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Abstract

We study a robust, i.e. in presence of malicious participants, multi-agent multi-armed
bandit problem where multiple participants are distributed on a fully decentralized
blockchain, with the possibility of some being malicious. The rewards of arms are
homogeneous among the honest participants, following time-invariant stochastic
distributions, which are revealed to the participants only when certain conditions are
met to ensure that the coordination mechanism is secure enough. The coordination
mechanism’s objective is to efficiently ensure the cumulative rewards gained by the
honest participants are maximized. To this end and to the best of our knowledge, we
are the first to incorporate advanced techniques from blockchains, as well as novel
mechanisms, into such a cooperative decision making framework to design optimal
strategies for honest participants. This framework allows various malicious behaviors
and the maintenance of security and participant privacy. More specifically, we select
a pool of validators who communicate to all participants, design a new consensus
mechanism based on digital signatures for these validators, invent a UCB-based
strategy that requires less information from participants through secure multi-
party computation, and design the chain-participant interaction and an incentive
mechanism to encourage participants’ participation. Notably, we are the first to prove
the theoretical regret of the proposed algorithm and claim its optimality. Unlike
existing work that integrates blockchains with learning problems such as federated
learning which mainly focuses on optimality via computational experiments, we
demonstrate that the regret of honest participants is upper bounded by log T under
certain assumptions. The regret bound is consistent with the multi-agent multi-
armed bandit problem without malicious participants and the robust multi-agent
multi-armed bandit problem with purely Byzantine attacks which do not affect the
entire system.

1 Introduction

Multi-armed Bandit (MAB) (Auer et al., 2002a;b) models the classical sequential decision making
process that dynamically balances between exploration and exploitation in an online context. Specif-
ically, in this paradigm, a player engages in a game, from which the player selects precisely one
arm and observes the corresponding reward at each time step. The player aims to maximize the
cumulative reward throughout the game. This is also equivalent to the so-called regret minimization
problem navigating the trade-off between exploration (e.g., exploring unknown arms) and exploitation
(e.g., favoring the currently known optimal arm). The recent emerging advancement of federated
learning, wherein multiple participants jointly train a shared model, has spurred a surge of interest
in the domain of multi-agent multi-armed bandit (multi-agent MAB). In this context, multiple
participants concurrently interact with multiple MABs, with the objective being the optimization of
the cumulative averaged reward across all the participants through communications. Significantly,
in addition to the exploration-exploitation trade-off, these participants engage in communication
constrained by the underlying graph structure, which necessitates the exploration of the information
of other participants and to develop strategies accordingly.
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Numerous research has been focused on the multi-agent MAB problem, including both centralized
settings as in (Bistritz and Leshem, 2018; Zhu et al., 3–4, 2021; Huang et al., 2021; Mitra et al., 2021;
Réda et al., 2022; Yan et al., 2022), and decentralized settings as in (Landgren et al., 2016a;b; 2021;
Zhu et al., 2020; Martínez-Rubio et al., 2019; Agarwal et al., 2022), where it is assumed that reward
distributions are uniform among participants, namely homogeneous. Recent attention has shifted
towards addressing decentralized, heterogeneous variants, including (Tao et al., 1546–1574, 2022;
Wang et al., 1531–1539, 2021; Jiang and Cheng, 1–33, 2023; Zhu et al., 2020; 2021; 3–4, 2021; Zhu
and Liu, 2023; Xu and Klabjan, 2023b), which are more general and bring additional complexities.
In these scenarios, the shared assumption is that all participants exhibit honesty, refraining from any
malicious behaviors, and adhere to both the shared objective and the designed strategies. However,
real-world scenarios often deviate from this assumption, are composed of malicious participants that
perform disruptively. Examples include failed machines in parallel computing, the existence of hackers
in an email system, and selfish retailers in a supply chain network. Consequently, recent research,
such as (Vial et al., 2021), has focused on the multi-agent MAB setting with malicious participants,
which is formulated as a robust multi-agent MAB problem. This line of work yields algorithms that
perform optimally, provided that the number of malicious participants remains reasonably limited.
More recently, the work of (Zhu et al., 2023) proposes a byzantine-resilient framework and shows that
collaboration in a setting with malicious participants upgrades the performance if at every time step,
the neighbor set of each participant contains at least 2

3 ratio of honest participants and downgrades
the performance otherwise.

However, there are three major concerns related to the existing robust multi-agent MAB framework,
namely optimality, security, and privacy, respectively. Firstly, in (Vial et al., 2021), the truthfulness
of the integrated reward estimators by participants is not taken into account. Every participant
maintains reward estimations and thus we also call them estimators. In essence, it means it might
not be possible to assert the correctness of these estimators, even though the relative differences
between the arms are bounded. In certain scenarios, estimators play a crucial role in guiding decision
making. For instance, in the context of smart home (Zhao et al., 2020), driven by the rapid growth
of the Internet of Things (IoT), in a smart home device setting the suppliers of the devices are the
participants monitored by the manufacturer, the devices are the arms, and the consumers are the
environment, the manufacturer seeks to understand consumer behavior. The reward corresponds to
any metric measuring consumer engagement. Each supplier develops its own engagement (reward)
estimatation by arm pulls where it is important for the estimators to be accurate. The knowledge
about the ground truth, i.e. consumer behavior in expectation across time, is essential, making the
correctness of estimators a critical concern. Secondly, there is the possibility of malicious participants
(suppliers) exhibiting various disruptive behavior beyond broadcasting inaccurate estimators. The
attack behaviors may have an impact on the coordination mechanism where honest participants
operate in, with the conflict between these two groups of participants (malicious and honest) which
may ultimately disrupt the entire system. In this case, the honest participants cannot obtain any
rewards and significantly downgrades the performance, which is a facet not covered in existing
work (Vial et al., 2021; Zhu et al., 2023). For example, in a network routing problem, where devices
(i.e., participants) send information through communication channels that represent the arms to
maximize information throughput (i.e., the reward), malicious participants could intentionally cause
channel congestion and disrupt the traffic that honest participants rely on. This has the potential to
systematically affect the performance of honest participants, which has not yet been studied, serving
as a significant motivation for this paper. Thirdly, existing literature assumes that participants are
willing to share all the information of their interactions with other participants, including the number
of pulls of arms and the corresponding reward estimators based on these number of pulls. This,
however, exposes the participants to the risk of being less private, as it might be easy to retrieve
the cumulative reward and action sequence, based on the shared information. These risks can lead
to severe privacy leakage and thus need to be addressed, which has not yet been explored by the
existing work and thereby motivating our work herein.

Notably, blockchains have a great potential to address these challenges, which are fully decentralized
structures and have demonstrated exceptional performance in enhancing system security and accuracy
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across a wide range of domains (Feng et al., 2023). This trending concept, widely applied in finance,
healthcare and edge computing, was initially introduced to facilitate peer-to-peer (P2P) networking
and cryptography, as outlined in the seminal work by (Nakamoto, 2008). A blockchain (permissioned
where the set of participants is fixed versus permisionless where the set of participants is dynamic
and anyone can join) comprises of a storage system for recording transactions and data, a consensus
mechanism for participants to ensure secure decentralized communication, updates, and agreement,
and a verification stage to assess the effectiveness of updates, often referred to as block operations
(Niranjanamurthy et al., 2019), which thus provides possibilities for addressing the aforementioned
concerns. First, the existence of verification guarantees the correctness of the information before
adding the block to the maintained chain, and the storage system ensures the history is immutable.
Secondly, the consensus mechanism ensures that honest validators, which are representatives of
participants, need to reach a consensus even before they are aware of each other’s identities, leading
to a higher level of security and mitigating systematic attacks. Lastly, enabling cryptography and full
decentralization without a central authority has the potential to improve the privacy level. However,
no attention has been given to understanding how blockchains can be incorporated into an online
sequential decision making regime, creating a gap between multi-agent MAB and blockchains that
we take a step to close it.

There has been a line of work adapting blockchains into learning paradigms, and blockchain-based
federated learning has been particularly successful as in (Li et al., 2022; Zhao et al., 2020; Lu et al.,
2019; Wang et al., 2022). In this context, multiple participants are distributed on a blockchain, and
honest participants aim to optimize the model weights of a target model despite the presence of
malicious participants. Notably, the scale of the model has led to the introduction of a new storage
system on the blockchain, the Interplanetary File System (IPFS), which operates off-chain, ensuring
the stability and efficiency of block operations on the chain. However, due to the fundamentally
different natures of decision making in MAB and federated learning, the existing literature does
not apply to the multi-agent MAB setting, which serves as the motivation for developing a novel
formulation and framework for blockchain-based multi-agent MAB. Moreover, there is limited study
on the theoretical effectiveness of blockchain-based federated learning, as most studies focus on their
deployment performances. Theoretical validity is crucial to ensure cybersecurity because deploying
blockchains, even in an experimental setting, is risky and has been extremely challenging. Henceforth,
it remains unexplored how to effectively incorporate blockchains into the robust multi-agent MAB
framework, and how to analyze the theoretical properties of the new algorithms, which we address
herein.

Moreover, existing blockchain frameworks have limitations which make them not completely suitable
for multi-agent MAB problems due to their online sequential decision-making nature. For instance,
some consensus protocols assume the existence of a leader (Chen et al., 2017), introducing authority
risks. Additionally, the general rule of practical Byzantine Fault Tolerant (PBFT) (Lei et al., 2018)
is to secure more than 2

3 of the votes (Chen and Micali, 2019), which can be impractical in real-
world scenarios. Meanwhile, it remains largely unclear about a theoretically efficient and effective
validator selection protocol (Lei et al., 2018) or a protocol where participants would be willing
to participate (Nojoumian et al., 2019; Zhao et al., 2020). Most importantly, the online decision
making problem necessitates the deployment of strategies offering real-time interactions with an
exogenous environment, a feature not present in traditional blockchain frameworks. Consequently, the
incorporation requires careful modifications to blockchains and the introduction of new mechanisms.
We address these challenges herein.

To this end, we herein propose a novel formulation of robust multi-agent MAB incorporating
blockchains. Specifically, we are the first to study the robust multi-agent MAB problem where
participants are fully distributed, can be malicious, and operate on permissioned blockchains. In
this context, a fixed set of participants pull arms and communicate to validators, and validators
communicate with one another and decide on a block to be sent to the chain. participants can only
receive rewards when the block containing the consensus information is approved by the chain, in
order to ensure security at each time step, which differs largely from the existing MAB frameworks.
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In other words, the rewards are conditionally observable, even for the pulled arm, which complicates
the traditional bandit feedback, as disapproved blocks introduce new challenges in this online and
partial information setting. participants are allowed to be malicious in various disruptive aspects
during the game. The objective of the honest participants is to maximize their averaged cumulative
received reward. The blockchain keeps track of everything (the history is immutable), guarantees the
functionality of the coordination mechanism through chain operations, and communicates with the
environment. The proposed formulation introduces additional complexities, as participants not only
design strategies for selecting arms but also strategically interact with both other participants and
the blockchain.

Additionally, we develop an algorithmic framework for the new formulation, motivated by existing
work while introducing novel techniques. The framework uses a burn-in and learning period. We
incorporate a UCB-like strategy into the learning phase to perform arm selection, while using random
arm selection during the burn-in period. We also design a theoretically effective validator selection
mechanism that eliminates the need for an authorized leader, including both full decentralization
and efficient reputation-based selection. We propose the update rules for both participants and
validators to leverage the feedback from both the environment and the participant set. Furthermore,
we modify the consensus protocol without relying on 2

3 voting; instead, we use a digital signature
scheme (Goldwasser et al., 1988) coupled with the consensus protocol in (Lamport et al., 2019).
Moreover, we introduce the role of a smart contract (Hu et al., 2020) that enables interaction with
both the blockchain and the environment, which validates the consensus information and collects
the feedback from the environment. To incentivize the participation of malicious participants in the
game (we want the malicious participants to actively participate via information sharing in order
to be identified soon) we invent a novel cost mechanism inspired by the recent use of mechanism
design in federated learning (Murhekar et al., 2023). It is worth noting that the existence of this
smart contract and cost mechanism also guarantees the correctness of the information transmitted
on the chain.

Subsequently, we perform theoretical analyses of the proposed algorithm. More specifically, we
formally analyze the regret that reflects optimality and fundamental impact of malicious behavior
on blockchains. Precisely, we show that under different assumptions in different settings, the regret
of honest participants is always upper bounded by O(log T ), which is consistent with the existing
algorithms for robust multi-agent MAB problems (Zhu et al., 2023; Vial et al., 2021). This is the
very first theoretical result on leveraging blockchains for online sequential decision making problems,
to the best of our knowledge. Furthermore, this regret bound coincides with the existing regret
lower bounds in multi-agent MAB when assuming no participants are malicious (Xu and Klabjan,
2023a), implying its optimality. Moreover, we find that, surprisingly, various aspects about security
are by-products of optimality, since the blockchain framework needs to be secure enough in order to
maximize the received reward.

