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Abstract

We study a robust multi-agent multi-armed bandit problem where multiple clients or
participants are distributed on a fully decentralized blockchain, with the possibility
of some being malicious. The rewards of arms are homogeneous among the clients,
following time-invariant stochastic distributions that are revealed to the participants
only when the system is secure enough. The system’s objective is to efficiently ensure
the cumulative rewards gained by the honest participants. To this end and to the
best of our knowledge, we are the first to incorporate advanced techniques from
blockchains, as well as novel mechanisms, into the system to design optimal strategies
for honest participants. This allows various malicious behaviors and the maintenance
of participant privacy. More specifically, we select a pool of validators who have
access to all participants, design a brand-new consensus mechanism based on digital
signatures for these validators, invent a UCB-based strategy that requires less infor-
mation from participants through secure multi-party computation, and design the
chain-participant interaction and an incentive mechanism to encourage participants’
participation. Notably, we are the first to prove the theoretical guarantee of the
proposed algorithms by regret analyses in the context of optimality in blockchains.
Unlike existing work that integrates blockchains with learning problems such as
federated learning which mainly focuses on numerical optimality, we demonstrate
that the regret of honest participants is upper bounded by log T . This is consistent
with the multi-agent multi-armed bandit problem without malicious participants and
the robust multi-agent multi-armed bandit problem with purely Byzantine attacks.

1 Introduction
Multi-armed Bandit (MAB) (Auer et al., 2002a;b) models the classical sequential decision making
process that dynamically balances between exploration and exploitation in an online context. Specifi-
cally, in this paradigm, a player engages in a game, from which the player selects precisely one arm
and observes the corresponding reward at each time step, and aims to maximize the cumulative
reward throughout the game. This is also equivalent to the so-called regret minimization problem
navigating the trade-off between exploration (e.g., exploring unknown arms) and exploitation (e.g.,
favoring the currently known optimal arm). The recent emerging advancement of federated learning,
wherein multiple clients jointly train a shared model, has spurred a surge of interest in the domain of
multi-agent multi-armed bandit (multi-agent MAB). In this context, multiple clients concurrently
interact with multiple MABs, with the objective being the optimization of the cumulative averaged
reward across all the clients through communications. Significantly, in addition to the exploration-
exploitation trade-off, these clients engage in communication constrained by the underlying graph
structure, which necessitates the exploration of the information of other clients and developing
strategies accordingly.

Numerous research has been working on the multi-agent MAB problem, including both centralized
settings as in (Bistritz and Leshem, 2018; Zhu et al., 3–4, 2021; Huang et al., 2021; Mitra et al.,
2021; Réda et al., 2022; Yan et al., 2022), and decentralized settings as in (Landgren et al., 2016a;b;
2021; Zhu et al., 2020; Martínez-Rubio et al., 2019; Agarwal et al., 2022), where it is assumed that
reward distributions are uniform among clients, namely homogeneous. Recent attention has shifted
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towards addressing decentralized, heterogeneous variants, including (Tao et al., 1546–1574, 2022;
Wang et al., 1531–1539, 2021; Jiang and Cheng, 1–33, 2023; Zhu et al., 2020; 2021; 3–4, 2021; Zhu
and Liu, 2023; Xu and Klabjan, 2023b), which are more general and bring additional complexities.
In these scenarios, the shared assumption is that all clients exhibit honesty, refraining from any
malicious behaviors, and diligently adhere to both the shared objective and the designed strategies.
However, real-world scenarios often deviate from this ideal, featuring inherently malicious clients.
Examples include failed machines in parallel computing or the existence of hackers in the email
system. Consequently, recent research, such as (Vial et al., 2021), has delved into the multi-agent
MAB problem in the context of malicious clients, which is formulated as a robust multi-agent MAB
problem. This line of work yields algorithms that perform optimally, provided that the number of
malicious clients remains reasonably limited, effectively capturing more general and practical settings.
More recently, the work of (Zhu et al., 2023) propose a byzantine-resilient framework and show that
collaboration in a setting with malicious clients upgrades the performance if at every time step, the
neighbor set of each client contains at least 2

3 ratio of honest clients and downgrades the performance
otherwise.

It is important to note three major concerns with the robust multi-agent MAB framework. First,
despite improved regret bounds by (Vial et al., 2021), the possibility of malicious clients compromising
estimators cannot be ignored, particularly when accurate estimators are crucial, such as in IoT-
driven smart homes (Zhao et al., 2020). This undermines the applicability of the framework in
scenarios requiring reliable ground truth knowledge. Second, malicious clients may engage in various
disruptive behaviors, not just through estimator manipulation. For instance, they could cause channel
congestion, which affects the system’s stability and significantly degrades the performance of honest
clients, a scenario not adequately addressed in current studies (Vial et al., 2021; Zhu et al., 2023).
Third, the existing literature assumes clients are open to sharing detailed interaction data with
bandits, imposing significant privacy concerns. These concerns have not been adequately explored
and thus pose a major motivation for our work.

