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Abstract

Counterfactual reasoning is pivotal in human cognition and especially important
for providing explanations and making decisions. While Judea Pearl’s influential
approach is theoretically elegant, its generation of a counterfactual scenario often
requires too much deviation from the observed scenarios to be feasible, as we show
using simple examples. To mitigate this difficulty, we propose a framework of
natural counterfactuals and a method for generating counterfactuals that are more
feasible with respect to the actual data distribution. Our methodology incorporates
a certain amount of backtracking when needed, allowing changes in causally
preceding variables to minimize deviations from realistic scenarios. Specifically,
we introduce a novel optimization framework that permits but also controls the
extent of backtracking with a “naturalness” criterion. Empirical experiments
demonstrate the effectiveness of our method. The code is available at https:
//github.com/GuangyuanHao/natural_counterfactuals.

1 Introduction

Counterfactual reasoning, which aims to answer what a feature of the world would have been if
some other features had been different, is often used in human cognition, to perform self-reflection,
provide explanations, and inform decisions [29, 6]. For AI systems to achieve human-like abilities
of reflection and decision-making, incorporating counterfactual reasoning is crucial. Judea Pearl’s
structural approach to counterfactual modeling and reasoning [26] has been especially influential in
recent decades. Within this framework, counterfactuals are conceptualized as being generated by
surgical interventions on the variables to be changed, while leaving its causally upstream variables
intact and all downstream causal mechanisms invariant. These counterfactuals are thoroughly non-
backtracking in that the desired change is supposed to happen without tracing back to changes in
causally preceding variables. Reasoning about these counterfactuals can yield valuable insights into
the consequences of hypothetical actions. Consider a scenario: a sudden brake of a high-speed bus
caused Tom to fall and injure Jerry. Non-backtracking counterfactuals would tell us that if Tom had
stood still (despite the sudden braking), then Jerry would not have been injured. Pearl’s approach
supplies a principled machinery to reason about conditionals of this sort, which are usually useful for
explanation, planning, and responsibility allocation.

However, such surgical interventions are sometimes so removed from what are or can be observed
that it is difficult or even impossible to learn from data the consequences of such interventions. In the
previous example, preventing Tom’s fall in a sudden braking scenario requires defying mechanisms
that are difficult or even physically impossible to disrupt. As a result, there are likely to be no data
points in the reservoir of observed scenarios that are consistent with a person standing still during a
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sudden braking. If so, it can be very challenging to learn to generate such a counterfactual from the
available data, as we will demonstrate in our experiments.2

In this paper, we introduce a notion of “natural counterfactuals” to address the above issue with
non-backtracking counterfactuals. Our notion will allow a certain amount of backtracking, to keep the
counterfactual scenario “natural” with respect to the available observations. For example, rather than
the unrealistic scenario where Tom does not fall at a sudden bus stop, a more natural counterfactual
scenario to realize the change to not-falling would involve changing at the same time some causally
preceding events, such as changing the sudden braking to gradually slowing down. On the other
hand, our notion also constrains the extent of backtracking; in addition to a naturalness criterion,
we formulate an optimization scheme to encourage minimizing backtracking while meeting the
naturalness criterion.

As we will show empirically, this new notion of counterfactual is especially useful from a machine
learning perspective. When interventions lead to unrealistic scenarios relative to the training data,
predicting counterfactual outcomes in such scenarios can be highly uncertain and inaccurate [13].
This issue becomes particularly pronounced when non-parametric models are employed, as they
often struggle to generalize to unseen, out-of-distribution data [31]. The risk of relying on such coun-
terfactuals is thus substantial, especially in high-stake applications like healthcare and autonomous
driving. In contrast, our approach amounts to searching for feasible changes that keep generated
counterfactuals within its original distribution, employing backtracking when needed. This strategy
effectively reduces the risk of inaccurate predictions and ensures more reliable results.

In short, our approach aims to achieve the goal of ensuring that counterfactual scenarios remain
sufficiently realistic with respect to the actual data distribution by permitting minimal yet necessary
backtracking. It is designed with two major elements. First, we need criteria to determine the feasibil-
ity of interventions, ensuring they are realistic with respect to the actual data distribution. Second,
we appeal to backtracking when and only when it is necessary to avoid infeasible interventions, and
need to develop an optimization framework to realize this strategy. To be clear, our aim is not to
propose a uniquely correct semantics for counterfactuals or to show that our notion of counterfactuals
is superior to others for all purposes. Rather, our goal is to develop a notion of counterfactual that is
theoretically well-motivated and practically useful in some contexts and for certain purposes. There
may in the end be a general semantics to unify fruitfully our notion and other notions of counterfactual
in the literature, but we will not attempt that in this paper. Our working assumption is that there
can be different but equally coherent notions of counterfactuals, and we aim to show that the notion
developed in this paper is particularly useful for generating counterfactual instances that are feasible
with respect to data.

The key contributions of this paper include:

• Developing a more flexible and realistic notion of natural counterfactuals, addressing the
limitations of non-backtracking reasoning while keeping its merits as far as possible.

• Introducing an innovative and feasible optimization framework to generate natural counter-
factuals.

• Detailing a machine learning approach to produce counterfactuals within this framework,
with empirical results from simulated and real data showcasing the superiority of our method
compared to non-backtracking counterfactuals.

2 Related Work

Non-backtracking Counterfactual Generation. As will become clear, our theory is presented in the
form of counterfactual sampling or generation. [28, 18, 8, 30] use the deep generative models to learn
a causal model from data given a causal graph, and then use the model to generate non-backtracking
counterfactuals. Our experiments will examine some of these models and demonstrate their difficulties
in dealing with interventions that are unrealistic relative to training data, due to the fact that the causal
model learned from data is not reliable in handling inputs that are out-of-distribution.

2Moreover, one may argue that the envisaged counterfactual may be too unnatural to be relevant for practical
purposes. For example, from a legal perspective, Tom’s causing Jerry’s injury could be given a “necessity
defense,” acknowledging that the sudden braking left him with no alternatives [7]. Hence, for the purpose of
allocating responsibility, reasoning about the counterfactual situation of Tom standing still despite the sudden
braking is perhaps irrelevant or even misleading.
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Backtracking Counterfactuals. Backtracking in counterfactual reasoning has drawn plenty of
attention in philosophy [14], psychology [9], and cognitive science [12]. [14] proposes a theory
that is in spirit similar to ours, in which backtracking is allowed but limited by some requirement
of matching as much causal upstream as possible. [12] shows that people use both backtracking
and non-backtracking counterfactuals in practice and tend to use backtracking counterfactuals when
explicitly required to explain causes for the supposed change in a counterfactual. [35] is the first
work, as far as we know, to formally introduce backtracking counterfactuals in the framework of
structural causal models. The main differences between this work and ours are that [35] requires
“full” backtracking given a causal model, all the way back to exogenous noise terms, and measures
closeness in terms of these noise terms, whereas we limit backtracking to what is needed to render
the counterfactual “natural”, and the measure of closeness in our framework can be defined directly
on endogenous, observed variables, which is arguably desirable because changes to the unobserved
variables are by definition outside of our control and not actionable. More detailed comparisions can
be found in Sec. F of the Appendix.

Algorithmic Recourse and Counterfactual Explanations. Algorithmic recourse (AR) [16] and
counterfactual explanations (CE) [36, 10, 23, 3, 24, 34, 32, 37] represent two leading strategies within
explainable AI that heavily exploit counterfactual reasoning or reasoning about intervention effects.
Various studies [16, 1, 27, 15, 37] explore concepts of feasibility akin to that of “naturalness” in this
work, though apply them in quite different contexts. The objectives of CE and AR are to pinpoint
minimal alterations to an input (in CE) or minimal interventions (in AR) that would either induce a
desirable output from a predictive model (in CE) or lead to an desirable outcome (in AR). In contrast,
our work here focuses primarily on generating counterfactuals. While this paper does not directly
address CE or AR, our notion of natural counterfactuals is likely to be very relevant to these tasks.

3 Preliminaries

In this section, we begin by outlining various basic concepts in causal inference, followed by an
introduction to non-backtracking counterfactuals.

Structural Causal Models (SCM). We assume there is an underlying recursive SCM [26] of the
following sort to represent the data generating process. A SCM M := ⟨U,V, f , p(U)⟩ consists of ex-
ogenous (noise) variables U = {U1, ...,UN}, endogenous (observed) variables V = {V1, ...,VN},
functions f = {f1, ..., fN}, and a joint distribution p(U) of noise variables, which are assumed to be
jointly independent. Each function, fi ∈ f , specifies how an endogenous variable Vi is determined
by its parents PAi ⊆ V:

Vi := fi(PAi,Ui), i = 1, ..., N (1)

Such a SCM entails a (causal) Bayesian network over the observed variables, consisting of the
directed acyclic graph over V in which there is an arrow from each member of PAi to Vi, and the
joint distribution of V induced by f and p(U). In our setting, we assume this causal graph is
known and samples from this joint distribution are available, but f and p(U) are not given,
though some assumptions on f and p(U) will be needed for identifiability.

Local Mechanisms. Functions in f are usually regarded as representing local mechanisms. In this
paper, however, we will use the term “local mechanism” to refer to the conditional distribution
of an endogenous variable given its parent variables, i.e., p(Vi|PAi) for i = 1, ..., N , which can
be estimated from the available information. Note that a local mechanism in this sense implicitly
encodes the properties of the corresponding noise variable; given a fixed value of PAi, the noise Ui

determines the probability distribution of Vi [26]. Hence, the term “local mechanism” will also be
used sometimes to refer to the distribution of the noise variable p(Ui).

Intervention. Given a SCM, an intervention on a set of endogenous variables A ⊆ V is represented
by replacing the functions for members of A with constant functions X = x∗, where X ∈ A and x∗

is the target value of X , and leaving the functions for other variables intact [26].3

Non-Backtracking Counterfactuals. Let A, B, and E be sets of endogenous variables. A general
counterfactual question takes the following form: given evidence E = e, what would the value of
B have been if A had taken the value setting a∗? In this paper, we focus on a special case of this
question in which E = V, i.e., the evidence is a complete data point covering all observed variables.

3Following a standard notation, we use a ∗ superscript to signal counterfactual values.
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That is, given an actual date point, we consider what the data point would have been if a variable had
taken a different value than its actual value. The Pearlian, non-backtracking reading of this question
takes the counterfactual supposition of A = a∗ to be realized by an intervention on A [26]. This
means that in the envisaged counterfactual scenario, all variables in the causal upstream of A keep
their actual values while A takes a different value. As mentioned, a potential problem is that such a
scenario is outside of the support of available data, and so it is often unreliable to make inferences
about the downstream variables in the scenario based on the available data.