Our main contributions are as follows. First, we propose a novel formulation of multi-agent MAB
with malicious participants, where rewards are obtainable only when the coordination mechanism’s
security is guaranteed. Additionally, the actual received rewards account for the accuracy of the
shared information through our proposed cost mechanism. To maximize the cumulative rewards of
honest participants, we develop a new algorithmic framework that introduces blockchain techniques.
Along the way we design new mechanisms and protocols. We also prove the theoretical effectiveness
of the algorithm through an extensive analysis of regret under mild assumptions on the problem
setting, such as the ratio of honest participants, the cost definition, and the validator selection
protocol. Ultimately, this work comprehensively bridges the gap between cybersecurity and online
sequential decision making.

2 Problem Formulation
We start by introducing the notations used throughout the paper. Consistent with the traditional
MAB setting, we consider K arms, labeled as 1, 2, . . . , K. The time horizon of the game is denoted
as T , and let us denote each time step as 1 ≤ t ≤ T . Additionally as in Multi-agent MAB, let us
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denote the number of participants as M labeled from 1 to M . We denote the public and secret keys
of participant m as (PKm, SKm) for any 1 ≤ m ≤ M . The list of public keys PK1, PK2, . . . , PKM

is public to anyone, in the order indicated by the participant set. Meanwhile, in our newly proposed
blockchain framework, we denote the total number of blocks as B = T and whether each block at
time step t is approved or not is represented by a binary variable bt ∈ {0, 1}. Let us denote the
reward of arm i at participant m at time step t as {rm

i (t)}i,m,t, which follows a stochastic distribution
with a time-invariant mean value {µi}i. Let at

m be the arm selected at time t by participant m and
let nm,i(t) be the number of arm pulls for arm i at participant m at time t. We denote the set of
honest participants and malicious participants as MH and MA, respectively, which are not known
apriori. Note that they are time-invariant. Similarly, let SV (t) denote the set of validators at time
t which is algorithmically determined. We denote the estimators maintained at participant m as
µ̄m

i (t), µ̃m
i (t) for local and global reward estimators, respectively, and the validators estimators as

µ̃i(t). We point out that µ̃i(t) is a function of µ̄m
i (t). Let ht

j(Ft) be the estimators given by malicious
participant j ∈ MA where Ft denotes the history up to time step t (everything on the blockchain
and additional information shared by other participants). The blocks on the blockchain record the
execution information. Specifically, at each time step t a block records the global estimators {µ̃i(t)}i

and local estimators {µ̄m
i (t)}m,i, encrypted values of {nm,i(t)}m,i, Bt specified in Aggregation, and

arms at
m pulled. Moreover, the block also records the reward rm

i (t) of each honest participant
m ∈ MH . The information related to an individual participant, such as µ̄m

i (t) and rm
i (t), is signed by

the participants using digital signatures that are the same across time. By using Global Update in
Algorithm 4, the definition of {µ̃i(t)}i and (1), all these quantities can be verified given rm

i and at
m.

The process during one iteration is as follows. At the beginning of each decision time, each participant
selects an arm based on its own policy. Then, a set of validators is selected, and the participants
broadcast their reward estimators to the validators. The validators perform aggregation of the
collected information. Next, they run a consensus protocol to examine whether the majority agree on
the aggregated information, a process called validation. They send the validated information to the
smart contract, which verifies its correctness and sends feedback to the environment. If the smart
contract is approved, the blockchain is updated. Lastly, the environment distributes the reward
information plus cost based on the feedback from the smart contract (only if the block has been
approved). The participants then update their estimators accordingly. The corresponding flowchart
is presented in Figure 1 in Appendix.

Cost Mechanism We propose a cost mechanism where if the estimators from the malicious
participants are used in the validated estimators, i.e. ∂µ̃i(t)

∂µ̄m
i

(t) ̸= 0, then the honest participants incur
a cost of cm

t ≥ 0 and malicious participants receive cm
t < 0, which they are not aware of until the

end of the game. It incentives the participation of malicious participants, in particular, given that
they may not be willing to share anything. In the meantime, as a by-product, it also penalizes the
aggregated estimators by the honest participants, which ensures the correctness of the estimators. In
addition cm

t = 0 for every m if ∂µ̃i(t)
∂µ̄m

i
(t) = 0.

We also present some terminology used in the digital signature scheme (Goldwasser et al., 1988) and
secure multi-party computation (Asharov et al., 2012). Existential Forgery Following the definition
in (Goldwasser et al., 1988), malicious participants successfully perform an existential forgery if
there exists a pair consisting of a message and a signature, such that the signature is produced
by an honest participant. Adaptive Chosen Message Attack Consistent with (Goldwasser
et al., 1988), we consider the most general form of a message attack, namely the adaptive chosen
message attack. In this context, a malicious participant not only has access to the signatures of
honest participants but also can determine what message to send after seeing these signatures. This
grants the malicious participant a high degree of freedom, thereby making the attack more severe.
Universal Composability Framework For homomorphic encryption, more specifically, secure
multi-party computation, we follow the standard framework as in (Canetti, 2001). Specifically,
an exogenous environment, also known as an environment machine, interacts sequentially with a
protocol. The process runs as follows. The environment sends some inputs to the protocol and
receives outputs from the protocol that may contain malicious components. If there exists an ideal
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adversary such that the environment machine cannot distinguish the difference between interacting
with this protocol or the ideal adversary, the protocol is deemed universally composable secure.

With the goal to maximize the total cumulative (expected) reward of honest participants, we
define the regret as follows. We denote the cumulative reward of honest participants as rT =∑

m∈MH

∑T
t=1 rm

at
m

(t)1bt=1 −
∑T

t=1 ct and the regret as RT = maxi

∑
m∈MH

∑T
t=1 rm

i (t)1bt=1 − rT

and pseudo regret R̄T = maxi

∑
m∈MH

∑T
t=1 µm

i − E[rT ].

3 Methodologies
In this section, we present our proposed methodologies within this new framework. Notably, we
develop the first algorithmic framework at the interface of blockchains in cybersecurity and multi-agent
MAB in online sequential decision making, addressing the joint challenges of optimality, security, and
privacy. We leverage the blockchain structure while introducing new advancements to the existing
ones, to theoretically and efficiently guarantee the functionality of the chain with new consensus
protocols and a cost mechanism. Additionally, it is designed for online sequential decision making
scenarios, distinguishing our work from existing literature on federated learning. Moreover, compared
to existing work on Byzantine-resilient multi-agent MAB, our methodology operates on a blockchain
with an added layer of security and privacy.

More specifically, the algorithmic framework is composed of two phases: the burn-in period, which is
a warm-up phase for t ≤ L, where L is the length of the burn-in period, and the learning period,
where t > L. It consists of 5 functions, with the main algorithm presented in Algorithm 1, and
the remaining functions detailed in Algorithms 2-5; the pseudo code is in Appendix. Algorithm 1
constitutes the core of the methodology, including the sequential strategies executed by the honest
participants, black-box operations by the malicious participants, and the chain executions. The core
algorithm includes several stages, as indicated in the following order. Here, the common random seed
q̄t, t = 1, . . . , T and the random seed for each participant q = (q1, q2, . . . , qM ) are publicly known
in advance. Function V RF refers to verifiable random functions proposed in (Micali et al., 1999)
composed of G that represents the generating function for the public and secret key with seed q0, i.e.
G(q0) = (pk, sk), and V RFF (q̄t, G(q0)) = (hash, π) where hash is a hash value and π is a function
(proof) that returns True or False given hash and public key pk, i.e. π(hash, pk) outputs True
or False. Let hl be the size of hash which is an input to π. Let B(k, n, w) be the probability of
selecting k samples from n samples with a success probability w where k ≤ n. This is also known as
the probability density function of the binomial distribution with success probability w. For any
multi-set S0, majority(S0) refers to an element in S0 with the highest count.

Arm selection As in an MAB framework, the participants decide which arm to pull at each time
step. The strategies depend on whether participants are honest or malicious. The honest participants
follow a UCB-like approach. More specifically, each honest participant m selects arm at

m = t mod K
during the burn-in period. During the learning period, it assigns a score to each arm i and selects
the arm with the highest score, which can be formally written as at

m =i µ̃m
i (t) + F (m, i, t) where

µ̃m
i (t) is the maintained estimator at participant m. Here F (m, i, t) = ( C1 log t

nm,i(t) )β with constant C1, β

being specified in the theorems. A malicious participant j, however, selects arms based on arbitrary
strategies, which is also known as Byzantine’s attack and written as at

j = ht
j(Ft) ∈ [K] where Ft

denotes the history up to time step t (everything on the blockchain and additional information shared
by other participants).

Validator or Commander Selection At each time step, a coordination mechanism or iterative
protocol selects a pool of participants allowed to act on the chain, known as validators. In each
iteration of the protocol, first the commander is selected which communicates with all validators
and in the rest of the iteration the validators communicate among themselves. The commander can
change from one iteration to the next one. Specifically, the coordination mechanism samples the set
of validators and commanders according to Algorithm 2, based on the trust coefficients of participants
pm(t), wm(t), which are set to 1 initially. The chain relays this set of validators to aggregate the
reward estimators and to achieve consensus as detailed below. We use a smart contract that takes
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membership of a participant in SV (t) as input and produces the sorted set SV (t) based on the public
keys PKm of participants. It is worth noting that the sorting function can be incorporated into the
script, either by loading packages in the programming script using existing programming languages
or by implementing the topological sorting procedure (Dickerson et al., 2017). Then, the participants
access this smart contract scsort with input SV (t), PK to obtain the set of validators SV (t) from its
output.

Broadcasting During broadcasting, the participants sent information to validators which then
perform the aggregation step. To expand, malicious participant j broadcasts its estimators µ̄j

i (t)
to the validators using a black-box attack, e.g. a Byzantine’s attack or a backdoor attack. Honest
participant m broadcasts its true reward estimators µ̄m

i (t) to the validators.

Aggregation Next, the validators integrate the received information. Specifically, for each hon-
est validator j, an honest validator determines the set, Aj

t , Bj
t as follows. For t > L, the set Aj

t

reads as m ∈ Aj
t ⇔ nm,i(t) >

nj,i(t)
ki(t) for every i where ki(t) ≥ maxk∈M

nk,i(t)K
L is the threshold

parameter which can be constructed through the secure multi-party computation protocol as in
(Asharov et al., 2012), without knowing the value of nm,i(t) to ensure privacy. More specifically,
each participant m sends nm,i(t) and the value of ki(t) to the protocol. The protocol then outputs
whether m ∈ Aj

t . The set Bj
t is computed as follows, depending on the size of Aj

t . If |Aj
t | > 2f

where f = |MA| and the process is in the learning period t > L, then Bj
t = ∪i{(m, µ̄m

i (t)) :
µ̄m

i (t) is smaller than the top f values in Aj
t and larger than the bottom f values in Aj

t }. Other-
wise in burn-in, Bj

t = {t mod K} and Aj
t = ∅. Once again, the malicious participants choose

the sets At and Bt in a black-box manner.

Consensus The consensus protocol is central to the execution of the blockchain and guarantees
that the chain is secure. More specifically, we incorporate the digital signature scheme (Goldwasser
et al., 1988) into the solution to the Byzantine General Problem (Lamport et al., 2019) under any
number of malicious validators. The pseudo code is presented in Algorithm 3. First, a commander is
selected from the validators that broadcasts Bt to other validators with its signature generated by
(Goldwasser et al., 1988), which we call a message. This process is then repeated at least M times,
based on the algorithm in (Lamport et al., 2019). The validators output the mode of the maintained
messages. The consensus is successful if more than 50% of the validators output the Bt maintained
by the honest validators. Otherwise, the consensus step fails, resulting in an empty set Bt.

Global Update The set Bt is then sent to the validators, which computes the average of the
estimators within Bt, known as the global update detailed in Algorithm 4. More precisely, for each

arm i at time step t, the estimator is computed as µ̃i(t) = 1
2 (µ̂i(t) + µ̃i(τ)), µ̂i(t) =

∑
m∈Bt

µ̄m
i (t)

|Bt|
where τ = maxs<t{bs = 1}. If Bt is not empty, and µ̃i(t) = ∞, µ̂i(t) = ∞, otherwise.

Block Verification The validators run the smart contract scblock to validate the block and assigns
bt = 1 if the estimator satisfies the condition µ̃i(t) ≤ 2. It disapproves the block otherwise, which is
denoted as bt = 0.

Block Operation At the beginning of the algorithm, the environment sets a random cost value
ct = c between 0 and 1. The smart contract sends the output containing the validated estimator µ̃i(t),
the set Bt, and the indicator bt of whether the block is approved to the environment. Subsequently, the
environment determines the rewards, namely Block Operation, as in Algorithm 5, to be distributed to
the participants based on the received information from the smart contract, in the following three cases.
Case 1: If bt = 1 and Bt ⊂ MH , i.e. ∂µ̃i(t)

∂µ̄m
i

(t) = 0 for every m ̸∈ MH , then the environment distributes
rm

at
m

(t) and µ̃i(t) to participant m for any 1 ≤ m ≤ M . Case 2: If bt = 1 and Bt ∩ MH < |Bt|, i.e.
there exists m ̸∈ MH such that ∂µ̃i(t)

∂µ̄m
i

(t) ̸= 0, then the environment distributes rm
at

m
(t) − ct and µ̃i(t)

to any honest participant m, and rj
at

j
(t) + ct to any malicious participant j. Case 3: If bt = 0, the

environment distributes nothing to the participants.

