires producing
calibrated uncertainty estimates under class imbalance to detect misclassified examples and to dis-
tinguish rare ID inputs from OOD data. These capabilities were assessed through misclassification
detection and OOD detection tasks, respectively. As shown in Table B, /-EDL demonstrates strong
and consistent performance across all tasks and imbalance levels. This performance highlights F-
EDL’s ability to provide reliable uncertainty estimates under complex distributional structures—a
benefit attributed to its flexibility beyond the Dirichlet assumption (Theorem E=3).

UQ in Noisy Setting. To evaluate robustness in noisy ID scenarios, we apply F-EDL to the DM-
NIST dataset across the three tasks described in Section Bl Effective UQ in such settings requires
leveraging aleatoric uncertainty to detect ambiguous inputs that are prone to misclassification and
epistemic uncertainty to distinguish ID from OOD data. These capabilities were assessed via mis-
classification detection and OOD detection, respectively. As shown in Table B, F-EDL consistently
achieves strong performance across all tasks. This performance highlights /-EDL’s improved abil-
ity to handle ambiguous inputs more effectively by representing multimodal opinions over plausible
classes in a structured manner (Theorem B4 and Proposition E6).

Ablation Study: Contributions of p and 7. To assess the contribution of additional parameters
introduced in the FD distribution, we conduct an ablation study in the noisy ID setting using the
DMNIST dataset. Specifically, we compare the full 7-EDL model to several simplified variants:
two configurations that fix p—one to a uniform distribution (p = 1/K) and another to the normal-
ized concentration parameters (p = «/||a||1)—and another configuration that fixes 7 = 1. Com-
binations where both p and 7 are fixed are also evaluated. As shown in Table B, all fixed variants
degrade in UQ performance, with “Fix-7” showing favorable trade-offs, but no single variant consis-
tently outperforms the others. The full model, which learns both p and 7, achieves the best results,



suggesting that the performance gains arise from the synergistic flexibility of the FD distribution,
rather than merely increased capacity.

6.3 Qualitative Study: Multimodality and Faithful Epistemic Behavior

Multimodal Uncertainty Representations for Ambiguous Inputs. To assess whether the flexi-
bility of /-EDL leads to semantically meaningful uncertainty representations, we visualize class
probability distributions for ambiguous inputs from the DMNIST dataset, on which the model was
trained. For each test input, we extract the marginal distributions of the two most probable classes
under both EDL and F-EDL. As shown in Figure B, EDL collapses the prediction into a single,
overconfident mode, skewed toward one class, failing to capture the underlying uncertainty, with
the second most probable class often misaligned with any visually plausible alternative. In contrast,
F-EDL produces multimodal distributions with distinct peaks near plausible classes—such as “7"
and “9"—reflecting the model’s hesitation in the presence of ambiguity. These qualitative improve-
ments highlight 7-EDL’s ability to express structured, multimodal representations, in line with its
theoretical grounding (Theorem E=4, Proposition E-8).

Faithfulness of Epistemic Uncertainty Estimates. To evaluate whether F-EDL provides faith-
ful estimates of epistemic uncertainty, we examine how uncertainty evolves as the training dataset
grows. A key characteristic of epistemic uncertainty is that it should decrease with more data, re-
flecting increased model confidence as knowledge improves [28]. Following the evaluation protocol
proposed in [28], we train models on progressively larger subsets of CIFAR-10 and compute the av-
erage epistemic uncertainty over a fixed test set. As shown in Figure B, 7-EDL demonstrates a clear,
monotonic decrease in uncertainty with more data, unlike EDL and DAEDL, which show incon-
sistent trends. This suggests that F-EDL successfully captures the theoretically desirable behavior
wherein epistemic uncertainty consistently decreases as more data become available—empirically
addressing a key limitation of standard EDL, whose epistemic uncertainty often fails to exhibit a
reliable monotonic decline [28].

7 Conclusion

Summary. We propose F-EDL, a novel UQ framework that maintains the efficiency of EDL while
enhancing its generalizability by predicting a more expressive FD distribution over class probabil-
ities. Theoretically, F-EDL possesses several desirable properties that support reliable and robust
UQ under complex conditions. Empirically, it achieves state-of-the-art performance across a variety
of UQ-related downstream tasks in diverse and challenging ID scenarios, supported by qualitative
evidence of interpretable multimodal predictions and faithful epistemic uncertainty.

Limitations & Future Directions. Despite its improved flexibility, /-EDL faces several open chal-
lenges. First, it is currently limited to classification; extending it to regression, for instance, by build-
ing on evidential regression models [2Y], is a natural next step. Second, although F-EDL provides
a variance-based decomposition of uncertainty, it does not fully disentangle aleatoric and epistemic
components—highlighting the need for further work on structured disentanglement, a longstanding
challenge in UQ [29, 50]. Third, while F-EDL empirically alleviates several theoretical limitations
of EDL, it still relies on external regularization to control epistemic uncertainty [38], suggesting the
need for an intrinsically stable training objective.

Beyond these aspects, F-EDL opens multiple promising research avenues. First, it can serve as a
foundation for developing UQ methods tailored to specific ID scenarios—such as long-tailed classi-
fication, where combining F-EDL with logit adjustment [51] could improve calibration under imbal-
ance. Second, its modular architecture supports plug-and-play integration into existing EDL-based
frameworks, allowing the Dirichlet components to be replaced with the more expressive FD formu-
lation in downstream applications—such as trusted multi-view learning [34]—through the design of
compatible evidence-fusion mechanisms.
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental settings and implementation details necessary for reproduc-
tion are provided in Appendix EZ.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the mean and standard deviation across five random trials.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We report the relevant details about the computer resources at Appendix EZ.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and the research
conducted in the paper conforms with it in every aspect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The primary goal of this paper is to develop a robust UQ method to enhance
the reliability of machine learning systems, which could have positive societal impacts. We
do not anticipate any negative societal impacts from our work.

Guidelines:
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» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We only use publicly available and standard image classification datasets,
which doesn’t have any risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets used in the paper are all publicly available datasets. We cited the
relevant papers for credit.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new asssets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were used solely for writing, editing, and formatting assistance. They
did not contribute to the core methodology, experimental design, or scientific content of the
paper.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLN)
for what should or should not be described.
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A Additional Explanations about Objective Function and Uncertainty
Measures

In this section, we present the closed-form representations for the formulas discussed in the main text.
First, we derive the closed-form representation of the objective function for /-EDL, as provided in
Section B2. Next, we introduce the formulas for total, aleatoric, and epistemic uncertainty using
variance-based uncertainty measures and derive the corresponding closed-form representations for
JF-EDL, as outlined in Section B3.

A.1 Objective Function

Lety = (y1,-..,yx) denote the one-hot encoded labels, and let w = (my,...,Tx) represent
the class probabilities. Furthermore, let « = (a1,...,ak), p = (p1,...,Pk), and 7 denote the
parameters of the FD distribution. The objective function is defined as:
L = Exrnapn[lly = wl3] +|ly - pl3,
——
[MSE Lreg

where the first term, £MSE, represents the expected MSE over the FD distribution, and the second
term, £™¢, is a Brier-score-based regularization term for p.

Expected MSE over FD. In the first term, the expected MSE can be expressed as:
LYE = Er[lly — |3].

Expanding the squared difference gives:
LE = ||y |3 — 2(Ex[m]) Ty + Exl|m]3].
Rewriting this as a summation over k:

K

[MSE _ Z (yi — 2B [mi]yk + Ex [mf]) .
k=1

Using the relationship E [77] = (Ex[mx])? + Vary (), this simplifies to:

K K
‘CMSE = Z(yk - ETF[/]T]C])2 + ZV&I‘W(T%)-
k=1 k=1
The mean of the FD distribution, E [7x], is given by:

Qg + TPk

Eﬂ-[ﬂ-k] - oo+ T

Yk € [K],

K
where ag = >, ag.