4 A Framework for Natural Counterfactuals

Do(·) and Change(·) Operators. Using Pearl’s influential do-operator, the non-backtracking
mode appeals to do(A = a∗), an intervention to set the value A to a∗, to generate a counterfactual
instance. However, in our framework, the counterfactual supposition is not necessarily realized by an
intervention on A, while keeping all its causal upstream intact. Instead, when do(A = a∗) results in
a counterfactual setting that violates a naturalness criterion, some backtracking will be invoked. To
differentiate from the intervention do(A = a∗), we will often use change(·) and write change(A =
a∗) to denote a desired modification in A. Different semantics for counterfactuals correspond to
different interpretations of the change-operator. In this paper, we explore an interpretation that
connects the change-operator to the do-operator in a relatively straightforward manner.

The basic idea is that change(A = a∗) will correspond to do(C = c∗) for some set C that
includes A and possibly some of A’s causal ancestors. When C = {A}, this is equivalent to a
non-backtracking interpretation. In general, however, some variables in A’s causal upstream need
to change together with A in order to keep the counterfactual scenario within the relevant support.
A central component of our approach is to design a way to determine C and c∗, given a request of
change(A = a∗). We will call the resulting do(C = c∗) the least-backtracking feasible (LBF)
intervention for change(A = a∗). Once the LBF intervention is determined, inferences can be
made in the same fashion as in Pearl’s approach [26].

To determine the LBF intervention for change(A = a∗), we formulate it as an optimization problem
to search for a minimal change of A’s causal ancestors that, together with changing A to a∗, satisfy a
“naturalness” criterion. Let AN(A) denote the set of A’s ancestors in the given causal graph together
with A itself. We define the optimization framework, Feasible Intervention Optimization (FIO), as
follows:

minimize
an(A)∗

D(an(A), an(A)∗)

s.t. A = a∗,

gn(an(A)∗) > ϵ.

(2)

where an(A) and an(A)∗ represent the actual value setting and the counterfactual value setting of
AN(A) respectively (note that A ⊆ AN(A)). gn(·) measures the naturalness of the counterfactual
value setting of AN(A) and ϵ is a small constant. So the optimization has a naturalness criterion as
a constraint. On the other hand, D(·) is a distance metric designed to encourage the counterfactual
value setting to invoke the least amount of backtracking. Below we develop these two components
in Sec. 4.1 and Sec. 4.2, respectively. Once we obtain the counterfactual value an(A)∗ by FIO, the
variable set for the LBF intervention includes A and other variables corresponding to the difference
between an(A)∗ and an(A), i.e., A is always included in C even when an(A)∗ = an(A).

4.1 Naturalness Constraints

As indicated previously, the intended purpose of the naturalness constraint is to confine the counter-
factual instance sufficiently within the support of the data distribution. Roughly and intuitively, the
more frequently a value occurs, the more it is considered to be “natural”. Moreover, we would like to
use a measure of naturalness that takes into account local mechanisms according to the given causal
graph rather than just the joint distribution. Therefore, we propose to assess naturalness by examining
the distribution characteristics, such as density, of each variable’s value Vj = v∗

j given the variable’s
local mechanism p(Vj |pa∗j ), where Vj ∈AN(A) and pa∗j denotes its parental value setting.4

4The notion of “naturalness” can have various interpretations. In our context, it is defined by the observed
data distribution, as we assume we can only access observed data and intend the counterfactuals to be empirically
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4.1.1 Local Naturalness Criteria

We start by proposing some measures of the naturalness of one variable’s value, v∗
j , within the

counterfactual data point an(A)∗ in this section, followed by defining a measure of the overall
naturalness of an(A)∗ in the next.

Informally, a value satisfies the criterion of local ϵ-natural generation if it is a natural outcome
of its local mechanism. The proposed measures of naturalness will depend on the specific value
Vj = v∗

j , alongside its parent value PAj = pa∗j , noise value Uj = u∗
j , and the corresponding local

mechanism, expressed by p(Vj |PAj = pa∗j ) or p(Uj). The cumulative distribution function (CDF)

for noise variable Uj at Uj = u∗
j is F (u∗

j ) =
∫ u∗

j

−∞ p(Uj)dUj , and for the conditional distribution

p(Vj |PAj = pa∗j ) at Vj = v∗
j is F (Vj |pa∗j ) =

∫ v∗
j

−∞ p(Vj = v∗
j |pa∗j )dVj .

We propose the following potential criteria based on entropy-normalized density, CDF of exogenous
variables, and CDF of conditional distributions, respectively. The entropy-normalized naturalness
measure evaluates the naturalness of v∗

j in relation to its local mechanism p(Vj |PAj = pa∗j ). The
CDF-based measures, namely the latter two criteria, consider data points in the tails to be less
natural. Each of these criteria has its own intuitive appeal, and their relative merits will be discussed
subsequently. Below, we use gl(v

∗
j ) to represent a (local) naturalness measure of v∗

j . We consider
the following three possible measures:

(1) Entropy-Normalized Measure:gl(v∗
j ) = p(v∗

j |pa∗j )eH(Vj |pa∗
j ), where H(Vj |pa∗j ) =

E[− log p(Vj |pa∗j )];

(2) Exogenous CDF Measure: gl(v∗
j ) = min(F (u∗

j ), 1− F (u∗
j ));

(3) Conditional CDF Measure: gl(v∗
j ) = min(F (v∗

j |pa∗j ), 1− F (v∗
j |pa∗j ));

where the function min(·) returns the minimum of the given values. When gl(v
∗
j ) > ϵ, we say the

v∗
j given its causal parents’ values satisfies the criterion of local ϵ-natural generation.

Some comments on these choices are in order:

Choice (1): Entropy-Normalized Measure. Specifically, Choice (1), p(v∗
j |pa∗j )eH(Vj |pa∗

j ), can be
rewritten as elog p(v∗

j |pa
∗
j )+E[− log p(Vj |pa∗

j )], where − log p(v∗
j |pa∗j ) can be seen as the measure of

surprise of v∗
j given pa∗j and E[− log p(Vj |pa∗j )] can be considered as the expectation of surprise

of the local mechanism p(Vj |pa∗j ) [2]. Hence, the measure quantifies the relative naturalness (i.e.,
negative surprise) of Vj . Implementing this measure is usually straightforward when employing a
parametric SCM where the conditional distributions can be explicitly represented.

Choice (2): Exogenous CDF Measure. If using a parametric SCM, we might directly measure
differences on exogenous variables. However, in a non-parametric SCM, exogenous variables are
in general not identifiable, and different noise variables may have different distributions. Still, we
may consider using the CDF of exogenous variables to align the naturalness of different distributions,
based on a common assumption for non-parametric SCMs in the machine learning system. The
assumption is that the support of the local mechanism p(Vj |PAj = pa∗j ) does not contain disjoint
sets, the function fj in the SCM is monotonically increasing with respect to the noise variable Uj ,
which is assumed to follow a standard Gaussian distribution [20]. Data points from the tails of a
standard Gaussian can be thought of as improbable events. Hence, Vj = v∗

j satisfies local ϵ-natural
generation when its exogenous CDF F (u∗

j ) falls within the range (ϵ, 1− ϵ). In practice, for a single
variable, Uj is a one-dimensional variable, and it is easier to enforce the measure than Choice (1),
which involves conditional distributions.

Choice (3): Conditional CDF Measure. The measure treats a particular value in the tails of
local mechanism p(Vj |pa∗j ) as unnatural. Hence, Vj = v∗

j meets local ϵ-natural generation when
F (Vj = v∗

j |pa∗j ) falls within the range (ϵ, 1 − ϵ) instead of tails. This measure can be used in
parametric models where the conditional distribution can be explicitly represented. It can also be
easily used in non-parametric models and the measure is equivalent to Choice (2) when those models

supported. While this is obviously not the only plausible interpretation of naturalness, it is a useful one for our
purpose.
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satisfy the assumption mentioned in Choice (2), since the CDF F (Vj |pa∗j ) has a one-to-one mapping
with the CDF F (Uj), i.e., F (v∗

j |pa∗j ) = F (u∗
j ), when v∗

j = f(pa∗j ,u
∗
j ).

4.1.2 Global Naturalness Criteria

Given a local naturalness measure gl, we simply define a global naturalness measure for an(A)∗ as

gn(an(A)∗) = min
v∗
j∈an(A)∗

(gl(v
∗
j )). (3)

That is, gn(an(A)∗) returns the smallest local naturalness value among members of AN(A). Finally,
we can define a criterion of ϵ-natural generation to assess whether the counterfactual value an(A)∗ is
sufficiently natural.

Definition 1 (ϵ-Natural Generation). Given a SCM containing a set A, let AN(A) contain all
ancestors of A and A itself. A value setting AN(A) = an(A)∗ satisfies ϵ-natural generation, if and
only if, gn(an(A)∗) > ϵ and ϵ is a small constant.

Obviously, a larger value of ϵ implies a higher standard for the naturalness of the counterfactual
value setting an(A)∗. To consider only feasible interventions, we require an(A)∗ to meet ϵ-natural
generation, which is a constraint used in FIO.

4.2 Distance Measure to Limit Backtracking

We now turn to the distance measure in Eqn. 2 of the FIO framework. We considered two distinct
distance measures in this work. The first prioritizes minimizing changes in the observed causal
ancestors of the target variable of the desired change. The second focuses on reducing alterations in
local mechanisms, regarding them as inherent costs of an intervention. Due to space limitations, we
will introduce here only the simpler measure in terms of minimal changes in the observable causal
ancestors. A discussion of the other measure can be found in Sec. G.

For our purpose, the L1 norm is a good choice, as it encourage sparse changes and thus sparse
backtracking:

D(an(A), an(A)∗) = ∥an(A)∗ − an(A)∥1 (4)

where an(A) and an(A)∗ represent the actual value and counterfactual value of A’s ancestors
AN(A) respectively, where A ∈ AN(A). Because endogenous variables may vary in scale, e.g., a
normal distribution with a range of (−∞,∞) versus a uniform distribution over the interval [0, 1],
we standardize each endogenous variable before computing the distance. This normalization ensures
a consistent and fair evaluation of changes.