Blockchains are fully decentralized structures allowing multiple clients to interact without a central
authority, proving highly effective in enhancing security and accuracy across various domains (Feng
et al., 2023). Originally developed for peer-to-peer networking and cryptography as discussed by
(Nakamoto, 2008), a blockchain consists of a data storage system, a consensus mechanism for secure
updates, and a verification process for assessing these updates, often referred to as block operations
(Niranjanamurthy et al., 2019). This structure addresses key concerns: first, the verification process
ensures the accuracy of information before it is added to the chain, checking the validity of new
blocks. Second, the consensus mechanism allows honest clients to reach agreement without prior
knowledge of each other’s identities, enhancing trust and security, thus mitigating systematic attacks.
Despite its potential for increasing privacy through cryptography and decentralization, there is still
little understanding of how to integrate blockchain technology within online sequential cooperative
decision-making, marking a significant research gap addressed by this paper.

A line of research has successfully adapted blockchains to learning paradigms, notably in blockchain-
based federated learning as discussed in (Li et al., 2022; Zhao et al., 2020; Lu et al., 2019; Wang
et al., 2022). In these systems, multiple clients on a blockchain aim to optimize model weights of a
target model, despite interference from malicious clients. The scale of these models necessitated the
introduction of the Interplanetary File System (IPFS), an off-chain storage solution that enhances
the stability and efficiency of blockchain operations. However, the decision-making processes in
multi-agent MABs differ fundamentally from those in federated learning, making current approaches
inapplicable. This gap motivates the development of a new, secure, and reliable framework for multi-
agent MAB challenges. Furthermore, while existing studies often focus on deployment performance,
the theoretical effectiveness of blockchain-based federated learning, crucial for cybersecurity, remains
underexplored. This paper aims to bridge these gaps, analyzing theoretical properties and introducing
frameworks with provable optimality for multi-agent MAB in cybersecurity.

Moreover, existing blockchain frameworks have limitations that may not be suitable for multi-agent
MAB problems due to their online sequential decision-making nature. For instance, the consensus
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protocol often assumes the existence of a leader, introducing authority risks. Additionally, the
general rule is to secure more than 2

3 of the votes, which can be impractical in real-world scenarios.
Furthermore, the online decision-making problem necessitates the deployment of strategies for real-
time interaction with an exogenous environment, a feature not present in traditional blockchain
frameworks. Consequently, the adaptations presented in this paper require careful modifications to
blockchains and the introduction of new mechanisms. Moreover, little attention has been given to
understanding the theoretical properties of blockchains, creating a gap between existing learning
theory and blockchains. This holds as the current literature on blockchains and related topics has
not yet explored or addressed the theoretical guarantees, even though empirical examination and
validation have been conducted across a wide range of domains.

To this end, in this paper, we propose a novel formulation of robust Multi-agent Multi-armed Bandit
(multi-agent MAB) within the framework of Blockchains. We are the first to study the robust
multi-agent MAB problem where clients are distributed and operate on Blockchains. In this context,
clients can only receive rewards when a block is approved to ensure security at each time step, which
differs largely from the existing MAB framework. Here, clients are allowed to be malicious and can
take various disruptive actions during the game. Blockchains keep track of everything and guarantee
functionality through chain operations. This introduces additional complexities, as clients not only
design strategies for selecting arms but also interact with both the blockchain and the exogenous
environment. Moreover, the presence of blockchain also complicates the traditional bandit feedback,
as disapproved blocks introduce new challenges in this online and partial information setting.

We also develop an algorithmic framework for the new formulation with Blockchains, drawing from
existing literature while introducing novel techniques given the limitations. This framework includes
the design of a validator selection mechanism that eliminates the need for an authorized leader, a
departure from existing literature. We also incorporate the arm selection strategy into the framework
to perform online sequential decision making. Furthermore, we modify the consensus protocol without
relying on majority voting; we use a digital signature scheme (Goldwasser et al., 1988). Moreover, we
introduce the role of a smart contract (Hu et al., 2020) and surprisingly enable interaction with the
environment through this smart contract. To incentivize the participation of malicious clients in the
game, we are the first to design a cost mechanism inspired by the area of mechanism design (Murhekar
et al., 2023). It is worth noting that the existence of this smart contract and cost mechanism also
guarantees the correctness of the information transmitted on the chain.

On top of this breakthrough in terms of the framework, we also perform theoretical analyses of the
proposed algorithms. This involves analyzing the regret, which aims at fundamentally understanding
the impact and mechanisms of blockchains within this multi-agent MAB setting given the existence
of malicious behaviors. Precisely, we show that under mild assumptions, the regret of honest clients
is upper bounded by O(log T ), which is consistent with the existing algorithms for robust multi-agent
MAB problems (Zhu et al., 2023; Vial et al., 2021). This is the very first theoretical result on
leveraging Blockchains for online learning problems, to the best knowledge of us. Furthermore, this
regret bound coincides with the existing regret lower bounds in multi-agent MAB when assuming no
clients are malicious (Xu and Klabjan, 2023a), implying its optimality.

The paper is structured as follows. We start by introducing the notations that are used throughout
and presenting the problem formulation. Following that, we propose an algorithmic framework
for solving the proposed problem. Subsequently, we provide a detailed analysis of the theoretical
guarantee regarding the regret associated with the proposed algorithms. Lastly, we present a summary
of the paper.