The variance of the FD distribution, Var [m], is given by:

_ 1—op. 2 1—
Var,,(ﬂ'k) _ (ak + Tpk)(OéOQ ag + T( pk)) T pk( pk) ,Vk c [K]
(ap+71)%(ag+T7+1) (ao+71)(ag+7+1)
By substituting the mean and variance of the FD distribution, £LMSE becomes:
K K
MSE _ Z g — 2k + peT 2+Z (o + 7pi) (a0 — o + 7(1 — py)) 7 pi(1 — k)
ag+T (o +7)%(a0+7+1) (ag+7)(ao+7+1)

k=1 k=1

Regularization Term. The second term, representing the regularization term for p, is given by:

K

£t =y —pl5 = (v —pi)
k=1
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Combined Objective Function. Combining the two terms, the complete objective function be-
comes:

L= LMSE + [reg

_ XK: (yk _ak +pm> +XK: ap + 7pr) (20 — ak + 7(1 — pr)) 7*pe(1 — pr)
— ag+ T — (g +7)%(ag+74+1) (g +7)(wp+7+1)
K

+Z yr — Dr)”
k=1

A.2 Uncertainty Measures

The closed-form expressions for the total, aleatoric, and epistemic uncertainties for a testing exam-
ple x* can be derived using the variance-based uncertainty measures and the moments of the FD
distribution. Below, we present the derivations for these uncertainty measures.

Total Uncertainty. The predictive uncertainty for each class k € [K], for a testing example x*,
denoted as TUy(x*), is defined as the variance of the label for that class:

TUg(x*) = Var(yg|x*).
The total uncertainty for x*, denoted as TU(x*), is obtained by summing the class-wise uncertain-
ties:

K
= Z Var(yg|x*)
Using the law of total variance, this can be decor;posed as:
TU(x ZIE [Var(yg |7, x* —I—Z\/ar,, [yr|m, x*]).
k=1

Since yy, ~ Ber(my), Vk € [K], we have:

K K
U(x*) =Y Enlmi(l—m)] + Y Varg(my).
k=1 k=1

Expanding the terms:

K K
x*) = 3 Ealri]  Exlnd)) + 3 (Er[rf] — (Exlmi))?).

k=1 k=1
Simplifying:

K
x*) = 3 Exlni] - (Exlme])’.
k=1

Since Zle E[mr] = 1, the total uncertainty simplifies to:
K
TUX") =1-Y (Ex[m])?,
k=1
where Eﬂ-(ﬂ'k) = a(,;J:;;—)k ,Vk S [ ]
Epistemic Uncertainty. The epistemic uncertainty for a testing example x*, denoted as EU(x*),
can be expressed as:

K
= Z Varg (7).
Substituting the expression for the variance of theiFD distribution, we have:
K
RUG) =Y B [mg](1 = Ere[m1]) U Ut LY
el Ck0-|-’7'+1 (Ol()+T)(O[()+T+].)
where ap = Zszl ay and Eq[mg] = O"‘:'_:f’“ ,Vk € [K].
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Aleatoric Uncertainty. The aleatoric uncertainty for a testing example x*, denoted as AU(x*), is
obtained by subtracting the epistemic uncertainty from the total uncertainty:

AU(x*) = TU(x*) — EU(x").

B Algorithm

We present the training algorithm and the prediction and UQ procedure for F-EDL in Algorithm [
and Algorithm [, respectively. These algorithms are straightforward to implement, requiring no
sensitive hyperparameter tuning or reliance on additional techniques.

Algorithm 1 7-EDL Training

Input: Training data Dy, = {(x;,y;)}¥ ;, initial model parameters {6, ¢1, ¢, ¢3 }, maximum
epoch Ti,.x, learning rate 7
for: =1to T, do

Update the parameters using the Adam optimizer and F-EDL objective function:

{0=(W5" 06 121, 61 = (W) 05321, 82, ds b Adam (VLT FPL, )
Apply spectral normalization to the parameters 8 and ¢ :
l 1 l 1
(W H AW )2y + SpeetNorm({W," )2y, (W)} 2)).

end for o
Output: Trained model parameters {0, ¢1, P2, P3}

Algorithm 2 7-EDL Prediction and Uncertainty Quantification

Input: Testing example x* and trained model parameters {é, q?)l, ¢A)2, cf)3}
Step 1: Compute FD Parameters:

a(x*) = exp (94,1(fé(><*))) :

p(x*) = softmax (g, (f5(x"))),  7(x") = softplus (g, (f5(x")))
Step 2: Prediction:
Vk € [K].

§(x*) = argmax E,[ry], where E[mg] = o (X )—tT(X )p;i(x )
k€[K] Ozo(X )+7‘(X )

Step 3: Uncertainty Quantification:

K
Total Uncertainty: TU(x*) =1 — Z(IEJ,T [T])?,

k
K
Epistemic Uncertainty: EU(x*) = Z {

pio(x*) (1 — pi(x*)) }

Aleatoric Uncertainty: AU(x*) = TU(x*) — EU(x").
Output: Predicted label §(x*) and uncertainty estimates {TU(x*), EU(x*), AU(x*)}
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C Additional Explanations about Theorems

In this section, we expand on the theoretical foundations of 7-EDL (Section ). First, we present
detailed proofs for Lemma B-1l through Theorem E3.5 Second, we provide further insights into
the Bayesian perspective underlying /-EDL and elaborate on Theorem EZ. Finally, we offer an
extended explanation of the subjective logic (SL) interpretation associated with Proposition E.

C.1 Proofs for Theorems
We prove Lemma B, Theorem BEZ2, Theorem BE—3, Theorem B4, and Theorem B3 sequentially.

Proof of Lemma B The posterior distribution of 7 given {y; }2Y; can be expressed as:

p(ml{yi}ily) o pro(m; o, p, 7) X p({yi s, |m).

Expanding each term, we have:

K
mmulthﬁlZ L 101 A

i=1k=1
Simplifying the terms yields:
K K
N ap+30 11{y;=k—1 F(ak) T
P \Yisi=1) X ™ Pk Tk
(mltw)iZ) x [T = O P

Recognizing the resulting form, we see that the posterior distribution of 7r retains the form of an FD
distribution, i.e.,

p(ﬂ-‘{yl}i\il) = pFD(ﬂ-|a/7p7T)7

where o’ = (o, ..., a/x) and each «j, is given by:
N
o =ak+ Y L,k € [K].
i=1

Thus, the FD distribution is conjugate to the categorical likelihood.

Proof of Theorem B2. Assume that the prior distribution for a given input x is specified as:

W(X) ~FD (aprior (X), pprior(x)7 Tprior (X)) )
where the parameters are defined as follows:

Qprior(X) = 0, Pprior(X) = softmax(gg, (fo(x))), Tprior(x) = softplus(gg, (fo(x)))-
Here, ouyrior(x) = 0 represents an improper prior as the prior parameter ¢ is zero. The prior param-
eters for p and 7 are learned for each input x using a neural network.

The likelihood is estimated using a neural network as:

N

D 1=k = (exp(ge, (fo(x)))),, Vk € [K].

i=1

Using Lemma BT, the posterior distribution of 7 for a given input x is obtained as:
7(x)|D ~ FD (exp(gg, (fo(x))), softmax(ge, (fo(x))), softplus(ge, (fo(x))))-

This posterior distribution corresponds to the predicted FD distribution of 7r for a given input x,
as described in Section Bl. Consequently, we conclude that the class probability distribution for a
given input x, derived from F-EDL, is equivalent to the posterior FD distribution of 7, obtained
with an improper prior with input-dependent parameters learned from the data.