Implicitly, this distance metric favors changes in variables that are proximal to A, since altering a
more remote variable typically results in changes to more downstream variables. In the extreme
case, when the value an(A)∗ corresponding to do(A = a∗), i.e., the one corresponding to the
non-backtracking counterfactual, already meets the ϵ-natural generation criterion, the distance metric
D(an(A), an(A)∗) will achieve the minimal value |a − a∗|. In such a case, no backtracking is
needed and the non-backtracking counterfactual will be generated. However, If do(A = a∗) does not
meet the ϵ-natural generation criterion, it becomes necessary to backtrack.

4.3 Identifiablity of Natural Counterfactuals

As said, we assume we do not have prior knowledge of the functions of the SCM and so noise
variables are in general not identifiable from the observed variables. However, if we assume the SCM
satisfies the conditions of the following theorem, then the counterfactual instance resulting from a
LBF intervention is identifiable.

Theorem 4.1 (Identifiable Natural Counterfactuals). Given the causal graph and the joint distribution
over V, suppose Vi satisfies the following structural causal model: Vi := fi(PAi,Ui) for any
Vi ∈ V, assume every fi, though unknown, is smooth and strictly monotonic w.r.t. Ui for fixed
values of PAi. Then, given an actual data point V = v, with a LBF intervention do(C = c∗)
(satisfying the criterion of ϵ-natural generation), the counterfactual instance V = v∗ is identifiable:
V = v∗|do(C = c∗),V = v.
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This theorem confirms the identifiability of our natural counterfactuals from the causal graph and the
joint distribution over the observed variables.5 Specifically, since do(C = c∗) satisfies the criterion
of ϵ-natural generation, it guarantees that the resulting counterfactual instance falls within the support
of the observed joint distribution. Then, building on Theorem 1 from [20], we can demonstrate that
using the actual data distribution allows for the inference of natural counterfactuals without knowing
the functions or the noise distributions of the SCM.

5 A Practical Method for Generating Natural Counterfactuals

In this section, we provide a practical method for solving (approximately) the FIO problem described
in the last section. We assume that we are given data sampled from the joint distribution of the
endogenous variables and a causal graph, and that the underlying SCM satisfies the assumptions
in Theorem 4.1. We learn a generative model for the endogenous variables from data, serving as
an estimated SCM to generate natural counterfactuals: Vi := f̂i(PAi,Ui) for i = 1, ..., N , where
f̂i is assumed to be reversible given PAi. Note that, unlike the functions in the true SCM, these
learned functions in general do not generalize well to out-of-distribution data, as demonstrated in
the experiments, which, recall, is a main motivation for employing natural counterfactuals instead.
For simplicity, we assume the noise distribution is standard Gaussian, though the identifiability of
natural counterfactuals only requires that noise variables are continuous and does not depend on
the specific form of the noise distribution. The specific FIO problem we target plugs the distance
measure (Eqn. 4) and the naturalness measure from Choice (3) in Sec. 4.1.1 (or Choice (2), which is
equivalent to Choice (3) given the assumptions) into Eqn. 2:

minimize
an(A)∗

∥an(A)∗ − an(A)∥1

s.t. A = a∗,

ϵ < F (Vj = v∗
j |pa∗j ) < 1− ϵ,∀Vj ∈ AN(A).

(5)

Again, in theory, there may be no solution for an(A)∗ if the naturalness criterion is demanding. In
the extreme case, for example, even when a∗ = a, if ϵ is set so high that the actual instance does not
satisfy the condition of ϵ-natural generation, then no solution exists.

We propose to solve this optimization problem using the following approximate method. Since the
estimated functions f̂j are assumed to be reversible, we can reformulate the problem of searching for
optimal values of the endogenous variables as one of searching for optimal values of the exogenous
noise variables. A feasible approach is to use the Lagrangian method [5] to minimize the following
objective loss:

L(u∗
AN(A)) =

∑
u∗
j∈u∗

AN(A)

|f̂j(pa∗j ,u∗
j )− vj |+ wϵ

∑
u∗
j∈u∗

AN(A)

[max(ϵ− F (u∗
j ), 0) + max(ϵ+ F (u∗

j )− 1, 0)]

s.t. u∗
A = f̂−1

A (pa∗A,a∗)

(6)
where the optimization parameters are the counterfactual values of the noise variables corresponding
to A’s ancestors, u∗

AN(A), and the function max(·) returns the maximum between two values. The
first term is the distance measure in the FIO problem, while the second term implements the constraint
of ϵ-natural generation. The hyperparameter wϵ serves to modulate the penalty imposed on non-
natural values. Notice that, in order to ensure the hard constraint A = a∗, A’s noise value u∗

A is not
optimized explicitly, since the value pa∗A is fully determined by a∗ and other noise values. Hence,
only noise values other than u∗

A are optimized. Further details are provided in Sec. D.

For simplicity, we have focused on the case of “full evidence” in presenting our framework and
method. But it is straightforward to extend the approach to address cases of “partial evidence”, i.e.,
E ̸= V. In such cases, for the generative task, we can simply sample from p(V|E), treating it as full
evidence, and obtain a natural counterfactual from the resulting sample.

5Given a substantial naturalness constraint, there may be one or more solutions for C, or no solution at
all. Which of these is the case can always be identified. The above theorem on identifiability of natural
counterfactuals is concerned only with the cases in which a natural counterfactual exists, meaning that there is at
least one solution for C.
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Table 1: MAE Results on Toy 1 to Toy 4 (Lower MAE is better). To save room, we also write “do”
for “change” for natural counterfactuals.

Dataset Toy 1 Toy 2 Toy 3 Toy 4

do or change do(n1) do(n2) do(n1) do(n1) do(n2) do(n3) do(n1) do(n2)

Outcome n2 n3 n3 n2 n2 n3 n4 n3 n4 n4 n2 n3 n3

Nonbacktracking 0.477 0.382 0.297 0.315 0.488 0.472 0.436 0.488 0.230 0.179 0.166 0.446 0.429
Ours 0.434 0.354 0.114 0.303 0.443 0.451 0.423 0.127 0.136 0.137 0.158 0.443 0.327

4 3 2 1 0 1 2 3 4
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Figure 1: The Visualization Results on Toy 1 (View the enlarged figure in Fig. 3 in the Appendix).

6 Experiments

In this section, we evaluate the effectiveness of our method through empirical experiments on four
synthetic datasets and two real-world datasets.

We propose using the deviations between generated and ground-truth outcomes as a measure of
performance. We expect our natural counterfactuals to significantly reduce errors compared to
non-backtracking counterfactuals. This advantage can be attributed to the effectiveness of our method
in performing necessary backtracking that identifies feasible interventions, keeping counterfactual
values within the data distribution, so that the learned functions are applicable. On the other hand,
non-backtracking counterfactuals often produce out-of-distribution values [13, 31], posing challenges
for generalization using the learned functions.

6.1 Simulation Experiments

We start with four simulation datasets, which we use designed SCMs to generate. Please refer to
the Appendix for more details about these datasets. Let’s first look at Toy 1, which contains three
variables (n1, n2, n3). n1 is the confounder of n2 and n3, and n1 and n2 cause n3.

Experimental Settings. Again, we assume data and a causal graph are known, but not the ground-
truth SCM. We employ normalizing flows to learn a generative model of variables (n1, n2, n3)
compatible with the causal order. Given the pretrained causal model and a data point from the test set
as evidence, we set n1 or n2 as A and randomly sample values from test dataset as counterfactual
values of the target variable n1 or n2. In our natural counterfactuals, we use Eqn. 6 to determine
LBF interventions, with ϵ = 10−4 and wϵ = 104, while in non-backtracking counterfactuals, n1

or n2 is directly intervened on. We report the Mean Absolute Error (MAE) between our learned
counterfactual outcomes and ground-truth outcomes on n2 or/and n3 with multiple random seeds.
Notice there may be no feasible interventions for some changes, as we mentioned in Sec. 5, and
thus we only report outcomes with feasible interventions, which are within the scope of our natural
counterfactuals.

Visualization of Counterfactuals on a Single Sample. We assess the counterfactual outcomes for a
sample (n1, n2, n3) = (−0.59, 0.71,−0.37), given the desired alteration change(n2 = 0.19). For
natural counterfactuals, it is necessary to backtrack to n1 to realize the change. This step ensures
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that the pair (n1, n2) remains within a high-density area of the data distribution. In essence, our
intervention targets the composite variable C = (n1, n2). On the other hand, for non-backtracking
counterfactual, the intervention simply modifies n2 to 0.19 without adjusting n1, making (n1, n2)
out of data support. In Fig. 1 (a), we depict the original data point (yellow), the non-backtracking
counterfactual (purple), and the natural counterfactual (green) for (n1, n2). The ground-truth support
for these variables is shown as a blue scatter plot.

(1) Feasible Intervention VS Hard Intervention. Non-backtracking counterfactuals apply a hard
intervention on n2 (do(n2 = 0.19)), shifting the evidence (yellow) to the post-intervention point
(purple), which lies outside the support of (n1, n2). This shows that direct interventions can result
in unnatural values. Conversely, our natural counterfactual (green) remains within the support of
(n1, n2) due to backtracking and the LBF intervention on (n1, n2).

(2) Outcome Error. We calculate the absolute error between n3’s model prediction and ground-truth
value using either the green or purple point as input for the model p(n3|n1, n2). The error for the
green point is significantly lower at 0.03, compared to 2.31 for the purple point. This lower error
with the green point is because it stays within the data distribution after a LBF intervention, allowing
for better model generalization than the out-of-distribution purple point.

Counterfactuals on Whole Test Set. In Fig. 1 (b), we illustrate the superior performance of our
counterfactual method on the test set, notably outperforming non-backtracking counterfactuals. This
is evident as many outcomes from non-backtracking counterfactuals for n3 significantly diverge from
the y = x line, showing a mismatch between predicted and ground-truth values. In contrast, our
method’s outcomes largely align with this line, barring few exceptions possibly due to learned model’s
imperfections. This alignment is attributed to our method’s consistent and feasible interventions,
enhancing prediction accuracy, while non-backtracking counterfactuals often lead to infeasible results.
Table 1 supports these findings, demonstrating that our approach exhibits a MAE reduction of 61.6%
when applied to n2, compared with the non-backtracking method. Furthermore, our method excels
even when intervening in the case of n1, a root cause, by excluding points that do not meet the
ϵ-natural generation criteria, further demonstrating its effectiveness.

Additional Causal Graph Structures. Our method also shows superior performance on three other
simulated datasets with varied causal graph structures (Toy 2 to Toy 4), as demonstrated in Table 1.