2 Problem Formulation
We start by introducing the notations used throughout the paper. Consistent with the traditional
MAB setting, we consider K arms, labeled as 1, 2, . . . , K. The time horizon of the game is denoted as
T , and it implies the time step 1 ≤ t ≤ T . Additionally as in the standard Multi-agent MAB setting,
we denote the number of clients as M , and the clients are labeled from 1 to M . It is worth noting
that we use the terminologies "client" and "participant" interchangeably for the rest of the paper.
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Meanwhile, in our newly proposed blockchain framework, we denote the total number of blocks as
B = T and each block at time step t is denoted as bt. Let us denote the reward of arm i at client m in
block b at time step t as {rm

i (b, t)}i,m,b,t, which follows a stochastic distribution with a time-invariant
mean value {µb

i}i,b. We denote the set of honest participants and malicious participants as MH

and MA, respectively. Note that they are time-invariant. We denote the estimators maintained at
participant m as µ̄m,i(t), µ̃m,i(t), and the validators estimators as µ̃i(t).

Meanwhile, we introduce some terminologies relevant to this paper.

Existential Forgery Following the definition in (Goldwasser et al., 1988), malicious participants
successfully perform an existential forgery if there exists a pair consisting of a message and a signature,
such that the signature is produced by an honest participant.

Adaptive Chosen Message Attack Consistent with (Goldwasser et al., 1988), we consider the
most general form of message attack, namely the adaptive chosen message attack. In this context,
a malicious participant not only has access to the signatures of honest participants but also can
determine the message list after seeing these signatures. This grants the malicious participant a high
degree of freedom, thereby making the attack more severe.

Universal Composability Framework For homomorphic encryption, we follow the standard
framework as in (Canetti, 2001). Specifically, an exogenous environment, also known as an
environment machine, interacts sequentially with a protocol. The process runs as follows: the
environment sends some inputs to the protocol and receives outputs from the protocol that may
contain malicious components. If there exists an ideal adversary such that the environment machine
cannot distinguish the difference between interacting with this protocol or the ideal adversary, the
protocol is deemed universally composable secure.

Additionally, we propose a novel cost mechanism that penalizes honest clients if the chain is approved
with malicious information, inspired by real-world scenarios. The precise description is as follows.

Cost Mechanism We assume that if the estimators from the malicious participants are used in
the validated estimators, i.e. ∂µ̃i(t)

∂µ̄m,i(t) ̸= 0, then the honest participants incur a cost of ct, which they
are not aware of until the end of the game.

Subsequently, we define the regret as follows. Formally, the goal is to maximize the total cumulative
(expected) reward of honest participants, defined as

∑
m∈MH

∑T
t=1 rm,b

at
m

(t),
∑

m∈MH

∑T
t=1 µb

at
m

,
or equivalently, to minimize the regret RT = maxi

∑
m∈MH

∑T
t=1 rm,b

i (t) −
∑

m∈MH

∑T
t=1 rm,b

at
m

(t) +∑T
t=1 ct and pseudo regret R̄T = maxi

∑
m∈MH

∑T
t=1 µb

i −
∑

m∈MH

∑T
t=1 µb

at
m

+
∑T

t=1 ct.

We show the rationality of this regret definition as follows. It holds true that these two regret
measures are well-defined, considering that MH is fixed and does not change with time. Furthermore,
these definitions align with those used in the context of Blockchain-based federated learning. In these
frameworks, the objective is to optimize the model maintained by honest participants, regardless
of the intermediate performance and without involving online decision making. Additionally, this
definition is consistent with the existing multi-agent MAB problem, except that the cost mechanism is
introduced given the existence of malicious participants. In the latter case, the regret is averaged over
all participants, which is equivalent to honest participants in both our context and blockchain-based
federated learning.

3 Methodologies
In this section, we present the proposed methodologies in this new setting, as outlined in Algorithms
1 and 2, which represent different stages. Notably, we develop the first algorithmic framework at the
interface of Blockchains in cybersecurity and multi-agent MAB, addressing the joint challenges of
security, privacy, and optimality in online sequential decision making. We leverage the Blockchain
structure while introducing new advancements to the existing ones, to theoretically guarantee the
functionality of the chain with a new consensus mechanism and cost mechanism. Compared to
existing work on Byzantine-resilient multi-agent MAB with malicious participants, our methodology
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operates on a blockchain with an added layer of reward approval and incorporates secure multi-party
computation into the communication process, which largely improves the security and privacy of
honest participants with minimal risk of being compromised. We also introduce a cost mechanism
to incentivize the participation of malicious participants. This mechanism is driven by real-world
applications and is consistent with blockchain-based federated learning. It has been customized for
this online decision-making regime to guarantee the correctness and optimality of the framework.

More specifically, the algorithmic framework consists of 3 algorithms. Algorithms 1 and 2 constitute
the core of the methodology, including the sequential strategies executed by the honest participants,
black-box operations by the malicious participants, and the chain executions. Moreover, we use a
sub-algorithm (see Appendix) integrated into the validation selection procedure of Algorithm 1 to
ensure the proper execution of the sampling process based on the desired criteria.

The main algorithm includes several stages, as indicated in the following order.

Validator selection At each time step, the entire system first selects a sub-pool of participants
allowed to act on the chain. Specifically, the system samples the set of validators based on the trust
coefficients of participants, which are initialized as 1 and updated sequentially. The detailed pseudo
code is in Appendix. The purpose of this step is to guarantee security and efficiency, as the chain
relies only on a proportion of participants whcih have access to the system’s information.