>We omit the proof for Proposition B8, as it provides a conceptual interpretation rather than a formal math-
ematical statement. A detailed discussion is included in Appendix C3.
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Proof of Theorem B3 The class probability distribution for a testing example x*, derived from
F-EDL, is expressed as:

F(a0+7— ak 1
pFD( Py T ) Hk . ( )H Z FOék+T

where ap = Zle ay. By substituting 7 = 1 and py, = ayi /g, Vk € [K], the expression simplifies
as follows:

K
F(Oé() + 1 a 1 Oék Oék
pro(m; ) = "
[T Dla mHl Z a0’ Taw+ 7)™
Since I'(a, + 1) = agI'(ay), this reduces to:
K
aO + 1 ap—1 7Tk
Prp(T; &

i) = LI [t 5

Because Zszl 7, = 1, the expression becomes:

K

k .
Hk 1 ( )k 1 @0

pep (T @) =

Rewriting using I'(ap + 1) = aol'(avp):

D (T ) =
g Hkl H e

This is precisely the probability density function of the Dirichlet distribution, i.e.,
Prp (75 &) = ppir (75 ).

Therefore, we conclude that the class probability distribution for x*, derived from F-EDL, is equiv-
alent to the class probability distribution of EDL when 7 = 1 and p, = oy /a, Vk € [K].

Proof of Theorem B4 For this proof, we rely on the definition and notation of the FG basis and
FD distribution, as detailed in Section 2.

To establish that the class probability distribution for a testing example x*, derived from F-EDL, is
represented as a mixture of Dirichlet distributions and exhibits multimodality, we derive the proba-
bility density function of the FD distribution, starting from its FG basis representation.

Since Z ~ Mu(1, p), the random variable Z, follows the distribution:

7 _ 1 with probability py,
* 710 with probability 1 — py.

The conditional distribution of Y}, given Zy, is:

Wi +U ifZ, =1,

Yi|Z) =
tlZi {Wk if Z), = 0,

where W), ~ Gamma(ay),Vk € [K], and U ~ Gamma(7) are independent Gamma random
variables sharing the same scale parameter. Consequently, W), + U is also Gamma-distributed:
Wi + U ~ Gamma(ay, + 7).

Let 7w = (1, ..., Tk ) denote the class probability vector, where
Y
T = Vk} S [ ]
Zk 1Y)

By the definition of the FD distribution, it follows that:
7w~ FD(e,p, 7),
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where & = (a1,...,ak), p = (P1,...,PK)-

Using the conditional distribution of Y}, the relationship between 7 and Yy, Vk € [K], and the prop-
erty that normalizing a set of independent Gamma random variables yields a Dirichlet distribution,
the conditional distribution of 7r|Z is given by:

|7 = Dir(ay, ..., +7,...,ax) if Zy =1 for some k,
~ \Dir(ay,...,ax) if Zp =0 forall k.

Since Z ~ Mu(1, p), the case Z;, = 0 for all k is impossible. Consequently, the distribution of 7 is
derived as:

K
p(m) = Z P(Zy, = 1for kth class) x Dir(ay, ..., +7,...,aK)
k=1
K
= Zpk Dir(a + Tey,),
k=1

where e, represents the k-th standard basis vector in R¥ .

Thus, the class probability distribution for a testing example x*, derived from F-EDL, is expressed
as a mixture of Dirichlet distributions. The number of distinct modes in this distribution is deter-
mined by the cardinality of p, i.e., ||p||o-

Proof of Theorem &3 The predictive class probability for a testing example x* belonging to each
class k, Vk € [K], derived from F-EDL, can be represented as follows:

pr-EpL(Y = k[x") = /P(Z/ = k|m)p(r|o, p, 7, x")dm.
Using the fact that p(y = k|m) = 7, Vk € [K], this integral simplifies to:
pr-epL(y = k|X") = Ex rp(a,p,r) [Tk

Substituting the expression for the expectation of 7 and expanding the terms, we obtain:
o) g T

Qo+ T o Qg+ T

pr-epL(y = k[x*) = X P-
On the other hand, for the EDL framework, the predictive distribution for x* is given by:

A
PEDL(Y = k|X*) = Expir(a) [Tk] = a0
For the softmax-based model, the predictive distribution for x* is given by:
psm(y = k[x*) = py.

Define the input-dependent mixture weights as:
Qo T

v () = G ) = S

Using the predictive distributions of EDL and softmax models and substituting these weights, the
predictive distribution of F-EDL can be expressed as:

pr-epL(y|x*) = wepL(X*) X pEpL(Y|X*) + wsm (X*) X psm (y[x*).
Thus, the predictive distribution for x*, obtained by the F-EDL framework, is decomposed into the
contributions of the EDL and softmax models.

C.2 Bayesian Interpretation of 7-EDL (Theorem B.2)

In three stages, we provide an additional explanation about the Bayesian interpretation of F-EDL,
outlined in Theorem B7. First, we establish a Bayesian framework termed the input-dependent FD-
Categorical model, extending the input-dependent Dirichlet-Categorical model commonly used to
interpret EDL methods [23, TT]. Second, we introduce a prior specification problem, which has
been a significant challenge in traditional EDL methods. Third, we introduce an additional theorem
(Theorem [TI) that bridges the gap between the prior specification in F-EDL and traditional EDL
methods. By leveraging this theorem together with Theorem E=2 from the main text, we clarify how
F-EDL resolves the prior specification problem using an improper prior and input-dependent prior
parameters.
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Input-Dependent FD-Categorical Model. Let x represent a given input, 7(x) the corresponding
class probabilities, and {7}V, the set of pseudo-observations. Then, the input-dependent FD-
Categorical model can be described as a Bayesian model as follows:

Prior F(X) ~ FD(aprior(X)a pprior(x)a Tprior(x))7
Likelihood {7}, ~ Cat(n(x)),
Posterior 7r(x)|{gj7}fvzl ~ FD(posi(x) > Ppost(X), Tpost(X)),

where Qtprior(X), Pprior(X), and Tprior(X) are the prior parameters, and Qo (x)» Ppost(X), and Tyt (X)
are the posterior parameters.

Leveraging the results in Lemma BT, the relationship between the prior and posterior parameters
can be expressed as follows:

N
k k
albh(x) = all) (%) + 3" 15,20y, Yk € [K],
1=1

Ppost (X) = Pyprior (X)a Tpost (X) = Tprior (X)

This  formulation reveals the intrinsic connection between JF-EDL and the
input-dependent FD-Categorical model. The fundamental concept of JF-EDL, predicting an
FD distribution over class probabilities for a given input X, is inherently equivalent to predicting
the posterior distribution over class probabilities, given the pre-specified prior distributions. In
particular, the mechanism of F-EDL is equivalent to predicting pseudo-observations {y; ( )}é\r:l
for each data point x using a neural network. Specifically, /-EDL predicts the counts of the
pseudo-observations for each class, i.e., pseudo-counts, utilizing a neural network fp and g4, as
follows:

N
> 1oy = exp(ge, (fo (X))

=1

Using this, the posterior parameter, aup,ost, is expressed as:
Qpost (X) = Qprior (X) + exp(gg, (fo (%))

Prior Specification Problem of EDL Methods. Standard EDL methods face the prior specifica-
tion problem, as highlighted in recent works, including R-EDL [I{]] and DAEDL [IT]. This issue
arises because EDL methods employ a uniform prior, mpyior(x) ~ Dir(1), when predicting the
posterior distribution under the input-dependent Dirichlet-Categorical model framework [23, TT].
Notably, the input-dependent Dirichlet-Categorical model is analogous to the input-dependent FD-
Categorical model discussed earlier, differing only in its use of the Dirichlet distribution in place
of the FD distribution. To address the prior specification problem under this framework, R-EDL
[I0] treats the prior parameter as an adjustable hyperparameter, adopting a prior of the form
Tprior(X) ~ Dir(Al), where \ is a tunable hyperparameter. DAEDL [IT] eliminates the prior
parameter, effectively utilizing an improper prior 7pyior(x) ~ Dir(0). For a more detailed discus-
sion of the prior specification problem in EDL methods and their proposed solutions, we refer the
reader to the respective papers [0, 1],

Table 6: Comparison of prior specification scheme across EDL [R], Z-EDL [9], R-EDL [10], DAEDL [I[1], and
F-EDL. Here, A € R denotes a tunable hyperparameter, 1 € R is a vector of ones, 0 € R¥ is a vector of
zeros, and Pprior(x) € R and 7prior (%) € R denote the prior parameters dynamically learned for a given
input x.

