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Kronecker Generative Models for Power Law Patterns in
Real-World Hypergraphs

Anonymous Author(s)

ABSTRACT

Do real-world hypergraphs obey any patterns? Are power-laws
fundamental in hypergraphs as they are in real-world graphs?What
generator can reproduce these patterns? A hypergraph is a gen-
eralization of a conventional graph, and it consists of nodes and
hyperedges, with each hyperedge joining any number of nodes.
Hypergraphs are adept at representing group interactions where
two or more entities interact simultaneously, such as collaborative
research and group discussions.

In a wide range of real-world hypergraphs, we discover power-
law or log-logistic distributions in eight structural properties. To
simulate these observed patterns, we introduce HyRec, a tractable
and realistic generative model leveraging the Kronecker product.
We mathematically demonstrate that HyRec accurately reproduces
both the patterns we observed and typical evolutionary trends
found in real-world hypergraphs. To fit the parameters of HyRec
to large-scale hypergraphs, we design SingFit, a fast and space-
efficient algorithm successfully applied to eleven real-world hyper-
graphs with up to one million nodes and hyperedges.

This paper makes the following contributions: (a) Discoveries:
we identify multiple patterns that real-world hypergraphs obey, (b)
Model: we proposeHyRec, a tractable and realistic model capable of
reproducing real-world hypergraphs efficiently (spec., with fewer
than 1,000 parameters) with the support of SingFit, and (c) Proofs:
we prove that HyRec adheres to these patterns.

1 INTRODUCTION

In the real world, group interactions, such as collaborative research,
co-purchases of items, and group discussions on online platforms,
are prevalent. These are well-represented by hypergraphs, where
each hyperedge indicates a group interaction as a subset of nodes
of any size. Hypergraphs extend conventional graphs, overcoming
their limitation of exclusively modeling pairwise interactions.

What patterns or “laws” shape the structure of real-world hyper-
graphs? While power-laws are fundamental in real-world graphs
[15, 19], are they also prevalent in hypergraphs? To answer this, we
analyze eight power-law properties across eleven real-world hyper-
graphs. First, we confirm the presence of power-laws in previously
identified heavy-tailed distributions, specifically for node pair de-
grees and hyperedge intersection sizes in hypergraphs [13, 24, 27],
by applying linear regression fitting on a log-log scale. We also
reveal that the slopes of these linear regressions are consistent
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within the same domains. Then, we find that the distributions of
node degrees and hyperedge sizes follow log-logistic distributions,
which are mathematically closely related to power-laws. Lastly, we
uncover new power-law patterns related to clustering coefficients,
density, and overlap[27] in hypergraphs.

What mechanisms underlie the complex structures of real-world
hypergraphs, and how can we effectively model them? Inspired by
the Kronecker graph model [29], a successful generative model for
conventional graphs, we introduce HyRec, a new generative model
for hypergraphs. In essence, it yields an incidence matrix, indicating
which nodes belong to which hyperedges, through the Kronecker
power of a small-sized initiator matrix. We mathematically prove
that HyRec yields five structural properties following multinomial
distributions, which can mimic power-law and log-logistic distribu-
tions [5, 10, 29], and simulates evolutionary patterns of real-world
hypergraphs, such as densification and shrinking diameters [24].

Since HyRec generates hypergraphs using Kronecker products
of the initiator matrix, finding the most suitable initiator matrix
to accurately reflect a specific real-world hypergraph is critical for
the model’s success. This poses significant challenges, including
(C1) identifying node correspondences, (C2) ensuring differentiable
generation, and (C3) maintaining computational cost feasible. To
address these challenges, we propose SingFit, a fast and space-
efficient fitting algorithm for HyRec. SingFit (S1) circumvents the
node correspondence issue by aligning singular values, instead
of hyperedge occurrences, (S2) employs Gumbel-Softmax [20] for
continuous approximation of sampling to ensure differentiability,
and (S3) leverages Kronecker product properties by dividing the
full-matrix sampling into smaller matrices, reducing both space
and time requirements.

In various real-world hypergraphs,HyRec, facilitated by SingFit,
demonstrates its efficacy in two practical scenarios: (1) Fitting: gen-
erating hypergraphs that closely replicate real-world hypergraphs
with minimal parameters, and (2) Extrapolation: forecasting their
future growth, offering insights into potential evolutionary trends.
Our contributions are as follows:
• Discoveries: We find out that real-world hypergraphs exhibit

power-law or log-logistic distributions in various properties.
• Model: We propose HyRec, a tractable generative model that

accurately replicates real-world hypergraph properties with a
small number of parameters.

• Proofs: We mathematically prove that HyRec is able to replicate
the discovered realistic power-law and log-logistic distributions
(see Theorem 1 and 2 in Section 5).

For reproducibility, our code and data are available at [1].

2 RELATEDWORK

2.1 Kronecker Graph Models

The Kronecker graph model [29] is recognized for its simplicity
and theoretical depth, offering a lens to understand real network
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Table 1: Comparison of Hypergraph Generative Models.

Our HyRec is the only model that matches all the specs.

HyperCL is labeled as ‘?’ since only analysis of node degrees

and hyperedge sizes is available for it.

No Size Theoretical Not Requiring Extra-

Capability Limit Analysis Detailed Statistics polation

HyperCL [27] ✔ ?

HyperFF [24] ✔ ✔ ✔
HyperPA [13] ✔
HyperLAP [27] ✔
THera [21] ✔ ✔

HyRec ✔ ✔ ✔ ✔

dynamics with a minimal set of parameters. It adeptly mimics
real-world network characteristics, such as heavy-tailed degree,
eigenvalue, and eigenvector distributions, making it a standard for
benchmarks like Graph500 [36]. Due to its tractability, the Kro-
necker graph model has inspired detailed studies on its behavior,
addressing aspects such as degree distributions [39], isolated nodes,
triangles [37, 39], and network connectivity [33]. When applied
to bipartite graphs, the Kronecker graph model reveals patterns
like scaling laws for edge clustering coefficients [42], which are
relevant to our study given the bipartite nature of hypergraphs
in linking nodes to hyperedges. However, our study prioritizes
unique attributes of hypergraphs, such as hyperedge intersection,
extending beyond the insights provided by bipartite graph analysis.

2.2 Fitting Algorithms for Kronecker Graphs

Kronecker graph fitting algorithms employ varied strategies for
model fitting. Maximum-likelihood methods [29] aim to match
edge occurrences, aligning the output adjacency matrix with the
target graph adjacency matrix. In contrast, method-of-moments
estimators [17] focus on matching the counts of edges, triangles, 2-
stars, and 3-stars. A variants using empirically estimated moments
has also been developed [35]. HyperKron [14] targets the matching
of triangle motifs in graphs using 3D tensor Kronecker products.
While it applies to uniform hypergraphs, where all hyperedges are
of equal size, it is not directly suitable for real-world hypergraphs
characterized by diverse hyperedge sizes.

2.3 Properties of Real-World Hypergraphs

Real-world hypergraphs exhibit heavy-tailed distributions for vari-
ous properties, including node degrees [13], hyperedge sizes [24],
intersection sizes [24], singular values of incidence matrices [24],
and node-pair degrees [27]. Moreover, hyperedges in real-world
hypergraphs tend to overlap more significantly [27] with higher
transitivity [21], compared to those in random counterparts. Dy-
namics of time-evolving hypergraphs, including diminishing over-
laps, densification, and shrinking diameters [24], have also been
explored. Specifically, prior studies have examined dynamics re-
garding repetition [4], recency [4], burstiness [6], persistence [6, 9],
ego-network structures [11], and triadic closures among nodes or
hyperedges [3, 28]. For a comprehensive overview of patterns in
real-world hypergraphs, see the survey [26].

2.4 Hypergraph Generators for Realistic

Structural Patterns

Recent efforts to reproduce the structural characteristics of real-
world hypergraphs through generative models focus on various

Table 2: Summary of Real-world Hypergraphs.

Dataset # Nodes # Hyperedges Max. Degree Max. Size

email-Enron 143 10,885 1,327 37
email-Eu 1,005 25,148 8,664 40

contact-primary 242 106,879 2,234 5
contact-high 327 172,035 4,495 5

NDC-classes 1,161 49,726 5,358 39
NDC-substances 5,556 112,919 6,693 187

tags-ubuntu 3,029 271,233 21,004 5
tags-math 1,629 822,059 71,046 5

threads-ubuntu 125,602 192,947 2,332 14
threads-math 176,445 719,792 12,511 21

coauth-geology 1,261,129 1,591,166 1,153 284

aspects, including node subset connectivity [13], modularity [16],
heavy-tailed distributions [24], hyperedge overlaps [27], and tran-
sitivity [21]. Most of them, however, require detailed hypergraph
statistics, such as hyperedge size distributions, as inputs for accurate
reproduction (see Table 1). While HyperFF [24] models temporal
dynamics without requiring any statistics, it struggles to accurately
model hyperedge overlaps [23]. Moreover, the complexity of these
models makes theoretical analysis challenging. Although the HMPA
model [16] offers a theoretical basis, its extensive parameter set
makes fitting to specific real-world hypergraphs challenging.

3 PRELIMINARIES AND DATASETS

In this section, we introduce the preliminaries and real-world hy-
pergraph datasets used throughout the paper.

3.1 Hypergraph and Incidence Matrix

A hypergraph G = (V, E) consists of a set of nodesV = {𝑣1, . . . ,
𝑣𝑁 } and a set of hyperedges E = {𝑒1, . . . , 𝑒𝑀 } ⊆ 2V . Each hyper-
edge 𝑒 ∈ E is a non-empty subset of V . The degree of a node 𝑣 ,
denoted by 𝑑𝑣 , is defined as the number of hyperedges containing
𝑣 . A hypergraph can also be expressed by an incidence matrix

𝐼 (G) ∈ {0, 1}𝑁×𝑀 , where each (𝑖, 𝑗 )-th entry 𝑔𝑖, 𝑗 of 𝐼 (G) is 1 if
and only if the hyperedge 𝑒 𝑗 contains the node 𝑣𝑖 . A path in a
hypergraph is defined as a sequence of hyperedges (𝑒𝑝1 , · · · , 𝑒𝑝𝐿 )
where 𝑒𝑝𝑖 ∩ 𝑒𝑝𝑖+1 ≠ ∅ for every 𝑖 ∈ {1, . . . , 𝐿 − 1}. The distance
between two nodes (𝑣𝑖 , 𝑣 𝑗 ) is defined as the length of a shortest
path (𝑒𝑝1 , · · · , 𝑒𝑝𝐿 ) where 𝑣𝑖 ∈ 𝑒𝑝1 and 𝑣 𝑗 ∈ 𝑒𝑝𝐿 . The diameter

of the hypergraph is the maximum distance between any pairs of
nodes; the effective diameter [31] is the minimum distance within
which 90% or more of node pairs are reachable.