Arm selection This step is common in the MAB framework, where participants decide which arm
to pull sequentially. The strategies depend on whether participants are honest or malicious. For
honest participants, the strategy follows a UCB-like approach. More specifically, for each honest
participant m, it assigns a decision criterion to each arm i and selects the arm with the highest
criterion, which can be formally written as at

m = argmaxµ̃m,i(t) + F (m, i, t) where µ̃m,i(t) is the
maintained estimator at participant m. Here F (m, i, t) =

√
C1 log t
nm,i(t) with C1 being specified in

Theorem 1. For malicious participant j, however, it selects arms based on arbitrary strategies, which
is also known as Byzantine’s attack and written as at

j = f t
j (i) where f t

j is any mapping from a space
RK to a scalar space R1.

Consensus The consensus protocol is central to the execution of the chain and guaranteeing that
the chain is growing as expected. More specifically, we incorporate the digital signature scheme
(Goldwasser et al., 1988) into the protocol and use the solution to the Byzantine General Problem
(Lamport et al., 2019) under any number of malicious validators. To expand, malicious participants
broadcast their estimators µ̄m,i(t) to the validators using possibly Byzantine’s attack or a backdoor
attack. On the contrary, honest participants broadcast their estimators µ̄m,i(t) to the validators.

For each honest validator h, it determines the set, At, Bt as follows. The set At is m ∈ At ⇔
kinm,i(t) > nj,i(t) ⇔ m ∈ MH that can be constructed through the secure multi-party computation
protocol as in (Asharov et al., 2012) and the set Bt is as follows. If |At| > 2f , then Bt =
{m : µ̄m,i(t) is smaller than the top f values and larger than the below f values}, and otherwise,
Bt = {t mod K}. Alternatively, we use the notations top(C, −f) and top(C, f) to denote values
below f and the top f values in set C, respectively. Once again, the malicious participants choose
the sets At and Bt in a black-box manner.

And then, validators broadcast Bt to other validators after attaching their signatures, repeating
this process at least M times, based on the algorithm in (Lamport et al., 2019). The consensus is
successful if at least one estimator is present in Bt. Otherwise, the consensus step fails, resulting in
an empty set of estimators.

Global Update The set Bt is sent to the smart contract, which then computes the average of the
estimators within Bt, known as the global update. More precisely, for each arm i, the estimator is

computed as µ̃i(t) =
∑

m∈Bt
µ̄m,i(t)

|Bt| if Bt is not empty, and µ̃i(t) = ∞ otherwise.
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Algorithm 1: BC-UCB
1 Initialization: For participants 1, 2, . . . , M , arms 1, . . . , K, at time step 0, in block 1 ≤ b ≤ B we have µ̃m,b

i
(1), ˆ̃µb

i (1),
wm

i (1), Nm,i(1) = nm,i(1); cumulative reward V m
1 = 1 for participant 1 ≤ m ≤ M ; parameter δ; the number of honest

participants MH ≥ 2
3 M ; the expected number of validators MV ; The decision on whether participant j is honest at

validator m is initialized as Dm,j(0) = 1; random seed r; for any set S0, majority(S0) refers to the majority or the
median of S0;

2 for t = 1, 2, . . . , T do
3 Participants compete to be the validator of block b using Proof-of-Work: [Input:wm(t), MV ; Output: SV (t)]

// Validators
4 Participant m’s probability of being a validator is proportional to the trust coefficient wm(t), i.e.

pm(t) = wm(t)∑
m

wm(t)
;

5 for each participant j do
6 Sample whether it belongs to the set of validators SV (t) based on pj(t) in a decentralized manner
7 end
8 for each participant m ∈ MH do // [Input: MH , nm,i(t), Nm,i(t), K, F (m, i, t), SV (t); Output: at

m] UCB
9 if there is no arm i such that nm,i(t) ≤ Nm,i(t) − K then

10 at
m = argmaxiµ̃m,i(t) + F (m, i, t)

11 else
12 Randomly sample an arm at

m.
13 end
14 Pull arm at

m;
15 Broadcast its estimators µ̃m,b

i
(t) to validators SV (t) that are determined in the Validators step regarding the

select arm at
m;

16 end
17 for each participant m ̸∈ MH do // [Input: MH , f, SV (t); Output: at

m] Byzantine’s attack
18 Broadcast its estimators to validators SV (t) that are determined in the Validator step using possibly

Byzantine’s attack regarding an arm at
m, i.e.