6.2 MorphoMNIST

Table 2: Ablation Study on ϵ (Lower MAE is bet-
ter)

Model ϵ CFs do(t) do(i)
t i t i

V-SCM

- NB 0.336 4.532 0.283 6.556
10−4

Ours
0.314 4.506 0.171 4.424

10−3 0.298 4.486 0.161 4.121
10−2 0.139 4.367 0.145 3.959

H-SCM

- NB 0.280 2.562 0.202 3.345
10−4

Ours
0.260 2.495 0.105 2.211

10−3 0.245 2.442 0.096 2.091
10−2 0.093 2.338 0.083 2.063

As depicted in Fig. 4 (a) of Appendix, t (digit
stroke thickness) causes both i (stroke intensity)
and x (images), with i being the direct cause
of x in MorphoMNIST. In this experiment, mir-
roring those in Section 6.1, we incorporate two
key changes. First, we utilize two advanced
deep learning models, V-SCM [25] and H-SCM
[28]. Although both models are referred to as
“SCM,” they only learn the conditional distri-
butions of endogenous variables and, in theory,
do not capture the functional relationships for
out-of-distribution inputs. Second, due to the
absence of ground-truth SCM for assessing out-
come error, we adopt the counterfactual effec-
tiveness metric from [28, 22]. This involves
training a predictor on the dataset to estimate parent values (t̂, î) from a counterfactual image x
generated by model p(x|t, i) with the input (t, i), and then computing the absolute error |t − t̂| or
|i− î|.
Ablation Study on Naturalness Threshold ϵ. Table 2 demonstrates that our error decreases with
increasing ϵ, regardless of whether V-SCM or H-SCM is used. This trend suggests that a larger ϵ sets
a stricter standard for naturalness in counterfactuals, enhancing the feasibility of interventions and
consequently lowering prediction errors. This improvement is due to that deep-learning models are
more adept at generalizing to high-frequency data [11].
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6.3 3DIdentBOX

Table 3: MAE Results on Weak-3DIdent and Strong-3DIdent
(abbreviated as “Weak” “Strong” for simplicity). Lower
MAE is better. For clarity, we use “Non” to denote Nonback-
tracking.

Dataset - d h v γ α β b

Weak Non 0.025 0.019 0.035 0.364 0.27 0.077 0.0042
Ours 0.024 0.018 0.034 0.349 0.221 0.036 0.0041

Stong Non 0.100 0.083 0.075 0.387 0.495 0.338 0.0048
Ours 0.058 0.047 0.050 0.298 0.316 0.139 0.0047

In this study, we employ two prac-
tical public datasets from 3DIdent-
BOX [4], namely Weak-3DIdent and
Strong-3DIdent, where each image
contains a teapot. Both datasets share
the same causal graph, as depicted
in Fig. 7 (b) of the Appendix, which
includes an image variable x and its
seven parent variables, with a single
variable b and three pairs of variables:
(h, d), (v, β), and (α, γ), where one
is the direct cause of the other in each pair. The primary distinction between Weak-3DIdent and
Strong-3DIdent lies in the strength of the causal relationships between each variable pair, with
Weak-3DIdent exhibiting weaker connections (Fig. 7 (c)) compared to Strong-3DIdent (Fig. 7 (d)).
Our approach mirrors the MorphoMNIST experiments, using H-SCM as the pretrained causal model
with ϵ = 10−3.

Influence of Causal Strength. As Table 3 reveals, our method outperforms non-backtracking on
both datasets, with a notably larger margin in Strong-3DIdent. This increased superiority is due to
a higher incidence of infeasible hard interventions in non-backtracking counterfactuals within the
Strong-3DIdent dataset.

See Appendix for More Details. Please refer to the Appendix for information on datasets, generated
samples on MorphoMNIST and 3DIdentBox, standard deviation of results, settings of model training
and FIO, differences between our natural counterfactuals and related works, and more.

7 Conclusion

Given a non-parametric SCM learned from data and a causal graph, non-backtracking counterfactual
inference or generation may be highly unreliable because the corresponding non-backtracking
intervention can result in a scenario that is far removed from the data based on which the SCM
is learned. To address this issue, we have proposed a notion of natural counterfactuals, which
incorporates a naturalness constraint and aims to keep the counterfactual supposition within the
support of the training data distribution with minimal backtracking. We also developed a practical
method for the generation or inference of natural counterfactuals, the effectiveness of which was
demonstrated by empirical results.

In case it is not already transparent, we have not shown, nor did we intend to argue, that natural
counterfactuals are superior to non-backtracking counterfactuals for all purposes. Non-backtracking
counterfactuals, when correctly inferred, have clear advantages in revealing causal relations between
events and the effects of specific actions. However, as we showed in this paper, in the context of data-
driven counterfactual reasoning, inference or generation of non-backtracking counterfactuals often
go astray due to the challenges of out-of-distribution generalization. Although correct information
about non-backtracking counterfactuals has considerable action-guiding values, using unreliable
information for that purpose is epistemologically and ethically dubious. We intend our framework of
natural counterfactuals to mitigate this kind of risk, though it may appear less elegant theoretically.

Our current method is based on the assumption that the learned functions are invertible. One purpose
of using the assumption is to ensure the identifiability of natural counterfactuals when one only has
access to endogenous variables. If the assumption does not hold, identifiability is not guaranteed.
For example, suppose Y = XU1 + U2 where Y and X are endogenous variables and U1 and U2

are exogenous noises, then the counterfactual outcome will not be identifiable. However, if we also
assume a known distribution of exogenous variables, then our method can be generalized without
assuming invertible functions or independent exogenous variables.

Finally, we hasten to reiterate that we do not claim that the particular distance measures and natural-
ness measures used in this paper are the only choices or among the best. It will be interesting to study
and compare alternative implementations in future work.
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Figure 2: Causal graphs and Scatter Plot Matrices of Toy 1-4. Figure (a) (c) (e) and (g) show causal
graphs of Toy 1-4 respectively. Figure (b) (d) (f) and (h) indicate scatter plot matrices of variables in
Toy 1-4 respectively.

A Datasets and More Experimental Results

In this section, we first provide detailed datasets settings and additional experimental results. Subse-
quently, we present the standard deviation of all experimental outcomes in Sec. A.

A.1 Toy Datasets

We design four simulation datasets, Toy 1-4, and use the designed SCMs to generate 10, 000 data
points as a training dataset and another 10, 000 data points as a test set for each dataset. Fig. 2 shows
causal graphs of Toy 1-4 and scatter plot matrices of test datasets in each dataset. The ground-truth
SCMs of each dataset are listed below.

Toy 1.
n1 = u1 , u1 ∼ N (0, 1) ,

n2 = −n1 +
1

3
u2 , u2 ∼ N (0, 1) ,

n3 = sin [0.25π(0.5n2 + n1)] + 0.2u3 , u3 ∼ N (0, 1) ,

where there are three endogenous variables (n1, n2, n3) and three noise variables (u1, u2, u3). n1 is
the confounder of n2 and n3. n1 and n2 cause n3.

Toy 2.
n1 = u1 , u1 ∼ N (0, 1) ,

n2 = sin [0.2π(n2 + 2.5)] + 0.2u2 , u2 ∼ N (0, 1) ,

where there are two endogenous variables (n1, n2) and two noise variables (u1, u2). n1 causes n2.

Toy 3.

n1 = u1 , u1 ∼ N (0, 1) ,

n2 = −n1 +
1

3
u2 , u2 ∼ N (0, 1) ,

n3 = sin [0.1π(n2 + 2.0)] + 0.2u3 , u3 ∼ N (0, 1) ,

n4 = sin [0.25π(n3 − n1 + 2.0)] + 0.2u4 , u4 ∼ N (0, 1) ,
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where there are four endogenous variables (n1, n2, n3, n4) and four noise variables (u1, u2, u3, u4).
n1 is the confounder of n2 and n4. (n2, n3, n4) is a chain, i.e., n2 causes n3, followed by n4.

Toy 4.

n1 = u1 , u1 ∼ N (0, 1) ,

n2 = −n1 +
1

3
u2 , u2 ∼ N (0, 1) ,

n3 = sin [0.3π(n2 + 2.0)] + 0.2u3 , u3 ∼ N (0, 1) ,

where there are three endogenous variables (n1, n2, n3) and three noise variables (u1, u2, u3).
(n1, n2, n3) is a chain, i.e., n1 causes n2, followed by n3.

Table 4: MAE Results on Toy 1 to Toy 4. For simplicity, we use do operator in the table to save room,
and when natural counterfactuals are referred to, do means change.

Dataset Toy 1 Toy 2 Toy 3 Toy 4

do or change do(n1) do(n2) do(n1) do(n1) do(n2) do(n3) do(n1) do(n2)

Outcome n2 n3 n3 n2 n2 n3 n4 n3 n4 n4 n2 n3 n3

Nonbacktracking 0.477 0.382 0.297 0.315 0.488 0.472 0.436 0.488 0.230 0.179 0.166 0.446 0.429
Ours 0.434 0.354 0.114 0.303 0.443 0.451 0.423 0.127 0.136 0.137 0.158 0.443 0.327

In the main paper, we have explain experiments on Toy 1 in details. As shown in Table 4, our
performance on Toy 2-4 shows big margin compared with non-backtracking counterfactuals since
natural counterfactuals consistently make interventions feasible, while part of hard interventions may
not feasible in non-backtracking counterfactuals.

Visualization Results on Toy 1. In Fig. 3, larger figures are displayed, which are identical to those
shown in Fig. 1, with the only difference being their size.

A.2 MorphoMNIST

The MorphoMNIST comes from [25], where there are 60000 images as training set and 10,000
images as test dataset. Fig. 4 (a) shows the causal graph for generating MorphoMNIST; specifically,
stroke thickness t causes the brightness intensity i, and both thickness t and intensity i cause the digit
x. Fig. 4 (b) show some samples from MorphoMNIST. The ground-truth SCM is as follows:

t = 0.5 + ut , ut ∼ Γ(10, 5) ,

i = 191 · σ(0.5 · ui + 2 · t− 5) + 64 , ui ∼ N (0, 1) ,

x = SetIntensity(SetThickness(ux; t); i) , ux ∼ MNIST ,

where ut, ui, and ux are noise variables, and σ is the sigmoid function. SetThickness( · ; t) and
SetIntensity( · ; i) are the operations to set an MNIST digit ux’s thickness and intensity to i and t
respectively, and x is the generated image.