7



Accepted at the Reinforcement Learning Conference Workshop

Participants’ Update After receiving the information from the environment, the honest partici-
pants update their maintained estimators as follows.

Rule For the global reward estimator µ̃m
i (t), they update it when they receive µ̃i(t), i.e. µ̃m

i (t) =
µ̃m

i (t), and otherwise, µ̃m
i (t) = µ̄m

i (t). For the number of arm pulls and the local reward estimators,
they update them as nm,i(t) = nm,i(t − 1) + 1bt=1 · 1at

m=i, µ̄m
i (t) =

µ̄m
i (t−1)+rm

at
m

(t)·1at
m=i

nm,i(t) (1) For the
trust coefficients, we let the trust coefficients pm(t) and wm(t) be updated based on formulas given
later.

4 Regret Analysis
In this section, we demonstrate the theoretical guarantee of our proposed framework. Assuming the
number of honest participants is larger than 2

3 M (consistent with existing work), we have:

Theorem 1. Let us assume that the total number of honest participants is at least 2
3 M and let us

specify the quantities hm(t) = 0 and ct = c. Meanwhile, let us assume that the malicious participants
perform existential forgery on the signatures of honest participants with an adaptive chosen message
attack. Lastly, let us assume that the participants are in a standard universal composability framework
when constructing A. Here the set A is defined as A = {∀1 ≤ t ≤ T, bt = 1} which satisfies that
P (A) ≥ 1

lT −1 . Then we have that E[RT |A] ≤ (c + 1) · L +
∑

m∈MH

∑K
k=1 ∆k([ 4C1 log T

∆2
i

] + π2

3 ) +
|MH |Kl1−T where L = O(log T ) is the length of the burn-in period, c is the cost, C1 meets the
condition that C1

2|MH |kiσ2 ≥ 1, ∆i is the sub-optimality gap, l is the length of the signature of the
participants, and ki is the threshold parameter used in the construction of At.

Besides the 2
3 assumption, more surprisingly, we find that this framework works for more general

settings with any number of participants, assuming a more refined structure of the malicious
participants. More specifically, if the malicious participants that attack the consensus step only
perform this type of attack without attacking the estimators, then the number of malicious participants
can be any value larger than 1.

Theorem 2. Let us assume that the total number of honest participants is any. Let us assume that
M1

A < 1
2 M−1 and M2

A < 1
2 M−1, and further assume that the participants in M2

A only perform attacks
to the consensus. The cost is the distance-based cost. Meanwhile, let us assume that the malicious
participants perform existential forgery on the signatures of honest participants with an adaptive chosen
message attack. Lastly, let us assume that the participants are in a standard universal composability
framework when constructing A. Then we have that E[RT |A] ≤ 3 · L + O(log T ) + |MH |Kl1−T

where L is the length of the burn-in period, l is the length of the signature of the participants,
and ki is the threshold parameter used in the construction of At. Here the set A is defined as
A = {∀1 ≤ t ≤ T, bt = 1} which satisfies that P (A) ≥ 1 − 1

lT −1 .

Remark. While we have established various theoretical bounds on the regret of the coordination
mechanism, demonstrating the algorithm’s optimality, it is worth noting that security has been a
crucial aspect of building fault-tolerant systems. In fact, we ensure that the security guarantee is
necessary for the coordination mechanism’s optimality, which is connected through our proposed
framework as part of our contributions. In other words, security is an implication of the shown regret
bounds. In Appendix, we consider various factors that affect security and illustrate how they are
connected with regret. In the meantime, recall that to incentivize the participation of participants,
we invented a new cost mechanism, motivated by (Murhekar et al., 2024). While our setting is
not completely zero-sum, which does not enable the full characterization of Nash Equilibrium, the
two different groups of participants, namely, malicious participants and honest participants, have
conflicting objectives. To this end, we provide a qualitative discussion in Appendix by illustrating the
trade-offs faced by malicious participants and point out potential future directions regarding the cost
mechanism.

More theoretical results under different assumptions about the participants’ structure are presented
in Appendix, as well as all the proofs.
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Appendix

A Flowchart in Section 2

Figure 1: The flow of the algorithm
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B Pseudo Code of Algorithms in Section 3

Algorithm 1 BC-UCB
Initialization: For participants 1, 2, . . . , M , arms 1, . . . , K, at time step 0 we set µ̃m

i (0) = ˆ̃µi(0) =
nm,i(1) = 0; the number of honest participants MH ; Verifiable Random Function V RF
for t = 1, 2, . . . , T do

for each participant m do // Validator/Commander Selection
Sample z = SELECTION(t, m, pm(t), V RF ). If z = 1, participant m is a validator.
Sample z = SELECTION(t, m, wm(t), V RF ). If z = 1, participant m is a commander.

end
Let SV (t) be the set of all validators and SC(t) be the set of commanders.
for each participant m ∈ MH do // Arm Selection - UCB

if k ∈ Am
t for every k ∈ MH by using secure multi-party computation with SV (t) and SC(t)

and t > L then
at

m =i µ̃m
i (t) + F (m, i, t)

else
Sample an arm at

m = t mod K.
end
Pull arm at

m

end
for each participant m ̸∈ MH do // Arm Selection - Any Strategy

Select an arm at
m and pull arm at

m

end
for each participant m do // Broadcasting

Broadcast µ̄m
i (t) to validators SV (t), where malicious participants m ̸∈ MH use an attack

regarding an arm at
m, i.e., µ̄m

i (t) = h̄t
m,i(Ft).

end
for each participant m ∈ SV (t) do // Aggregation

Validator m ∈ MH ∩ SV (t) determines the set Bm
t = Bt containing trusted participants j and

the corresponding estimators µ̄j
i (t)

Validator m ̸∈ MH , m ∈ SV (t) arbitrarily determines the set Bm
t

end
// Consensus
Validators run consensus on {Bm

t }m according to CONSENSUS(SC(t), {Bm
t }m, M)

The validators run the smart contract scblock to compute µ̃i(t) according to
GLOBAL_UPDATE(Bt) // Global Update

Block Validation: // Block Verification
if there exists i ∈ {1, 2, . . . , K} with global estimator µ̃i(t) < ∞ then

Approve the block by letting bt = 1
else

Disapprove the block by letting bt = 0
end
// Environment
The environment sends rewards to participants using OPERATION(µ̃i(t), at

mm, Bt, bt)
for each participant m do // participants’ Update

participant m ∈ MH updates µ̃m(t), nm,i(t), µ̄m(t), pm(t), wm(t) based on Rule; participant
m ̸∈ MH updates µ̃m(t), nm,i(t), µ̄m

i (t) arbitrarily and updates pm(t), wm(t) based on Rule
end

end
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Algorithm 2 Validator or Commander Selection
1: function Selection(t, m, l, V RF )
2: Let (pkm, skm) = G(qm)
3: Let (hash, π) = V RFF (q̄t, pkm, skm)
4: z = 0
5: if hash

2hl ̸∈ [0, B(0, 1, l)] then
6: z = 1
7: end
8: If π(hash, pkm) = True then return z else return 0
9: end function

Algorithm 3 Consensus
1: function Consensus(SC(t), {Bm

t }m, M)
2: Run scsort(SV (t), PK) which returns sorted SC(t)
3: for h = 1, 2, . . . , |SC(t)| do
4: Generate the digital signature {sm

h }m as in (Goldwasser et al., 1988)
5: Define a message as (sm

h , Bm
t )

6: Execute Algorithm SM(M) in (Lamport et al., 2019) with SC(t)[h] as the commander
7: Derive the received information B̃h

t from SC(t)[h]
8: and vm

t = 1 if B̃h
t = Bm

t at honest participant m and 0 otherwise
9: if majority(vm

t ) = 1 then
Consensus is achieved and Bt = Bm

t

10: else
Consensus fails and Bt = ∅

11: return Bt

12: end function

Algorithm 4 Global Update
1: function global_update(Bt)
2: if Bt is not empty then

Compute µ̃i(t) =
∑

m∈Bt
µ̄m

i (t)
|Bt| for each i ∈ {1, . . . , K}

3: else
µ̃i(t) = ∞ for each i ∈ {1, . . . , K}

4: return (µ̃i(t))i∈{1,...,K}
5: end function

Algorithm 5 Operation
1: function Operation({µ̃i(t)}i∈{1,...,K}, {at

m}m, Bt, bt)
2: if bt = 1 and Bt ⊂ MH then

Distribute rm
at

m
and µ̃i(t) for every i to every participant m

3: if bt = 1 and Bt ∩ MH < |Bt| then
Distribute rm

at
m

− ct and µ̃i(t) for every i to every honest participant m ∈ MH

Distribute rm
at

m
+ ct and µ̃i(t) for every i to every malicious participant m ∈ MA

4: else
Distribute nothing to all participants

5: return
6: end function
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C Theoretical Statements
C.1 MA ≤ 1

2 M with 1
2 M + 1 commanders and distance-based cost

Along the line of work on robust optimization (Dong et al., 2023), the common assumption is that
at least 1

2 participants are honest. To this end, we relax the assumption on the minimal number of
honest participants from 2

3 to 1
2 , while making modification to the definition of cost.

In this regard, we propose the following algorithmic changes.

It is hard to analyze the proposed aggregation step. For the purpose of the analysis, we consider the
following alternatives.

Option 2

Construct a filter list At such that

• if participant m in At

for any t > L and any 1 ≤ j ≤ M , ki · nm,i(t) ≥ nj,i(t)

Construct a block list Bt ⊂ At such that

• assume that L is the length of the burn-in period

• if m in Bt

for any t > L,
{m: µ̄m

i (t) is smaller than the top f values and larger than the below f values}

Option 3 Construct a filter list At such that

• if participant m in At

for any t > L and any 1 ≤ j ≤ M , ki · nm,i(t) ≥ nj,i(t)

Construct a block list Bt ⊂ At such that

• if m in Bt

for any t > L,
{m: µ̄m

i (t) is smaller than the top f values and larger than the below f values}

If honest participant m is a validator at time step t, then it maintains a blocklist Dt such that

• participant d ∈ Dt if all of the conditions are met

– participant d is a commander, and participant d attacks to the consensus in that d signs
two different messages and sends the message that is different from the one

Let Bt = Bt ∩ (Dt)c where (Dt)c represents the compliment set of Dt.

We call the original one as Option 1. The choice of the option affects step 2 in Aggregation.

Let us assume that set At, Bt are constructed based on Option 2, instead of Option 1 in Theorem 1.

Remark. The global estimator µ̃i(t) in Global Update is constructed as

µ̃i(t) = Ptµ̃i(t − 1) + (1 − Pt)µ̂i(τ)

where Pt = 1 − 1
t and again τ = maxs<t{bs = 1}.

Remark. The newly established estimator µ̂i(t) is constructed as

µ̂i(t) =
∑

m∈Bt
µ̄m

i (t)
|Bt|
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Remark. The distance metric associated with the global estimator is constructed as

Dist(µ̃i(t), µi) = |µ̃i(t) − µi|6

and this order of 6 is tight based on the analysis.

Remark. The cost associated with the global estimator is constructed as

ct = min
i

Dist(µ̃i(t), µi)

Remark. The decision rule needs the following modification. Specifically, the length of the exploration
is now ( log t

ni(t) ) 1
6 .

Subsequently, we derive the corresponding regret guarantee under the more general assumption. The
formal statement reads as follows.

Theorem 3. Let us assume that the total number of honest participants is at least 1
2 M . Let us

assume that there is at least one honest participant in the validator set. Meanwhile, let us assume
that the malicious participants perform existential forgery on the signatures of honest participants
with an adaptive chosen message attack. Lastly, let us assume that the participants are in a standard
universal composability framework when constructing A. Then we have that

E[RT |A] ≤ (c + 1) · L + O(log T ) + |MH |Kl1−T

where L is the length of the burn-in period of order log T , c is the union upper bound on the cost
ct, l is the length of the signature of the participants, and ki is the threshold parameter used in
the construction of At. Here the set A is defined as A = {∀1 ≤ t ≤ T, bt = 1} which satisfies that
P (A) ≥ 1 − 1

lT −1 .

Proof Sketch. The complete proof is deferred to Appendix; we present the main logic here. The new
estimators are consistent with the ones in (Vial et al., 2021), and thus µ̂i is close to the ones from
honest participants, as well as µ̃i. Moreover, the contraction by 1 − Pt ensures the convergence of
µ̃i to the ground truth µi, with the rate aligning with the order in the definition of Dist(µ̃i(t), µi)
and the exploration length in the decision rule (UCB). Therefore, we establish the upper bound on
the cumulative cost and the upper bound on the reward difference between the pulled arm and the
optimal arm.

Remark. We would like to emphasize that there should be at least one honest commander who has
the same message as the honest validators. The honest validators choose to do majority voting only
when the received message matches their own. In other words, consensus alone is not sufficient for
the protocol; rather, consensus on the correct estimators guarantees the desired functionality of the
protocol.

C.2 MA ≤ 3
4 M with M commanders and distance-based cost

While the 1
2 assumption is consistent with the existing literature in robust optimization, there is a line

of work that does not rely on this assumption, though it is in a homogeneous setting. Surprisingly,
we report that by more precisely characterizing the different types of malicious behaviors, we can
relax the assumption on the number of malicious participants.

