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Abstract

Reinforcement Learning with Verifiable Rewards (RLVR) reliably improves the
reasoning performance of large language models, yet it appears to modify only a
small fraction of parameters. We revisit this paradox and show that sparsity is a
surface artifact of a model-conditioned optimization bias: for a fixed pretrained
model, updates consistently localize to preferred parameter regions, highly consis-
tent across runs and largely invariant to datasets and RL recipes. We mechanisti-
cally explain these dynamics with a Three-Gate Theory: Gate I (KL anchor) im-
poses a KL-constrained update; Gate II (model geometry) steers the step off prin-
cipal directions into low-curvature, spectrum-preserving subspaces; and Gate III
(precision) hides micro-updates in non-preferred regions, making the off-principal
bias appear as sparsity. We then validate this theory and, for the first time, provide
a parameter-level characterization of RLVR’s learning dynamics: RLVR learns
off principal directions in weight space, exhibiting minimal spectral drift, sub-
stantially smaller principal-subspace rotation, and off-principal update alignment,
whereas SFT targets principal weights and distorts the spectrum.
Together, these results provide the first parameter-space account of RLVR’s train-
ing dynamics, revealing clear regularities in how parameters evolve. Crucially,
we show that RL operates in a distinct optimization regime from SFT, so directly
adapting SFT-era parameter-efficient fine-tuning (PEFT) methods can be flawed,
as evidenced by our case studies on advanced sparse fine-tuning and LoRA vari-
ants. We hope this work charts a path toward a white-box understanding of RLVR
and the design of geometry-aware, RLVR-native learning algorithms, rather than
repurposed SFT-era heuristics.

1 Introduction

Large Reasoning Models (LRMs), such as OpenAI-o3 (Jaech et al., 2024) and DeepSeek-R1 (Guo
et al., 2025), have advanced the ability of large language models to solve complex mathematical and
programming tasks. A key driver is large-scale Reinforcement Learning with Verifiable Rewards
(RLVR), which uses simple, easy-to-verify rewards to incentivize complex, multi-step reasoning.

Yet, despite these advances, the mechanisms by which RL shapes model representations and behav-
ior remain poorly understood. Given the substantial computational resources devoted to RL (relative
to SFT) (xAI, 2025) and the emergence of striking new behaviors, one might naturally assume that
such progress arises from significant parameter changes. However, recent evidence points in the op-
posite direction: RL induces sparse parameter updates, whereas SFT yields dense ones (Mukherjee
et al., 2025). This counterintuitive finding reveals a paradox, a high-cost, high-gain process that
relies on surprisingly minimal weight modification.

Key observation. We resolve this paradox by uncovering a deeper mechanism behind the apparent
sparsity: a persistent, model-conditioned optimization bias. For a fixed pretrained model, this
bias concentrates visible updates into a narrow, stable subset of parameters and remains strikingly
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Figure 1: SFT and RL follow distinct optimization paths. (a) SFT: follows an externally guided
route—even over the “mountain” (high curvature)—to reach the target. (b) RLVR: behaves as if steered by
an implicit compass, detouring around the mountain (low curvature). (c) Evidence. Left: RL update positions
versus principal-weight positions (largest-magnitude entries in rank-k SVD of W0 Liu et al. (2025c), details
at Sec. 4.2); RL avoids principal regions while SFT targets them (Meng et al., 2024; Liu et al., 2025c). Right:
principal-angle curves show RL rotates less (spectra preserved) and SFT rotates more.
invariant across diverse algorithms and datasets—a model-conditioned feature. bfloat16 precision
further accentuates the apparent sparsity by attenuating micro-updates in non-preferred regions. As
illustrated in Fig. 1, we depict this bias as an implicit compass: unlike SFT with an explicit teacher,
RLVR is subtly guided during optimization even without one.

Research Question. These phenomena raise a central question about RL’s learning dynamics:

Where does this optimization bias originate, and how does it shape parameter evolution?