3.2 Kronecker Product and Power

Given two matrices A ∈ R𝑁×𝑀 and B ∈ R𝑃×𝑄 , the kronecker
product A ⊗ B ∈ R𝑁𝑃×𝑀𝑄 is a matrix formed by multiplying B by
each element of A, i.e.,

A ⊗ B :=


𝑎11B · · · 𝑎1𝑀B
.
.
.

. . .
.
.
.

𝑎𝑁 1B · · · 𝑎𝑁𝑀B

 .
We define the 𝐾-th Kronecker power of A as A[𝐾 ] = A[𝐾−1] ⊗ A
and A[1] = A.

2
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(a) Pair Degree Dist. (b) Intersection Size Dist. (c) Singular Value Dist.

(d) Pair Degree (e) Intersection Size (f) Singular Value

Figure 1: Discovery D1: Real-world Hypergraphs Follow

Power-law Distributions. (a)-(c): The distributions of node

pair degrees, intersection sizes, and singular values from

email-Eu fit well with linear regressions on a log-log scale,

indicated by 𝑅2
scores close to 1. (d)-(f): The slopes tend to be

similar within the same domain.

3.3 Power-law and Log-logistic Distributions

Power-lawdistributions are frequently observed in various fields[15,
32]. Mathematically, a quantity 𝑥 follows a power-law distribution
if its probability distribution function is of the form 𝑝 (𝑥) ≈ 𝑥−𝛼 ,
where 𝛼 is a constant. The log-logistic distribution, introduced
in economics[7], occurs when the logarithm of a random variable
(ln𝑥) follows a logistic distribution. A key characteristic of log-
logistic distributions is that the odds ratios [12]1 derived from them
follow power-law distributions, linking the two distributions.

3.4 Datasets

We consider eleven real-world hypergraphs from six different do-
mains [3]: (a) Email [22, 30, 43] with nodes as email accounts
and hyperedges as emails (i.e., the sender and receivers); (b) Con-
tact [34, 41] with nodes as people and hyperedges as group interac-
tions; (c) Drugs (NDC) with nodes as drug substances and classes
and each hyperedge as the group contained in a drug; (d) Tagswith
nodes as tags and hyperedges as questions attached with relevant
tags; (e) Threads with nodes as users and each hyperedge as the
group discussing in a thread; (f) Co-authorship [40] with nodes as
authors and each hyperedge as the coauthors of a publication. We
use all hyperedges in each dataset, without filtering out duplicates
or large-scale hyperedges. Their statistics are given in Table 2.

4 DISCOVERIES

In this section, we discover eight patterns across eleven real-world
hypergraphs (described in Section 3.4), summarized in Figure 1,2
and Table 3. We first uncover (D1) power-law distributions in node
pair degrees, intersection sizes, and singular values of incidence
matrices, with a focus on distribution slopes. Then, we reveal that
(D2) node degrees and hyperedge sizes exhibit log-logistic distri-
butions. Lastly, we discover (D3) additional power-law patterns in
clustering coefficients, density, and overlapness in egonets.
1The odds ratio is defined as OddRatio(𝑥 ) := CDF(𝑥 )

1−CDF(𝑥 ) , where CDF is the cumulative
distribution function.

4.1 D1: Power-law Distributions

Prior studies have revealed that node pair degrees [27], hyper-
edge intersection sizes [24], and singular values [24] exhibit heavy-
tailed distributions. The degree of a node pair 𝑖, 𝑗 is defined as
𝑑 (2) (𝑖, 𝑗) := |𝑒 ∈ E : 𝑖, 𝑗 ⊆ 𝑒 |, i.e., the number of hyperedges con-
taining that pair. Intersection size measures the overlap between
hyperedges 𝑒𝑖 , 𝑒 𝑗 as

��𝑒𝑖 ∩ 𝑒 𝑗 ��, while singular values are derived
from the hypergraph’s incidence matrix (see Section 3.1).2

We extend these findings to eleven real-world hypergraphs, in-
cluding those with duplicated hyperedges. We first evaluate the
fits to power-law or log-normal distributions3 using log-likelihood
ratios (LRs) to compare them against exponential distributions.
Note that log-normal distributions are closely related to power-law
distributions (see Section 3.3). Table 3 shows that the LRs are signif-
icantly greater than zero, indicating that power-law or log-normal
distributions provide a better fit than exponential ones.

For these three distributions, we also evaluate the quality of
linear regression fits (𝑅2 scores) on a log-log scale, commonly used
to test power-law properties [12, 15]. Table 3 and Figure 1 show
high 𝑅2 scores near 1 (i.e., good linear regression fitting on a log-log
scale), confirming power-law behavior. Similar slopes across hyper-
graphs within the same domain suggest domain-based similarities.

4.2 D2: Log-logistic Distributions

Recent studies reveal that both node degrees and hyperedge sizes
exhibit heavy-tailed distributions rather than exponential ones [24].
However, they overlook the observed flatness at lower degrees or
sizes, deviating from perfect power-law distributions. Our analysis
of real-world hypergraphs suggests that, more precisely, both node

degrees and hyperedge sizes follow log-logistic distributions.
Based on the relation between power-law and log-logistic distri-

butions as discussed in Section 3.3, we investigate the odds ratios
for node degrees and hyperedge sizes. Through linear regression
on a log-log scale of these odds ratios, we find that the 𝑅2 scores,
indicative of fit quality, are close to 1. These power-law like distri-
butions of odd ratios, in turn, imply that both node degrees and
hyperedge sizes adhere to log-logistic distributions. Table 3 shows
𝑅2 scores above 0.8 across all real-world hypergraphs (see Figure 2),
with similar slopes within dataset domains.

4.3 D3: Additional Power-law Patterns

We present three new power-law patterns in egonets within real-
world hypergraphs. An egonet for a central node 𝑣 is the set of
hyperedges containing 𝑣 , i.e., Ẽ{𝑣} := {𝑒 ∈ E : 𝑣 ∈ 𝑒}.
Clustering Coefficients.We investigate the count of intersecting
hyperedge pairs relative to the central node’s degree in egonets.
Since all hyperedges in an egonet already share the central node,
we focus on pairs that also share additional nodes. Specifically, we
compute |{{𝑒𝑖 , 𝑒 𝑗 } : {𝑒𝑖 ∩ 𝑒 𝑗 } − {𝑣} ≠ ∅∧ 𝑖 ≠ 𝑗 ∧ 𝑒𝑖 ∈ Ẽ{𝑣} ∧ 𝑒 𝑗 ∈
Ẽ{𝑣} }|. Since this is related to the clustering coefficient in bipartite
graphs [38, 42, 44], reflecting 4-cycle statistics for nodes. we refer
to this as the clustering coefficient (clustering coef.). As shown in
2Given the rapid decay of singular value distributions at the tail, we focus on top 50%
singular values. For larger datasets, spec., tags, threads, and co-authorship, we use top
1,000, 1,000, and 500 singular values, respectively.
3We use a power-law distribution for node pair degrees and log-normal distributions
for intersection sizes and singular values.

3
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Table 3: Discoveries D1-D3: Evaluation of Power-law Fitness. For each dataset, we report the goodness of fit to power-law

using the 𝑅2
score of linear regression on a log-log scale, with the slope of the regression line. For the probability distributions

regarding D1, we also compute log-likelihood ratios (LR) comparing fits to power-law or log-normal distributions against fits

to exponential distributions. 𝑅2
scores over 0.8, slopes with p-values under 0.05, and positive LRs are highlighted in bold.

Dataset

D1. Power-law Dist. D2. Log-logistic Dist. D3. Power-law Patterns

Pairdegree Intersection Singular Value Degree Size Clustering Coef. Density Overlapness

𝑅2 Slope LR 𝑅2 Slope LR 𝑅2 Slope LR 𝑅2 Slope 𝑅2 Slope 𝑅2 Slope 𝑅2 Slope 𝑅2 Slope

email-Enron 0.8 -1.1 13 0.9 -5.1 22 1.0 -0.4 44 1.0 1.3 1.0 3.6 1.0 2.0 0.1 0.5 0.2 0.6

email-Eu 0.9 -1.4 1 0.9 -3.4 212 0.9 -0.4 158 1.0 0.7 0.9 2.0 0.9 1.8 0.8 1.2 0.8 1.3

contact-primary 0.9 -1.4 2 0.9 -8.8 8 0.9 -0.2 107 1.0 2.6 1.0 9.7 0.8 1.9 0.8 1.0 0.8 1.0

contact-high 0.8 -0.9 24 0.9 -7.7 20 0.9 -0.3 120 1.0 1.5 0.9 10.0 0.9 2.1 0.8 1.5 0.8 1.5

NDC-classes 0.6 -0.8 6 0.8 -4.7 6 0.9 -1.0 26 1.0 0.7 1.0 3.1 0.9 1.9 0.2 0.6 0.6 1.0

NDC-substances 0.8 -1.7 6 1.0 -3.9 40 1.0 -0.5 144 1.0 0.9 0.9 1.8 0.6 1.6 0.5 0.8 0.9 1.2

tags-ubuntu 0.8 -1.4 35 0.9 -6.8 17 1.0 -0.6 184 1.0 0.9 1.0 2.2 0.9 1.8 1.0 1.5 1.0 1.5

tags-math 0.8 -1.1 36 0.9 -8.1 5 1.0 -0.7 176 1.0 0.8 1.0 2.4 1.0 1.8 0.9 1.8 0.9 1.7

threads-ubuntu 0.9 -2.6 3 1.0 -9.5 3 1.0 -0.4 148 1.0 1.1 1.0 5.1 0.8 1.4 1.0 1.0 1.0 1.1

threads-math 0.9 -2.4 15 1.0 -10.2 16 1.0 -0.4 241 1.0 1.0 1.0 4.9 0.9 1.6 1.0 1.0 1.0 1.1

coauth-geology 1.0 -3.2 54 1.0 -4.5 13 1.0 -0.1 165 0.9 1.9 1.0 3.1 0.9 1.7 0.9 1.0 1.0 1.1

(a) Degree (b) Size (c) Clustering Coef. (d) Desity (e) Overlapness

Figure 2: Discoveries D2 and D3: Real-world Hypergraphs Follow Log-logistic Distributions and Exhibit Power-law Patterns.

(a)-(b): The odds ratio functions of node degrees and hyperedge sizes are linear on a log-log scale, indicated by 𝑅2
scores over

0.9. (c)-(e): The distributions of clustering coefficients, egonet density, and overlapness are also well-fitted by linear regression

on a log-log scale. These distributions are from email-Eu.