Table 5: MorphoMNIST results of change(i) or do(i) using V-SCM

Intersection between Ours and NB (NC=1, NB=1) (NC=1, NB=0) (NC=0, NB=1) (NC=0, NB=0)
Number of Intersection 5865 3159 0 975

Nonbacktracking t’s MAE 0.283 0.159 0.460 0.000 0.450
i’s MAE 6.56 3.97 8.95 0.000 14.3

Ours t’s MAE 0.164 0.160 0.171 0.000 0.466
i’s MAE 4.18 4.01 4.49 0.000 14.1

Quantitative Results of change(i) or do(i). We use V-SCM to do counterfactual task of change(i)
(where ϵ = 10−3) or do(i) with multiple random seeds on test set. In Table 5, the first column shows
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Figure 3: The Visualization Results on Toy 1.

the MAE of (t, i), indicating our results outperform that of non-backtracking, since our approach
consistently determine LBF interventions.

The Effectiveness of FIO. Next, we focus on the rest four-column results. In both types of counter-
factuals, we use the same value i in do(i) and change(i). We can calculate which image satisfies
ϵ-natural generation. In the table, “NC” indicates the set of counterfactuals after FIO. Notice that “NC”
set does not mean the results of natural counterfactuals, since some results do still not satisfy ϵ-natural
generation after FIO. “NC=1” mean the set containing data points satisfying ϵ-natural generation and
“NC=0” contains data not satisfying ϵ-natural generation after FIO. Similarly, “NB=1” means the
set containing data points satisfying naturalness criteria in nonbacktracking counterfactuals. (NC=1,
NB=1) presents the intersection of “NC=1” and “NB=1”. Similar logic is adopted to the other three
combinations. The number of counterfactual data points are 10, 000 in two types of counterfactuals.

In (NC=1, NB=1) containing 5865 data points, our performance is similar to the non-backtracking,
since FIO does not do backtracking when hard interventions have satisfied ϵ-natural generation.
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Figure 4: Causal Graph and samples of MorphoMNIST.

In (NC=1, NB=0), there are 3159 data points, which are “unnatural” points in non-backtracking
counterfactuals. After FIO, this huge amount of data points becomes “natural”. Here, our approach
significantly reduces errors, achieving a 62.8% reduction in thickness t and 49.8% in intensity i,
the most substantial improvement among the four sets in Table 5. The number of points in (NC=0,
NB=1) is zero, showing the stability of our algorithm since our FIO framework will change the hard,
feasible intervention into unfeasible intervention. Two types of counterfactuals perform similarly in
the set (NC=0, NB=0), also showing the stability of our approach.

Table 6: Unfeasible solutions per 10,000 instances on MorphoMNIST

ϵ Unfeasible Solutions

1e-4 794
1e-3 975
1e-2 1166

Ablation Study on ϵ. In Table 6 provided, we report the frequency of unfeasible solutions per 10,000
instances on MorphoMNIST, following optimization within the V-SCM framework. The data reveals
a consistent trend: as the value of ϵ increases, the frequency of unfeasible solutions also rises. This
pattern occurs because a higher ϵ corresponds to a stricter standard of naturalness, making it more
challenging to achieve feasible outcomes.

Visualization of Counterfactual Images. Fig. 5 shows counterfactual images (second row), based on
the evidence images (first row), with intended changes on i. The third row illustrates the differences
between evidence and counterfactual images. Focusing on the first counterfactual image from non-
backtracking and natural counterfactuals respectively, in non-backtracking, despite do(i) where
thickness value 4.2 should remain unchanged, the counterfactual image shows reduced thickness,
consistent with the measured counterfactual thickness of 2.6. In contrast, natural counterfactuals
yield an estimated counterfactual thickness (t∗ in MS) closely matching original counterfactual
thickness (t∗ in CF), due to backtracking for a LBF intervention on the earlier causal variable t,
thereby maintaining (t, i) within the data distribution. Observing other images also shows larger
errors in non-backtracking counterfactual images.

A.3 3DIdentBOX

The 3DIdentBOX datasets, first introduced in [4], come with official code for generating customized
versions of these datasets. They consist of images created with Blender, each depicting a teapot with
seven attributes, such as position, rotation, and hue, determined by seven ground-truth variables.

In our experiment with the 3DIdentBOX, which comprises six datasets, we focus on the positions-
rotations-hue dataset. We expand this into two datasets, Weak-3DIdent and Strong-3DIdent. Each
dataset includes seven variables, besides the image variable x, with specifics outlined in Table 7.
Every image features a teapot, with variables categorized into three groups: positions (x, y, z),
rotations (γ, α, β), and hue b, representing seven teapot attributes, as depicted in 7 (a). Fig. 7 (b)
illustrates that both datasets share the same causal graph. It is important to note a distinction between

16



F : t = 4.7; i = 252
CF : t * = 4.7; i * = 82
MS : t * = 2.6; i * = 96

t = 2.1; i = 14

F : t = 1.2; i = 87
CF : t * = 1.2; i * = 224
MS : t * = 2.3; i * = 185

t = 1.1; i = 39

F : t = 1.1; i = 74
CF : t * = 1.1; i * = 179
MS : t * = 1.9; i * = 130

t = 0.7; i = 49

F : t = 4.8; i = 252
CF : t * = 4.8; i * = 110
MS : t * = 2.9; i * = 100

t = 2.0; i = 10

F : t = 1.1; i = 70
CF : t * = 1.1; i * = 194
MS : t * = 2.1; i * = 153

t = 1.0; i = 41

F : t = 1.2; i = 85
CF : t * = 1.2; i * = 215
MS : t * = 2.0; i * = 161

t = 0.8; i = 54

F : t = 5.6; i = 254
CF : t * = 5.6; i * = 97

MS : t * = 3.1; i * = 106
t = 2.4; i = 9

F : t = 5.4; i = 254
CF : t * = 5.4; i * = 97

MS : t * = 2.6; i * = 108
t = 2.8; i = 11

(a) Results of Non-backtracking Counterfactuals

F : t = 4.7; i = 252
CF : t * = 1.4; i * = 82
MS : t * = 1.8; i * = 76

t = 0.4; i = 6

F : t = 1.2; i = 87
CF : t * = 3.1; i * = 224
MS : t * = 3.2; i * = 218

t = 0.1; i = 6

F : t = 1.1; i = 74
CF : t * = 2.7; i * = 179
MS : t * = 2.7; i * = 174

t = 0.0; i = 5

F : t = 4.8; i = 252
CF : t * = 2.3; i * = 110
MS : t * = 2.4; i * = 106

t = 0.2; i = 4

F : t = 1.1; i = 70
CF : t * = 3.1; i * = 194
MS : t * = 3.1; i * = 192

t = 0.0; i = 2

F : t = 1.2; i = 85
CF : t * = 3.0; i * = 215
MS : t * = 2.9; i * = 209

t = 0.1; i = 6

F : t = 5.6; i = 254
CF : t * = 1.7; i * = 97
MS : t * = 2.0; i * = 89

t = 0.3; i = 8

F : t = 5.4; i = 254
CF : t * = 1.6; i * = 97
MS : t * = 2.1; i * = 97

t = 0.5; i = 0

(b) Results of Natural Counterfactuals
Figure 5: Visualization Results on MorphoMNIST: “F” stands for factual values, “CF” for coun-
terfactual values, and “MS” for estimated counterfactual values of (t, i). (∆t,∆i) represents the
absolute errors between counterfactual and estimated counterfactual values of (t, i).

Table 7: Details of variables in 3DIndentBOX. Object refers to teapot in each image. The support of
each variable is [−1, 1]. The real visual range are listed in the column Visual Range.

Information Block Variables Support Description Visual Range

Position
x [-1, 1] Object x-coordinate -
y [-1, 1] Object y-coordinate -
z [-1, 1] Object z-coordinate -

Rotation
γ [-1, 1] Spotlight rotation angle [0◦, 360◦]
α [-1, 1] Object α-rotation angle [0◦, 360◦]
β [-1, 1] Object β-rotation angle [0◦, 360◦]

Hue b [-1, 1] Background HSV color [0◦, 360◦]

Weak-3DIdent and Strong-3DIdent. In Weak-3DIdent, there exists a weak causal relationship between
the variables of each pair, as shown in Fig. 7 (c), whereas in Strong-3DIdent, the causal relationship
is stronger, as depicted in Fig. 7 (d). The distributions of several parent variables of image x in these
datasets are detailed in Table 8.

Visualization on Strong-3DIdent. Fig. 6 displays counterfactuals, with the text above the evidence
images (first row) indicating errors for the counterfactual images (second row). In Fig. 6 (a), it is
evident that some images (second, third and fifth images in particular), generated by non-backtracking
counterfactuals are less recognizable and have larger errors. Conversely, our counterfactual images
exhibit better visual clarity and more distinct shapes, as our natural counterfactuals consistently
ensure feasible interventions, resulting in more natural-looking images.
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Table 8: Distributions in Weak-3DIdent and Strong-3DIdent.Nwt(y, 1) refers to a normal distribution
truncated to the interval [−1, 1] and Nst(y, 1) means a normal distribution truncated to the interval
[min(1, y + 0.2),max(−1, y − 0.2)], where min and max indicate operations that select smaller
and bigger values respectively. Nwt(α, 1) and Nst(α, 1) are identical to Nwt(y, 1) and Nst(y, 1)
respectively. U refers to uniform distribution.

Variables Weak-3DIdent Distribution Strong-3DIdent Distribution
c = (x, y, z) c ∼ (Nwt(y, 1), U(−1, 1), U(−1, 1)) c ∼ (Nst(y, 1), U(−1, 1), U(−1, 1))
s = (γ, α, β) s ∼ (Nwt(α, 1), U(−1, 1),Nwt(z, 1)) s ∼ (Nst(α, 1), U(−1, 1),Nst(z, 1))

b b ∼ U(−1, 1) b ∼ U(−1, 1)

d = 0.26; h = 0.24;
v = 0.23; = 1.02;

= 1.29; = 1.35

d = 0.07; h = 0.06;
v = 0.09; = 0.33;

= 1.51; = 1.80

d = 0.62; h = 0.40;
v = 0.08; = 0.96;

= 0.00; = 1.69

d = 0.02; h = 0.04;
v = 0.58; = 1.12;

= 1.50; = 1.15

d = 0.40; h = 0.14;
v = 0.70; = 1.46;

= 1.58; = 0.13

(a) Results of Non-backtracking Counterfactuals

d = 0.01; h = 0.04;
v = 0.09; = 0.08;

= 0.41; = 0.91

d = 0.11; h = 0.04;
v = 0.06; = 0.07;

= 0.09; = 0.29

d = 0.01; h = 0.02;
v = 0.02; = 0.01;

= 0.04; = 0.30

d = 0.01; h = 0.04;
v = 0.02; = 0.20;

= 0.18; = 0.02

d = 0.04; h = 0.01;
v = 0.04; = 0.12;

= 0.12; = 0.05

(b) Results of Natural Counterfactuals
Figure 6: Visualization Results on Stong-3DIdent.