µ̃m,b
i

(t) = f(m, b, t) where f is an arbitrary mapping from the space of RM×B×T to R;
19 end
20 Validators use majority voting to achieve consensus on the estimators µ̃m,b

i
(t) as follows: // Consensus ;

21 for each validator k ∈ SV (t) ∩ MH do // [Input: {µ̃m,b
i

(t)}m≤M , SV (t), MH , δ; Output: Dk,j(t)]
22 for each participant j do
23 Dk,j(t) = 1 · 1j∈Ak(t)
24 end
25 end
26 for each validator k ∈ SV (t) and k ̸∈ MH do // [Input: {µ̃m,b

i
(t)}m≤M , SV (t), MH , δ, f̄ ; Output: Dk,j(t)]

27 for each participant j do
28 Dk,j(t) = f̄(µ̃j,b

i
(t), µ̃k,b

i
(t), δ)

29 end
30 end
31 for each validator k do // [Input: SV (t), {Dk,j(t)}j≤M ; Output: {Dk,j(t)}k∈SV (t),j≤M ]
32 Broadcast the estimators {Dk,j(t)}j≤M to validatorrs SV (t)\{j}
33 end
34 for each validator k ∈ SV (t) and k ̸∈ MH do
35 for each participant j do // [Input: SV (t), {Dl,j(t)}l∈SV (t); Output: M̃k,t

H
]

36 Arbitrarily determine whether j is malicious, denoted as j ̸∈ M̃k,t
H

or honest, denoted as j ∈ M̃k,t
H

37 end
38 Broadcast the estimators Bk(t) = M̃k,t

H
to validators SV (t)\{k}

39 end
40 for each validator k ∈ SV (t) ∩ MH do
41 for each participant j do // [Input: SV (t), {Dl,j(t)}l∈SV (t); Output: M̃k,t

H
]

42 if j ∈ Ak(t) and |Ak(t)| > 2f then
43 participant j belongs to Bk(t) if top({µ̃j,i(t)}j , −f) < µ̃j,i(t) < top({µ̃j,i(t)}j , f)
44 else
45 the estimator from participant j is ignored
46 end
47 end
48 Broadcast the estimators Bk(t) = M̃k,t

H
to validators SV (t)\{k}

49 end
50 Denote the estimator M̃t

H = ∪kM̃k,t
H

;
51 for each validator k ∈ SV (t) do
52 for round 1 ≤ h ≤ M do // [Input: SV (t), {M̃ l,t

H
}l∈SV (t); Output: M̃t

H ]
53 generate the digital signature as in (Goldwasser et al., 1988);
54 execute Algorithm SM(M) in (Lamport et al., 2019);
55 derive the set M̃t

H

56 end
57 end
58 end
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Algorithm 2: BC-UCB
1 for t = 1, 2, . . . , T do
2 The validators obtain the corresponding subset of estimators S = {µ̃j,b

i
}j

i
for j ∈ M̃t

H ; [Input: M̃t
H , µ̃m,b

i
(t);

Output: S]
3 The verified estimators/arms are immutable and used for updating global estimators ˆ̃µb

i (t) by the following:// Global
update ;

4 if set S is not empty then
5 for each arm i, the global estimator in block b at time step t is the averaged local estimators in set S written as
6 ˆ̃µb

i (t) = 1
|M̃t

H
|

∑
m∈M̃t

H

µ̃m,b
i

(t)

7 else
8 for each arm i, the global estimator is ˆ̃µb

i (t) = −∞
9 end

10 A smart-contract validates block b: // [Input: ˆ̃µb
i (t); Output: approve or disapprove] Verification

11 Approve the block if the global estimators ˆ̃µb
i (t) is not −∞ for arm i;

12 Disapprove the block otherwise;
13 if the block is approved then // Block operation
14 Input: Vt, {µ̃m,b

i
(t), Nm,i(t), nm,i(t)}m≤M ; Output: the corresponding estimators at t + 1

15 for each participant m do
16 Append the validated block to the chains;
17 Collect the reward rm

at
m(b)(b, t) of the pulled arm in that block and add it to the cumulative reward by

Vt+1 = Vt + rm

at
m(b)(b, t);

18 Update estimators µ̃m,b
i

(t), Nm,i(t), and nm,i(t) based on the rewards;

19 µ̃m,b
i

(t + 1) =
µ̃

m,b
i

(t)·nm,i(t)+rm

at
m(b)

(b,t)·1
at

m(b)=i

nm,i(t)+1
at

m(b)=i
; nm,i(t + 1) = nm,i(t) + 1at

m(b)=i;

20 Nm,i(t + 1) = Nm,i(t) + 1{∃m,at
m(b)=i} · 1m∈SV (t)

21 end
22 else
23 Skip the current time step by not collecting the rewards and not updating the estimators;
24 end
25 for each participant m do // [Input: wm(t), δ, µ̃m,b(t), ˆ̃µb

i (t), b; Output: wm(t + 1), b]Participants’ update
26 The smart contract computes Distm(t) = Distance(µ̃m,b(t), ˆ̃µb(t)) ≤ δ ;
27 Receive reward wt = δ − Distm(t);
28 Update wm(t + 1) = wm(t) exp{wt} and b = b + 1;
29 end
30 end

Block Verification The smart contract validates the block and assigns bt = 1 if the estimator
satisfies the condition µ̃i(t) ≤ 2. It disapproves the block otherwise, which is denoted as bt = 0.

Block Operation The smart contract sends the output containing the validated estimator µ̃i(t),
the set Bt, and the indicator bt of whether the block is approved to the environment. Subsequently,
the environment determines the rewards to be distributed to the participants as follows.

case 1: if the block is approved with bt = 1 and Bt ⊂ MH , i.e. ∂µ̃i(t)
∂µ̄m,i(t) = 0 where m ̸∈ MH then the

environment distributes rm
at

m
(t) and µ̃i(t) to participant m for any 1 ≤ m ≤ M .

case 2: if the block is approved with bt = 1 and Bt ∩ MH < |Bt|, i.e. ∂µ̃i(t)
∂µ̄m,i(t) ≠ 0 where m ̸∈ MH

then the environment distributes rm
at

m
(t) − ct and µ̃i(t) to any honest participant m, and rm

at
m

(t) + ct

to any malicious participant.

case 3: if the block is disapproved with bt = 0, the environment distributes nothing to the participants.