Table 3 and Figure 2, the distribution of intersecting hyperedge pairs
relative to the central node’s degree follows a power-law pattern.
It fits well with linear regression on a log-log scale with high 𝑅2

scores close to 1.0 and slopes around 2.0, indicating a consistent
intersection rate across egonets.
Density and Overlapness of Egonets. We further examine the
relationship between the numbers of hyperedges and nodes within
egonets. As illustrated in Table 3 and Figure 2, this relationship fits
well with a linear regression model in a log-log scale, exhibiting a
slope greater than 1. Given that the density [18, 27] of an egonet
is defined as the ratio of the number of hyperedges to the number
of nodes (i.e., |Ẽ{𝑣} |/|

⋃
𝑒∈ Ẽ{𝑣} 𝑒 |), our findings suggest the egonet

density increases as the node count grows, with the rate of increase
mirrored by the regression slope. We also examine the sum of
hyperedge sizes in relation to the node count within egonets, which
reveals a power-law pattern. The overlapness of egonets [27],
defined as the ratio of the sum of hyperedge sizes to the number
of nodes (i.e., (∑

𝑒∈ Ẽ{𝑣} |𝑒 |)/|
⋃
𝑒∈ Ẽ{𝑣} 𝑒 |), also increases with more

nodes, influenced by the slope. The slopes close to 1 indicate a slow
rate of such increase in real-world hypergraphs.

5 PROPOSED HYPERGRAPH GENERATOR

In the previous section, we could observe multiple power-law pat-
terns in real-world hypergraphs. Inspired by the Kronecker graph
model [29], which is proven to produce multiple power-law pat-
terns for conventional graphs, we introduce HyRec, a tractable
and realistic hypergraph generative model.

5.1 Description of HyRec

We define the Kronecker product of two hypergraphs as the Kro-
necker product of their incidence matrices (see Section 3). For hy-
pergraphs G andH with incidence matrices 𝐼 (G) and 𝐼 (H), their
Kronecker product G ⊗H is the hypergraph with incidence matrix
𝐼 (G) ⊗ 𝐼 (H). Based on this, we presentHyRec, a hypergraph model
using the Kronecker product. Given an initiator hypergraph G and
order 𝐾 , HyRec(G, 𝐾) := G [𝐾 ] is the hypergraph with 𝐼 (G) [𝐾 ] ,
the 𝐾-th Kronecker power (see Section 3) of 𝐼 (G).
5.2 Theoretical Characteristics of HyRec

In this section, we derive several theoretical characteristics of
HyRec, including multinomial distributions across various struc-
tural measures and evolutionary patterns that mirror those in real-
world hypergraphs. This tractability is valuable, allowing for easier
analysis and a better understanding of HyRec’s behavior. It also
facilitates parameter fitting (see Section 6.2).
Preliminary: Multinomial Distributions.Multinomial distribu-
tions are a generalization of binomial distributions. The param-
eters of a multinomial distribution are (1) 𝑘 for the number of
event types, (2) 𝑛 for the number of (independent) trials, and (3)
𝑝𝑖 for the probability for the 𝑖-th event occurring at each trial, for
each 𝑖 ∈ {1, · · · , 𝑘}, where ∑𝑘

𝑖=1 𝑝𝑖 = 1. After 𝑛 independent tri-
als, the probability for the 𝑖-th event occurring exactly 𝑐𝑖 times
for every 𝑖 ∈ {1, · · · , 𝑘}, where 𝑐1, · · · , 𝑐𝑘 ≥ 0 and

∑𝑘
𝑖=1 𝑐𝑖 = 𝑛, is

𝑛!
𝑐1!· · ·𝑐𝑘 !𝑝

𝑐1
1 · · · 𝑝

𝑐𝑘
𝑘
. It is a well-known fact that, with a careful choice

of the parameters, multinomial distributions behave similarly to
log-logistic and power-law distributions [5, 10, 29].
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Structural Patterns. We prove that HyRec creates hypergraphs
with several statistics following multinomial distributions. As men-
tioned above, multinomial distributions resemble log-logistic and
power-law distributions, which are commonly observed in real-
world hypergraphs (refer to Section 4).

Theorem 1. HyRec(G, 𝐾) has multinomial distributions of (1)
degrees, (2) hyperedge sizes, (3) pair degrees, and (4) intersection sizes.
Proof. Refer to Appendix A.2 for the proof. ■

Theorem 2. In HyRec (G, 𝐾), both singular values and singular
vectors of its incidence matrix follow multinomial distributions.
Proof. Refer to Appendix A.3 for the proof. ■

Evolutionary Patterns. We prove the evolutionary patterns of
HyRec, focusing on changes in density and (effective) diameter as
the exponent 𝐾 of the Kronecker power increases, which can be
considered as the hypergraph’s growth over time.

Theorem 3. InHyRec(G, 𝐾) where 𝐼 (G) ∈ {0, 1}𝑁1×𝑀1 exhibits
a 1 : log𝑀1

log𝑁1
power-law relationship between the number of nodes and

the number of hyperedges as 𝐾 increases.
Proof. Refer to Appendix A.4 for the proof. ■

Theorem 4. If the initiator hypergraph G has a diameter 𝐷 , the
diameter of HyRec(G, 𝐾) is exactly 𝐷 .
Proof. Refer to Appendix A.5 for the proof. ■

Theorem 5. If the initiator hypergraph G has a diameter𝐷 , then
the effective diameter of HyRec(G, 𝐾) converges to 𝐷 as 𝐾 increases.
Proof. Refer to Appendix A.6 for the proof. ■

5.3 Stochastic HyRec: Stochastic Version

We have so far applied the Kronecker power approach to a binary
initiator matrix, which always produces the same hypergraph, limit-
ing variability, a key property for (hyper)graph models in tasks like
statistical testing [35]. To address this, we introduce a stochastic
version of HyRec. Starting with an initiator matrixΘ ∈ [0, 1]𝑁1×𝑀1 ,
we compute Θ[𝐾 ] , where each (𝑖, 𝑗)-th entry represents the proba-
bility of the 𝑖-th node being part of the 𝑗-th hyperedge.We then sam-
ple a hypergraph G̃ by independently performing Bernoulli trials
on each entry of Θ[𝐾 ] , generating a binary incidence matrix 𝐼 (G̃)
of G̃. Appendix D provides examples showing how different prob-
abilistic initiator matrices, including community and core-fringe
structures, produce hypergraphs with diverse properties.

6 SINGFIT: FITTING TO REAL-WORLD

HYPERGRAPHS

In the preceding analysis, we demonstrate that HyRec can replicate
the diverse properties of real-world hypergraphs. But how can we
generate a Kronecker hypergraph that closely resembles a specific real-
world hypergraph? Specifically, how can we identify an initiator
matrix (i.e.,Θ) that captures the underlyingmechanisms? To answer
this, we explore fitting the initiator matrix to the target hypergraph.
Throughout this section, we focus on the stochastic version of
HyRec, referred to simply as HyRec.

6.1 Challenges in Fitting HyRec

Fitting an initiator matrix poses the following challenges:

C1. Computational Cost of Alignment. Identifying correspon-
dences between nodes or hyperedges of input and generated hyper-
graphs requires considering all possible ( |V|! × |E|!) permutations
of nodes and hyperedges. Thus, directly aligning incidence matrices
faces computational challenges.
C2. Non-Differentiability of Generation.The stochastic version
of HyRec uses probability matrices (i,e., Θ[𝐾 ] ) to generate hyper-
graphs, independently drawing each entry to form binary matrices
(i.e., 𝐼 (G̃)). This process causes a discrepancy between the charac-
teristics (e.g., singular values) of probability matrices and those of
binarized matrices. Additionally, the non-differentiable nature of
the sampling process poses challenges for parameter fitting.
C3. Density of Probability Matrix. Naively sampling a hyper-
graph G̃ from the probability matrix Θ[𝐾 ] leads to high computa-
tional and memory overhead, as Bernoulli sampling must be applied
to every possible connection between nodes and hyperedges, re-
sulting in a complexity of 𝑂 ( |V||E |).

6.2 Strategies for Overcoming Fitting

Challenges with SingFit

We propose SingFit, an initiator-matrix fitting algorithm that ad-
dresses the above challenges with three solutions.
S1: Singular-Value Matching.To avoid high alignment costs (Chal-
lenge C1), we aim to match statistics that do not require aligning
nodes and hyperedges between input and generated hypergraphs.
One of the statistics is the incidence-matrix singular values of the
input hypergraph G and the generated hypergraph G̃ (singular
values are invariant to the row and column orders), quantified by
the following loss function:

L𝜎 =
∑︁ |𝜎 (G) |

𝑖=1

(
𝜎 (G)𝑖 − 𝜎 (G̃)𝑖

)2
/|𝜎 (G) | (1)

Here, 𝜎 (·) is a function that computes the singular values of the
incident matrix of a given hypergraph, sorted in descending order.
The symbol |𝜎 (G) | represents the number of singular values, i.e.,
the rank of the incident matrix of G.

To further improve the model’s ability, we include additional
loss terms Ld and Ls to learn the distributions of node degrees
and hyperedge sizes. Here, d (·) and s(·) compute the node degrees
and hyperedge sizes, respectively, sorted in descending order. Since
sorted, they are independent of node and hyperedge alignments.
As a result, we fit the initiator matrix by minimizing the combined
loss function L = L𝜎 + 𝜆dLd + 𝜆sLs , where 𝜆d and 𝜆s are positive
weights controlling the influence of Ld and Ls respectively. Our
preliminary experiments reveal that these additional terms are es-
pecially effective for hypergraphs with small hyperedges, including
those from the contact or tag domains.
S2: Differentiable Sampling with Gumbel-Softmax.To address
the discrepancy between the probability matrixΘ[𝐾 ] and the binary
incidence matrix 𝐼 (G̃), which is generated after the fitting process
(Challenge C2), we propose the use of Gumbel-Softmax [20]. It
bridges the gap by simulating the generation process during pa-
rameter fitting, ensuring the model’s output aligns more closely
with the target binary-valued structure.

Formally, we derive a differentiable binary matrix 𝑋 from a
probability matrix 𝑋 of the same size as follows:
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𝑋 ′𝑖, 𝑗
(𝑐 )

=

exp
(

log(𝑋𝑖,𝑗 )+𝑔 (𝑐 )𝑖,𝑗
𝜏

)
exp

(
log(1−𝑋𝑖,𝑗 )+𝑔 (0)𝑖,𝑗

𝜏

)
+ exp

(
log(𝑋𝑖,𝑗 )+𝑔 (1)𝑖,𝑗

𝜏

) ,
𝑋𝑖, 𝑗 = argmax𝑐∈{0,1}

(
𝑋 ′𝑖, 𝑗
(𝑐 )

)
+ 𝑋 ′𝑖, 𝑗

(1) − sg
(
𝑋 ′𝑖, 𝑗
(1)

)
.