A.4 Standard Deviation of Experimental Results

This section presents the standard deviation of all experimental results, demonstrating that the standard
deviation for our natural counterfactuals is generally lower. This indicates the increased reliability
of our approach, achieved by necessary backtracking to ensure counterfactuals remain within data
distributions.

Table 9: Standard Deviation of Results on Toy 1 to Toy 4.

Dataset Toy 1 Toy 2 Toy 3 Toy 4

do or change do(n1) do(n2) do(n1) do(n1) do(n2) do(n3) do(n1) do(n2)

Outcome n2 n3 n3 n2 n2 n3 n4 n3 n4 n4 n2 n3 n3

Nonbacktracking 0.00184 0.00628 0.00432 0.00164 0.00448 0.00686 0.00495 0.0112 0.00556 0.00142 0.000514 0.00623 0.00238
Ours 0.00409 0.00684 0.00295 0.00191 0.00116 0.00461 0.00201 0.00504 0.00531 0.00155 0.000235 0.00518 0.00143
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d = 0.85; h = 0.61;
v = 0.19; = 0.60;

= 0.38; = 0.61;
b=-0.76

d = 0.01; h = 0.19;
v = 0.86; = 0.57;

= 0.79; = 0.46;
b=-0.29

d = 0.27; h = 0.72;
v = 0.41; = 0.68;

= 0.92; = 0.15;
b=-0.18

d = 0.74; h = 0.25;
v = 0.20; = 0.38;

= 0.83; = 0.50;
b=0.58

(a) Samples

𝛾

𝛼

𝛽

𝑏

𝑥

𝑣

ℎ

𝑑

(b) Causal Graph

(c) Weak-3DIdent (d) Strong-3DIdent

Figure 7: Samples, Causal Graph, Scatter Plot Matrices of Weak-3DIdent and Strong-3DIdent.

Table 10: Standard Deviation of Results on MorphoMNIST

Intersection between Ours and NB (NC=1, NB=1) (NC=1, NB=0) (NC=0, NB=1) (NC=0, NB=0)
Number of Intersection 39.84 81.43 0.00 54.14

Nonbacktracking t’s MAE 0.00322 0.00172 0.00670 0.000 0.0178
i’s MAE 0.0496 0.0596 0.0508 0.000 0.110

Ours t’s MAE 0.00137 0.00222 0.00157 0.000 0.0149
i’s MAE 0.0359 0.0551 0.0157 0.000 0.0853

Table 11: Standard Deviation of Ablation Study on ϵ Using MorphoMNIST

Model ϵ CFs do(t) do(i)
t i t i

V-SCM

- NB 0.000512 0.0172 0.00322 0.0496
10−4

Ours
0.00159 0.0210 0.00183 0.0561

10−3 0.00124 0.0217 0.00137 0.0359
10−2 0.000954 0.0382 0.000868 0.0556

H-SCM

- NB 0.000915 0.0229 0.000832 0.0245
10−4

Ours
0.000920 0.0178 0.000922 0.0138

10−3 0.000611 0.0206 0.000289 0.0264
10−2 0.000787 0.0244 0.000431 0.0258

Table 12: Standard Deviation of Results on Weak-3DIdent and Stong-3DIdent

Dataset Counterfactuals d h v γ α β b

Weak-3DIdent Nonbacktracking 3.68e-05 0.000133 0.000226 0.00422 0.00310 0.00357 1.29e-05
Ours 4.27e-05 7.22e-05 0.000249 0.00558 0.00278 0.00136 3.33e-05

Stong-3DIdent Nonbacktracking 0.00233 0.000864 0.00127 0.00933 0.00307 0.00452 1.49e-05
Ours 0.00166 0.000774 0.000229 0.00908 0.00955 0.00816 2.97e-05
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B Proof for Theorem 4.1

Theorem 4.1 shows that our natural counterfactuals are identifiable given certain conditions. We
unitize Theorem 1 from [20] to assistant us to prove it, shown as below.
Theorem B.1 (Identifiable Counterfactuals). Given actual distribution p(PAi,Ui), Suppose Vi

satisfies the following function:
Vi := fi(PAi,Ui)

where Ui ⊥ PAi and assume unknown fi is smooth and strictly monotonic w.r.t. Ui for fixed values
of PAi, If we have observed Vi = vi and PAi = pai, with an intervention do(PAi = pa∗i ), where
pa∗i is within the support of p(PAi), the counterfactual outcome is identifiable:

Vi|do(PAi = pa∗i ),Vi = vi,PAi = pai (7)

The theorem is not identical to Theorem 1 from [20], as we incorporate additional assumptions from
[20] in our proof to express it strictly. The proof is as below.

Proof. Step 1. Identifiability of AN(C): Given an intervention do(C = c∗) on the set of variables
C, where AN(C) denotes the ancestors of C including C itself. By definition of the intervention and
the causal graph structure, the value of AN(C) under the intervention do(C = c∗) can be uniquely
determined. This is because the values of ancestors and C are directly set by the intervention, making
their values identifiable.

Step 2. Identifiability of V \AN(C): There are two subsets in V \AN(C). (1) ND: Variables in
V \AN(C) that are not descendants of AN(C). These variables retain their values from the actual
observed data since they are not influenced by the changes in AN(C) due to the causal independence.
(2) DS: Variables in V \AN(C) that are descendants of AN(C). The values of these variables
might change as a result of the intervention due to their causal dependency on AN(C).

Identifiability of ND: The counterfactual values of variables in ND remain as their observed values
in the actual data, as they are causally independent from AN(C). Thus, their values are trivially
identifiable.

Identifiability of DS: The counterfactual values of variables in DS depend on the values of their
parents. For variable set DS1 in DS whose parents only come from ND∪AN(C), their counterfactual
values are identifiable since, by Theorem B.1, counterfactual values of their parent variables are within
the support of the joint distribution. Now, the the set of identifiable variables is DS1 ∪ND∪AN(C).
This allows us to recursively expand the set of identifiable variables. By incorporating variables from
DS whose counterfactual values are identifiable into the set ND∪AN(C), we iteratively enlarge this
set. This process is repeated until all variables in V are included in the set of identifiable variables,
thus establishing the identifiability of their values under the counterfactual scenario induced by the
intervention do(C = c∗).

Conclusion: By proving the identifiability of both AN(C) and all variables in V \AN(C) (split
into ND and DS), we establish that the entire set of endogenous variables V under the intervention
do(C = c∗) is identifiable. This means the values of all variables in V can be determined uniquely
from the intervention and the observed data distribution.

C Causal Model Training

Our study focuses on counterfactual inference and we directly use two state-of-the-art deep-learning
SCM models to learn conditional distributions among variables using a dataset, i.e., V-SCM [25] and
H-SCM [28]. Specifically, we use code of [28] containing the implementation of V-SCM and H-SCM.
Take MorphoMNIST as an example, in both two models, normalizing flows are firstly trained to learn
causal mechanisms for all variables except image x, i.e., (t, i), and a conditional VAE is used to
model image x given its parents (t, i). For V-SCM, the conditional VAE uses normal VAE framework,
while H-SCM uses hierarchical VAE structure [21] to better capture the distribution of images.

Toy Experiments. In the case of four toy experiments, we exclusively employed normalizing flows
due to the fact that all variables are one-dimensional. Our training regimen for the flow-based model
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spanned 2000 epochs, utilizing a batch size of 100 in conjunction with the AdamW optimizer [19].
We initialized the learning rate to 10−3, set β1 to 0.9, β2 to 0.9.

MorphoMNIST. We first train normalized flows to learn causal mechanisms of thickness and intensity
(t, i). Other hyper-parameters are similar to those of toy experiments. Then, we train two VAE-based
models (V-SCM and H-SCM) to learn x given (t, i) respectively. The architectures of the two models
are identical to [28]. V-SCM and H-SCM underwent training for 160 epochs. We employed a batch
size of 32 and utilized the AdamW optimizer. The initial learning rate was set to 1e−3 and underwent
a linear warmup consisting of 100 steps. We set β1 to 0.9, β2 to 0.9, and applied a weight decay of
0.01. Furthermore, we implemented gradient clipping at a threshold of 350 and introduced a gradient
update skipping mechanism, with a threshold set at 500 based on the L2 norm. During the testing,
i.e., counterfactual inference, we test performance on both models respectively, with the normalized
flows.

3DIdentBOX. Similar to experiments on MorphoMNIST, we first train normalized flows. Compared
with V-SCM, H-SCM is more powerful to model complex data like 3DIdentBOX, of which the
size of the image is 64 × 64 × 4. Then, we train H-SCM to capture the distribution of x given its
parents for 500 epochs with a batch size of 32. The hyper-parameters are the same as experiments on
MorphoMNIST.

All the experiments above were run on NVIDIA RTX 4090 GPUs.

D Feasible Intervention Optimization

To implement a particular method, we plug the distance measure (Eqn. 4) and a naturalness constraint
(we use Choice (3) in Sec. 4.1.1 in the experiments) into Eqn. 2 of the FIO framework:

minimize
an(A)∗

∥an(A)∗ − an(A)∥1

s.t. A = a∗,

ϵ < F (Vj = v∗
j |pa∗j ) < 1− ϵ, ∀Vj ∈ AN(A).

(8)

According to the properties of reversible functions in the causal model, endogenous value an(A)∗ is
reversible to noise values u∗

AN(A) of AN(A)∗’s corresponding noise variables. Hence, optimizing
endogenous value is equivalent to optimizing noise value. Then we have:

minimize
u∗
AN(A)

∑
u∗
j∈u∗

AN(A)

|f̂(pa∗A,u∗
j )− vj |

s.t. u∗
A = f̂−1

A (pa∗A,a∗),

ϵ < F (u∗
j ) < 1− ϵ, ∀Uj ∈ UAN(A).