First, we introduce the structure of the malicious participants’ behaviors.
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Structure of malicious behaviors We define set M1
A ⊂ MA as comprising of malicious partici-

pants that only perform attacks on the estimators. In the meantime, we denote M2
A ⊂ MA as the set

comprising of malicious participants that perform attacks on the consensus. Moreover, M2,1
A ⊂ M2

A

are the malicious participants that perform attacks on both the estimators and the consensus. Note
that all the malicious participants are allowed to perform existential forgery on the signatures of the
honest participants.

Next, we deploy a different update rule for the honest participants as in Option 3.

Remark. The global estimator µ̃i(t) in Global Update is constructed as

µ̃i(t) = Ptµ̃i(t − 1) + (1 − Pt)µ̂i(τ)

where Pt = 1 − 1
t and again τ = maxs<t{bs = 1}.

Remark. Note that the construction of set Dt is feasible, as the honest participant can track the
public key (the signature) through tracing back a Chandelier tree, and thus track the label through the
fixed mapping between the participants’ public keys and the labels.

With this, the formal statement reads as follows.

Theorem 4. Let us assume that the total number of honest participants is at least 1
4 M . Let us

assume that M1
A < MH − 1 and M2

A < 1
2 M − 1. The cost is the aforementioned distance-based cost.

Meanwhile, consistent with the standard assumptions, let us assume that the malicious participants
perform existential forgery on the signatures of honest participants with an adaptive chosen message
attack. Lastly, let us assume that the participants are in a standard universal composability framework
when constructing A where the set A is defined as A = {∀1 ≤ t ≤ T, bt = 1} which satisfies that
P (A) ≥ 1 − 1

lT −1 . Then we have that

E[RT |A] ≤ 3 · L + O(log T ) + |MH |Kl1−T

where L is the length of the burn-in period, l is the length of the signature of the participants, and ki

is the threshold parameter used in the construction of At defined in Option 3.

Proof Sketch. The full proof is presented in Appendix; the main logic is shown as follows. For
participants that perform attack on the consensus protocol, i.e. j ∈ M2

A, their local estimators
are not taken into consideration, since the honest participants are able to identify the pubic keys
associated with the consensus message on a Chandeller tree, and thus the label of the participants.
As a result, the estimator candidates are either from M1

A or MH . Note that M1
A < MH − 1, which

immediately implies that the

µ̂i(t) =
∑

m∈Bt
µ̄m

i (t)
|Bt|

is close enough to the ground truth, from where the rest of the analysis follows from Theorem 2.

C.3 Any MH with an efficient commander selection protocol
So far, what we have discussed assumes a fixed number of commanders, i.e., M , during the consensus
step. In other words, every validator serves as a commander once in a single run of the consensus
protocol. While this guarantees the decentralization of the coordination mechanism, there is room
for improvement in efficiency. As an extension, we consider a more general commander selection
procedure in the protocol, with adaptive numbers of commanders depending on the history, to
improve efficiency while ensuring decentralization.
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Commander selection The commander set Cs
t is determined by executing Algorithm 3 where

the trust coefficients wm(t) are the probabilities of being selected as commanders. Formally, for any
participant m, the probability P (m ∈ Cs

t ) = wm(t).

It is worth noting that these probabilities are independent of one another, which results in geometric
distributions. Therefore, depending on whether the participants are malicious or honest, we specify
wm(t) as time-invariant values. The exact values and the intuition behind the choices are as follows.
Specifically, wm(t) = wm = 1 − log T

T , for any m ∈ MH . Consider the event of whether honest
participant m is selected as a commander as Et

m. In other words, Et
m = 1 if participant m is a

commander and 0 otherwise. Define Et as ∩m∈MH
{Et

m = 0}. Then we have that

E[
T∑

t=1
Et] =

T∑
t=1

E[∩m∈MH
{Et

m = 0}]

≤
T∑

t=1

∑
m∈MH

E[{Et
m = 0}]

=
T∑

t=1

∑
m∈MH

(1 − wm(t)) = log T.

It implies that for at most log T steps, there is no honest commander, and thus the consensus fails,
which is neglectable compared to the time horizon T . Differently, we let wj(t) = wj = log |MA|

η

L ,
for any j ∈ MA. Then we consider the event of whether malicious participant j is selected as a
commander or not, namely, F j

t . Likewise, F j
t = 1 if participant j is a commander and 0 otherwise.

Define Ft = ∩j∈MA
{∃s ≤ t, s.t.F j

s = 1}. Then we obtain

P (Ft) = P (∩j∈MA
{∃s ≤ t, s.t.F j

s = 1})

≥ 1 −
∑

j∈MA

P ({∀s ≤ t, s.t.F j
s = 0})

= 1 −
∑

j∈MA

(1 − wj)t

= 1 − |MA|(1 − wj)t

≥ 1 − |MA|e−wjt

By the choice of wj = log |MA|
η

L , we derive that P (FL) ≥ 1 − |MA|e−wjt = 1 − η. That is to say, with
high probability, all the malicious validators are identifiable, and then the corresponding estimators
from them will be excluded.

Consensus Protocol For each commander m ∈ Cs
t , we run the consensus algorithm with this

commander as in (Lamport et al., 2019).

With this new protocol, the honest participants construct a new filter list based on Option 3. That is
to say that any malicious validators performing attacks on the consensus are added to the block list.

When updating estimators µ̂i(t), the honest participants use the same formula as

µ̂i(t) =
∑

j∈Bt
µ̄j

i (t)
|Bt|

Subsequently, we establish the following regret bound with the updated protocol and associated
estimators.

Theorem 5. Assume the same conditions as in Theorem 4. Let us assume that the commanders
are selected based on the above protocol, and the estimators are computed aforementioned. Then we
obtain that the regret upper bound with respect to our algorithm is O(log T ).
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Proof Sketch. The complete proof is in Appendix; we present the main logic here. Based on the
commander selection protocol, we establish that after the burn-in period, there is at least one honest
commander and the information from that commander is correct. Since the total number of honest
validators is at least 1

2 MH + 1 So the validators achieves consensus regarding the correct information.
As a result, all the remaining analysis follows from Theorem 4.

C.4 Any MH with constant cost
Recall that with the assumption of at most 1

3 participants are malicious, we have established the
regret bound when the cost is constant. Without this assumption, we have proved the regret assuming
distance-based cost, which highlights a gap. To this end, we next consider the constant cost that
imposes more penalization and show the corresponding result. Intuitively, if the information from
malicious participants is close enough to that from honest participants, the cost will always be
constant, and thus the regret will be linear in T . As a result, we propose the following definition
characterizing the difference between the two groups of participants and introduce the assumption
accordingly.

Pre-fixed ϵ-safe zone A pre-fixed ϵ, δ-safe zone is defined as a set of participants Sϵ, such that
for any participant j ∈ Sϵ and any arm 1 ≤ i ≤ K, we have that the

f j
i = (1 − ϵ) · hm

i + ϵ · qm
i

where f j
i is the corresponding black-box reward generator for, hm

i is the corresponding stochastic
reward generator for arm i at honest participant m and qm

i follows a unknown but fixed distribution
different from that of hm

i .

Remark. This assumption separates the malicious participants from the honest participants to
make the malicious participants distinguishable, thereby eliminating the estimators from malicious
participants. It is worth noting that this assumption is consistent with the existing literature (Dubey
and Pentland, 2020), which adopts the same principle when considering malicious behavior.

Moreover, this assumption can be relaxed to the following version where the minimum gap, instead
of the exact gap, is ϵ, which measures the difference between the estimators from the malicious
participants and those from the honest participants.

Pre-fixed ϵ-safe zone A pre-fixed ϵ-safe zone is defined as a set of participants Sϵ, such that for
any participant m ∈ Sϵ and any arm 1 ≤ i ≤ K, we have that

fm
i − hm

i ≥ ϵ · qm
i .

where fm
i is the corresponding black-box reward generator, hm

i is the corresponding stochastic reward
generator for arm i at honest participants and qm

i follows a unknown but fixed distribution with
mean value 1.

Subsequently, we introduce the assumption on the participant structure as follows.

Assumption 1. (Pre-fixed) The pre-fixed ϵ-safe zone contains no malicious participants that only
perform attacks on the estimators, namely, M1

A ∩ Sϵ = ∅.

We update the estimator computation, where the global estimator µ̃i(t) is constructed as

µ̃i(t) = Ptµ̃i(t − 1) + (1 − Pt)ˆ̂µi(t − 1)

and ˆ̂µi(t) is constructed as

ˆ̂µi(t) =
∑

m∈Ct
µ̄m

i (t)
|Ct|
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with Ct = {1 ≤ j ≤ M : |µ̂i(t) − µ̄j
i (t)| ≤ ϵ

2 } where µ̂i(t) is defined as

µ̂i(t) =
∑

m∈Bt
µ̄m

i (t)
|Bt|

where Bt is defined as before.

Next, we demonstrate the corresponding regret bound under this assumption and constant cost.

Theorem 6. Assume the same conditions as in Theorem 4. Let us further assume that Assumption
1 holds. With the new rule of updating the estimators, the regret bound of the proposed algorithm is
O(log T ).

Proof Sketch. The detailed proof is presented in Appendix; the idea is as follows. With the pre-fixed
ϵ-safe zone, the difference between µ̄m

i (t) of malicious participant m and µ̄j
i (t) of honest participant

j is at least ϵ. In the meantime, after the burn-in period, µ̂i(t) has at most 1
4 ϵ difference compared

to µi, which is also true for the distance between µ̄m
i (t) and µi. This leads to |µ̂i(t) − µ̄j

i (t)| ≤ ϵ
2 ,

and thus |µ̂i(t) − µ̄m
i (t)| > ϵ

2 . As a result, Ct only contains honest participants, which implies that
the cost is 0. The remaining analysis on the regret based on the decomposition step is the same as
that of Theorem 4, which completes the proof.

C.5 Any MH with an efficient validator selection protocol
What we have discussed presumes that the validator set includes the entire participant set. While
this choice guarantees full decentralization of the consensus protocol, as every participant has a say
in the protocol, it may lack efficiency, taking significant time to achieve consensus. This is supported
by the well-known dilemma of balancing decentralization, which requires many participants to be
validators, and efficiency, which tends to reduce the number of validators. To address this, we propose
a new approach to select validators based on a newly defined reputation score system motivated by
the Proof-of-Authority concept (Fahim et al., 2023), allowing the flexibility of selecting any number
of validators ranging from MH to 2MH − 1.

More specifically, our reputation score system runs as follows. For each participant i, its reputation at
time step t is computed by a smart contract as follows. Formally, it reads as RSt

i = G(U t
i ), where G

is any monotonicity preserving function such that if x1 ≤ x2, then G(x1) ≤ G(x2), and U t
i quantifies

the accuracy of the information from participant i at time step t, which is defined as

U t
i =

K∑
j=1

−(µ̄i
j(t) − µ̃j(t))2 − ϵ2(∆

µ
i

j(t) − µ̃j(t))2)2

where ∆
µ

i

j(t) denotes the estimator for arm j given by participant i after the consensus step, and
µ̄i

j(t), µ̃j(t) are the aforementioned estimators for arm j.

To proceed, our validator selection procedure is as follows.

Validator Selection First we rank the reputations of the participants and record the participants
as {l1, l2, . . . , lM } accordingly, where l1 represents the label of participant with the largest reputation.
Then given the preference of the protocol, we select the top N participants, namely, {l1, l2, . . . , lN },
where N is any number between MH and 2MH − 1.

It is worth mentioning that the reputation system also ensures the fairness of the protocol, or
equivalently, decentralization, as no single participant is favored and the criterion is merit-based,
depending on how much they contribute to the protocol. Also, privacy is maintained since the
participants are not aware of U t

i due to the existence of G(·). Meanwhile, the number of validators
given by the reputation score system is flexible in the range of [MH , 2MH − 1], balancing the trade-off
between decentralization and efficiency. While it is practically meaningful, it is also crucial to
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demonstrate the theoretical effectiveness of the coordination mechanism after incorporating the
reputation score system. Subsequently, we present the following theoretical regret guarantee of the
entire system with the above reputation score system for validator selection. The formal statement
reads as follows.

Theorem 7. Assume the same conditions as in Theorem 4. Let us further assume that Assumption
1 holds and that the validators are selected based on Validator Selection. Let us assume that the cost
is the constant. Then we have that

E[RT |A] ≤ 3 · L + O(log T ) + |MH |Kl1−T

where L is the length of the burn-in period, l is the length of the signature of the participants,
and ki is the threshold parameter used in the construction of At. Here the set A is defined as
A = {∀1 ≤ t ≤ T, bt = 1} which satisfies that P (A) ≥ 1 − 1

lT −1 .

Proof Sketch. The complete proof is deferred to Appendix; the main logic is as follows. We show
that the reputations of honest participants are always higher than those of the malicious participants
after the burn-in period. This is true, noting that the reputation of a malicious participant attacking
the consensus will significantly decrease, while the reputation of a malicious participant attacking
the estimators is also lower than that of an honest participant, since it has a larger first term in U t

i

and due to the monotonicity property of G(·). Therefore, by selecting the validators, the proportion
of honest participants in the validator set is at least 1

2 , which ensures that the consensus will be
achieved. The rest of the regret analysis follows that of Theorem 6.