Here, 𝑋 ′
𝑖, 𝑗
(𝑐 ) represents the probability of the sampled (𝑖, 𝑗)-th

element being 𝑐 ∈ {0, 1}, and 𝑔 (𝑐 )
𝑖, 𝑗

is a random sample drawn inde-
pendently from the Gumbel(0, 1) distribution for each entry (𝑖, 𝑗)
and 𝑐 ∈ {0, 1}. The softmax temperature 𝜏 controls the closeness
of entries to binary values. The stop gradient operator sg ensures
𝑋𝑖, 𝑗 takes binary values, while allowing gradient calculation as
▽𝑋𝑋𝑖, 𝑗 = ▽𝑋𝑋 ′𝑖, 𝑗

(1) . Thus this solves Challenge C2.
S3: Acceleration Using Kronecker Product Properties. To ad-
dress high computational costs of handling the probability matrix
Θ[𝐾 ] (Challenge C3), we leverage Kronecker product properties
of distributions of singular values, node degrees and hyperedge
sizes. In the proofs of Theorem 1 (see Appendix A.2) and Theo-
rem 2 (see Appendix A.3), we show that these properties of the
Kronecker hypergraph can be expressed as kronecker powers of the
corresponding properties of the initiator hypergraph. This allows
us to approximate these properties sampled from Θ[𝐾 ] using unit
sampling, where we decompose the Kronecker power to the 𝐾 into
𝐿 units with smaller exponents and compute the properties sampled
from these smaller units.

Formally, when 𝐼 (G) can be decomposed using SVD as 𝐼 (G) =
U1Σ1V⊤1 , the singular values Σ𝐾 of 𝐼 (G) [𝐾 ] , are expressed as:

Σ𝐾 = (Σ1 ⊗ Σ1 ⊗ · · · ⊗ Σ1)︸                     ︷︷                     ︸
𝐾 times

= Σ[𝐾 ]1 (∵ 𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑥 𝐴.3)

= (Σ1 ⊗ · · · ⊗ Σ1)︸              ︷︷              ︸
S1 times

⊗ (Σ1 ⊗ · · · ⊗ Σ1)︸              ︷︷              ︸
S2 times

⊗ · · · ⊗ (Σ1 ⊗ · · · ⊗ Σ1)︸              ︷︷              ︸
S𝐿 times

= Σ[S1 ]
1 ⊗ Σ[S2 ]

1 ⊗ · · · ⊗ Σ[S𝐿 ]1 (where
∑︁𝐿

𝑖=1
S𝑖 = 𝐾)

= ΣS1 ⊗ ΣS2 ⊗ · · · ⊗ ΣS𝐿 ,

Here, 𝐿 is the number of units each with size S𝑖 . Thus, we ap-
proximate the singular values Σ𝐾 sampled from Θ[𝐾 ] by calcu-
lating the singular values ΣS𝑖 sampled from smaller Θ[S𝑖 ] and
then compute their kronecker products. This substantially reduces
the computational complexity from 𝑂 (min(𝑁 2

1 𝑀1, 𝑁1𝑀2
1 )
𝐾 ) to

𝑂 (𝐿 ·min(𝑁 2
1𝑀1, 𝑁1𝑀2

1 )
𝐾/𝐿) (refer to Section 7.4 for empirical re-

sults and Appendix B for complexity analysis). The same approach
can be applied to compute node degrees and hyperedge sizes; see
our finding in the proof of Theorem 1 (Appendix A.2).

6.3 Description of SingFit

Algorithms 1 and 2 outline the fitting and generation procedures,
respectively. The process involves sampling (i.e., binarizing) unit
matrices across 𝐿 iterations, where 𝐿 = 1 represents the naive ap-
proach using the full probabilistic matrix. When fitting the initiator,
we employ the Gumbel-Softmax technique for sampling, which
enables gradient calculation. Singular values are computed from
these sampled matrices and combined using Kronecker products

Algorithm 1: Initiator Fitting of HyRec: SingFit
Input : (1) Incidence matrix of hypergraph G ∈ R𝑁 ×𝑀 ,

(2) Size of the initiator matrix 𝑁1 and𝑀1,
(3) Number of units 𝐿,
(4) Number of iterations 𝐸

Output : Initiator Θ ∈ R𝑁1×𝑀1

1 𝐾 =
⌈
𝑀𝐴𝑋 (𝑙𝑜𝑔𝑁1𝑁, 𝑙𝑜𝑔𝑀1𝑀 )

⌉
2 S← GenerateUnitSizes(𝐾, 𝐿) ⊲ See below
3 �̃� ← I1×1

4 Θ← 𝑠𝑜 𝑓 𝑡𝑝𝑙𝑢𝑠 (Θ𝑖𝑛𝑖𝑡 ) where Θ𝑖𝑛𝑖𝑡 ∼ U(R)
5 for each epoch 𝑒 = 1, · · · , 𝐸 do

6 for each unit 𝑖 = 1, · · · , 𝐿 do

7 Θ̂[S𝑖 ] ← GumBel(Θ[S𝑖 ] )
8 �̃� ← �̃� ⊗ 𝜎 (Θ̂[S𝑖 ] ) ⊲ 𝜎 ( ·) computes singular values
9 d̃ ← d̃ ⊗ d (Θ̂[S𝑖 ] ) ⊲ d ( ·) computes node degrees

10 s̃← s̃ ⊗ s (Θ̂[S𝑖 ] ) ⊲ s ( ·) computes hyperedge sizes

11 Update Θ by ▽Θ L(= L𝜎 + 𝜆dLd + 𝜆sLs) ⊲ Eq. (1)

12 return Θ

1 GenerateUnitSizes(𝐾, 𝐿)
2 S← List of length 𝐿
3 for each unit 𝑖 = 1, · · · , 𝐿 do

4 S𝑖 ←
⌊
𝐾
𝐿

⌋
5 if 𝑖 ≤ 𝑚𝑜𝑑 (𝐾, 𝐿) then S𝑖 ← S𝑖 + 1 ;

6 return S ⊲ Ensures that
∑𝐿
𝑖=1 S𝑖 = 𝐾

Algorithm 2: Hypergraph Generation in HyRec
Input : (1) Initiator matrix Θ ∈ R𝑁1×𝑀1 ,

(2) order 𝐾 ,
(3) Number of units 𝐿

Output :A generated hypergraph G̃

1 S← GenerateUnitSizes(𝐾, 𝐿) ⊲ Algorithm 1
2 for each unit 𝑖 = 1, · · · , 𝐿 do

3 Θ̂[S𝑖 ] ← Sample i.i.d. from Θ[S𝑖 ]

4 G̃← G̃ ⊗ Θ̂[S𝑖 ]

5 return G̃

to produce the complete singular value set. Node degrees and hy-
peredge sizes are computed similarly. For the generation phase,
when the sampled unit incidence matrices are sparse, we focus
on ‘1’ entries to improve computational and memory efficiency.
Efficiency-related experimental results are presented in Section 7.4
and Appendix G, while a detailed complexity analysis can be found
in Appendix B (Table 7 and 8). In all experiments, we use at least
two units (i.e., 𝐿 ≥ 2) and maintain the same number of units (𝐿)
for both training and generation.

7 EXPERIMENTAL RESULTS

In this section, we review our experiments, whose results demon-
strate the effectiveness of HyRec.

7.1 Experimental Settings

Competitors.We consider 5 baseline generators: HyperCL [27],
HyperFF [23],HyperPA [13],HyperLap [27], and THera [21],
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Table 4: HyRec Fits Real-World Hypergraphs

(a) HyRec obeys the patterns in Section 4: HyRec (green) closely resembles the properties of real-world hypergraphs (black).

Degree Size Pair Degree Intersection Singular Value Clustering Coef. Density Overlapness
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(b) HyRec is accurate and parsimonious: Across eleven datasets, HyRec ranks within the top three for most properties and ranks second on average. It
has the second-fewest input parameters, following HyperFF, which ranks last. Note that the top-performing model requires three orders of magnitude

more parameters than HyRec. The best, second-best, and third-best performance are highlighted in blue, green, and yellow, respectively.
# Input Parameters Average Ranking (Across 11 Hypergraph Datasets)

Min Max Degree Size

Pair

Intersect.

Singular Clustering

Density Overlapness

Effective

Average

Deg. Value Coef. Diam.

HyperCL 11,028 2,852,295 1.455 1.000 3.455 4.909 2.364 4.545 3.636 4.364 3.455 3.242
HyperFF 2 2 4.909 4.818 5.000 4.273 5.182 4.182 4.273 3.909 3.818 4.485
HyperPA 11,028 2,852,295 3.000 3.727 3.000 4.273 4.545 4.636 4.000 4.273 3.545 3.889
HyperLAP 11,028 2,852,295 2.636 1.000 2.636 1.636 3.182 1.364 3.273 2.727 4.727 2.576

THera 10,889 1,591,170 4.909 4.091 3.091 2.364 4.545 2.636 3.273 3.182 3.909 3.556

HyRec 15 882 4.091 4.818 3.818 3.545 1.182 3.636 2.545 2.545 1.545 3.081

(a) Fitting (b) Extrapolating

Figure 3: HyRec Demonstrates Superior Performance with

Fewer Input Parameters:HyRec performswell in fitting and

extrapolating real-world hypergraphs with a relatively small

number of input parameters (in terms of the number of

scalars), proving its efficiency and effectiveness. The rank-

ings are averaged over all 9 patterns and 11 real-world hy-

pergraphs, with lower values indicating better performance.

with their features summarized in Table 1. HyperCL and HyperLAP
rely on node degree and hyperedge size distributions as inputs.
HyperPA is limited to hyperedges of size under 20 and requires
distributions for both hyperedge sizes and the number of new hyper-
edges for nodes. THera also demands hyperedge size distributions.
HyperFF is based on the forest fire model controlled by two pa-
rameters. While more generators [2, 8] could be considered for
comparison, we focus on competitive open-source generators that
have been shown to reproduce realistic structural properties. De-
tailed hyperparameter search spaces are provided in Appendix C.
Evaluation.We evaluated HyRec’s performance in replicating 9
real-world patterns (spec., those discussed in Section 4 and the

effective diameters of hypergraphs [24]). We consider the 11 real-

world hypergraphs from six domains (email, contact, drug, tags,
threads, and co-authorship) described in Section 3.4. We evaluate
the goodness of fit using the Kolmogorov-Smirnov (D-statistic) for
the probability density distributions of degree, size, pair degree,
and intersection size; Root Mean Square Error (RMSE) for singular
values, clustering coefficients, density, and overlapness4; and rel-
ative difference for the effective diameter which is a scalar value.
Hypergraphs are generated once per model, per parameter set in
the search space, and per dataset. We rank each generator’s fit for
each pattern and average these rankings across the 11 datasets.