(9)

We finally use the Lagrangian method [5] optimize our objective loss to get the counterfactual value
given actual value and expected change A = a∗ as below:

L(u∗
AN(A)) =

∑
u∗
j∈u∗

AN(A)

|f̂j(u∗
j , pa

∗
j )− vj |+ wϵ

∑
u∗
j∈u∗

AN(A)

[max(ϵ− F (u∗
j ), 0) + max(ϵ+ F (u∗

j )− 1, 0)]

s.t. u∗
A = f̂−1

A (pa∗A,a∗)

(10)
where the optimization parameters are the counterfactual noise values of A’s ancestors, u∗

AN(A), and
the function max(·) returns the maximum value between two given values. The first term represents
the measure of distance between two distinct worlds, while the second term enforces the constraint of
ϵ-natural generation. Here, the constant hyperparameter wϵ serves to penalize noise values situated in
the tails of noise distributions. For simplicity, we use A as subscript as indicator of terms related to
A, instead of number subscript. Notice that, in order to ensure hard constraint A = a∗, A’s noise
value u∗

A is not optimized explicitly, since the value pa∗A is fully determined by a∗ and other noise
values.

Hyper-parameters for Optimization and Judgment for Non-solution Cases. The loss’s parameter
is thus u∗

AN, which fully determines the value an(A)∗ using the pretrained causal model, as explained
in Sec. C. In all experiments, we optimized u∗

AN using the AdamW optimizer at a learning rate of
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10−3 for 50, 000 steps. This approach’s effectiveness is validated by the MorphoMNIST experiments,
as shown in Table 5. As f̂ is not perfectly invertible in practice, it is important to ensure that
|pa∗A− f̂A(u∗

A,a∗)| (where u∗
A = f̂−1

A (pa∗A,a∗)) remains sufficiently small, ideally on the order
of 10−8 according to our experience, to satisfy the constraint condition in Eqn. 10. In our
experience, this deviation |pa∗A − f̂A(u∗

A,a∗)| is typically sufficiently small throughout most
of the optimization process. If not, please adjust hyperparameters, such as the learning rate
and wϵ, to achieve the desired accuracy. Assuming |pa∗A − f̂A(u∗

A,a∗)| is sufficiently small
after optimization, if

∑
u∗

j∈u∗
AN(A)

[max(ϵ − F (u∗
j ), 0) + max(ϵ + F (u∗

j ) − 1, 0)] > 0 holds, this
indicates that the case does not have a solution.

Computational Complexity of FIO. The complexity scales linearly with both the size of the causal
graph, specifically the number of ancestors of A, and the dataset size. Formally, for one counterfactual
query, the overall complexity is O(KPT ), where K is the number of ancestors of A, P is the number
of parameters in the neural networks, and T is the number of optimization steps. If we use each
instance of a whole dataset as evidence and answer one counterfactual query for each instance, the
overall complexity becomes O(KPTM), where M is the number of data points in the dataset. This
linear scaling indicates that FIO is reasonably scalable, making it suitable for large causal graphs and
datasets.

E Differences between Natural Counterfactuals and Non-Backtracking
Counterfactuals [26] or Prior-Based Backtracking Counterfactuals [35]

E.1 Differences between Non-backtracking Counterfactuals and Ours

Non-backtracking counterfactuals only do a direct intervention on A, while our natural counterfactuals
do backtracking when the direct intervention is infeasible. Notice that when the direct intervention
on A is already feasible, our procedure of natural counterfactuals will be automatically distilled to
the non-backtracking counterfactuals. In this sense, non-backtracking counterfactual reasoning is our
special case.

E.2 Differences between Prior-Based Backtracking Counterfactuals and Ours

(1) Intervention Approach and Resulting Changes:

Prior-based Backtracking Counterfactuals: These counterfactuals directly intervene on
noise/exogenous variables, which can lead to unnecessary changes in the counterfactual world.6
Consequently, the similarity between the actual data point and its counterfactual counterpart tends
to be lower. In short, prior-based backtracking counterfactuals may introduce changes that are not
needed.

Natural Counterfactuals: In contrast, our natural counterfactuals only engage in necessary backtrack-
ing when direct intervention is infeasible. This approach aims to ensure that the counterfactual world
results from minimal alterations, maintaining a higher degree of fidelity to the actual world.

(2) Counterfactual Worlds:

Prior-based Backtracking Counterfactuals: This approach assigns varying weights to the numerous
potential counterfactual worlds capable of effecting the desired change. The weight assigned to each
world is directly proportional to its similarity to the actual world. it is worth noting that among this
array of counterfactual worlds, some may exhibit minimal resemblance to the actual world, even
when equipped with complete evidence, including the values of all endogenous variables. This
divergence arises because by sampling from the posterior distribution of exogenous variables, even
highly dissimilar worlds may still be drawn.

6To avoid misleading readers, we clarify why we apply the concept of intervention to exogenous variables.
Prior-based backtracking counterfactuals do not appeal to interventions in the usual Pearlian sense, for those are
restricted to endogenous variables and are associated with breaking endogenous mechanisms. However, formally
speaking, changing the values of exogenous variables is analogous to intervening on exogenous variables, in the
sense that they change those variables without affecting the mechanisms for other variables in the model (the
invariance of the mechanisms for other variables is for many the crucial hallmark of an intervention). In fact,
some authors explicitly advocate applying the notion of intervention to exogenous variables as well [33].
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Natural Counterfactuals: In contrast, our natural counterfactuals prioritize the construction of coun-
terfactual worlds that closely emulate the characteristics of the actual world through an optimization
process. As a result, in most instances, one actual world corresponds to a single counterfactual world
when employing natural counterfactuals with full evidence.

(3) Implementation Practicality:

Prior-based Backtracking Counterfactuals: The practical implementation of prior-based backtracking
counterfactuals can be a daunting challenge. To date, we have been prevented from conducting
a comparative experiment with this approach due to uncertainty about its feasibility in practical
applications. Among other tasks, the computation of the posterior distribution of exogenous variables
can be a computationally intensive endeavor. Furthermore, it is worth noting that the paper [35]
provides only rudimentary examples without presenting a comprehensive algorithm or accompanying
experimental results.

Natural Counterfactuals: In stark contrast, our natural counterfactuals have been meticulously
designed with practicality at the forefront. We have developed a user-friendly algorithm that can
be applied in real-world scenarios. Rigorous experimentation, involving four simulation datasets
and two public datasets, has confirmed the efficacy and reliability of our approach. This extensive
validation underscores the accessibility and utility of our algorithm for tackling specific problems,
making it a valuable tool for practical applications.

F Observations about the Prior-Based Backtracking Counterfactuals [35]

F.1 Possibility of Gratuitous Changes

A theory of backtracking counterfactuals was recently proposed by [35], which utilizes a prior
distribution p(U,U∗) to establish a connection between the actual model and the counterfactual
model. This approach allows for the generation of counterfactual results under any condition by
considering paths that backtrack to exogenous noises and measuring closeness in terms of noise
terms. As a result, for any given values of E = e and A∗ = a∗, it is possible to find a sampled value
(U = u,U∗ = u∗) from p(U,U∗) such that EM(u) = e and A∗

M∗(u∗) = a∗, as described in [35].
This holds true even in cases where V \ E = ∅ and V∗ \A∗ = ∅, implying that any combination
of endogenous values E = e and A∗ = a∗ can co-occur in the actual world and the counterfactual
world, respectively. In essence, there always exists a path (v −→ u −→ u∗ −→ v∗) that connects V = v
and V∗ = v∗ through a value (U = u,U∗ = u∗), where v and v∗ represent any values sampled
from pM(V) and pM∗(V∗), respectively.

However, thanks to this feature, this understanding of counterfactuals may allow for what appears to
be gratuitous changes in realizing a counterfactual supposition. This occurs when there exists a value
assignment U∗ = u∗ that satisfies E∗

M∗(u∗) = e and A∗
M∗(u∗) = a∗ in the same world. In such a

case, intuitively we ought to expect that E∗ = e should be maintained in the counterfactual world
(as in the factual one). However, there is in general a positive probability for E∗ ̸= e. This is due to
the existence of at least one “path" from E = e to any value v∗ sampled from pM∗(V∗|A∗ = a∗)
by means of at least one value (U = u,U∗ = u∗), allowing E∗ to take any value in the support of
pM∗(E∗|A∗ = a∗).

In the case where A∗ = ∅, an interesting observation is that E∗ can take any value within the support
of pM∗(E∗). Furthermore, when examining the updated exogenous distribution, we find that in Pearl’s
non-backtracking framework, it is given by pM∗(U∗|E∗ = e). However, in [35]’s backtracking
framework, the updated exogenous distribution becomes pB(U∗|E = e) =

∫
p(U∗|U)pM(U|E =

e)d(U) ̸= pM∗(U∗|E∗ = e), since using u∗ sampled from p(U∗|U = u) (where u is any value
of U) can result in any value of all endogenous variables V∗. Therefore, [35]’s backtracking
counterfactual does not reduce to Pearl’s counterfactual even when A∗ = ∅.

F.2 Issues with the Distance Measure

In Equation 3.16 of [35], Mahalanobis distance is used for real-valued U ∈ Rm, defined as
d(u∗,u) = 1

2 (u
∗ − u)TΣ−1(u∗ − u). However, it should be noted that the exogenous variables are

not identifiable. There are several issues with using the Mahalanobis distance in this context.
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Firstly, selecting different exogenous distributions would result in different distances. This lack of
identifiability makes the distance measure sensitive to the choice of exogenous distributions.

Secondly, different noise variables may have different scales. By using the Mahalanobis distance,
the variables with larger scales would dominate the distribution changes, which may not accurately
reflect the changes in each variable fairly.

Thirdly, even if the Mahalanobis distance d(u∗,u) is very close to 0, it does not guarantee that the
values of the endogenous variables are similar. This means that the Mahalanobis distance alone may
not capture the similarity or dissimilarity of the endogenous variables adequately.

G Another Type of Minimal Change: Minimal Change in Local Causal
Mechanisms.

Changes in local mechanisms are the price we pay to do interventions, since interventions are from
outside the model and sometimes are imposed on a model by us. Hence, we consider minimal
change in local causal mechanisms in A’s ancestor set AN(A). With L1 norm, the total distance of
mechanisms in AN(A), called mechanism distance, is defined as:

D(uan(A),uan(A)∗) =
∑

uj∈uan(A),u
∗
j∈uan(A)∗

wj |F (uj)− F (u∗
j )| (11)

where uan(A) is the value of A’s exogenous ancestor set UAN(A) when AN(A) = an(A) in the
actual world. uan(A)∗ is the value of UAN(A) when AN(A) = an(A)∗ in the counterfactual world.
D(uan(A),uan(A)∗) represents the distance between actual world and counterfactual world. wj

represents a fixed weight, and F (·) is the Cumulative Distribution Function (CDF). We employ the
CDF of noise variables to normalize distances across various noise distributions, ensuring these
distances fall within the range of [0, 1], as noise distributions are not identifiable.