Method EDL, Z-EDL R-EDL DAEDL JF-EDL (Ours)
Prior w(x) ~Dir(1) =(x)~ Dir(A\1l) =(x)~ Dir(0) =(x)~ FD(0, Pprior(X), Tprior(X))

While these methods partially address the prior specification problem, both approaches have notable
limitations. First, R-EDL requires manual tuning of the additional hyperparameter A, which can be
both challenging and time-consuming, particularly when applied to new tasks or datasets. Since the

29



choice of A has a non-negligible impact on UQ performance, precise tuning is critical for achiev-
ing optimal performance. Second, while DAEDL effectively mitigates the prior specification issue
through its parameterization scheme, its success depends heavily on accurate density estimation to
represent uncertainty. This dependence can become problematic in complex ID scenarios, where ob-
taining high-quality density estimates is particularly challenging. Thus, there remains a need for an
EDL model that addresses the prior specification problem without introducing additional computa-
tional overhead or relying on precise density estimation. Such a model would enhance the robustness
and generalizability of EDL methods across complex and unforeseen scenarios.

Table B provides a comprehensive comparison of the prior specification scheme used by representa-
tive EDL methods and F-EDL.

Resolving the Prior Specification Problem with 7-EDL. JF-EDL presents a novel approach
to the prior specification problem by utilizing an improper prior with learned parameters. Before
exploring this further, we introduce an additional theorem that bridges the gap between F/-EDL and
EDL.

Theorem C.1. (Variant of Theorem B2) The predictive distribution for a given input X, derived
from F-EDL, is equivalent to the predictive distribution derived from EDL, utilizing the prior
7(x) ~ Dir(Aprior(x)), where Aprior(X) are the input-dependent prior parameters learned from
the data.

Proof of Theorem C1 The predictive distribution for a given input x, derived from F-EDL, is
expressed as:
Qk + TPk

p]:—EDL(y = k|X) = Ki,Vk S [K]
=1 Ok + T

Let us define o’ = (o, ...,/ ), where

a), = ag + Tpg, Vk € [K].

Using this definition, the predictive distribution for /-EDL can be rewritten as:

/
Q

prepL(y = kjx) = — ok
> ke O

This expression is equivalent to the predictive distribution derived from the standard EDL model,
where the concentration parameters o’ are parameterized as follows:

a' = Aprior (%) + €(x),
with the components defined as:

Aprior (%) = softplus(gg, (fo(x))) x softmax(ge, (fo(x))); e(x) = exp(gg, (fo(x)))-

Within the input-dependent Dirichlet-Categorical model framework, EDL with this parameteriza-
tion can be interpreted as predicting the posterior Dirichlet distribution for 7r, where the likelihood
(evidence vector) e(x) is defined as described earlier, and the prior distribution is specified as:

7 (x) ~ Dir(Aprior (X)),

where Apior(x) is the input-dependent prior parameters learned from the data.

In essence, Theorem B2 demonstrates that 7-EDL can be interpreted as predicting the posterior FD
distribution for a given input, under the input-dependent FD-Categorical model framework. Fur-
thermore, Theorem [l establishes that the predictive distribution of F-EDL is equivalent to that of
EDL, with an input-dependent prior, i.e., 7w(x) ~ Dir(Aprior (x)).

From these theorems, we can infer that the prior specification scheme of F-EDL demonstrates dis-
tinct advantages in two different aspects compared to the conventional approaches. First, 7-EDL
utilizes an improper prior by setting cprior(x) = 0. This addresses the limitation of uniform priors,
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Table 7: Subjective logic interpretation of EDL [R], R-EDL [[0U], and F/-EDL. For EDL and R-EDL, a single
SL triplet (b, u, a) represents a single opinion, where b € R*, 4 € R, and a € A" ™! represent belief mass,
uncertainty, and base rate, respectively. In contrast, /-EDL yields K distinct SL triplets, each encoding a
class-specific opinion.

Property EDL R-EDL F-EDL (Ours)
Distribution Dirichlet Dirichlet Flexible Dirichlet
. a—1 K 1 a—A1 A\K 1 o T X .

SL Triplet (b, u, a) (nanu uaulv?) (nam , nanl’?) (namr’ uau1+r’ef) Vi € [K]
Hypothesis assignment - - p over K class-specific opinions

. oy [e% a+Tp
Projected Probability P Tl Same o
Multimodality No No Yes (Dirichlet mixture)
Epistemic source magnitude of o Same p (inter-opinion) + ¢, 7 (intra-opinion)

which often degrade classification performance due to the difficulty in balancing the prior param-
eters with the pseudo-likelihood [T1]. By adopting this approach, F-EDL avoids the challenges
associated with using fixed uniform priors. Second, F-EDL employs learnable prior parameters for
p and 7. Specifically, the optimal prior parameters for each data point x are estimated using neural
networks. Compared to R-EDL, which requires manual tuning of prior parameters, F-EDL offers a
significant advantage by adaptively determining these parameters, enabling both optimal predictive
performance and robust UQ. Additionally, compared to DAEDL, F-EDL reduces the dependence
on density estimation to achieve optimal UQ, enabling effective generalization to the challenging
scenarios where obtaining high-quality density estimates is infeasible.

C.3 Subjective Logic Interpretation of 7-EDL (Proposition Z.6)

In this section, we elaborate on Proposition E-f to clarify the subjective logic (SL) perspective of JF-
EDL. We begin by revisiting the motivation of /-EDL through the SL lens. Next, we formalize its
multimodal predictive structure as a mixture of class-specific Dirichlet-distributed opinions. We then
introduce a generalized subjective logic interpretation, highlighting how it extends traditional EDL
formulations. Finally, we explain how the proposed variance-based uncertainty measures naturally
align with this interpretation, enabling faithful UQ.

Motivation: Limitations of Single-Opinion SL in EDL. Most EDL methods [K, 9, 10, T1] can
be interpreted through the lens of SL [[I4], where each prediction corresponds to a single subjective
opinion—a Dirichlet distribution encoding belief and uncertainty over class probabilities. However,
this one-opinion-per-input framework restricts the model’s ability to express the ambiguity between
multiple plausible hypotheses. Such limitations are especially evident for inputs with overlapping
features (e.g., ambiguous digits such as "1" vs "7" in MNIST)—which commonly arise in high-risk,
real-world ML applications.

F-EDL as a Mixture of Opinions. To address the limitation of representing only a single opinion,
JF-EDL models uncertainty as a mixture of class-specific subjective opinions. Each component
corresponds to a class-specific hypothesis, represented by a Dirichlet distribution biased toward that
class, and weighted by a hypothesis selection probability. For a test input x*, the resulting predictive
distribution is:

K
p(m|x*) = Zpk Dir(a + Tey),
k=1

where « is the shared base concentration vector, 7 controls the strength of class-specific bias in each
opinion, p = (p1,...,pk) denotes the mixture weights, and ey, is the k-th standard basis vector.
This defines an FD distribution—a structured Dirichlet mixture capable of expressing multimodal
beliefs over class probabilities.

Generalized Subjective Logic Interpretation of 7-EDL. This formulation aligns F-EDL with
a generalized SL framework that accommodates multiple competing opinions, rather than collapsing
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them into a single fused belief. Each Dirichlet component Dir(a + Tey) encodes a class-specific
opinion, while the hypothesis selection probabilities p represent epistemic uncertainty over which
opinion to endorse. Unlike classical EDL models, which aggregate all evidence into a single uni-
modal Dirichlet, /-EDL maintains the structure of uncertainty across hypotheses. This allows it to
capture ambiguity between plausible alternatives—enabling a more expressive and faithful represen-
tation of model belief.