Participants’ Update After receiving the information from the environment, the honest partici-
pants update their maintained estimators as follows. For the reward estimator µ̃m, i(t), they update
it when they receive µ̃i(t), i.e. µ̃m,i(t) = µ̃m,i(t), and otherwise, µ̃m,i(t) = µ̄m,i(t). For the number
of arm pulls, they update it as nm,i(t) = nm,i(t − 1) + 1bt=1 · 1at

m=i.

For the trust coefficients, every participant needs to update them based on their rewards, which can
again be achieved through the secure multi-party computation protocol. More precisely, let the trust
coefficient wm(t) be updated as follows wm(t) = wm(t − 1) exp{ht

m} where hm(t) can be any values.
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4 Regret Analysis
In this section, we demonstrate the theoretical guarantee of our proposed framework, by analyzing
the regret defined over the honest participants. The formal statement reads as follows.

Theorem 1. Let us assume that the total number of honest participants is at least 2
3 M and let us

specify the quantities hm(t) = 0 and ct = c. Meanwhile, let us assume that the malicious participants
perform existential forgery on the signatures of honest participants with an adaptive chosen message
attack. Lastly, let us assume that the participants are in a standard universal composability framework
when constructing A. Here the set A is defined as A = {∀1 ≤ t ≤ T, bt = 1} which satisfies that
P (A) ≥ 1

lT −1 . Then we have that E[RT |A] ≤ (c + 1) · L +
∑

m∈MH

∑K
k=1 ∆k([ 4C1 log T

∆2
i

] + π2

3 ) +
|MH |Kl1−T where L = O(log T ) is the length of the burn-in period, c is the cost, C1 meets the
condition that C1

2|MH |kiσ2 ≥ 1, ∆i is the sub-optimality gap, l is the length of the signature of the
participants, and ki is the threshold parameter used in the construction of At.

Proof sketch. The full proof is provided in Appendix; the main logic is as follows. We decompose
the regret into three parts: 1) the length of the burn-in period, 2) the gap between the rewards of
the optimal arm and the received rewards, and 3) the cost induced by selecting the estimators of
the malicious participants. For the second part of the regret, we bound it in two aspects. First, we
analyze the total number of times rewards are received, i.e., when the block is approved, which is
of order 1 − l1−T . Then, we control the total number of times sub-optimal arms are pulled using
our developed concentration inequality for the validated estimators sent for verification. Concerning
the third part, we bound it by analyzing the construction of Bt, which depends on the presence
of malicious clients in At. By demonstrating that At contains only a small number of malicious
participants in comparison to the total number of honest participants, we show that Bt does not
induce additional cost. Combining the analysis of these three parts, we derive the upper bound on
regret.

5 Conclusion
This paper addresses the robust multi-agent multi-armed bandit problem within the framework of
blockchains, representing the first work to explore online sequential decision-making with clients
distributed on a blockchain. Our approach focuses on ensuring security, privacy, and optimality
from a system perspective in the context of distributed online sequential decision making, distinct
from blockchain-based federated learning or byzantine-resilient multi-agent MAB. To tackle this
challenge, we introduce a novel algorithmic framework. A group of participants forms a validator set
responsible for achieving consensus on information transmitted by all participants, ensuring security
and privacy. Validated information is then sent to a smart contract for verification, with rewards
distributed only upon successful verification. As part of our contributions, we use trust coefficients to
determine validator selection probabilities.Additionally, we incorporate a digital signature scheme into
the consensus process, eliminating the traditional 1

3 assumption of the Byzantine general problem.
Furthermore, we introduce a cost mechanism to incentivize malicious participants by rewarding
their contributions to the verification step. We provide a rigorous regret analysis demonstrating
the optimality of our proposed algorithm under specific assumptions, marking a breakthrough in
blockchain-related literature.
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Appendix
Sampling procedure
The pseudo code for the sample step, based on the trust coefficients of clients, is presented in the
following algorithm, namely Algorithm 3.

Algorithm 3: Sampling using sortition based on trust coefficients
1 Input: time step t; trust coefficients wmj(t); V RF = (G, F ) (verifiable random functions); the length of hash value is

denoted as hashlen; For any integer k < w, the probability density function of selecting k samples out of w following
binomial distribution with successful probability p, is denoted as B(k, w, p) ;

2 for time step t do
3 choose a public-private key pair (pkj , skj), both of which are binary strings, by probabilistic function G(j);
4 the hash value hash and the proof π, which are two binary strings, are given by < hash, π >= F (r, skj);
5 pj = MV∑

m
wm(t)

;

6 z = 0;
7 while hash

2hashlen ̸∈ [
∑z

k=0
B(k, wj(t), pj),

∑z+1
k=0

B(k, wj(t), pj)) do
8 z = z + 1
9 end

10 end

Proof of Theorem 1

Proof. For regret, we have the following decomposition. Let us denote bt as the indicator function of
whether the block at time step t is approved. Likewise, for any time step t, we denote whether the
estimators from the malicious clients are utilized in the integrated estimators as ht. Let the length of
the burn-in period be L.