Remark. It is worth noting that existing work, such as (Dennis and Owen, 2015; Zhou et al., 2021;
Arshad et al., 2022), has proposed reputation-based validator selection. However, most of this work
focuses on the practical performance of the reputation system, with little theoretical analysis on the
security guarantee. Here, we prove that the reputation system ensures optimal regret, which is only
obtainable when the coordination mechanism is secure enough in terms of the consensus and the
associated information after the consensus.

D Other Performance Measure
While we have established various theoretical bounds on the regret of the coordination mechanism,
demonstrating the algorithm’s optimality, it is worth noting that security has been a crucial aspect
of building fault-tolerant systems. In fact, we ensure that the security guarantee is necessary for the
coordination mechanism’s optimality, which is connected through our proposed framework as part
of our contributions. In other words, security is an implication of the shown regret bounds. More
specifically, we consider the following factors that affect security and illustrate how they are connected
with regret. In the meantime, recall that to incentivize the participation of participants, we invented
a new cost mechanism, motivated by (Murhekar et al., 2024). While our setting is not completely
zero-sum, which does not enable the full characterization of Nash Equilibrium, the two different
groups of participants, namely, malicious participants and honest participants, have conflicting
objectives. To this end, we provide a qualitative discussion by illustrating the trade-offs faced by
malicious participants and point out potential future directions regarding the cost mechanism.

D.1 Security of the Protocol
Digital signature The security of the coordination mechanism partially depends on the reliability
of the signature scheme, as it determines whether the participant can maintain its own signature
and the corresponding mapping between the label and signature. Note that the employment of the
digital signature scheme (Goldwasser et al., 1988) is in a plug-in fashion, independent of everything
else. As a result, the theoretical guarantee still holds, implying the security of the coordination
mechanism and serving as a prerequisite (assumption) needed for achieving consensus when running
the Byzantine Fault Tolerant protocol.

21



Accepted at the Reinforcement Learning Conference Workshop

Consensus The security of the consensus protocol also plays an important role in the coordination
mechanism’s security, as no single participant can determine the estimator to be sent to the smart
contract. This prevents malicious participants from manipulating the estimators but adds additional
challenges for honest participants. By deploying the Byzantine Fault Tolerant protocol with the
digital signature scheme and our newly proposed commander selection procedures, we guarantee that
both consensus and good enough estimators are achieved with high probability. Only in this case
can the regret be optimized, which implies that optimal regret indicates the security of the consensus
protocol.

Privacy Another main aspect of security is whether the participants’ information is accessible
to others, namely the degree of privacy preservation. We note that though the empirical reward
estimators are available, the number of arm pulls is not broadcast. This prevents malicious participants
from retrieving the reward and arm sequence, thus protecting privacy. Moreover, the rule for
computing reputation is unknown to the participants, as it is implemented through a smart contract,
which prevents malicious participants from manipulating the reputation. The correctness of the
reputation is essential to the consensus protocol and thus the regret. In other words, the optimality
of the regret also implies the correct execution of the reputation system.

D.2 Optimality of the Cost Mechanism
This cost mechanism is consistent with the one in (Murhekar et al., 2024), by adding a cost term to
the original reward. While their cost depends on how many samples a participant contributes, we
measure how much contribution a participant makes to the validated estimators. Honest participants
need to identify the malicious participants and gain knowledge about the reward to maximize their
reward function.

Assuming the cost is constant, the optimal strategy for malicious participants is to send sufficiently
accurate information so that the honest participants cannot determine their identities, which implies
that there is no Nash Equilibrium. Next, we provide some insights into whether an equilibrium exists
between malicious and honest participants when adopting the distance-based cost. If the malicious
participants keep broadcasting incorrect estimators, they will be excluded from consideration by the
honest participants, allowing honest participants to incur a smaller cost. On the other hand, if the
malicious participants send accurate enough information, the cost for honest participants is small as
well, by definition. This implies that our proposed mechanism captures the trade-off and has the
potential to uncover the Nash equilibrium with respect to how malicious participants transmit their
estimators. We point out that quantitatively and rigorously characterizing the equilibrium presents a
very promising direction, which goes beyond the scope of this paper.

E Conclusion and Future Work
This paper considers the robust multi-agent multi-armed bandit (MAB) problem within the framework
of system security, representing the first work to explore online sequential decision-making with
participants distributed on a blockchain. The introduction of conditionally observable rewards
and the penalization of inaccurate information brings new challenges, while taking security and
privacy into consideration, besides optimality, distinct from blockchain-based federated learning
or Byzantine-resilient multi-agent MAB. To solve the problem, we propose a new methodological
approach combining the strategy based on Upper Confidence Bound (UCB) with blockchain techniques
and invent new modifications. On blockchain, a subset of participants forms a validator set responsible
for information integration and achieving consensus on information transmitted by all participants.
Consensus information is then sent to a smart contract for verification, with approved blocks only
upon successful verification. The environment determines and sends the reward information to the
participants based on the interaction with the smart contract. As part of our contributions, we
use reputation to determine the validator selection procedure, which depends on the participants’
historical behaviors. Additionally, we incorporate a digital signature scheme into the consensus
process, eliminating the traditional 1

3 assumption of the Byzantine general problem. Furthermore,
we introduce a cost mechanism to incentivize malicious participants by rewarding their contributions
to the verification step. We provide a comprehensive regret analysis demonstrating the optimality of
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our proposed algorithm under specific assumptions, marking a breakthrough in blockchain-related
learning tasks, which has seen little analysis. To conclude, we also include a detailed discussion on
the security and privacy guarantees.

Moving forward, we suggest potential future directions as the next step. While our framework
works for a general number of malicious participants, it relies on assumptions about the structure of
malicious behaviors. Removing such assumptions could generalize the problem setting. Meanwhile,
we consider two types of attacks related to the framework—those targeting the estimators and those
targeting the consensus—and note that there is a rich body of literature on different aspects of
security attacks. Incorporating these into the framework is both meaningful and promising. Lastly,
we emphasize that mechanism design has great potential in online learning, especially in a multi-agent
system, to ensure that participants perform as expected. We hope that this paper can pave the way
for combining the rich literature in mechanism design with multi-agent learning systems, in the era
of cybersecurity and mixed-motive cooperation.

F Proof of Theorems
Proof of Theorem 1

Proof. For regret, we have the following decomposition. Let us denote bt as the indicator function of
whether the block at time step t is approved. Likewise, for any time step t, we denote whether the
estimators from the malicious participants are utilized in the integrated estimators as ht. Let the
length of the burn-in period be L.

Note that

RT = max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

(µb
at

m
− ct)

= max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

µb
at

m
+

∑
m∈MH

T∑
t=1

ct

= max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

µat
m

1bt=1 +
∑

m∈MH

T∑
t=1

ct

= max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

µat
m

1bt=1 +
∑

m∈MH

T∑
t=1

c1ht=1

Meanwhile, the regret can be bounded as follows

RT ≤ L + c · L +
T∑

t=L+1

∑
m∈MH

(µi∗ − µat
m

1bt=1) +
∑

m∈MH

T∑
t=L+1

c1ht=1

.= (c + 1) · L + T1 + T2 (2)

We start with the second term T2. Note that ht = 1 is equivalent to {m : m ∈ Bt ∩ m ̸∈ MH} ≠ ∅.
Note that because the cost is positive, Bt is nonempty.

By taking the expectation over T2, we derive

E[T2|A] =
∑

m∈MH

T∑
t=L+1

cE[1ht=1]

=
∑

m∈MH

T∑
t=L+1

cE[1{m:m∈Bt∩m̸∈MH }̸=∅]
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Based on Lemma 2 in (Zhu et al., 2023), we obtain that

1{m:m∈Bt∩m ̸∈MH }̸=∅ = 1|At|<2f

which immediately implies that

E[T2|A] =
∑

m∈MH

T∑
t=L+1

cE[1ht=1]

=
∑

m∈MH

T∑
t=L+1

cE[1{m:m∈Bt∩m̸∈MH }̸=∅]

=
∑

m∈MH

T∑
t=L+1

cE[1|At|<2f ].

In the meantime, we note that for any honest validators, the choice of At guarantees that honest
participants are included after the burn-in period. More specifically, the set of At satisfies that for
any validator j ∈ MH ,

m ∈ At ⇔ kinm,i(t) > nj,i(t) ⇔ m ∈ MH

where 1 < ki < 2. This condition holds at the end of burn-in period which is straightforward since
each honest. After the burn-in period, the honest participants has the same decision rule

at
m = argmaxiµ̃

m
i (t) + F (m, i, t)

where µ̃m
i (t) = µ̃b

i (t). In other words, each honest participant uses the validated estimator µ̃b
i (t).Since

both nm,i(t) and nj,i(t) are larger than L
K , then we have that there exists ki = nj,i(t)K

L , such as
kinm,i(t) > nj,i(t) for every m ∈ MH .

This implies that

At > |MH | ≥ 2f (3)

by the assumption that the number of honest participants is at least 2
3 M .

That is to say,

E[1|At|>2f ] = 1

and subsequently, we have

E[T2|A] =
∑

m∈MH

T∑
t=L+1

cE[1|At|<2f ]

= 0

We note that the construction of At is done without knowing the number of pulls of arms of other
participants. This is realized by using the homomorphic results, Theorem 5.2 as in (Asharov et al.,
2012) under the universal composability framework.

Next, we proceed to bound the first term T1. Note that

E[T1|A] ≤
T∑

t=L+1

∑
m∈MH

(µi∗ − µat
m

1bt=1)

= (T − L) · |MH | · µi∗ −
∑

m∈MH

T∑
t=L

E[µat
m

|bt = 1]P (bt = 1)
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In the meantime, we obtain the following

E[µat
m

|bt = 1]

= E[
K∑

k=1
µk · 1at

m=k|bt = 1]

=
K∑

k=1
E[µk1at

m=k|bt = 1]

≥
K∑

k=1
µk · 1

P (bt = 1) · (E[1at
m=k] − P (bt = 0)).

This immediately gives us that

E[T1|A]

≤ (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

(
K∑

k=1
µk · 1

P (bt = 1) · (E[1at
m=k] − P (bt = 0)))P (bt = 1)

= (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

(
K∑

k=1
µk(E[1at

m=k] − P (bt = 0))

= (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

K∑
k=1

µkE[1at
m=k] +

∑
m∈MH

T∑
t=L

K∑
k=1

µkP (bt = 0). (4)

Based on Theorem 2 in (Lamport et al., 2019), the consensus is achieved, i.e. bt = 1, as long as
the digital signatures of the honest participants can not be forged. Based on our assumption, we
have that the malicious participants can only perform existential forgery on the signatures of the
honest participants and the attacks are adaptive chosen-message attack. Then based on the result,
Main Theorem in (Goldwasser et al., 1988), the attack holds with probability at most 1

Q(l) for any
polynomial function Q and large enough l where l is the length of the signature.

More precisely, we have that with probability at least 1− 1
T lT −1 , the signature of the honest participants

can not be forged, and thus, the consensus can be achieved, i.e.

P (bt = 1) ≥ 1 − 1
T lT −1 . (5)

Subsequently, we derive that

(15) ≤ (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

K∑
k=1

µkE[1at
m=k] +

∑
m∈MH

T∑
t=L

K∑
k=1

µk( 1
T lT −1 )

≤
∑

m∈MH

T∑
t=L

(µi∗ −
K∑

k=1
µkE[1at

m=k]) + |MH |KlT −1

=
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KlT −1

.= T21 + |MH |KlT −1

And for each honest participant, they are using the estimators based on the validated estimators, as
long as the block is approved. Consider the following event, A = {∀1 ≤ t ≤ T, bt = 1}. Based on (16)
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and the Bonferroni’s inequality, we obtained that

P (A) = P (∀1 ≤ t ≤ T, bt = 1)
= 1 − P (∃1 ≤ t ≤ T, bt = 0)

≥ 1 −
T∑

t=1
P (bt = 0)

≥ 1 − 1
lT −1 .

On event A, the blockchain always gets approved, and then all the honest participants follow the
validated estimators from the validators. By (3) and Lemma 2 in (Zhu et al., 2023), we have that
the validated estimator µ̃i(t) can be expressed as

µ̂i(t) =
∑

j∈At∩MH

wj,i(t)µ̄j
i (t)

where the weight wj,i(t) meets the condition∑
j∈At∩MH

wj,i(t) = 1,

which immediately implies that

E[µ̂i(t)] = µi.

We note that the variance of µ̂i(t), var(µ̂i(t)), satisfies that,

var(µ̂i(t)) = var(
∑

j∈At∩MH

wj,i(t)µ̄j
i (t))

≤ |At ∩ MH |
∑

j∈At∩MH

wj,i(t)2var(µ̄j
i (t)))

≤ |At ∩ MH |
∑

j∈At∩MH

w2
j,i(t)σ2 1

nj,i(t)

≤ |At ∩ MH |
∑

j∈At∩MH

w2
j,i(t)σ2 ki

nm,i(t)

= |MH | ki

nm,i(t)
∑

j∈MH

w2
j,i(t)σ2

≤ |MH | kiσ
2

nm,i(t)

where the inequality holds by the Cauchy-Schwarz inequality, the second inequality holds by the
definition of sub-Gaussian distributions, the third inequality results from the construction of At, and
the last inequality is as a result of (a + b)2 ≥ a2 + b2.