7.2 Fitting to Real-World Hypergraphs

We visually and statistically test how accurately hypergraphs gen-
erated by HyRec align with the distribution patterns of real-world
hypergraphs. Table 4(a) visually confirms that HyRec produces
distributions closely resembling real-world hypergraphs. Table 4(b)
reports the average rankings of generators in matching each of
the nine properties across eleven real-world datasets. HyRec ranks
within the top three for six properties, demonstrating strong align-
ment with most properties. Although HyRec underperforms some
baselines in terms of node degrees and hyperedge sizes, it is impor-
tant to note that these baselines (except for HyperFF) directly rely
on detailed node-degree and hyperedge-size distributions as inputs,
making their strong performance on these properties unsurprising.
This adds complexity, as they require detailed statistics for every
generation. In contrast, HyRec uses only an initiator matrix fitted
4When computing RMSE of 𝑦 values (e.g., singular values or intersecting pairs in
egonets), we consider only the intersection of the 𝑥 values (e.g., ranks or central
node’s degree in egonets) from the generator outputs and the ground-truth dataset.
For clustering coefficients, density, and overlapness, this process is applied after a
logarithmic binning of 𝑥 values.
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Table 5: HyRec Extrapolates Real-World Hypergraphs

(a) HyRec predicts hypergraph growth accurately: After fitting to a past snapshot of the NDC-substances dataset, HyRec (green) accurately predicts the
properties of its future snapshot (which is the entire dataset).

Degree Size Pair Degree Intersection Singular Value Clustering Coef. Density Overlapness

P
a
s
t

F
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t
u
r
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)

(b) HyRec is accurate in extrapolation, even with a small number of input parameters: HyRec performs overall best in extrapolation, and notably
it requires two orders of magnitude fewer parameters than the second-best model (THera). Note that HyperCL and HyperLAP are inapplicable to

extrapolation. The best, second-best, and third-best performance are highlighted in blue, green, and yellow, respectively.
# Input Parameters Average Ranking (Across 11 Hypergraph Datasets)

Min Max Degree Size

Pair

Intersect.

Singular Clustering

Density Overlapness

Effective

Average

Deg. Value Coef. Diam.

HyperFF 2 2 2.818 2.909 3.273 2.818 2.909 1.818 2.909 2.909 3.091 2.828
HyperPA 466 1,167,675 2.636 1.818 3.273 3.182 3.636 2.818 3.000 3.091 2.273 2.859
THera 349 537,114 3.000 2.273 1.636 1.909 1.636 2.909 2.000 2.182 2.091 2.182

HyRec 12 396 1.545 2.545 1.818 2.091 1.818 2.455 2.091 1.818 2.545 2.081

Table 6: HyRec’s Efficiency Gains with Increased Units.

Number of Avg. Unit Fitting Time Generation Time

Units (L) Matrix Size (|Θ[S𝑖 ] |) (ms) (ms)

L = 1 85,766,121 378.983 157,656.327
L = 2 9,261 23.697 19,619.597
L = 3 441 28.730 5,369.581
L = 4 231 42.813 10,151.488
L = 5 105 48.959 7,815.624

by SingFit and a few scalars while offering both tractability and
extrapolation ability, as shown in Table 1. HyperPA is inapplicable
when the node count is too small (email-Enron) and runs out of
memory when the hypergraph size is too large (coauth-geology),
resulting in it ranking last in these cases. Notably, as illustrated in
Figure 3, HyRec provides the best balance between performance
and input parameter size (in terms of the number of scalars).We also
analyze how HyRec’s performance is affected by hyperparameters
(e.g., the initiator matrix size and the unit number) in Appendix E.

7.3 Extrapolating Real-World Hypergraphs

We evaluate HyRec’s extrapolation ability of HyRec in forecasting
the evolution of hypergraph properties. We fit HyRec using the
hyperedges up until the first 50% of the nodes appear, and we test it
against the full original hypergraph. The same protocol is applied to
HyperPA, HyperFF, and THera, but by their design, HyperLAP and
HyperCL cannot predict beyond the input data. Table 5(a) visually
confirms that HyRec is able to closely mirror a given hypergraph
(past) and accurately predict its future. Table 5(b) and Figure 3
present that HyRec ranks first on average while requiring two
orders of magnitude fewer input parameters (in terms of the number
of scalars) than the second-best one. HyRec also achieves the best
performance for extrapolation based on a snapshot with the first
25% of nodes, as shown in Appendix F.

7.4 Efficiency in Fitting Large Hypergraphs

Unit sampling, described in Section 6.2, significantly improves the
efficiency of SingFit. Table 6 shows that increasing the number of
units (i.e., 𝐿) in the contact-primary dataset reduces the total size
of unit matrices and the runtime for both fitting and generation.5
In this experiment, the initiator matrix is fixed at 3×7, , with a
Kronecker power of order 6. Additionally, we compare the runtime
of all models for generation in Appendix G, which demonstrates
the efficiency of HyRec.

8 CONCLUSIONS

In this study, we uncover eight power-law-related patterns in real-
world hypergraphs and introduce HyRec, a generative model lever-
aging the Kronecker product to replicate these patterns. We math-
ematically demonstrate that HyRec captures both structural and
evolutionary patterns. Additionally, we develop SingFit, a fast and
space-efficient algorithm for fitting HyRec to given hypergraphs.
Our experiments on eleven real-world hypergraphs confirm the
model’s efficacy in fitting and forecasting hypergraph properties.
We also discuss limitations and propose future research directions
in Appendix H. Our contributions are summarized as follows:
• Discoveries: Identification of eight power-law-related patterns

in real-world hypergraphs (Figures 1-2 and Table 3).
• Model: Design of HyRec, a tractable and realistic (Figure 3 and

Tables 4-5) generative model supported by SingFit.
• Proofs: Mathematical validation that HyRec adheres to these

identified patterns (Theorems 1 and 2).
For reproducibility, our code and data are available at [1].

5Since units are processed serially (while operations within each unit are parallelized),
the total time may increase slightly with more units.
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APPENDIX

A THEORETICAL PROOFS OF HYREC

In this section, we provide themathematical proofs for the theorems
introduced in Section 5, establishing the theoretical characteristics
of HyRec.

A.1 Notations

We begin with introducing several notations.
• 𝑣𝑖 : node in G for the 𝑖-th row of its incidence matrix 𝐼 (G).
• 𝑒𝑖 : hyperedge for the 𝑖-th column of 𝐼 (G).
• 𝑣𝑖, 𝑗 : node in G ⊗ H for the ((𝑖 − 1)𝑁2 + 𝑗)-th row of its inci-

dence matrix 𝐼 (G ⊗ H) where 𝐼 (G) ∈ {0, 1}𝑁1×𝑀1 and 𝐼 (H) ∈
{0, 1}𝑁2×𝑀2 .

• 𝑒𝑖, 𝑗 : hyperedge for the ((𝑖 − 1)𝑀2 + 𝑗)-th column of 𝐼 (G ⊗ H).
• 𝑣𝑖1,· · · ,𝑖𝐾 : node inHyRec(G, 𝐾) for the

( ∑𝐾
𝑘=1

(
(𝑖𝑘−1)·𝑁𝐾−𝑘

)
+1

)
-

th row of its incidence matrix 𝐼 (G) [𝐾 ] where 𝐼 (G) ∈ {0, 1}𝑁×𝑀 .
• 𝑒𝑖1,· · · ,𝑖𝐾 : hyperedge for the

( ∑𝐾
𝑘=1

(
(𝑖𝑘−1)·𝑀𝐾−𝑘 )+1

)
-th column

of 𝐼 (G) [𝐾 ] .

A.2 Proof of Theorem 1

Theorem. HyRec(G, 𝐾) has multinomial distributions of (1)
degrees, (2) hyperedge sizes, (3) pair degrees, and (4) intersection sizes.

Proof. By Theorem 5 in [29], we can easily show that (1) de-
grees and (2) hyperedge sizes follow multinomial distributions.
Regarding (3) pair degrees, let 𝑆1 denote the multiset6 {𝜔𝑖,𝑖′ : 𝑖, 𝑖′ ∈
{1, · · · , 𝑁1} ∧ 𝑖 ≠ 𝑖′} of node pair degrees in G1 and 𝑆2 denote the
multiset {�̄� 𝑗, 𝑗 ′ : 𝑗, 𝑗 ′ ∈ {1, · · · , 𝑁2} ∧ 𝑗 ≠ 𝑗 ′} of node pair degrees
in G2, where 𝐼 (G1) ∈ {0, 1}𝑁1×𝑀1 and 𝐼 (G2) ∈ {0, 1}𝑁2×𝑀2 . If a
pair of nodes 𝑣𝑖 and 𝑣 ′𝑖 in G1 has pair degree 𝜔𝑖,𝑖′ , and a pair of
nodes 𝑣 𝑗 and 𝑣 ′𝑗 in G2 has pair degree �̄� 𝑗, 𝑗 ′ , then a pair of nodes
𝑣𝑖, 𝑗 and 𝑣𝑖′, 𝑗 ′ in G1 ⊗ G2 has pair degree 𝜔𝑖,𝑖′�̄� 𝑗, 𝑗 ′ . Thus, after the
𝐾 − 1 kronecker product operations, HyperK(G1, 𝐾) has the multi-
set of node pair degrees {𝜔𝑖1, 𝑗1 · · ·𝜔𝑖𝐾 , 𝑗𝐾 : 𝑖1, · · · , 𝑖𝐾 , 𝑗1, · · · , 𝑗𝐾 ∈
{1, · · · , 𝑁1} ∧ (𝑖1, · · · , 𝑖𝐾 ) ≠ ( 𝑗1, · · · , 𝑗𝐾 )}. Let 𝑠1, · · · , 𝑠𝑙 be the dis-
tinct elements in 𝑆1, and 𝑜𝑘 be the number of occurrences of 𝑠𝑘 in 𝑆1.
Then, the multiset of node pair degrees in HyperK(G1, 𝐾) follows
multinomial distribution where each node pair degree 𝑠𝑐1

1 · · · 𝑠
𝑐𝑙
𝑙

(where 𝑐1, · · · , 𝑐𝑙 are non-negative integers and
∑𝑙
𝑖=1 𝑐𝑖 = 𝐾 ) occurs

with a probability proportional to 𝐾 !
𝑐1!· · ·𝑐𝑙 !𝑜

𝑐1
1 · · ·𝑜

𝑐𝑙
𝑙
. Since (4) inter-

section sizes of a pair of hyperedge 𝑗 and 𝑗 ′ of G1 is the number of
common entries between 𝑗-th column and 𝑗 ′-th column of G1, the
above proof is applied similarly. ■

A.3 Proof of Theorem 2

Theorem. In HyRec (G, 𝐾), both singular values and singular
vectors of its incidence matrix follow multinomial distributions

Proof. Let the singular value decomposition (SVD) of the in-
cidence matrix 𝐼 (G) ∈ {0, 1}𝑁1×𝑀1 of the initiator hypergraph
G be UΣV⊤, where U ∈ R𝑁1×𝑅,Σ ∈ R𝑅×𝑅 , and V ∈ R𝑀1×𝑅 . By
the properties of Kronecker product [25], the SVD of 𝐼 (G) [𝐾 ] is

U[𝐾 ]Σ[𝐾 ] (V[𝐾 ] )⊤. Thus, HyRec(G, 𝐾) has multinomial distribu-
tions of both singular values and singular vectors. ■
6A multiset generalizes a set by allowing duplicate elements.