Note that

RT = max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

(µb
at

m
− ct)

= max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

µb
at

m
+

∑
m∈MH

T∑
t=1

ct

= max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

µat
m

1bt=1 +
∑

m∈MH

T∑
t=1

ct

= max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

µat
m

1bt=1 +
∑

m∈MH

T∑
t=1

c1ht=1

Meanwhile, the regret can be bounded as follows

RT ≤ L + c · L +
T∑

t=L+1

∑
m∈MH

(µi∗ − µat
m

1bt=1) +
∑

m∈MH

T∑
t=L+1

c1ht=1

.= (c + 1) · L + T1 + T2

We start with the second term T2. Note that ht = 1 is equivalent to {m : m ∈ Bt ∩ m ̸∈ MH} ≠ ∅.

By taking the expectation over T2, we derive

E[T2|A] =
∑

m∈MH

T∑
t=L+1

cE[1ht=1]

=
∑

m∈MH

T∑
t=L+1

cE[1{m:m∈Bt∩m̸∈MH }̸=∅]

11
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Based on Lemma 2 in (Zhu et al., 2023), we obtain that

1{m:m∈Bt∩m ̸∈MH }̸=∅ = 1|At|<2f

which immediately implies that

E[T2|A] =
∑

m∈MH

T∑
t=L+1

cE[1ht=1]

=
∑

m∈MH

T∑
t=L+1

cE[1{m:m∈Bt∩m̸∈MH }̸=∅]

=
∑

m∈MH

T∑
t=L+1

cE[1|At|<2f ].

In the meantime, we note that for any honest validators, the choice of At guarantees that honest
participants are included after the burn-in period. More specifically, the set of At satisfies that for
any validator j ∈ MH ,

m ∈ At ⇔ kinm,i(t) > nj,i(t) ⇔ m ∈ MH

where 1 < ki < 2. This condition holds at the end of burn-in period which is straightforward since
each honest. After the burn-in period, the honest participants has the same decision rule

at
m = argmaxiµ̃m,i(t) + F (m, i, t)

where µ̃m,i(t) = µ̃b
i(t). In other words, each honest client uses the validated estimator µ̃b

i(t).Since
both nm,i(t) and nj,i(t) are larger than L

K , then we have that there exists ki = nj,i(t)K
L , such as

kinm,i(t) > nj,i(t) for every m ∈ MH .

This implies that

At > |MH | ≥ 2f

by the assumption that the number of honest participants is at least 2
3 M .

That is to say,

E[1|At|>2f ] = 1

and subsequently, we have

E[T2|A] =
∑

m∈MH

T∑
t=L+1

cE[1|At|<2f ]

= 0

We note that the construction of At is done without knowing the number of pulls of arms of other
clients. This is realized by using the homomorphic results, Theorem 5.2 as in (Asharov et al., 2012)
under the universal composability framework.

Next, we proceed to bound the first term T1. Note that

E[T1|A] ≤
T∑

t=L+1

∑
m∈MH

(µi∗ − µat
m

1bt=1)

= (T − L) · |MH | · µi∗ −
∑

m∈MH

T∑
t=L

E[µat
m

|bt = 1]P (bt = 1)

12
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In the meantime, we obtain the following

E[µat
m

|bt = 1]

= E[
K∑

k=1
µk · 1at

m=k|bt = 1]

=
K∑

k=1
E[µk1at

m=k|bt = 1]

≥
K∑

k=1
µk · 1

P (bt = 1) · (E[1at
m=k] − P (bt = 0)).

This immediately gives us that

E[T1|A]

≤ (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

(
K∑

k=1
µk · 1

P (bt = 1) · (E[1at
m=k] − P (bt = 0)))P (bt = 1)

= (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

(
K∑

k=1
µk(E[1at

m=k] − P (bt = 0))

= (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

K∑
k=1

µkE[1at
m=k] +

∑
m∈MH

T∑
t=L

K∑
k=1

µkP (bt = 0).

Based on Theorem 2 in (Lamport et al., 2019), the consensus is achieved, i.e. bt = 1, as long as
the digital signatures of the honest participants can not be forged. Based on our assumption, we
have that the malicious participants can only perform existential forgery on the signatures of the
honest participants and the attacks are adaptive chosen-message attack. Then based on the result,
Main Theorem in (Goldwasser et al., 1988), the attack holds with probability at most 1

Q(l) for any
polynomial function Q and large enough l where l is the length of the signature.

More precisely, we have that with probability at least 1 − 1
lT , the signature of the honest participants

can not be forged, and thus, the consensus can be achieved, i.e.

P (bt = 1) ≥ 1 − 1
lT

.

Subsequently, we derive that

(10) ≤ (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

K∑
k=1

µkE[1at
m=k] +

∑
m∈MH

T∑
t=L

K∑
k=1

µk( 1
lT

)

≤
∑

m∈MH

T∑
t=L

(µi∗ −
K∑

k=1
µkE[1at

m=k]) + |MH |KlT −1

=
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KlT −1

.= T21 + |MH |KlT −1

And for each honest participant, they are using the estimators based on the validated estimators, as
long as the block is approved. Consider the following event, A = {∀1 ≤ t ≤ T, bt = 1}. Based on (10)
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and the Bonferroni’s inequality, we obtained that

P (A) = P (∀1 ≤ t ≤ T, bt = 1)
= 1 − P (∃1 ≤ t ≤ T, bt = 0)

≤ 1 −
T∑

t=1
P (bt = 0)

≤ 1
lT −1 .