Next, we show by induction that var(µ̃i(t)) ≤ 3|MH | kiσ2

nm,i(t) for t ≥ 3K.

At time step 3K, we have that var(µ̃i(t)) ≤ 1 since E[µ̃i(t)] = µi ≤ 1. In the meantime,

3|MH | kiσ
2

nm,i(t − 1)

≥ 3|MH |kiσ
2

3
= |MH |kiσ

2 ≥ 1
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since we have ki ≥ 1 and σ2 ≥ 1
MH

.

First, assume that for t − 1, we have var(µ̃i(t − 1)) ≤ 3|MH | kiσ2

nm,i(t−1) .

Meanwhile, by the update rule such that µ̃i(t) = (1 − Pt)µ̂i(t) + Ptµ̃i(τ) where τ = maxs<t{bs = 1}.

Note that with probability at least P (A) = 1 − 1
lT −1 , bs = 1 for all s < t. This implies that on event

A, τ = t − 1. Therefore, by the cauchy-schwartz inequality, we obtain that

var(µ̃i(t)) ≤ 2(1 − Pt)2(var(µ̂i(t))) + 2P 2
t var(µ̃i(t − 1))

≤ 1
2 |MH | kiσ

2

nm,i(t)
+ 1

23|MH | kiσ
2

nm,i(t − 1)

≤ 3|MH | kiσ
2

nm,i(t)

where the last inequality holds by the fact that nm,i(t − 1) ≥ nm,i(t) − 1 ≥ 2
3 nm,i(t) when t > 3 · K.

Subsequently, we have that

P (µ̃m
i (t) −

√
C1 log t

nm,i(t)
> µi, nm,i(t − 1) ≥ l)

≤ exp {−
(
√

C1 log t
nm,i(t) )2

2var(µ̃m
i ) }

≤ exp {−
(
√

C1 log t
nm,i(t) )2

6|MH | kiσ2

nm,i(t)
}

= exp {− C1 log t

6|MH |kiσ2 } ≤ 1
t2 (6)

where the first inequality holds by Chernoff bound, the second inequality is derived by plugging in
the above upper bound on var(µ̃m

i (t)), and the last inequality results from then choice of C1 that
satisfies C1

6|MH |kiσ2 ≥ 1.

Likewise, by symmetry, we have

P (µ̃m
i (t) +

√
C1 log t

nm,i(t)
< µi, nm,i(t − 1) ≥ l) ≤ 1

t2 . (7)

Meanwhile, we have that

T∑
t=L+1

P (µi + 2
√

C1 log t

nm,i(t − 1) > µi∗ , nm,i(t − 1) ≥ l) = 0 (8)

if the choice of l satisfies l ≥ [ 4C1 log T
∆2

i
] with ∆i = µi∗ − µi.
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Based on the decision rule, we have the following hold for nm,i(T ) with l ≥ [ 4C1 log T
∆2

i
],

nm,i(T ) ≤ l +
T∑

t=L+1
1{am

t =i,nm,i(t)>l}

≤ l +
T∑

t=L+1
1

{µ̃m
i

−
√

C1 log t

nm,i(t−1) >µi,nm,i(t−1)≥l}

+
T∑

t=L+1
1

{µ̃m
i∗ +

√
C1 log t

nm,i∗ (t−1) <µi∗ ,nm,i(t−1)≥l}

+
T∑

t=L+1
1

{µi+2
√

C1 log t

nm,i(t−1) >µi∗ ,nm,i(t−1)≥l}
.

By taking the expectation over nm,i(t), we obtain

E[nm,i(t)] ≤ l +
T∑

t=L+1
P (µ̃m

i (t) −

√
C1 log t

nm,i(t)
> µi, nm,i(t − 1) ≥ l)

+
T∑

t=L+1
P (µ̃m

i (t) +
√

C1 log t

nm,i(t)
< µi, nm,i(t − 1) ≥ l)

+
T∑

t=L+1
P (µi + 2

√
C1 log t

nm,i(t − 1) > µi∗ , nm,i(t − 1) ≥ l)

≤ l +
T∑

t=L+1

1
t2 +

T∑
t=L+1

1
t2 + 0

≤ l + π2

3 = [4C1 log T

∆2
i

] + π2

3 (9)

where the second inequality holds by using (6), (7), and (19).

Then by the definition of T21, we derive

E[T21|A] =
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)]

≤
∑

m∈MH

K∑
k=1

∆k([4C1 log T

∆2
i

] + π2

3 )

where the inequality results from (18).

Consequently, we obtain

(15) ≤ E[T21|A] + |MH |KlT −1

≤
∑

m∈MH

K∑
k=1

∆k([4C1 log T

∆2
i

] + π2

3 ) + |MH |KlT −1. (10)

Furthermore, we have

(23) ≤ (c + 1) · L + E[T1|A] + E[T2|A]

≤ (c + 1) · L +
∑

m∈MH

K∑
k=1

∆k([4C1 log T

∆2
i

] + π2

3 ) + |MH |KlT −1 + 0 (11)
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which completes the proof.

Proof of Theorem 2

Proof. The proof of Theorem 4 is similar to that of Theorem 3 as follows. The regret of the
coordination mechanism is again decomposed as

RT ≤ L + c · L +
T∑

t=L+1

∑
m∈MH

(µi∗ − µat
m

1bt=1) +
∑

m∈MH

T∑
t=L+1

ct1ht=1

.= (c + 1) · L + T1 + T2

For malicious participant j ∈ M2
A, it only attacks the consensus process and does not attack the

estimators. In the meantime, for malicious participant l ∈ M1
A, it only attacks the estimators, but

does not attack the consensus process. Since |M1
A| < 1

2 M − 1, when using Option 2, the set Bt is the
same as the case where only at most 1

2 M participants are malicious. Therefore, we have that

E[T2] ≤ log T
∑

m∈MH

T∑
t=L+1

O( 1
t2 ) = O(log T ).

Meanwhile, since the total number of malicious participants in M1
A meets that |M1

A| < 1
2 M − 1, and

the consensus protocol runs M participants with each participant as a commander, the consensus
always succeeds with probability at least 1 − 1

lT . This immediately gives us that based on (17)

E[T1] =
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KlT −1

Meanwhile, the statistical property of nm,k(t) depends on that of the global estimator µ̃k(t) by our
decision and update rule. The computation of µ̃k(t) depends on set Bt, which is the same as the
case where there are only at most 1

2 M − 1 malicious participants. Subsequently, we obtain

E[nm,i(t)] ≤ l +
T∑

t=L+1
Pt +

T∑
t=L+1

Pt + 0

≤ l + π2

3
= O(log T ).

when l ≥ [ 4C1 log T
∆6

i
] with ∆i = µi∗ − µi.

Then, based on 17, we again arrive at

E[T1] ≤
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KlT −1

≤ O(log T ) + |MH |KlT −1

Henceforth, by the regret decomposition, we have the following upper bound on the regret

E[RT |A] ≤ (c + 1) · L + E[T1|A] + E[T2|A]
≤ (c + 1) · L + O(log T ) + |MH |KlT −1 (12)

which completes the proof.
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Proof of Theorem 3

Proof. By the same deifnition of the regret, we, again, have the following regret decomposition

Note that

RT = max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

(µb
at

m
− ct)

= max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

µb
at

m
+

∑
m∈MH

T∑
t=1

ct

= max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

µat
m

1bt=1 +
∑

m∈MH

T∑
t=1

ct

= max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

µat
m

1bt=1 +
∑

m∈MH

T∑
t=1

ct1ht=1

Meanwhile, the regret can be bounded as follows

RT ≤ L + c · L +
T∑

t=L+1

∑
m∈MH

(µi∗ − µat
m

1bt=1) +
∑

m∈MH

T∑
t=L+1

ct1ht=1

.= (c + 1) · L + T1 + T2 (13)

We start with the second term T2. Note that ht = 1 is equivalent to {m : m ∈ Bt ∩ m ̸∈ MH} ≠ ∅.

By taking the expectation over T2, we derive

E[T2|A] =
∑

m∈MH

T∑
t=L+1

E[ct · 1ht=1]

=
∑

m∈MH

T∑
t=L+1

E[ct · 1{m:m∈Bt∩m ̸∈MH }̸=∅]

By the Chernoff-Hoeffding’s inequality and choosing ηt ≥
√

log t√
ni(t)

, we obtain that

P (|µ̄m
i (t) − µi| ≥ ηt)

= P (|µ̄m
i (t) − µi| ≥

√
log t√
ni(t)

)

≤ 2 exp {− log t

4σ2n2
m,i(t)

}

= 2 exp {− log t

4σ2n2
m,i(t)

}

≤ 1
t2

.= Pt,

when t > L, i.e. after the burn-in period.

If ct ≤ 1
t , then we have that E[T2|A] ≤ log T , which presents an upper bound on T2.

If ct = Dist(µ̃i(t), µi), then based on the definition of Bt and m ∈ Bt as in Option 2, we have that
µ̄m

i (t) is smaller than the top f values and larger than the below f values. Based on Theorem 1 as
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in (Dong et al., 2023), we have that

||µ̂i(t) − z̄i(t)|| ≤ cδ∆2

where ∆ represents the largest distance between the honest estimators and z̄i(t) that is the averaged
estimator maintained by all the honest participants.

Then by definition, we obtain that

∆ = max
i∈MH

|µ̄i(t) − z̄i(t)|

≤ max
i,j∈MH

[|µ̄i(t) − µi| + |µ̄j(t) − µi|]

≤ 2ηt

which holds with probability 1 − Pt.

Therefore, we have that with probability 1 − Pt

|µ̂i(t) − z̄i(t)| ≤ 2cδηt

and

|z̄i(t) − µi| ≤ ηt

which holds by the Chernoff Bound inequality.

Subsequently, we obtain that with probability 1 − Pt

|µ̂ − µi| ≤ |µ̂i(t) − z̄i(t)| + |z̄i(t) − µi|
≤ (2cδ + 1)η6

t

Meanwhile, for the distance measure, we have with probability 1 − Pt

Dist(µ̃i(t) − µi) = |µ̃i(t) − µi|6

= |q̄tµ̃i(t − 1) + (1 − q̄t)µ̂i(t) − µi|6

≤ q̄t|µ̃i(t − 1) − µi|6 + (1 − q̄t)|µ̂i(t) − µi|6

≤ q̄tDist(µ̃i(t − 1), µi) + (1 − q̄t)(2cδ + 1)6η6
t (14)

Since by definition, we derive that

P (Dist(µ̃i(L), µi) ≥ O( η2
t

ni(t)
))

≤ P (Dist(µ̃i(L), µi) ≥ O( log t3

ni(t)3 ))

≤ P (|µ̃i(L) − µi| ≥ O(
√

log t√
ni(t)

))

≤ P (|µ̃i(L) − µi| ≥ ηt)
= Pt

That is to say, with probability 1 − Pt,

Dist(µ̃i(L), µi) ≤ O( η2
L

ni(L) )
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Next, suppose that at each time step t, with probability 1 − Pt, Dist(µ̃i(t), µi) ≤ O( η2
t

ni(t) ).

Then by choosing q̄t = 1 − 1
ni(t) and 14, we have that

Dist(µ̃i(t + 1), µi)
≤ q̄tDist(µ̃i(t), µi) + (1 − q̄t)(2cδ + 1)6η6

t

≤ O( η2
t

ni(t)
) + O( 1

ni(t)
η6

t )

= O(
η2

t+1
ni(t + 1))

Then we use the mathematical induction and derive that for any t ≥ L, with probability 1 − Pt,

Dist(µ̃i(t), µi) ≤ O( η2
t

ni(t)
).

By the definition of cost, we obtain that with probability 1 − Pt

ct = min
i

Dist(µ̃i(t), µi)

≤ O( log t

maxi ni(t)2 ) = O( log t

t2 )

where the last inequality holds by the fact that maxi ni(t) ≥
∑

i
ni(t)

K = O(t).

Then we drive that

E[T2|A] ≤
∑

m∈MH

T∑
t=L+1

E[ct · 1{m:m∈Bt∩m ̸∈MH }̸=∅]

≤
∑

m∈MH

T∑
t=L+1

E[ct]

≤
∑

m∈MH

T∑
t=L+1

[(1 − Pt) · O( log t

t2 ) + Pt]

=
∑

m∈MH

T∑
t=L+1

O( log t

t2 )

≤ log T
∑

m∈MH

T∑
t=L+1

O( 1
t2 ) = O(log T ).

We next follow the same steps as in the proof of Theorem 1 for bounding E[T1]. Note that

E[T1|A] ≤
T∑

t=L+1

∑
m∈MH

(µi∗ − µat
m

1bt=1)

= (T − L) · |MH | · µi∗ −
∑

m∈MH

T∑
t=L

E[µat
m

|bt = 1]P (bt = 1)
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In the meantime, we obtain the following

E[µat
m

|bt = 1]

= E[
K∑

k=1
µk · 1at

m=k|bt = 1]

=
K∑

k=1
E[µk1at

m=k|bt = 1]

≥
K∑

k=1
µk · 1

P (bt = 1) · (E[1at
m=k] − P (bt = 0)).