A.4 Proof of Theorem 3

Theorem. In HyRec(G, 𝐾) where 𝐼 (G) ∈ {0, 1}𝑁1×𝑀1 exhibits
a 1 : log𝑀1

log𝑁1
power-law relationship between the number of nodes and

the number of hyperedges as 𝐾 increases.

Proof. The node count 𝑁 (𝐾) and the hyperedge count 𝐸 (𝐾)
in HyRec(G, 𝐾) become 𝑁𝐾1 and𝑀𝐾

1 , respectively. Consequently,
the relationship between 𝐸 (𝐾) and 𝑁 (𝐾) satisfies 𝐸 (𝐾) = 𝑀𝐾

1 =

(𝑁𝐾1 )
𝑎 = 𝑁 (𝐾)𝑎 where 𝑎 =

𝑙𝑜𝑔𝑀1
𝑙𝑜𝑔𝑁1

. ■

A.5 Proof of Theorem 4

We begin with presenting Lemma 1 and Lemma 2, which are used
for proofs.

Lemma 1. The following claims hold:
• There exists a hyperedge containing 𝑣𝑖, 𝑗 and 𝑣𝑘,𝑙 in G ⊗ G′ if and

only if (a) there is a hyperedge containing both 𝑣𝑖 and 𝑣𝑘 in G, and
(b) there is a hyperedge containing both 𝑣 𝑗 and 𝑣𝑙 in G′.
• The hyperedge 𝑒𝑝,𝑞 in G ⊗ G′ contains 𝑣𝑖, 𝑗 if and only if (a) 𝑒𝑝 in
G contains 𝑣𝑖 , and (b) 𝑒′𝑞 in G′ contains 𝑣 ′

𝑗
.

Proof. The claims are straightforwardly deduced from the defi-
nition of the Kronecker product. ■

Lemma 2. If two hypergraphs G and G′ each have a diameter at
most 𝐷 , then G ⊗ G′ also has a diameter at most 𝐷 .

Proof. Consider two arbitrary nodes 𝑣𝑖 , 𝑣𝑘 in G and two arbi-
trary nodes 𝑣 ′

𝑗
, 𝑣 ′
𝑙
in G′. Let 𝑎 be the distance between node 𝑣𝑖 and

𝑣𝑘 in G, and 𝑏 be the distance between node 𝑣 ′
𝑗
and 𝑣 ′

𝑙
in G′. Then,

there is a path (𝑒𝑝1 , · · · , 𝑒𝑝𝑎 ) between 𝑣𝑖 and 𝑣𝑘 in G, and there is a
path (𝑒′𝑞1 , · · · , 𝑒

′
𝑞𝑏
) between 𝑣 ′

𝑗
and 𝑣 ′

𝑙
in G′. By Lemma 1, in G⊗G′,

the node 𝑣𝑖,𝑘 is contained in the hyperedge 𝑒𝑝1,𝑞1 , and the node
𝑣 𝑗,𝑙 is contained in the hyperedge 𝑒𝑝𝑎,𝑞𝑏 . Additionally, for every
𝑘 ≤ max(𝑎, 𝑏) −1, 𝑒𝑝min(𝑘,𝑎) ,𝑞min(𝑘,𝑏) ∩𝑒𝑝min(𝑘+1,𝑎) ,𝑞min(𝑘+1,𝑏) ≠ ∅ holds.
Therefore, a path (𝑒𝑝min(1,𝑎) ,𝑞min(1,𝑏) , . . . , 𝑒𝑝min(max(𝑎,𝑏),𝑎) ,𝑞min(max(𝑎,𝑏),𝑏) )
exists between 𝑣𝑖,𝑘 and 𝑣 𝑗,𝑙 in G ⊗ G′. Since max(𝑎, 𝑏) ≤ 𝐷 , the
distance between any two nodes in G ⊗ G′ is at most 𝐷 . ■

Theorem. If the initiator hypergraph G has a diameter 𝐷 , the
diameter of HyRec(G, 𝐾) is exactly 𝐷 .

Proof. From Lemma 2, we can easily show the diameter of
HyRec(G, 𝐾) is at most 𝐷 by employing induction on 𝐾 . Since
the diameter of G is 𝐷 , there exists a pair of nodes (𝑣𝑖 , 𝑣 𝑗 ) such
that the distance between 𝑣𝑖 and 𝑣 𝑗 is exactly 𝐷 . Suppose the di-
ameter of HyRec(G, 𝐾) is at most 𝐷 − 1. Then, there is a path
(𝑒𝑝11,· · · ,𝑝1𝐾 , 𝑒𝑝21,· · · ,𝑝2𝐾 , · · · , 𝑒𝑝𝑙1,· · · ,𝑝𝑙𝐾 ) between 𝑣𝑖,· · · ,𝑖 and 𝑣 𝑗,· · · , 𝑗
inHyRec(G, 𝐾), whose length 𝑙 is at most𝐷−1. SinceHyRec(G, 𝐾)
is equivalent to HyRec(G, 𝐾 − 1) ⊗ G, (𝑒𝑝1𝐾 , 𝑒𝑝2𝐾 , · · · , 𝑒𝑝𝑙𝐾 ) is a
valid path between 𝑣𝑖 and 𝑣 𝑗 in G, and its length is at most 𝐷 − 1,
which is a contradiction. ■
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A.6 Proof of Theorem 5

Theorem. If the initiator hypergraph G has a diameter 𝐷 , then
the effective diameter of HyRec(G, 𝐾) converges to 𝐷 as 𝐾 increases.

Proof. Suppose we randomly select a node 𝑎 = (𝑣𝑎1,· · · ,𝑎𝐾 )
and a node 𝑏 = (𝑣𝑏1,· · · ,𝑏𝐾 ) from HyRec(G, 𝐾), where 𝐼 (G) ∈
{0, 1}𝑁1×𝑀1 . Since the diameter of G is 𝐷 , there exists a pair of
nodes (𝑣𝑖 , 𝑣 𝑗 ) such that the distance between 𝑣𝑖 and 𝑣 𝑗 is exactly
𝐷 , then with probability 1 − (1 − 1

𝑁 2
1
)𝐾 , there is some index 𝑘 ∈

{1, · · · , 𝐾} s.t (𝑎𝑘 , 𝑏𝑘 ) = (𝑖, 𝑗). Thus, the probability that the dis-
tance between two nodes in HyRec(G, 𝐾) is exactly 𝐷 is at least
1 − (1 − 1

𝑁 2
1
)𝐾 . Since there exists 𝐾0 = 3𝑁 2

1 ∈ N⊮ such that

1 − (1 − 1
𝑁 2

1
)𝐾 > 1 − 1

𝑒3 > 0.9 for all 𝐾 > 𝐾0, the effective di-
ameter of HyRec(G, 𝐾) converges to 𝐷 as 𝐾 increases. ■

Table 7: Generation Time and Memory Complexity Compar-

ison

Generator Time Complexity Memory Complexity

HyperCL 𝑂 (𝑙𝑜𝑔2 |V| ·
∑
𝑒∈E |𝑒 |) 𝑂 ( |V| +∑𝑒∈E |𝑒 |)

HyperFF 𝑂 ( |V| ·∑𝑒∈E |𝑒 |) 𝑂 ( |V| +∑𝑒∈E |𝑒 |)
HyperPA 𝑂 (∑𝑒∈E 𝑙𝑜𝑔2

( |V |
|𝑒 |

)
) 𝑂 (∑𝑒∈E 2 |𝑒 | )

HyperLAP 𝑂 (𝑙𝑜𝑔2 |V| ·
∑
𝑒∈E |𝑒 |) 𝑂 ( |V| +∑𝑒∈E |𝑒 |)

THera 𝑂 (𝑙𝑜𝑔2 |V| ·
∑
𝑒∈E |𝑒 |) 𝑂 ( |V| +∑𝑒∈E |𝑒 |)

HyRec 𝑂 (𝐿( |V||E |)
1
𝐿 +∑𝑒∈E |𝑒 |) 𝑂 (( |V||E |)

1
𝐿 +∑𝑒∈E |𝑒 |)

B ANALYSIS OF TIME AND MEMORY

COMPLEXITY

Table 7 7 presents the time and memory complexity for all models,
including HyRec. The complexities of the competitors are detailed
in [21], while the time and memory complexity of HyRec are for-
mally proven in Theorem 6 and Theorem 7, respectively. For the
theorems, we assume that the total Kronecker power 𝐾 can be
evenly divided into 𝐿 units.

Theorem 6 (Time Complexity of Hypergraph Generation
in HyRec). Given 𝐿 unit number, time complexity of hypergraph

generation in HyRec is 𝑂
(
𝐿( |V||E |)

1
𝐿 +∑𝑒∈E |𝑒 |) .

Proof. Let the initiatormatrixΘ ∈ R𝑁1×𝑀1 , where𝑁1 = 𝑙𝑜𝑔𝐾 |V|
and 𝑀1 = 𝑙𝑜𝑔𝐾 |E |, represent the initiator matrix for generating
a 𝐾-order hypergraph to reproduce G = (V, E). The time com-
plexity of computing the 𝑘-th power of the Kronecker product of
Θ is 𝑂 (𝑁𝑘1 𝑀

𝑘
1 ), as each element of 𝐴 is iterated over all elements

of 𝐵 when computing 𝐴 ⊗ 𝐵. In addition, the time complexity of
independently sampling each element is proportional to the size of
the Kronecker probabilistic matrix. Under the assumption that the
total Kronecker power 𝐾 can be evenly divided into 𝐿 units, the
time complexity for generating the hypergraph, after dividing it

into 𝐿 units, is 𝑂
(
𝐿 · (𝑁

𝐾
𝐿

1 𝑀
𝐾
𝐿

1 )
)
= 𝑂

(
𝐿 · ( |V|

1
𝐿 |E |

1
𝐿 )
)
, reducing

the computation significantly by working with smaller Kronecker
powers.
7We would like to note that in all experiments, we use at least two units (i.e., 𝐿 ≥ 2).