Table [1 summarizes this interpretation by comparing #-EDL with representative EDL variants from
the SL perspective. Unlike conventional EDL models that yield SL triplets per input, /-EDL pro-
duces K distinct SL triplets—each representing class-specific subjective opinion. These triples share
the belief and uncertainty masses (b, u), but differ in the base rate a, reflecting the class-dependent
bias. The overall opinion is expressed as a mixture of these K opinions, weighted by a categorical
distribution p that is learned per input. This structured formulation enables principled UQ through
evidence aggregation grounded in subjective logic.

In particular, it is noteworthy that, unlike EDL variants that yield a single SL triplet per input, F-
EDL produces K distinct SL triplet, sharing the belief and uncertainty massess (b, u) but differing
in the base rate a due to class-dependent bias. The overall subjective opinion is distributed through
these K subjective opinions, following the categorical distribution parameterized by p, which is also
learned per input. These allow principled uncertainty quantification through the structured evidence
aggregation grounded by subjective logic.

Variance-based Uncertainty Measures in /-EDL Classical SL metrics (e.g., inverse total evi-
dence) are not directly applicable to this mixture. Instead, we quantify epistemic uncertainty using
the total variance of the FD distribution:

K
EU(x*) = > Var(mi(x*)).
k=1

This formulation captures both inter-hypothesis ambiguity, reflected in the hypothesis selection prob-
abilities (i.e., allocation probabilities) p, and intra-hypothesis variability, driven by the evidence
parameters « and dispersion 7. By explicitly modeling these two sources of uncertainty, F-EDL
offers more faithful and interpretable estimates of epistemic uncertainty, especially in ambiguous or
complex prediction scenarios.

D Interpretation of FD Parameters and Justification for Its Use in UQ

This section provides additional explanation for adopting the FD distribution for UQ, demonstrating
that its use represents a principled generalization rather than an arbitrary increase in flexibility. First,
we clarify the semantics of the FD parameters (c, p, 7). Second, we justify the suitability of the FD
distribution for UQ, particularly in cases involving multiple plausible class hypotheses. Third, we
describe how evidence is structurally extracted in /-EDL.

D.1 Semantics of FD Distribution Parameters

In the FD distribution, the parameters «, p, and 7 jointly characterize different aspects of uncertainty.
The vector o represents the total amount of evidence supporting each class, analogous to the concen-
tration parameters in a standard Dirichlet distribution. However, unlike the Dirichlet case, the FD
introduces two additional parameters—p and 7—that disentangle how this evidence is distributed
and how sharply it is expressed.

The parameter p specifies how belief is allocated among class-specific hypotheses. A sharp p,
where one component dominates, reflects a decisive belief in a particular class; conversely, a diffuse
p indicates competing hypotheses and greater ambiguity in class assignment. Thus, p governs the
directional aspect of uncertainty—how belief is distributed across class-specific hypotheses.

The scalar 7 modulates the infensity or concentration of each hypothesis. A smaller 7 yields more
concentrated, confident distributions for each hypothesis, while a larger 7 produces flatter, more
dispersed components, effectively tempering overconfidence in uncertain or ambiguous regions. By
dynamically adapting 7, the FD can represent varying degrees of epistemic caution in response to
data complexity.
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Together, p and 7 provide structural flexibility that extends beyond the magnitude of evidence en-
coded by a. This decomposition allows the FD to express both how much evidence the model has
and how that evidence is organized across each competing hypothesis—leading to more faithful and
principled UQ under complex or unforeseen data conditions.

D.2 Justification for Using the FD Distribution for UQ

We employ the FD distribution to address a central limitation of traditional EDL—its inability to
produce reliable uncertainty estimates in complex or ambiguous scenarios where multiple class hy-
potheses may be simultaneously plausible.

For instance, when an input resembles both a “7” and a “9”, a standard EDL, which relies on a
single Dirichlet distribution, produces a unimodal belief that tends to overcommit to the dominant
class (see Figure B, second and third panels). This representation fails to capture the inherent ambi-
guity of the input and leads to overconfident predictions. In contrast, 7-EDL employs a structured
mixture of class-specific Dirichlet hypotheses, where each component encodes the belief this image
corresponds to class k. All components share a common base evidence a, while the parameters p
and 7 respectively determine the mixture weights and concentration of each component. This for-
mulation enables the model to represent multimodal beliefs in a principled way, naturally capturing
conflicting hypotheses and reducing overconfidence in uncertainty regions of the input space.

D.3 Evidence Extraction in 7-EDL

For each input, 7-EDL extracts and structures evidence through three conceptually interpretable
stages:

* (1) Base Evidence Extraction: The model first estimates the base evidence «, analogous
to standard EDL. This represents the initial strength of belief across classes and may be
overconfident in ambiguous cases.

* (2) Construction of Class-Specific Hypotheses: Using ¢, F-EDL constructs a Dirichlet
hypothesis for each class, treating each as a plausible explanation of the input. This enables
the model to represent multiple competing class-level beliefs.

* (3) Input-Adaptive Mixing via p and 7: The parameters p and 7 govern how these
hypotheses are integrated. p assigns mixture weights to each class-specific Dirichlet—
peaked for clean inputs, dispersed for ambiguous samples, and near-uniform for OOD
data—reflecting how belief is distributed across hypotheses. 7 modulates the sharpness
of each component: it increases for ambiguous inputs to reduce spurious confidence, and
remains low for clear inputs to preserve certainty.

This three-stage process aligns naturally with the mixture-based formulation of the FD distribution,

emphasizing that /-EDL’s architecture arises from a principled probabilistic design rather than an
ad-hoc extension of EDL.
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E Additional Explanations about Experiments

In this section, we present a comprehensive explanation of our experiments. First, we describe the
datasets used in our study. Second, we outline the implementation details.

E.1 Datasets

In line with recent works in EDL [3, G, 0, IT], we used CIFAR-10 [&3] as the primary ID dataset
for our evaluations. To assess UQ in more complex scenarios, we also employed CIFAR-100 [43]
as an additional ID dataset.

For CIFAR-10, we considered the Street View House Numbers (SVHN) [45] and CIFAR-100 as
OOD datasets. When CIFAR-100 was used as the ID dataset, its corresponding OOD datasets
included SVHN and Tiny-ImageNet-200 (TIN). To investigate the generalizability of F-EDL in
long-tailed ID scenarios, we employed CIFAR-10-LT [24], a version of CIFAR-10 with artificially
imbalanced class distributions. Specifically, we evaluated two levels of imbalance: mild (p = 0.1)
and heavy (p = 0.01), using the same OOD dataset as CIFAR-10. For noisy ID scenarios, we utilized
Dirty-MNIST (DMNIST) [[Z], a noisy variant of MNIST [62], with Fashion-MNIST (FMNIST) [63]
as its OOD dataset. Additionally, for assessing distribution shift detection capabilities, we adopted
CIFAR-10-C [26], which introduces controlled perturbations to CIFAR-10. Detailed descriptions of
these datasets are provided below.

CIFAR-10 [43] is one of the most widely used image classification datasets in the UQ literature.
It consists of color images categorized into 10 classes, representing various animals and objects:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. The dataset contains 50,000
training images and 10,000 testing images, with each image represented as a tensor of shape 3 X
32 x 32 corresponding to RGB channels and spatial dimensions. The dataset is balanced, meaning
each class contains an equal number of samples in both the training and testing splits. For our
experiments, the training set is further divided into training and validation subsets with a ratio of
0.95 : 0.05. CIFAR-10 served as the primary ID dataset and was also used to create CIFAR-10-LT,
a long-tailed variant.