This immediately gives us that

E[T1|A]

≤ (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

(
K∑

k=1
µk · 1

P (bt = 1) · (E[1at
m=k] − P (bt = 0)))P (bt = 1)

= (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

(
K∑

k=1
µk(E[1at

m=k] − P (bt = 0))

= (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

K∑
k=1

µkE[1at
m=k] +

∑
m∈MH

T∑
t=L

K∑
k=1

µkP (bt = 0). (15)

Based on Theorem 2 in (Lamport et al., 2019), the consensus is achieved, i.e. bt = 1, as long as
the digital signatures of the honest participants can not be forged. Based on our assumption, we
have that the malicious participants can only perform existential forgery on the signatures of the
honest participants and the attacks are adaptive chosen-message attack. Then based on the result,
Main Theorem in (Goldwasser et al., 1988), the attack holds with probability at most 1

Q(l) for any
polynomial function Q and large enough l where l is the length of the signature.

More precisely, we have that with probability at least 1 − 1
lT , the signature of the honest participants

can not be forged, and thus, the consensus can be achieved, i.e.

P (bt = 1) ≥ 1 − 1
lT

. (16)

Consequently, we have

E[T1] ≤ (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

K∑
k=1

µkE[1at
m=k] +

∑
m∈MH

T∑
t=L

K∑
k=1

µk( 1
lT

)

≤
∑

m∈MH

T∑
t=L

(µi∗ −
K∑

k=1
µkE[1at

m=k]) + |MH |KlT −1

=
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KlT −1 (17)
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Based on the decision rule, we have the following hold for nm,i(T ) with l ≥ [ 4C1 log T
∆2

i
],

nm,i(T ) ≤ l +
T∑

t=L+1
1{am

t =i,nm,i(t)>l}

≤ l +
T∑

t=L+1
1

{µ̃m
i

−
√

C1 log t

nm,i(t−1) >µi,nm,i(t−1)≥l}

+
T∑

t=L+1
1

{µ̃m
i∗ +

√
C1 log t

nm,i∗ (t−1) <µi∗ ,nm,i(t−1)≥l}

+
T∑

t=L+1
1

{µi+2
√

C1 log t

nm,i(t−1) >µi∗ ,nm,i(t−1)≥l}
.

By taking the expectation over nm,i(t), we obtain

E[nm,i(t)] ≤ l +
T∑

t=L+1
P (µ̃m

i (t) −

√
C1 log t

nm,i(t)
> µi, nm,i(t − 1) ≥ l)

+
T∑

t=L+1
P (µ̃m

i (t) +
√

C1 log t

nm,i(t)
< µi, nm,i(t − 1) ≥ l)

+
T∑

t=L+1
P (µi + 2

√
C1 log t

nm,i(t − 1) > µi∗ , nm,i(t − 1) ≥ l) (18)

Recall that by our concentration inequality, we obtain that

P (µ̃m
i (t) + (C1 log t

nm,i(t)
) 1

6 < µi, nm,i(t − 1) ≥ l)

≤ P (|µ̃m
i (t) − µi| ≥ O( log t

1
6

ni(t)
1
3

), nm,i(t − 1) ≥ l)

= P (Dist(µ̃m
i (t), µi) ≥ O( η2

t

ni(t)
), nm,i(t − 1) ≥ l)

≤ Pt = 1
t2 .

Meanwhile, we have that

T∑
t=L+1

P (µi + 2( C1 log t

nm,i(t − 1)) 1
6 > µi∗ , nm,i(t − 1) ≥ l) = 0 (19)

if the choice of l satisfies l ≥ [ 4C1 log T
∆6

i
] with ∆i = µi∗ − µi.

This immediately implies that

E[nm,i(t)] ≤ l +
T∑

t=L+1
Pt +

T∑
t=L+1

Pt + 0

≤ l + π2

3
= O(log T ).
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Then, by 17, we arrive at

E[T1] ≤
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KlT −1

≤ O(log T ) + |MH |KlT −1

Henceforth, based on 23, we have the following upper bound on the regret

E[RT |A] ≤ (c + 1) · L + E[T1|A] + E[T2|A]
≤ (c + 1) · L + O(log T ) + |MH |KlT −1 (20)

which completes the proof.

Proof of Theorem 4

Proof. Again, we start by decomposing the regret as

RT ≤ L + c · L +
T∑

t=L+1

∑
m∈MH

(µi∗ − µat
m

1bt=1) +
∑

m∈MH

T∑
t=L+1

ct1ht=1

.= (c + 1) · L + T1 + T2

We note that the consensus protocol runs M times, with each validator (i.e., participant in this case)
being selected as a commander. For any malicious participant j ∈ M2

A, it serves as a commander
and is thus included in Dt. This holds true because, according to Lemma 3 in (Goldwasser et al.,
1988), if the message is a chandelier tree generated by the secret key SKm of participant m, any
participant can verify the public key PKm, or equivalently, trace back to the root of the signature
tree of the message sender. Due to the unique mapping between PKm and m, the honest participant
keeps a record of the vertex index of the malicious participants that attack the consensus.

This implies that j ̸∈ Bt, i.e. the set Bt can only contain estimators from either honest participants
or set M1

A that satisfies |M1
A| < MH − 1. Therefore, the property of Bt follows from that as in Option

2, which essentially indicates that Option 3 is equivalent to Option 2 with at least one half honest
participants. Considering that the remaining algorithmic steps are the same, the analysis of T1 and
T2 is consistent with that of Theorem 2.

Consequently, we have that

E[T1] ≤
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KlT −1

≤ O(log T ) + |MH |KlT −1

and

E[T2] ≤ log T
∑

m∈MH

T∑
t=L+1

O( 1
t2 ) = O(log T ).

Subsequently, we derive the same regret bound as in Theorem, as

E[RT ] ≤ (c + 1) · L + O(log T ) + |MH |KlT −1 + log T
∑

m∈MH

T∑
t=L+1

O( 1
t2 )

= O(log T )

which completes the proof.
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Proof of Theorem 5

Proof. The proof of Theorem 5 follows a similar approach to that of Theorem 4. the coordination
mechanism’s regret can be decomposed as follows:

RT ≤ L + c · L +
T∑

t=L+1

∑
m∈MH

(µi∗ − µat
m

1bt=1) +
∑

m∈MH

T∑
t=L+1

ct1ht=1

.= (c + 1) · L + T1 + T2

For malicious participant j ∈ M2
A, the attacks are limited to the consensus process and do not affect

the estimators. Conversely, a malicious participant l ∈ M1
A, it targets the estimators but does not

disrupt the consensus process. Given that |M1
A| < 1

2 M − 1, when using Option 2, the set Bt is the
same as the case where only at most 1

2 M participants are malicious. Therefore, we have that

E[T2] ≤ log T
∑

m∈MH

T∑
t=L+1

O( 1
t2 ) = O(log T ).

The analysis of T1 requires further work, especially considering the development of this new commander
selection protocol. More specifically, by definition, we have wm(t) = wm = 1 − log T

T , for any m ∈ MH .
Consider the event of whether honest participant m is selected as a commander as Et

m. In other
words, Et

m = 1 if participant m is a commander and 0 otherwise. Define Et as ∩m∈MH
{Et

m = 0}.
Then we have that

E[
T∑

t=1
Et] =

T∑
t=1

E[∩m∈MH
{Et

m = 0}]

≤
T∑

t=1

∑
m∈MH

E[{Et
m = 0}]

=
T∑

t=1

∑
m∈MH

(1 − wm(t)) = log T.

It implies that for the total length of having no honest commanders is at most log T , there is no
honest commander, which indicated that the consensus fails. In the meantime, we note that if there
is a honest commander in set SC(t), then the consensus is achieved with the correct µ̃, i.e. bt = 1,
and thus we have E[1bt=0] ≤ log T

T and E[
∑T

t=1 1bt=0] ≤ log T .

Differently, by our choice, wj(t) = wj = log |MA|
η

T , for any j ∈ MA. Then we consider the event of
whether malicious participant j is selected as a commander or not, namely, F j

t . Likewise, F j
t = 1 if

participant j is a commander and 0 otherwise. Define Ft = ∩j∈MA
{∃s ≤ t, s.t.F j

s = 1}. Then we
obtain

P (Ft) = P (∩j∈MA
{∃s ≤ t, s.t.F j

s = 1})

≥ 1 −
∑

j∈MA

P ({∀s ≤ t, s.t.F j
s = 0})

= 1 −
∑

j∈MA

(1 − wj)t

= 1 − |MA|(1 − wj)t

≥ 1 − |MA|e−wjt

By the choice of wj = log |MA|
η

T , we derive that P (Ft) ≥ 1 − |MA|e−wjt = 1 − η. This means that at
each time step, the malicious participants have high probability of being chosen as commanders,
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which provides enough incentive for them to participate, and thus implies the rationality of this
probability.

Subsequently, since the total number of malicious participants in M1
A meets that |M1

A| < 1
2 M − 1,

and the consensus protocol runs M participants with at least one honest commander, the consensus
always succeeds with probability at least 1 − log T

T . Based on 15, we obtain that

E[T1] ≤ (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

K∑
k=1

µkE[1at
m=k] +

∑
m∈MH

T∑
t=L

K∑
k=1

µkP (bt = 0)

≤
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KO(log T ).

Again, based on the decision rule, we have the following hold for nm,i(T ) with l ≥ [ 4C1 log T
∆2

i
],

nm,i(T ) ≤ l +
T∑

t=L+1
1{am

t =i,nm,i(t)>l}

≤ l +
T∑

t=L+1
1

{µ̃m
i

−
√

C1 log t

nm,i(t−1) >µi,nm,i(t−1)≥l}

+
T∑

t=L+1
1

{µ̃m
i∗ +

√
C1 log t

nm,i∗ (t−1) <µi∗ ,nm,i(t−1)≥l}

+
T∑

t=L+1
1

{µi+2
√

C1 log t

nm,i(t−1) >µi∗ ,nm,i(t−1)≥l}
.

Note that taking the expectation over nm,i(t) gives

E[nm,i(t)] ≤ l +
T∑

t=L+1
P (µ̃m

i (t) −

√
C1 log t

nm,i(t)
> µi, nm,i(t − 1) ≥ l)

+
T∑

t=L+1
P (µ̃m

i (t) +
√

C1 log t

nm,i(t)
< µi, nm,i(t − 1) ≥ l)

+
T∑

t=L+1
P (µi + 2

√
C1 log t

nm,i(t − 1) > µi∗ , nm,i(t − 1) ≥ l) (21)

Using the concentration inequality, we obtain that

P (µ̃m
i (t) + (C1 log t

nm,i(t)
) 1

6 < µi, nm,i(t − 1) ≥ l)

≤ P (|µ̃m
i (t) − µi| ≥ O( log t

1
6

ni(t)
1
3

), nm,i(t − 1) ≥ l)

= P (Dist(µ̃m
i (t), µi) ≥ O( η2

t

ni(t)
), nm,i(t − 1) ≥ l)

≤ Pt = 1
t2 .

Likewise, we obtain that
T∑

t=L+1
P (µi + 2( C1 log t

nm,i(t − 1)) 1
6 > µi∗ , nm,i(t − 1) ≥ l) = 0 (22)
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if the choice of l satisfies l ≥ [ 4C1 log T
∆6

i
] with ∆i = µi∗ − µi, which leads to

E[nm,i(t)] ≤ l +
T∑

t=L+1
Pt +

T∑
t=L+1

Pt + 0

≤ l + π2

3
= O(log T ).

Consequently, we obtain that

E[T1] ≤
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KlT −1

≤ O(log T ) + |MH |KlT −1

Combining all these together, we derive the following upper bound on the expected regret

E[RT |A] ≤ (c + 1) · L + E[T1|A] + E[T2|A]
≤ (c + 1) · L + O(log T ). (23)

This concludes the proof of Theorem 5.

Proof of Theorem 6

Proof. Again, we decompose system’s regret as follows:

RT ≤ L + c · L +
T∑

t=L+1

∑
m∈MH

(µi∗ − µat
m

1bt=1) +
∑

m∈MH

T∑
t=L+1

ct1ht=1

.= (c + 1) · L + T1 + T2

Differently, the definition of ct is a constant-based one, where ct = c1∃m∈Ct&m∈M1
A

since the estimators
in Ct are used for computing µ̃m

i (t). Note that here we do not count malicious participants in M2
A in,

as these participant do not perform attacks on the estimators, i.e. having no negative effect on µ̃i(t).

In the meantime, by the robust estimator property of the estimators in Bt, we obtain that

||µ̂i(t) − z̄i(t)|| ≤ c∆∆2

where with probability 1 − Pt,

∆ = max
m∈MH

|µ̄m
i (t) − z̄i(t)|

≤ max
m,j∈MH

[|µ̄j
i (t) − µi| + |µ̄m

i (t) − µi|]

≤ 2ηt

This immediately implies that for m ∈ MH

|µ̄m
i (t) − µ̂i| ≤ |µ̄i(t) − z̄i(t) + z̄i(t) − µ̂i|

≤ 2ηt + 4(c∆)η2
t

≤ 1
2ϵ||q||
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where the last inequality holds by the choice of ϵ and ||q|| denotes the minimum value of the random
variable following distribution qm

i .