Then, let Θ̂𝑖 represent the sampled Kronecker graph for 𝑖-th
unit, and let 𝑓𝑁𝑍 (·) represent the number of non-zero entries in
the matrix. We assume that 𝐸 [𝑓𝑁𝑍 (Θ̂𝑖 )] = (

∑
𝑒∈E |𝑒 |)

1
𝐿 . The time

complexity for computing
⊗𝐿

𝑖=1 Θ̂
𝑖 depends on the number of

non-zero elements in each unit Θ̂𝑖 . Thus, the time complexity is
𝑂 (𝐸 [∏𝐿

𝑖=1 𝑓𝑁𝑍 (Θ̂𝑖 )]). Since the sampling at each unit is indepen-
dent, this can be simplified to𝑂 (∏𝐿

𝑖=1 𝐸 [𝑓𝑁𝑍 (Θ̂𝑖 )]) = 𝑂 (
∑
𝑒∈E |𝑒 |).

Therefore, the total time complexity is𝑂
(
𝐿( |V||E |)

1
𝐿 +∑𝑒∈E |𝑒 |) .

■

Theorem 7 (Memory Complexity of Hypergraph Genera-
tion in HyRec). Given 𝐿 unit number, memory complexity of hy-
pergraph generation in HyRec is 𝑂 (( |V||E |)

1
𝐿 +∑𝑒∈E |𝑒 |).

Proof. At each unit, memory is required to compute the Kro-
necker power of Θ, with the memory usage proportional to the
size of the resulting Kronecker power. Similar to the time complex-
ity analysis, this results in a memory complexity of 𝑂 (( |V||E |)

1
𝐿 ).

Additionally, when computing the Kronecker product of the sam-
pled matrices from each unit, only the non-zero elements of the
Kronecker graphs need to be stored, leading to a memory com-
plexity of 𝑂 (∑𝑒∈E |𝑒 |). Therefore, the total memory complexity is
𝑂 (( |V||E |)

1
𝐿 +∑𝑒∈E |𝑒 |). ■

Table 8: Time Complexity of SingFit (Algorithm 1)

SingFit

(Algorithm 1) Time Complexity

Generation
(Line 7) 𝑂 (𝐿( |V||E |)

1
𝐿 )

Computing Singular Values
(Line 8) 𝑂 (𝐿 ·𝑚𝑖𝑛( |E |2 |V|, |E | |V|2)

1
𝐿 )

Computing Degree Distributions
(Line 9) 𝑂 (𝐿 · (∑𝑒∈E |𝑒 |) 1

𝐿 + |V|)

Computing Size Distributions
(Line 10) 𝑂 (𝐿 · (∑𝑒∈E |𝑒 |) 1

𝐿 + |E|)

SingFit is described in Algorithm 1 and implemented using
PyTorch on an NVIDIA GeForce RTX 2080 Ti GPU. We analyze the
time complexity line by line (Table 8):
• Line 7: The time complexity for computing the Kronecker power

ofΘ and sampling the binary incidence matrix is𝑂 (𝐿( |V||E |)
1
𝐿 ),

as derived in the proof of Theorem 6.
• Line 8: Singular value computation is performed using the Py-

Torch library, which relies on the Jacobi eigenvalue solver in
cuSolver. For an arbitrary matrix of size𝑚 × 𝑛, where𝑚 ≥ 𝑛,
the complexity is 𝑂 (𝑚𝑛2). Assuming the full Kronecker power
is divided evenly into 𝐿 units, each of size |V|

1
𝐿 × |E|

1
𝐿 , the

complexity of computing singular values across all units is𝑂 (𝐿 ·
min( |E |2 |V|, |E | |V|2)

1
𝐿 ). To obtain the singular values for the

full Kronecker power, the algorithm computes the Kronecker
product of singular values from all units, which is proportional
to the number of singular values of the full Kronecker power,
i.e., 𝑂 (𝑚𝑖𝑛( |V|, |E |)). Therefore, the total complexity is 𝑂 (𝐿 ·
min( |E |2 |V|, |E | |V|2)

1
𝐿 +𝑚𝑖𝑛( |V|, |E |)).
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Table 9: Properties of Hypergraphs Derived from Four Different Cases of Initiator Matrices

Degree Size Pair Degree Intersection Singular Value Clustering Coef. Density Overlapness

• Line 9: To compute the degree distribution, the algorithm first
calculates the node degree vector (where the 𝑖-th element repre-
sents the degree of the 𝑖-th node) by iterating over the non-zero
elements in the sampled unit matrices. Assuming 𝐸 [𝑓𝑁𝑍 (Θ̂S𝑖 )] =
(∑𝑒∈E |𝑒 |) 1

𝐿 , where 𝑓𝑁𝑍 (·) represents the number of non-zero
elements in the matrix, this step has a time complexity of 𝑂 (𝐿 ·
(∑𝑒∈E |𝑒 |) 1

𝐿 . Next, the Kronecker product of the 𝐿 node de-
gree vectors is computed, which takes 𝑂 ( |V|). Therefore, the
total time complexity for computing degree distribution is 𝑂 (𝐿 ·
(∑𝑒∈E |𝑒 |) 1

𝐿 + |V|).
• Line 10: Computing the size distribution follows the same process

as for the degree distribution. The Kronecker product of the size
vectors corresponds to the number of edges, with a complexity
of 𝑂 ( |E |). Thus, the total complexity for computing the size
distribution is 𝑂 (𝐿 · (∑𝑒∈E |𝑒 |) 1

𝐿 + |E|).

C PARAMETER SETTING

• HyperCL andHyperLAP: Both models require the distribution
of node degrees and hyperedge sizes.

• HyperFF: 𝑝 ∈ [0.45, 0.48, 0.51] and 𝑞 ∈ [0.2, 0.3].
• HyperPA: It requires the distribution of hyperedge sizes and

the number of new hyperedges per new node.
• THera: Its parameters are 𝐶 ∈ [8, 12, 15], 𝑝 ∈ [0.5, 0.7, 0.9],
𝛼 ∈ [2, 6, 10], and hyperedge size distributions.

• HyRec: The entries of the initiator matrix are parameters. The
size of the initiator incidence matrix, 𝑁1 ×𝑀1, is determined by
𝑁1 =

⌈
|V|1/𝐾

⌉
and 𝑀1 =

⌈
|E |1/𝐾

⌉
. Here 𝐾 is chosen from 𝑘 ∈

[2, 50] to minimize
����⌈|V|1/𝑘 ⌉𝑘 ⌈|E |1/𝑘 ⌉𝑘 − |V||E |����, subject to 1 <⌈

|V|1/𝑘
⌉ ⌈
|E |1/𝑘

⌉
≤ 𝑆 , where 𝑆 ∈ [50, 100, 1000]. The other pa-

rameters are (a) the learning rate𝛼 ∈ [0.001, 0.003, 0.005, 0.008, 0.01],
(b) the Gumbel-Softmax temperature 𝜏 = 0.0005, (c) the number
of units 𝐿 ∈ [2, 3, 4]; and (d) 𝜆𝑑 ∈ [0.0, 0.0001, 0.001, 0.01, 0.1]
and 𝜆𝑠 ∈ [0.0, 2.0], which are the weights for losses.

D SIMPLE EXAMPLES OF INITIATOR MATRIX

ANALYSIS

We explore how different settings of the initiator matrix influence
the properties of its Kronecker hypergraph through four cases.
Specifically, we compare two structures: a community structure
(CM), where nodes mainly interact within the same community,
and a core-fringe structure (CF), where core nodes exist and fringe
nodes primarily interact with core nodes. In both structures, we
explore two cases where the probabilities in the initiator matrix
differ, with one being slightly lower than the other. Thus, we analyze

the following four initiator matrices: Θ(𝑙 )
𝐶𝑀

,Θ
(ℎ)
𝐶𝑀

,Θ
(𝑙 )
𝐶𝐹

and Θ
(ℎ)
𝐶𝐹

:

Θ(l)CM =

[ 0.7 0.7 0.0001 0.0001
0.7 0.7 0.0001 0.0001

0.0001 0.0001 0.7 0.7

]
.

Θ(l)CF =

[0.7 0.7 0.7 0.7
0.7 0.5 0.7 0.0001
0.5 0.5 0.0001 0.0001

]
.

Θ(h)CM =

[ 0.9 0.9 0.0001 0.0001
0.9 0.9 0.0001 0.0001

0.0001 0.0001 0.9 0.9

]
.

Θ(h)CF =

[0.9 0.9 0.9 0.9
0.9 0.7 0.9 0.0001
0.7 0.7 0.0001 0.0001

]
.

Table 9 compares properties derived from four different initiator
matrices. There are clear differences between Θ

(𝑙 )
𝐶𝑀

(Θ(𝑙 )
𝐶𝐹

) and Θ(ℎ)
𝐶𝑀

(Θ(ℎ)
𝐶𝐹

), particularly as the probability increases. Higher probabilities
lead to higher node degrees, larger hyperedge sizes, greater node
pair degrees, and larger hyperedge intersections, but lower egonet
density.When comparing the community and core-fringe structures
(i.e., Θ(ℎ)

𝐶𝑀
vs. Θ(ℎ)

𝐶𝐹
), notable differences are evident in the distri-

butions of node degrees, density, and overlap. In the core-fringe
structure Θ(ℎ)

𝐶𝐹
, most nodes with high degrees and the distribution

centers around a peak with a rapid decline on both sides. By con-
trast, the community structure shows a more varied distribution
of node degrees, with most nodes having relatively lower degrees.
Regarding density and overlap, Θ(ℎ)

𝐶𝐹
generates larger egonets, as

indicated by a few data points on the right side of the distribution.
This suggests that most nodes are highly interconnected, with core
nodes acting as bridges that connect a significant portion of the
hypergraph. However, when the probability decreases in the core-
fringe structure (from Θ

(ℎ)
𝐶𝐹

to Θ
(𝑙 )
𝐶𝐹

), node degrees become more
varied, and egonet sizes also vary, with most nodes having lower
degrees and more diverse egonets.