Street View House Numbers (SVHN) [45] is a dataset comprising cropped images of house num-
bers obtained from Google Street View. It contains 73,257 training images, 26,032 testing images,
and 531,131 additional images, each represented as a tensor of the shape 3 x 32 x 32. In our exper-
iments, the test set of SVHN was employed as the OOD dataset when CIFAR-10, CIFAR-10-LT, or
CIFAR-100 served as the ID dataset.

CIFAR-100 [23] is a more detailed and challenging version of CIFAR-10, comprising 100 classes,
each representing a distinct animal and object category. It includes 50,000 training images and
10,000 testing images, with each image represented as a tensor of the shape 3 x 32 x 32. In our
experiments, the training set was further divided into training and validation subsets with a ratio of
0.95 : 0.05. CIFAR-100 was used as the ID dataset in the classical setting. Additionally, its test set
was employed as an OOD dataset when either CIFAR-10 or CIFAR-10-LT served as the ID dataset.

Tiny-ImageNet-200 (TIN) [54] is a smaller version of the ImageNet [59] dataset, comprising 200
classes, each representing a distinct category. It contains 100,000 training images, 10,000 validation
images, and 10,000 testing images, with each image represented as a tensor of the shape 3 x 64 x 64.
In our experiments, the test set of TIN was used as the OOD dataset when CIFAR-100 served as
the ID dataset. Due to the mismatch in the image sizes, we resized TIN images to 3 x 32 x 32 for
compatibility.

CIFAR-10-LT [56] is a long-tailed version of CIFAR-10, characterized by artifically imbalanced
class distributions. The imbalance severity is controlled using an imbalance factor (p), defined as the
ratio of the number of samples in the head class to the tail class. In our experiments, CIFAR-10-LT
datasets with two imbalance factors, p = 0.1 and p = 0.01, were used to validate the generalizability
of F-EDL in long-tailed ID scenarios.

CIFAR-10-C [57] is a corrupted version of the CIFAR-10 dataset, designed to evaluate the robust-
ness of image classification models against various types of corruption and noise. It introduces 19
types of real-world corruptions, including Gaussian noise, shot noise, impulse noise, defocus blur,
glass blur, motion blur, zoom blur, snow, frost, fog, brightness, contrast, elastic transform, pixelate,
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Table 8: Comparison of the total parameters and the additional parameters introduced by the MLPs across
different architectures. “# of Params." refers to the total number of parameters in the base model architectures
(e.g., ConvNet, VGG-16, and ResNet-18). “# of Additional Params." denotes the number of parameters added
by the MLPs. “Proportion" indicates the percentage increase in the total parameter count due to the addition of
the MLPs.

ID Dataset Architecture # of Params. # of additional params. Proportion (%)
DMNIST ConvNet 248,330 6,347 2.56%
CIFAR-10, CIFAR-10-LT VGG-16 14,857,546 266,507 1.79%
CIFAR-100 ResNet-18 11,046,308 289,367 2.62%

Table 9: Average batch inference time (batch size = 64) on the CIFAR-10 dataset using the VGG-16 backbone.
The mean and standard deviation are calculated over five independent runs.

Metric EDL DAEDL F-EDL
Inference Time (s) 1.262 +0.06 2.683 +£0.05 1.279 £ 0.08

jpeg compression, speckle noise, Gaussian blur, splatter, and saturate. Each corruption is applied
at five different severity levels C € {1,2, 3,4, 5}, resulting in a total of 950,000 corrupted images
(10,000 images x 19 corruptions x 5 severities). In our experiments, CIFAR-10-C was used for dis-
tribution shift detection tasks. Specifically, models trained on CIFAR-10 performed OOD detection
using CIFAR-10-C as the OOD dataset to assess their ability to capture distribution shifts through
uncertainty measures.

Dirty-MNIST (DMNIST) [[7] is a noisy variant of the MNIST [62] dataset, containing ambiguous
data points. It is generated by integrating Ambiguous-MNIST (AMNIST) [7], which includes arti-
ficially synthesized MNIST samples with varying entropy levels, into the original MNIST dataset.
DMNIST contains 120,000 training images (60,000 from MNIST and 60,000 from AMNIST) and
70,000 testing images (10,000 from MNIST and 60,000 from AMNIST). In our experiments, DM-
NIST was used to validate the generalizability of /-EDL in noisy ID scenarios.

Fashion-MNIST (FMNIST) [53] is a modern replacement for the MNIST dataset, consisting of
grayscale images from 10 classes that represent various fashion items, including clothing, footwear,
and accessories. The dataset contains 60,000 training images and 10,000 testing images, each repre-
sented as a tensor of shape 1 x 28 x 28, similar to MNIST. In our experiments, FMNIST served as
the OOD dataset when DMNIST was used as the ID dataset.

E.2 Implementation Details

To ensure a fair comparison, we adopted VGG-16 [&7] as the model architecture when CIFAR-10
served as the ID dataset, consistent with recent studies [23, 9, [, IT]. The same architecture was
utilized when CIFAR-10-LT was employed as the ID dataset. For CIFAR-100, ResNet-18 [48] was
employed as the model architecture, while a simple convolutional neural network (ConvNet) con-
sisting of three convolutional layers followed by three dense layers was implemented for DMNIST.

To compute the parameters p and 7, we added two shallow MLPs into each architecture. These
MLPs consisted of a single layer when DMNIST was the ID dataset and two layers for the other
dataset. The additional model complexity introduced by these MLPs was minimal, as demonstrated
in Table B. Moreover, the added overhead becomes negligible for larger architectures, indicat-
ing that F-EDL scales efficiently. For instance, with WideResNet-28-10 (36.5M parameters) on
TinyImageNet-200, the extra heads introduce only 346K parameters (0.95%). This relative over-
head further diminishes as the model capacity increases.

In terms of inference efficiency, F-EDL enables fast prediction and UQ without sampling or post-
hoc steps (e.g., DAEDL’s density estimation). As shown in Table B, the average batch inference time,
including FD parameter prediction and uncertainty computation, was 1.279s £+ 0.08—only 1.35%
slower than EDL (1.262s + 0.06) and 52.34% faster than DAEDL (2.683s £0.05).
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Table 10: Implementation details and hyperparameter settings for our experiments. Here, Tmax, B, and 1
denote the maximum number of epochs, batch size, and learning rate, respectively. Additionally, L and H
represent the number of layers and hidden dimensions of the MLPs, respectively.

ID Dataset Architecture Optimizer Scheduler T, .. B 17 Stepsize L H
DMNIST ConvNet Adam StepLR 50 64 5x107* 20 1 64
CIFAR-10 VGG-16 Adam StepLR 100 64 5x107* 30 2 256
CIFAR-10-LT VGG-16 Adam StepLR 100 64 5x107* 30 2 256
CIFAR-100 ResNet-18 Adam StepLR 100 64 107* 30 2 256

Based on the validation loss, early stopping was applied to mitigate overfitting across all experi-
ments. A fixed batch size of B = 64 was used in all settings. Training was conducted for up to 50
epochs on DMNIST and 100 epochs on other datasets. The Adam optimizer [58] and the StepLR
scheduler were consistently employed. Hyperparameters for both our proposed method and the
baselines were selected through grid search. Importantly, /-EDL eliminates the need for hyperpa-
rameter tuning in its objective function, significantly simplifying the training process. The detailed
experimental setups and hyperparameter configurations are provided in Table M. All experiments
were implemented in PyTorch. Depending on availability, we used either an RTX 4060 GPU with
8GB memory or a TITAN V GPU with 12GB memory.

Table 11: Comprehensive results for UQ-related downstream tasks in the classical setting using CIFAR-10 as
the ID dataset, with additional results from PostNet [23] and DUQ [B].