By assumption, we have that for j ∈ M1
A,

f j
i (t) = (1 − ϵ)gm

i (t) + ϵqm
i (t)

where f j
i (t) represents the underlying distribution of the rewards of malicious agent j ∈ M1

A. It is
worth emphasizing that this assumption is consistent with (Dubey and Pentland, 2020), originated
from the Huber’s ϵ-Contamination model (Huber and Ronchetti, 2011).

By taking the expectation over the distributions, we obtain that

µj = (1 − ϵ)µi + ϵE[q]

This implies that for j ∈ M1
A with probability 1 − 2Pt

|µ̄j
i (t) − µ̂i| ≥ |µ̄j

i (t) − µ̄m
i (t) + µ̄m

i (t) − µ̂i|
≥ |µ̄j

i (t) − µ̄m
i (t)| − |µ̄m

i (t) − µ̂i|

≥ ϵ||q|| − 1
2ϵ||q||

≥ 1
2ϵ||q||

This is to say that j ∈ M1
A does not belong to Ct, and thus implies that ct = 0 for t > L with

probability 1 − 3Pt = 1 − 3
t2 , and ct = c with probability 3

t2 .

Therefore we have that

E[T2] ≤
∑

m∈MH

T∑
t=L+1

O( 3
t2 ) = O(1).

Based on (18), we again obtain that

E[nm,i(t)] ≤ l +
T∑

t=L+1
P (µ̃m

i (t) −

√
C1 log t

nm,i(t)
> µi, nm,i(t − 1) ≥ l)

+
T∑

t=L+1
P (µ̃m

i (t) +
√

C1 log t

nm,i(t)
< µi, nm,i(t − 1) ≥ l)

+
T∑

t=L+1
P (µi + 2

√
C1 log t

nm,i(t − 1) > µi∗ , nm,i(t − 1) ≥ l) (24)

By the fact that with probability 1 − 3Pt, ct = 0, we again have that the validated estimator µ̃i(t)
can be expressed as with probability 1 − 3Pt

µ̃i(t) =
∑

j∈At∩MH

wj,i(t)µ̄j
i (t)

which is also equivalent to µ̃m
i (t). Here the weight wj,i(t) meets the condition∑

j∈At∩MH

wj,i(t) = 1,
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which immediately implies that

E[µ̃i(t)] = µi.

We note that the variance of µ̃i(t), var(µ̃i(t)), satisfies that, with probability 1 − 3Pt

var(µ̃i(t)) = var(
∑

j∈At∩MH

wj,i(t)µ̄j
i (t))

≤ |At ∩ MH |
∑

j∈At∩MH

wj,i(t)2var(µ̄j
i (t)))

≤ |At ∩ MH |
∑

j∈At∩MH

w2
j,i(t)σ2 1

nj,i(t)

≤ |At ∩ MH |
∑

j∈At∩MH

w2
j,i(t)σ2 ki

nm,i(t)

= |MH | ki

nm,i(t)
∑

j∈MH

w2
j,i(t)σ2

≤ |MH | kiσ
2

nm,i(t)

where the inequality holds by the Cauchy-Schwarz inequality, the second inequality holds by the
definition of sub-Gaussian distributions, the third inequality results from the construction of At, and
the last inequality is as a result of (a + b)2 ≥ a2 + b2.

Subsequently, we have that

P (µ̃m
i (t) −

√
C1 log t

nm,i(t)
> µi, nm,i(t − 1) ≥ l)

≤ exp {−
(
√

C1 log t
nm,i(t) )2

2var(µ̃m
i ) }

≤ (exp {−
(
√

C1 log t
nm,i(t) )2

2|MH | kiσ2

nm,i(t)
})(1 − 3Pt) + 3Pt

= (1 − 3Pt) exp {− C1 log t

2|MH |kiσ2 } + 3Pt ≤ 4
t2 (25)

where the first inequality holds by Chernoff bound, the second inequality is derived by plugging in
the above upper bound on var(µ̃m

i (t)), and the last inequality results from then choice of C1 that
satisfies C1

6|MH |kiσ2 ≥ 1.

Likewise, by symmetry, we have

P (µ̃m
i (t) +

√
C1 log t

nm,i(t)
< µi, nm,i(t − 1) ≥ l) ≤ 4

t2 . (26)

This immediately implies that

E[nm,i(t)] ≤ l +
T∑

t=L+1
4Pt +

T∑
t=L+1

4Pt + 0

≤ l + 4π2

3
= O(log T ).
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Then we arrive at

E[T1] ≤
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KlT −1

≤ O(log T ) + |MH |KlT −1

Once again, by the regret decomposition, we obtain that

E[RT ] ≤ E[(c + 1) · L + T1 + T2]
≤ (c + 1) · L + O(1) + O(log T ) + |MH |KlT −1

= O(log T )

Proof of Theorem 7

Proof. As before, the regret is decomposed as

RT ≤ L + c · L +
T∑

t=L+1

∑
m∈MH

(µi∗ − µat
m

1bt=1) +
∑

m∈MH

T∑
t=L+1

ct1ht=1

.= (c + 1) · L + T1 + T2

We first show the monotonicity of the reputation score after the burn-in period. Recall that the
reputation score of participant i is defined as

U t
i =

K∑
j=1

−(µ̄i
j(t) − µ̃j(t))2 − ϵ2e(

∆
µ

i

j(t)−µ̃j(t)2)

.= U1,t
i + U2,t

i

where ∆
µ

i

j(t) denotes the estimator for arm j given by participant i after the consensus step, and
µ̄i

j(t), µ̃j(t) are the aforementioned estimators for arm j.

We consider t > L, where

P (µ̃m
i (t) +

√
C1 log t

nm,i(t)
< µi, nm,i(t − 1) ≥ l) ≤ 1

t2 . (27)

We consider malicious participant j ∈ M1
A and honest participant m ∈ MH , and by definition, it only

attacks the estimators, which immediately gives us that

U2,t
j = U2,t

i = 0.

Again, by this definition and the pre-fixed ϵ zone, we obtain

f j
i (t) = (1 − ϵ)gm

i (t) + ϵqm
i (t)

and thus j ∈ M1
A with probability 1 − 2Pt

|µ̄j
i (t) − µ̂i| ≥ |µ̄j

i (t) − µ̄m
i (t) + µ̄m

i (t) − µ̂i|
≥ |µ̄j

i (t) − µ̄m
i (t)| − |µ̄m

i (t) − µ̂i|

≥ ϵ||q|| − 1
2ϵ||q||

≥ 1
2ϵ||q||
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Subsequently, we arrive at

|µ̄j
i (t) − µ̃i| ≥ 1

2ϵ||q||

Meanwhile, we have

|µ̄m
i (t) − µ̂i| ≤ |µ̄i(t) − z̄i(t) + z̄i(t) − µ̂i|

≤ 2ηt + 4(c∆)η2
t

≤ 1
2ϵ||q||

which also implies that

|µ̄m
i (t) − µ̃i| ≥ 1

2ϵ||q||

That is to say, the first term in the reputation score meets that

U1,t
j ≤ U1,t

m

and subsequently, we obtain

U t
j ≤ U t

m.

Next, let us consider malicious participant k ∈ M2
A and honest participant m ∈ MH . By defini-

tion, participant k only attacks the consensus process without altering the estimators. However,
Equivalently, this does not imply

U1,t
k = U1,t

m = 0

since µ̄m
i ̸= µ̄k

i due to the randomness, which brings additional challenge.

We consider the difference between the estimators,

|U1,t
k − U1,t

m |
≤ |µ̄k

i (t) − µ̃i(t)|2 + |µ̄m
i (t) − µ̃i(t)|2

≤ 1
2(ϵ||q||)2.

In the meantime, if participant k serves as a validator, we immediately have

∆
µ

i

j(t) − µ̃j(t)2) > 0,

U2,t
k < −ϵ2

while in the meantime, U2,t
m = 0.

Consequently, we arrive at

U t
k − U t

m = U1,t
k − U1,t

m + U2,t
k − U2,t

m

≤ |U1,t
k − U1,t

m | + U2,t
k

≤ 1
2ϵ2 − ϵ2 = −1

2ϵ2 < 0

where the second last inequality holds by assuming ||q|| ≤ 1 without loss of generality.
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Combining these all together, we obtain that

U t
j < U t

m

for any malicious participant j ∈ MA and honest participant m ∈ MH , which implies the monotonocity
of U quantity in the reputation score.

Subsequently, by the monotone preserving property of function G(·), we immediately have

G(U t
j ) < G(U t

m)

for any malicious participant j ∈ MA and honest participant m ∈ MH .

Based on the Validator selection Protocol where the top N participants are selected with |MH | <
N < 2|MH | − 1, we obtain that MH ⊂ SV (t) and |SV (t)| ≤ 2|MH | − 1, which implies that the
consensus always achieves if every validator is selected as a commander for exactly once, i.e. bt = 1
with probability at most 1 − Ml−T .

Otherwise, if a participant k ∈ M2
A is never selected as a validator, then the set of validators does not

contain any malicious participants attacking the consensus, and then the consensus always achieves,
i.e. bt = 1.

To summarize, we have that

P (bt = 1) ≥ 1 − Ml−T .

Note that the set Bt, Ct herein is the same as the set of Bt, Ct as in Theorem 6, which immediately
implies that j ∈ M1

A does not belong to Ct, and thus implies that ct = 0 for t > L with probability
1 − 3Pt = 1 − 3

t2 , and ct = c with probability 3
t2 .

Therefore we again obtain that by the definition of T2 that depends on bt and ct

E[T2] ≤
∑

m∈MH

T∑
t=L+1

O( 3
t2 ) = O(1).

Again, using (18), we obtain the following decomposition

E[nm,i(t)] ≤ l +
T∑

t=L+1
P (µ̃m

i (t) −

√
C1 log t

nm,i(t)
> µi, nm,i(t − 1) ≥ l)

+
T∑

t=L+1
P (µ̃m

i (t) +
√

C1 log t

nm,i(t)
< µi, nm,i(t − 1) ≥ l)

+
T∑

t=L+1
P (µi + 2

√
C1 log t

nm,i(t − 1) > µi∗ , nm,i(t − 1) ≥ l) (28)

Furthermore, with probability 1 − 3Pt, ct = 0 again implies that the validated estimator µ̃i(t) has
the following explicit formula, with probability 1 − 3Pt

µ̃i(t) =
∑

j∈At∩MH

wj,i(t)µ̄j
i (t)

which is the value of µ̃m
i (t) as well, where wj,i(t) are the weights such that∑

j∈At∩MH

wj,i(t) = 1.
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This immediately gives us that

E[µ̃i(t)] = µi.

We note that the variance of µ̃i(t), var(µ̃i(t)), satisfies that, with probability 1 − 3Pt

var(µ̃i(t)) = var(
∑

j∈At∩MH

wj,i(t)µ̄j
i (t))

≤ |At ∩ MH |
∑

j∈At∩MH

wj,i(t)2var(µ̄j
i (t)))

≤ |At ∩ MH |
∑

j∈At∩MH

w2
j,i(t)σ2 1

nj,i(t)

≤ |At ∩ MH |
∑

j∈At∩MH

w2
j,i(t)σ2 ki

nm,i(t)

= |MH | ki

nm,i(t)
∑

j∈MH

w2
j,i(t)σ2

≤ |MH | kiσ
2

nm,i(t)

where the inequality holds by the Cauchy-Schwarz inequality, the second inequality holds by the
definition of sub-Gaussian distributions, the third inequality results from the construction of At, and
the last inequality is as a result of (a + b)2 ≥ a2 + b2.

Subsequently, we have that

P (µ̃m
i (t) −

√
C1 log t

nm,i(t)
> µi, nm,i(t − 1) ≥ l)

≤ exp {−
(
√

C1 log t
nm,i(t) )2

2var(µ̃m
i ) }

≤ (exp {−
(
√

C1 log t
nm,i(t) )2

2|MH | kiσ2

nm,i(t)
})(1 − 3Pt) + 3Pt

= (1 − 3Pt) exp {− C1 log t

2|MH |kiσ2 } + 3Pt ≤ 4
t2 (29)

where the first inequality holds by Chernoff bound, the second inequality is derived by plugging in
the above upper bound on var(µ̃m

i (t)), and the last inequality results from then choice of C1 that
satisfies C1

2|MH |kiσ2 ≥ 1.

In a similar manner, we obtain

P (µ̃m
i (t) +

√
C1 log t

nm,i(t)
< µi, nm,i(t − 1) ≥ l) ≤ 4

t2 . (30)

Plugging the concentration-type inequalities in, we derive

E[nm,i(t)] ≤ l +
T∑

t=L+1
4Pt +

T∑
t=L+1

4Pt + 0

≤ l + 4π2

3 = O(log T ).
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Then we arrive at

E[T1] ≤
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KlT −1

≤ O(log T ) + |MH |KlT −1

Once again, by the regret decomposition, we obtain that

E[RT ] ≤ E[(c + 1) · L + T1 + T2]
≤ (c + 1) · L + O(1) + O(log T ) + |MH |KlT −1

= O(log T )
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