E SENSITIVITY OF HYREC

We analyze the effect of hyperparameters on the performance of
HyRec as shown in Figure 4. The hyperparameters include (see
Algorithm 1): (1) the number of parameters, i.e., the size of the
initiator matrix (𝑁1 ×𝑀1), (2) the number of units (𝐿), (3) 𝜆𝑠 , and (4)
𝜆𝑑 . We conduct experiments on two small real-world hypergraphs,
email-Enron and contact-high, in terms of the number of nodes. For
each experiment, performance is evaluated based on the average
ranking derived from reproducing nine properties of the target
hypergraph.
Number of Parameters (𝑁1 ×𝑀1).We observe improved perfor-
mance (i.e., lower ranking) as the number of parameters increases.
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Figure 4: The Effect of Hyperparameters on the Performance

of HyRec

For the email-Enron dataset, the ranking converges as the number
increases. For the contact-high dataset, performance improves with
fewer than 1,000 parameters but declines when approaching 10,000.
We hypothesize that too many parameters lead to an excess of zero
entries. The difference between the space 𝑁1 ×𝑀1 and the actual
size of the hypergraph |V| × |E| increases as more parameters are
added, introducing noise. Therefore, while increasing the number
of parameters enhances performance initially, an overabundance
can negatively impact the results. For this specific experiment, we
fix the number of units at 2 and we explore best values for 𝜆𝑑 and
𝜆𝑠 within the search space detailed in Appendix C to find the best
ranking for each parameter count.
Number of Units (𝐿). Using a single unit corresponds to handling
the full Kronecker power, which requires managing all possible con-
nections between nodes and hyperedges. However, utilizing mul-
tiple units maintains the performance on the email-Enron dataset
and even improves performance on the contact-high dataset, while
reducing the computational complexity of HyRec, as demonstrated
in the complexity analysis (Appendix B). Increasing the number
of units beyond a certain point, however, does not yield further
performance gains. We hypothesize this is because smaller unit
sizes result in noisier singular values, reducing their usefulness. For
example, when the number of units exceeds 3 in email-Enron, the
smallest unit size becomes 3 × 5, which may generate less informa-
tive singular values compared to larger units. For this experiment,
we fix the number of parameters at 3 × 5 and 4 × 12, respectively,
and search for best values of 𝜆𝑑 and 𝜆𝑠 within the search space
outlined in Appendix C, respectively, to determine the best ranking
performance for each unit number.
𝜆𝑠 and 𝜆𝑑 . We observe that performance improves up to a certain
point, beyond which it declines as the values of 𝜆𝑠 or 𝜆𝑑 exceed that
point. Specifically,HyRec performs best on the email-Enron dataset
when 𝜆𝑠 = 0.01 but performs best at 𝜆𝑠 = 10.0 on the contact-high
dataset. Since these hyperparameters control the weights for the
loss functions that match the size and degree distributions, respec-
tively, we hypothesize that matching size distributions is more
challenging for the contact-high dataset, which has a maximum
hyperedge size limited to 5, thus necessitating a higher weight for
𝜆𝑠 . For 𝜆𝑑 , we observe thatHyRec performs well when 𝜆𝑑 is greater

than 10−6, indicating that considering degree distributions is also
important. Unlike 𝜆𝑠 , the optimal value of 𝜆𝑑 is similar for both
datasets. For the specific experimental setup, we set the parameters
to (𝑁1, 𝑀1, 𝐿, 𝜆𝑠 , 𝜆𝑑 ) = (3, 5, 2, 0.01, 0.001) and (4, 12, 2, 1.5, 0.0) for
each dataset, which are the best hyperparameters found within
the search space described in Appendix C. We then vary only the
target hyperparameter 𝜆𝑠 or 𝜆𝑑 to evaluate the impact of each on
the results.

F LONGER-TERM EXTRAPOLATION

In this section, we extend the extrapolation task described in Sec-
tion 7.3 to account for longer growth periods. The task involves
forecasting hypergraph growth by fitting HyRec to an initial snap-
shot and predicting its future state as it expands. For this experiment,
we fit HyRec to a snapshot containing hyperedges when only 1/4
of the total nodes have appeared. We then predict the properties of
the full hypergraph, where the node count has quadrupled. This
differs from the previous setup in Section 7.3, where HyRec was fit
to 50% of the nodes. We apply the same evaluation protocol to Hy-
perPA, HyperFF, and THera, but exclude HyperLAP and HyperCL,
as they are not suitable for extrapolation beyond the input data.
The results, shown in Table 10, demonstrate HyRec ’s strength in
predicting hypergraph evolution, especially over long-term growth.
In Table 10 (a), a visual comparison in the NDC-substances dataset
confirms that HyRec accurately captures both the past hypergraph
and its future properties. Across 11 datasets, Table 10 (b) shows that
HyRec consistently performs the best overall in predicting hy-
pergraph growth, accurately modeling key properties as the node
count increases fourfold. Remarkably, HyRec accomplishes this
while requiring two orders of magnitude fewer input parameters
(in terms of scalars) than the second-best model, THera.

Figure 5: Generation Time Efficiency of HyRec Compared

to Other Hypergraph Generators Across Synthetic Datasets

G COMPARISON OF GENERATION TIME

ACROSS HYPERGRAPH GENERATORS

In addition to the time complexity analysis of generation provided
in Appendix B, we compare the empirical runtime of all methods,
as shown in Figure 5. We use synthetic hypergraphs generated by
HyRec, with an initiator matrix fitted to the email-Eu hypergraph,
and vary the Kronecker power from 5 to 9 (up to 107 hyperedges).
Specifically, HyperFF is set with parameters 𝑝 = 0.51 and 𝑞 = 0.3,
THera with 𝐶 = 8, 𝑝 = 0.7, and 𝛼 = 10, and HyRec with two units
(𝐿 = 2). We set a runtime limit of 5 hours, so generators without
markers in some cases in Figure 5 indicate that they exceeded this
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Table 10: HyRec Effectively Extrapolates Real-world Hypergraphs, Even for Extended Growth Periods.

(a) HyRec accurately predicts fourfold hypergraph growth: After fitting to a past snapshot of the NDC-substances dataset with 1/4 of the total nodes,
HyRec (green) accurately predicts the properties of the future snapshot (the full dataset).
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(b) HyRec excels in extrapolation with minimal input parameters, even for long-term predictions: HyRec performs the best overall in
extrapolation as the node count quadruples, requiring far fewer parameters than the second-best model (THera). The best, second-best, and third-best

performance are highlighted in blue, green, and yellow, respectively.
# Input Parameters Average Ranking (Across 11 Hypergraph Datasets)

Min Max Degree Size

Pair

Intersect.

Singular Clustering

Density Overlapness

Effective

Average

Deg. Value Coef. Diam.

HyperFF 2 2 1.909 2.273 3.182 2.727 2.545 2.091 2.364 2.636 2.818 2.505
HyperPA 143 515,085 3.182 2.636 2.545 2.909 4.000 3.273 3.273 3.364 2.636 3.091
THera 86 199,803 2.545 2.000 2.727 2.000 1.727 3.182 2.182 2.455 2.000 2.313

HyRec 12 396 2.364 3.091 1.545 2.364 1.727 1.455 2.182 1.545 2.545 2.091

limit. Specifically, HyperFF and HyperPA surpassed the 5-hour
threshold. The results show that HyRec consistently requires less
time than HyperLAP, HyperCL, and HyperPA, and even for the
largest hypergraph with over 106 hyperedges, HyRec achieves
the second-fastest runtime. While THera is the fastest method, it
requires 2,400 times more input parameters (as shown on the right
side of Figure 5), and HyRec outperforms it in the extrapolation
task (refer to Tables 5 and 10).

H DISCUSSION

A limitation of HyRec is its difficulty in reproducing size distri-
butions when the maximum hyperedge size is constrained and
deviates from a heavy-tailed distribution. For instance, in the tags
dataset, the number of tags assigned to a post (i.e., the size of the
hyperedge) is often limited to four. Other methods (except hyperFF)
can easily replicate any size distribution by generating hypergraphs
directly from the input ground-truth size distribution. In such cases,
HyRec may struggle to match the size distribution as precisely as
these methods. However, a key strength of HyRec lies in its flexibil-
ity. Unlike other methods (again, except hyperFF) that require the

hyperedge size distribution as input for each generation, HyRec op-
erates independently of such input, allowing it to generate dynamic,
evolving size distributions over time. In contrast, methods relying
on static input distributions lack this adaptability, making them less
effective when extrapolating to changing distributions. Although
HyRec may face limitations when the distribution deviates from a
heavy-tailed structure, it is important to note that many real-world
hypergraphs exhibit heavy-tailed distributions, as documented in
numerous studies (see Section 2.3 and our findings in Section 4).
Additionally,HyRec outperforms nearly all other methods in fitting
11 real-world hypergraphs and surpasses all methods in extrapolat-
ing these hypergraphs. In contrast, HyperFF, which also does not
require input size distributions, performs poorly.

For future work, we can explore extending HyRec to handle
weighted, attributed, or labeled hypergraphs, which would enable
it to model more complex and nuanced real-world structures. Addi-
tionally, investigating the effectiveness of the initiator matrices in
capturing key features across different hypergraphs could be valu-
able. This could involve tasks such as graph classification, where
the initiator matrices are expected to provide meaningful insights
into the distinct structural properties across various domains.

14


	Abstract
	1 Introduction
	2 Related Work
	2.1 Kronecker Graph Models
	2.2 Fitting Algorithms for Kronecker Graphs
	2.3 Properties of Real-World Hypergraphs
	2.4 Hypergraph Generators for Realistic Structural Patterns

	3 Preliminaries and Datasets
	3.1 Hypergraph and Incidence Matrix
	3.2 Kronecker Product and Power
	3.3 Power-law and Log-logistic Distributions
	3.4 Datasets

	4 Discoveries
	4.1 D1: Power-law Distributions
	4.2 D2: Log-logistic Distributions
	4.3 D3: Additional Power-law Patterns

	5 Proposed Hypergraph Generator
	5.1 Description of HyRec
	5.2 Theoretical Characteristics of HyRec
	5.3 Stochastic HyRec: Stochastic Version

	6 SingFit: Fitting to Real-World Hypergraphs
	6.1 Challenges in Fitting HyRec
	6.2 Strategies for Overcoming Fitting Challenges with SingFit
	6.3 Description of SingFit

	7 Experimental Results
	7.1 Experimental Settings
	7.2 Fitting to Real-World Hypergraphs
	7.3 Extrapolating Real-World Hypergraphs
	7.4 Efficiency in Fitting Large Hypergraphs

	8 Conclusions
	References
	A Theoretical Proofs of HyRec
	A.1 Notations
	A.2 Proof of Theorem 1
	A.3 Proof of Theorem 2
	A.4 Proof of Theorem 3
	A.5 Proof of Theorem 4
	A.6 Proof of Theorem 5

	B Analysis of Time and Memory Complexity
	C Parameter Setting
	D Simple Examples of Initiator Matrix Analysis
	E Sensitivity of HyRec
	F Longer-term Extrapolation
	G Comparison of Generation Time Across Hypergraph Generators
	H Discussion