Method  Test.Acc. Conf. SVHN / CIFAR-100
Dropout 82.84 +0.1  97.15 00 51.39 +0.1/45.57 1.0
PostNet  84.85 00 97.76 00 77.71 +03/81.96 +038
DUQ 89.33 +02  97.89 +03  80.23 +3.4/84.75 £1.1
EDL 83.55 06 97.86 +02 79.12 £3.7/ 84.18 +0.7
7Z-EDL 89.20 +03 98.72 +0.1  82.96 +22/84.84 +o.6
R-EDL 90.09 03 98.98 +0.1 85.00 +1.2/87.73 +03
DAEDL 91.11 +o2 99.08 +00 85.54 +1.4/88.19 +o0.1
F-EDL 91.19 +02 99.10 +00 91.20 +1.3/88.37 +03

Table 12: AUROC scores for OOD detection using epistemic uncertainty estimates in the classical setting.
Results are reported using CIFAR-10 as the ID dataset with SVHN and CIFAR-100 (C-100) as OOD datasets,
and CIFAR-100 as the ID dataset with SVHN and TinyImageNet (TIN) as OOD datasets.

Method ID: CIFAR-10 ID: CIFAR-100
OOD: SVHN/ C-100 OOD: SVHN/ TIN
EDL 81.06 +4.5/80.63 £1.0 63.95 +£34/65.32 £23
Z-EDL 86.79 +1.3/82.15 05 77.85 +1.5/73.34 +03
R-EDL 87.47 £1.2/85.26 04 77.06 £22/71.10 +1.0
DAEDL 89.24 +1.0/86.04 +0.1  81.07 +£3.0/75.04 +£1.3
F-EDL 93.74 +15/86.37+03 81.59 +1.8/79.24 +0.2

F Additional Results for Quantitative Study on UQ-Related Downstream
Tasks

Classical Setting. Table [T presents comprehensive results for UQ-related downstream tasks in the
classical setting using CIFAR-10 as the ID dataset, comparing F-EDL with additional baselines:
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Table 13: AUROC scores for OOD detection using epistemic uncertainty estimates in the long-tailed setting.
Results are reported using CIFAR-10-LT as the ID dataset under mild (p = 0.1) and heavy (p = 0.01) imbal-
ance, with SVHN and CIFAR-100 (C-100) as OOD datasets.

Method  ID: CIFAR-10-LT (p = 0.1) ID: CIFAR-10-LT (p = 0.01)
OOD: SVHN / C-100 OOD: SVHN / C-100
EDL 80.36 +£1.5/77.03 +0.6 58.25 +4.4/61.05 +0.7
Z-EDL 84.65 +3.8/80.83+05 61.47 £74/65.12 £1.4
R-EDL 77.39 +53/72.12 +£0.9 62.24 +29/64.03 +0.6
DAEDL 80.34 +29/73.92 +1.3 64.21 +£43/63.49 +0.6
F-EDL 89.22 +1.7/81.54 +0.6 71.62 +19/67.74 +1.8

Table 14: UQ-related downstream task results are reported using the DMNIST dataset as the ID dataset. “Brier.”
denotes the Brier score for calibration. “FMNIST.AUPR.” and “FMNIST.AUROC.” indicate AUPR and AU-
ROC scores for OOD detection using epistemic uncertainty, with FMNIST as the OOD dataset.

Method  Test.Acc. Conf. Brier. FMNIST.AUPR. FMNIST.AUROC.
MSP 83.90 +0.1  96.01 00 2.38 +0.0 98.10 +03 89.30 +15
Dropout  84.13 +0.1  96.09 00 2.44 +o0.0 94.68 +0.6 68.97 +2.8
DDU 84.05 o1 82.73 o1 2.35 +00 98.49 +04 90.16 +2.1
EDL 77.37 +58  95.19 +03 3.25 +o05 92.23 +1.7 61.51 +66
Z-EDL 83.46 02 95.58 00 2.74 +00 94.11 +09 68.70 +4.0
R-EDL  83.41 01 95.58 +01  2.80 +0.0 90.91 +56 59.45 +139
DAEDL 84.12 01 95.93 +00 2.78 +o0.1 99.44 +o0.2 96.34 +14
F-EDL 84.28 +to1 96.17 +01 2.32 +00 99.76 +o.1 98.46 +0.7

Table 15: Ablation study results on F-EDL using the CIFAR-100 dataset as the ID dataset. “Fix-p (U), 77
fixes p to a uniform vector (1/K) and 7 to 1, while “Fix-p (N), 7 fixes p to the normalized concentration
parameters (/|| e||1) and 7 to 1. “Fix-p (U)” and “Fix-p (N)” fix p but allow 7 to be learned. “Fix-7" fixes
7 = 1 while learning p. The full “#-EDL” model learns both p and 7.

Variant Test.Acc. Conf. SVHN / TIN

Fix-p (U), 7 63.54 08 90.95 £04 71.49 +42/77.57 04
Fix-p (N), 7 64.03 £05 91.27 04 71.73 +1.7/77.53 +04
Fix-p (U) 63.74 £03  91.04 02  69.06 +3.4/77.40 +0.6
Fix-p (N) 63.77 £13  91.22 406 69.59 +2.0/77.60 £0.5
Fix-1 65.68 £0.8 92.60 £0.5 73.38 £4.6/78.76 +0.4
F-EDL 69.40 +02 94.00 0.1  75.40 +2.3/80.60 +0.2

Table 16: Ablation study on the effect of different regularization terms in F-EDL using CIFAR-10 as the
ID dataset. “No Reg.” denotes training without regularization, “KL-Div.” indicates KL-based regularization
applied to the Dirichlet parameters, “CE.” refers to cross-entropy regularization applied on p, and “Brier”
represents the Brier-based regularization adopted in F-EDL.

Regularization  Test.Acc. Conf. SVHN / C-100

No Reg. 91.13 +o02 99.02 +0.4 89.32 +0.1/87.65 £1.0
KL-Div. 34.61 +27.8  50.69 +34.7  45.83 +£21.3/58.93 £13.9
CE 91.11 +o0.1 98.87 +0.1 89.83 +0.7/87.77 +0.2
Brier (Ours) 91.19 +o02 99.10 +0.0 91.20 +1.3/88.37 +0.3
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DUQ [B] and PostNet [23]. DUQ represents deterministic uncertainty methods, while PostNet ex-
emplifies a density-based EDL approach. F-EDL outperforms both by a significant margin, un-
derscoring its robustness. Results on CIFAR-100 are omitted due to the high computational cost
and training instability these baselines face when applied to larger label spaces. Table 2 reports
AUROC scores for OOD detection in the classical setting, confirming that /-EDL maintains strong
performance across different datasets and metrics.

Long-Tailed Setting. Table 3 presents additional OOD detection results in the long-tailed setting
using the CIFAR-10-LT dataset, evaluated with AUROC. The results show that 7/-EDL consistently
outperforms its competitors regardless of the evaluation metric.

Noisy Setting. Table 4 reports the full results for UQ-related downstream tasks in the noisy setting
using the DMNIST dataset. Metrics include the Brier score [59], a standard measure of calibration,
and AUROC scores for OOD detection based on epistemic uncertainty estimates. For the Brier score,
lower values indicate better calibration. The results show that /-EDL consistently outperforms all
competing methods across all metrics.

Ablation Study. Table [ presents the additional ablation study results using CIFAR-100 as the
ID dataset. The results demonstrate that the trend observed in the ablation study using the DM-
NIST dataset holds consistently: fixing either p or 7 leads to degraded performance, while the full
model that jointly learns both components yields the strongest results. This confirms that the ob-
served benefits are not dataset-specific but arise from the principled generalization enabled by the
FD distribution.

In addition, Table [ presents the ablation study on the regularization term using CIFAR-10 as the
ID dataset. The results indicate that the Brier-based regularization yields the best empirical perfor-
mance, owing to its improved training stability and better-calibrated allocation of class probabilities.