On event A, the blockchain always gets approved, and then all the honest participants follow the
validated estimators from the validators. By (10) and Lemma 2 in (Zhu et al., 2023), we have that
the validated estimator µ̃i(t) can be expressed as

µ̃i(t) =
∑

j∈At∩MH

wj,i(t)µ̄j,i(t)

which is also equivalent to µ̃m,i(t). Here the weight wj,i(t) meets the condition

∑
j∈At∩MH

wj,i(t) = 1,

which immediately implies that

E[µ̃i(t)] = µi.

We note that the variance of µ̃i(t), var(µ̃i(t)), satisfies that,

var(µ̃i(t)) = var(
∑

j∈At∩MH

wj,i(t)µ̄j,i(t))

≤ |At ∩ MH |
∑

j∈At∩MH

wj,i(t)2var(µ̄j,i(t)))

≤ |At ∩ MH |
∑

j∈At∩MH

w2
j,i(t)σ2 1

nj,i(t)

≤ |At ∩ MH |
∑

j∈At∩MH

w2
j,i(t)σ2 ki

nm,i(t)

= |MH | ki

nm,i(t)
∑

j∈MH

w2
j,i(t)σ2

≤ |MH | kiσ
2

nm,i(t)

where the inequality holds by the Cauchy-Schwarz inequality, the second inequality holds by the
definition of sub-Gaussian distributions, the third inequality results from the construction of At, and
the last inequality is as a result of (a + b)2 ≥ a2 + b2.
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Subsequently, we have that

P (µ̃m
i (t) −

√
C1 log t

nm,i(t)
> µi, nm,i(t − 1) ≥ l)

≤ exp {−
(
√

C1 log t
nm,i(t) )2

2var(µ̃m
i ) }

≤ exp {−
(
√

C1 log t
nm,i(t) )2

2|MH | kiσ2

nm,i(t)
}

= exp {− C1 log t

2|MH |kiσ2 } ≤ 1
t2

where the first inequality holds by Chernoff bound, the second inequality is derived by plugging in
the above upper bound on var(µ̃m

i (t)), and the last inequality results from then choice of C1 that
satisfies C1

2|MH |kiσ2 ≥ 1.

Likewise, by symmetry, we have

P (µ̃m
i (t) +

√
C1 log t

nm,i(t)
< µi, nm,i(t − 1) ≥ l) ≤ 1

t2 .

Meanwhile, we have that

T∑
t=L+1

P (µi + 2

√
C1 log t

nm,i(t − 1) > µi∗ , nm,i(t − 1) ≥ l) = 0

if the choice of l satisfies l ≥ [ 4C1 log T
∆2

i
] with ∆i = µi∗ − µi.

Based on the decision rule, we have the following hold for nm,i(T ) with l ≥ [ 4C1 log T
∆2

i
],

nm,i(T ) ≤ l +
T∑

t=L+1
1{am

t =i,nm,i(t)>l}

≤ l +
T∑

t=L+1
1

{µ̃m
i

−
√

C1 log t

nm,i(t−1) >µi,nm,i(t−1)≥l}

+
T∑

t=L+1
1

{µ̃m
i∗ +

√
C1 log t

nm,i∗ (t−1) <µi∗ ,nm,i(t−1)≥l}

+
T∑

t=L+1
1

{µi+2
√

C1 log t

nm,i(t−1) >µi∗ ,nm,i(t−1)≥l}
.
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By taking the expectation over nm,i(t), we obtain

E[nm,i(t)] ≤ l +
T∑

t=L+1
P (µ̃m

i (t) −

√
C1 log t

nm,i(t)
> µi, nm,i(t − 1) ≥ l)

+
T∑

t=L+1
P (µ̃m

i (t) +

√
C1 log t

nm,i(t)
< µi, nm,i(t − 1) ≥ l)

+
T∑

t=L+1
P (µi + 2

√
C1 log t

nm,i(t − 1) > µi∗ , nm,i(t − 1) ≥ l)

≤ l +
T∑

t=L+1

1
t2 +

T∑
t=L+1

1
t2 + 0

≤ l + π2

3 = [4C1 log T

∆2
i

] + π2

3

where the second inequality holds by using (10), (10), and (10).

Then by the definition of T21, we derive

E[T21|A] =
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)]

≤
∑

m∈MH

K∑
k=1

∆k([4C1 log T

∆2
i

] + π2

3 )

where the inequality results from (10).

Consequently, we obtain

(10) ≤ E[T21|A] + |MH |KlT −1

≤
∑

m∈MH

K∑
k=1

∆k([4C1 log T

∆2
i

] + π2

3 ) + |MH |KlT −1.

Furthermore, we have

(10) ≤ (c + 1) · L + E[T1|A] + E[T2|A]

≤ (c + 1) · L +
∑

m∈MH

K∑
k=1

∆k([4C1 log T

∆2
i

] + π2

3 ) + |MH |KlT −1 + 0

which completes the proof.
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