Weights in the Distance. The noise variables are independent of each other and thus, unlike in
perception distance, the change of causal earlier noise variables will not lead the change of causal
later noise nodes. Therefore, if the weight on difference of each noise variable is the same, the
distance will not prefer less change on variables closer to A. To achieve backtracking as less as
possible, we set a weight wj for each node Uj , defined as the number of endogenous decedents of
Vj denoted as ND(Vj). Generally speaking, for all variables causally earlier than A, one way is
to use the number of variables influenced by particular intervention as the measure of the changes
caused by the intervention. Hence, the number of variables influenced by a variable’s intervention can
be treated as the coefficient of distance. For example, in a causal graph where where B causes A and
C is the confounder of A and B. If change(A = a∗), uA’s and uB’s weight is 1 and 2 respectively.
In this way, variables (e.g., uB) with bigger influence on other variables possess bigger weights and
thus tend to change less, reflecting necessary backtracking.

G.1 Concretization of Natural Counterfactuals: An Example Methodology

A Method Based on Mechanism Distance. We plugin mechanism distance Eqn. 11 into FIO
framework Eqn. 2. Below is the equation of optimization:

min
uan(A)∗

∑
uj∈uan(A),u

∗
j∈uan(A)∗

wj |F (uj)− F (u∗
j )|

s.t. a∗ = fA(pa
∗
A,u∗

A)

s.t. ϵ < F (u∗
j ) < 1− ϵ, ∀u∗

j ∈ uan(A)∗

(12)

Where the first constraint is to achieve change(A = a∗), the second constraint require counterfactual
data point to satisfy ϵ-natural generation given the optional naturalness criteria (3) in Sec. 4.1, and the
optimization parameter is the value uan(A)∗ of noise variable set UAN(A) given AN(A) = an(A)∗.
For simplicity, we use A as subscript as indicator of terms related to A, instead of number subscript.
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In practice, the Lagrangian method is used to optimize our objective function. The loss is as below:

L =
∑

uj∈uan(A),u
∗
j∈uan(A)∗

wj |F (uj)− F (u∗
j )|

+ wϵ

∑
uj∈uan(A),u

∗
j∈uan(A)∗

max((ϵ− F (u∗
j ), 0) + max(ϵ+ F (u∗

j )− 1, 0))

s.t. u∗
A = f−1

A (a∗, pa∗A)

(13)

In the next section, we use Eqn. 13 for feasible intervention optimization across multiple
machine learning case studies, showing that mechanism distance is as effective as perception
distance, as discussed in the main paper.

G.2 Case Study

G.2.1 MorphoMNIST

Table 13: MorphoMNIST results of change(i) or do(i) using V-SCM

Intersection between Ours and NB (NC=1, NB=1) (NC=1, NB=0) (NC=0, NB=1) (NC=0, NB=0)
Number of Intersection 5841 3064 0 1094

Nonbacktracking t’s MAE 0.286 0.159 0.462 0.000 0.471
i’s MAE 6.62 4.00 8.88 0.000 14.2

Ours t’s MAE 0.175 0.159 0.206 0.000 0.471
i’s MAE 4.41 4.00 5.19 0.000 14.2

In this section, we study two types of counterfactuals on the dataset called MorphoMNIST, which
contains three variables (t, i, x). From the causal graph shown in Fig. 8 (a), t (the thickness of digit
stroke) is the cause of both i (intensity of digit stroke) and x (images) and i is the direct cause of x.
Fig. 8 (b) shows a sample from the dataset. The dataset contains 60000 images as the training set and
10000 as the test set.

We follow the experimental settings of simulation experiments in Sec. 6.1, except for two differences.
One is that we use two state-of-the-art deep learning models, namely V-SCM [25] and H-SCM [28],
as the backbones to learn counterfactuals. They use normalizing flows to learn causal relationships
among x’s parent nodes, e.g., (t, i) in MorphoMNIST. Further, to learn p(x|t, i), notice that V-SCM
uses VAE [17] and HVAE [21]. Another difference is that, instead of estimating the outcome with
MAE, we follow the same metric called counterfactual effectiveness in [28] developed by [22], First,
trained on the dataset, parent predictors given a value of x can predict parent values, i.e., (t, i)’s, and
then measure the absolute error between parent values after hard intervention or LBF intervention
and their predicted values, which is measured on image the pretrained causal model generates given
the input of (t, i).

Table 14: Ablation Study on ϵ

Model ϵ CFs do(t) do(i)
t i t i

V-SCM

- NB 0.336 4.51 0.286 6.62
10−4

Ours
0.314 4.48 0.197 4.90

10−3 0.297 4.47 0.175 4.41
10−2 0.139 4.35 0.151 3.95

H-SCM

- NB 0.280 2.54 0.202 3.31
10−4

Ours
0.260 2.49 0.117 2.23

10−3 0.245 2.44 0.103 2.03
10−2 0.0939 2.34 0.0863 1.87

Quantitative Results of change(i) or do(i). We use V-SCM to do counterfactual task of change(i)
(where ϵ = 10−3) or do(i) with multiple random seeds on test set. In Table 13, the first column
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Figure 8: Causal Graph and samples of MorphoMNIST.

shows the MAE of (t, i), indicating our results outperform that of non-backtracking. Next, we focus
on the rest four-column results. In both types of counterfactuals, we use the same value i in do(i) and
change(i). Hence, after inference, we know which image satisfying ϵ-natural generation in the two
types of counterfactuals. In "NC=1" of the table, NC indicates the set of counterfactuals after feasible
intervention optimization. Notice that NC set does not mean the results of natural counterfactuals,
since some results do still not satisfy ϵ-natural generation after feasible intervention optimization.
“NC=1" mean the set containing data points satisfying ϵ-natural generation and “NC=0" contains data
not satisfying ϵ-natural generation after feasible intervention optimization. Similarly, “NB=1" means
the set containing data points satisfying naturalness criteria. (NC=1, NB=1) presents the intersection
of “NC=1" and “NB=1". Similar logic is adopted to the other three combinations. The number of
counterfactual data points are 10000 in two types of counterfactuals.

In (NC=1, NB=1) containing 5841 data points, our performance is similar to the non-backtracking,
showing feasible intervention optimization tends to backtrack as less as possible when hard interven-
tions have satisfied ϵ-natural generation. In (NC=1, NB=0), there are 3064 data points, which are
“unnatural” points in non-backtracking counterfactuals. After natural counterfactual optimation, this
huge amount of data points become “natural”. In this set, our approach contributes to the maximal
improvement compared to the other three sets in Table 13, improving 55.4% and 41.6% on thickness t
and intensity i. The number of points in (NC=0, NB=1) is zero, showing the stability of our algorithm
since our approach will not move the hard, feasible intervention into an unfeasible intervention. Two
types of counterfactuals perform similarly in the set (NC=0, NB=0), also showing the stability of our
approach.

Ablation Study on Naturalness Threshold ϵ. We use two models,V-SCM and H-SCM, to do
counterfactuals with different values of ϵ. As shown in Table 14, our error is reduced as the ϵ
increases using the same inference model, since the higher ϵ will select more feasible interventions.

𝛾

𝛼

𝛽

𝑏

𝑥

𝑣

ℎ

𝑑

(a) Causal Graph (b) Weak Causal Relationship (c) Strong Causal Relationship

Figure 9: Causal graph of 3DIdent and the causal relationships of variables (d, h) in Weak-3DIdent
and Strong-3DIdent respectively.

G.2.2 3DIdentBOX

In this task, we utilize practical public datasets called 3DIdentBOX, which encompass multiple
datasets [4]. Specifically, we employ Weak-3DIdent and Strong-3DIdent, both of which share the
same causal graph depicted in Fig. 9 (b), consisting of an image variable denoted as x and seven
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(a) Results of Non-backtracking Counterfactuals
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(b) Results of Natural Counterfactuals

Figure 10: Visualization Results on Stong-3DIdent.

Table 15: Results on Weak-3DIdent and Stong-3DIdent

Dataset Counterfactuals d h v γ α β b

Weak-3DIdent Nonbacktracking 0.0252 0.0191 0.0346 0.364 0.266 0.0805 0.00417
Ours 0.0241 0.0182 0.0339 0.348 0.224 0.0371 0.00416

Stong-3DIdent Nonbacktracking 0.104 0.0840 0.0770 0.385 0.495 0.338 0.00476
Ours 0.0633 0.0512 0.0518 0.326 0.348 0.151 0.00464

parent variables. These parent variables, denoted as (d, h, v), control the depth, horizon position,
and vertical position of the teapot in image x respectively. Additionally, the variables (γ, α, β)
govern three types of angles associated with the teapot within images, while variable b represents the
background color of the image. As illustrated in Fig. 9 (a), causal relationships exist among three
pairs of parent variables, i.e., (h, d), (v, β) and (α, γ). It is important to note a distinction between
Weak-3DIdent and Strong-3DIdent. In Weak-3DIdent, there exists a weak causal relationship between
the variables of each pair, as shown in Fig. 9 (b), whereas in Strong-3DIdent, the causal relationship
is stronger, as depicted in Fig. 9 (c).

We follow the same experimental setup as in the MophoMNIST experiments. Using an epsilon value
of ϵ = 10−3 we employ the H-SCM as the inference model. We conduct interventions or changes
on the variables (d, β, γ) and the results are presented in Table 15. In both datasets, our approach
outperforms the non-backtracking method, with Strong-3DIdent exhibiting a more significant margin
over the non-backtracking method. This is because the non-backtracking method encounters more
unfeasible interventions when performing hard interventions using Strong-3DIdent.
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Additionally, we perform visualizations on Strong-3DIdent. In Fig. 10, we display counterfactual
outcomes in (a) and (b), where the text above each image in the first row (evidence) indicates the
error in the corresponding counterfactual outcome shown in the second row. In Fig. 10 (a), we present
counterfactual images that do not meet the ϵ-natural generation criteria in the non-backtracking
approach. In contrast, Fig. 10 (b) showcases our results, which are notably more visually effective.
This demonstrates that our solution can alleviate the challenges posed by hard interventions in the
non-backtracking method.
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paper’s contributions and scope?

Answer: [Yes]

Justification: Sec. 1

Guidelines:
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made in the paper.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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Answer: [NA]
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
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