G Additional Explanations and Results for Qualitative Study

In this section, we provide additional details on the toy experiment from Figure [ and the poste-
rior multimodality analysis from Section B3, including extended motivation, minor experimental
settings, and supplementary figures.

G.1 Toy Experiment in the Figure 0

We provide additional explanations about the toy experiments described in Section [. First, we out-
line the experimental setup, including the procedures followed and the uncertainty measures utilized.
Second, we present the results for the aleatoric uncertainty distributions, along with corresponding
figures and explanations, to complement the epistemic uncertainty distribution results shown in Sec-
tion @

Details on Experimental Setup. To investigate the challenges EDL models face in generalizing to
difficult scenarios and assess whether F-EDL addresses these limitations, we conducted toy experi-
ments to compare their uncertainty distributions. These experiments use DMNIST, a noisy variant of
MNIST, as the ID dataset. The objective is to evaluate the ability of EDL and F-EDL to generalize
to noisy ID scenarios and reliably distinguish among three types of data: (i) clean ID data (MNIST),
(i) noisy ID data (AMNIST), and (iii) OOD data (FMNIST).

We trained both EDL and F-EDL using the training set of DMNIST. After training, we computed the
aleatoric and epistemic uncertainties for data points in the testing sets of DMNIST and FMNIST. For
EDL, the aleatoric uncertainty (AU(x*)) and epistemic uncertainty (EU(x*)) for a testing example
x* are defined as follows:

K
AU N=1- ETFN ir(a ) EU * ="
(x*) o B ) [k] (x) o

where ag = Zszl ag and Ex pir(a)[Tr] = ar/ao.

For F-EDL, we utilized the aleatoric and epistemic uncertainty measures outlined in Section B3.
To enhance the clarity of the figures, we normalized the uncertainty estimates. For epistemic uncer-
tainty, a logarithmic transformation was applied. Both uncertainty estimates were then scaled to the
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Figure 5: Aleatoric uncertainty distributions with DMNIST as the ID dataset. The top row presents sample
images from MNIST and AMNIST. Panels (a) and (b) display histograms depicting the aleatoric uncertainty
distributions obtained by the EDL and F-EDL (proposed) models, respectively, across these datasets.

range [0, 1] as follows:

AU(x*) — AUpin
AUmax - AUmin ’

IOg(EU(X*)) B 1Og(EUmin>
log(EUmaX) - log(EUmin) '

AU(x*) + EU(x*) «+

Here, AU, 0 and AU,,;, denote the maximum and minimum values of aleatoric uncertainty, while
EUax and EU,y;,, represent the maximum and minimum values of epistemic uncertainty. These
values were computed using the combined test sets of DMNIST and FMNIST to ensure consistent
scaling across both datasets.

Results for Aleatoric Uncertainty Distributions. The middle panel of Figure B illustrates the
aleatoric uncertainty distributions generated by the EDL model. Ideally, a UQ model should assign
higher aleatoric uncertainty to noisy samples, effectively distinguishing them from clean samples.

The results highlight the limitations of EDL in handling aleatoric UQ in noisy ID scenarios. First, a
substantial portion of the MNIST test set exhibits high aleatoric uncertainty, nearing the maximum
value shown in the figure. This suggests that EDL struggled to effectively train on the noisy ID
dataset consisting of ambiguous data points. Second, there is a significant overlap between the
uncertainty distributions of MNIST and AMNIST, suggesting that the model incorrectly assigned
low aleatoric uncertainty to AMNIST test points, despite their artificial construction to exhibit higher
aleatoric uncertainty than MNIST.

In contrast, the bottom panel of Figure B, which presents the aleatoric uncertainty distributions
produced by F-EDL, demonstrates notable improvements over EDL in generalizing to noisy ID
scenarios and delivering robust UQ for ID data. Specifically, AMNIST demonstrates significantly
higher aleatoric uncertainty compared to MNIST, with minimal overlap between their uncertainty
distributions. The small overlap observed between distributions is expected, as certain AMNIST
data points with relatively low aleatoric uncertainty may naturally align with the uncertainty levels
of MNIST.

G.2 Multimodal Uncertainty Representations for Ambiguous Inputs.

Motivation. We investigate whether the theoretical flexibility of F-EDL to represent multimodal
class probability distribution translates to semantically meaningful and interpretable uncertainty in
practice. While Theorem B-4 shows that F-EDL can express predictive distributions as a mixture of
Dirichlet components, it is crucial to assess whether this capacity emerges empirically—especially
for perceptually ambiguous inputs. In particular, we aim to verify whether the model reflects struc-
tured hesitation between multiple plausible class hypotheses instead of defaulting to a single, poten-
tially overconfident mode (Proposition BEf).
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Figure 6: Additional examples supplementing Figure B, showing posterior class probability distributions for
ambiguous DMNIST inputs. Each subfigure includes: the input image, followed by the marginal distributions
over the two most probable classes as predicted by EDL (second and third panels) and by F-EDL (fourth and
fifth panels).

Experimental Setup. We analyze test examples from the DMNIST dataset that exhibit visual
ambiguity. For each input x*, we identify the top two predicted classes based on the expected class
probabilities:

yy = argmax E [m,(x")], v3 = argmax Er[m;(x*)].
kE[K] kE[K]kAy?

We visualize the marginal distributions p(7y: |x*) and p(m,s|x*). Under the FD distribution, each

marginal is a mixture of Beta distributions, parameterized by shared base evidence c, allocation
probabilities p, and a dispersion parameter 7:

p(mk|x*) = pr Beta(ay, + 7, a0 — o) + (1 — pi) Beta(aw, ap — ag + 7), k € {y, y5}-

These marginals exhibit multimodal behavior when the allocation probabilities p are dispersed, i.e.,
when py, is not close to 1 and—Ileading to a nontrivial mixture of hypotheses. Moreover, the degree
of mode separation is captured by:

T

Amode = | ————
mode a0+T—2

7

which increases with larger 7, as higher dispersion sharpens and shifts each Beta component toward
opposite ends, amplifying their separation.

Additional Results. In Figure B, we present five additional examples of posterior multimodality
on visually ambiguous inputs, extending the results from Figure B. Each examples display the class
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probability distributions predicted by EDL and F-EDL for images with overlapping or unclear digit
structures. For both models, we extract the marginal distributions of the two most probable classes,
denoted as 7yx and 7,;. EDL produces unimodal Beta distributions that average over competing
hypotheses, often concentrating mass on a single class. This unimodality results in overconfident
predictions—especially problematic in ambiguous cases. In contrast, /-EDL produces multimodal
marginals with distinct peaks, each reflecting a plausible interpretation—such as “7" and “9" for the
hybrid digit. By retaining structured multimodality, F-EDL preserves input ambiguity rather than
collapsing it into a single smoothed belief.

This ability to model structured multimodal beliefs offers key advantages. First, it improves in-
terpretability: multimodal outputs reveal not only that the model is uncertain but also why, by
highlighting plausible alternatives. This property is particularly valuable in safety-critical domains
like medical diagnosis, where knowing which alternatives the model considers plausible can inform
downstream decisions. Second, this flexibility contributes to stronger UQ performance. Structured
multimodality helps avoid overconfident beliefs on ambiguous inputs, thereby reducing misclassi-
fication and enhancing robustness in OOD detection. Intuitively, EDL is biased toward collapsing
uncertainty into a single mode. While this may be sufficient for downstream tasks when the dom-
inant mode aligns with the true class, it risks failure when it favors an incorrect one—leading to
confident misclassification or false OOD rejection of ambiguous ID inputs. In contrast, 7-EDL pre-
serves a mixture of multiple plausible hypotheses, preventing premature convergence and allowing
the model to gradually learn and better represent the underlying uncertainty. As demonstrated in our
quantitative evaluations (Section B2), F-EDL consistently outperforms existing methods, particu-
larly under ambiguity (e.g., AMNIST) or data imbalance (e.g., CIFAR-10-LT tail classes).
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