Mechanistic explanation. We formalize the mechanism behind RLVR’s optimization dynamics
through a Three-Gate Theory. Gate I (KL Anchor) enforces a KL-constrained update at each on-
policy step. Gate II (Model Geometry) then steers this update off the principal directions toward
low-curvature, spectrum-preserving subspaces embedded in the structured optimization landscape
of a pretrained model, unlike training from a randomly initialized model. This geometry gate ex-
plains the model-conditioned nature of the bias: it arises from the pretrained landscape rather than
particular datasets or RL recipes. Gate III (Precision) acts as a realization filter by hiding those
micro-updates in non-preferred regions, making the off-principal bias appear sparse.

Experimental validation. We validate this theory with a comprehensive suite of experiments,
uncovering striking optimization dynamics: RLVR learns off the principal directions, operating in
a regime disjoint from SFT’s. We show that (i) RLVR preserves the pretrained spectral structure with
, whereas SFT distorts it; (ii) RLVR avoids principal weights—the high-energy directions indicated
by rank-k SVD reconstructions—whereas parameter-efficient SFT targets them (Liu et al., 2025c);
and (iii) RLVR depends on the pretrained geometry: function-preserving orthogonal rotations abolish
the effect of update locality overlap, consistent with a model-conditioned optimization bias.

Rethinking Learning Algorithms for RLVR. Beyond characterizing the optimization behavior,
our findings show that RLVR operates in an optimization regime fundamentally distinct from SFT.
Consequently, direct adaptations of SFT-era PEFT tricks may be flawed, especially those over-
aligned with SFT’s optimization dynamics. (1) Sparse fine-tuning. Restricting updates to principal
weights, an SFT prior (Liu et al., 2025c), yields the worst optimization trend and severely degrades
performance (per forward-KL drift (Shenfeld et al., 2025)). Conversely, updating non-principal,
low-magnitude weights, as predicted by our theory, closely traces the dense RLVR trajectory. (2)
LoRA variants. A concurrent report (Schulman & Lab, 2025) observes that low-rank LoRA (even
rank-1) can match full-parameter performance in RL. However, our theory challenges their belief
that advanced LoRA variants, PiSSA (Meng et al., 2024), may offer further gains. PiSSA targets
principal weights, suited for SFT but fundamentally misaligned with RLVR’s off-principal dynam-
ics. We show PiSSA provides no additional gain over LoRA; worse, enforcing principal-direction
updates destabilizes training and leads to rapid collapse.

Contributions. Our work makes the following key contributions:

• Observation. We identify a persistent, data- and algorithm-invariant optimization bias in RLVR
fine-tuning, an implicit optimization compass that drives update behaviors.

• Theory. We propose the Three-Gate Theory (KL Anchor, Geometry, Precision) that explains
how RL updates are constrained, steered, and filtered to produce the unique optimization pattern.
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Table 1: Update sparsity in SFT vs. RLVR. Higher sparsitybf16 indicates more weights unchanged. RLVR
is consistently much sparser than SFT. † Mixed denotes a diverse data source combining math, coding, STEM,
logic puzzles, and instruction-following Liu et al. (2025a).

Base Model FT Model Algorithm Data sparsitybf16

Qwen-1.5B DS-R1-Distill-Qwen-1.5B SFT Mixed 2.8%
DS-R1-Distill-Qwen-1.5B DeepScaleR-1.5B-Preview GRPO Math 53.8%
DS-R1-Distill-Qwen-1.5B DeepCoder-1.5B-Preview GRPO Code 45.5%
DS-R1-Distill-Qwen-1.5B Archer-Code-1.5B GRPO Code 52.5%
DS-R1-Distill-Qwen-1.5B NV-ProRL GRPO Mixed† 38.4%
DS-R1-Distill-Qwen-1.5B NV-ProRL-v2 Reinforcement++ Mixed† 36.3%

Qwen3-8B-Base Klear-Reasoner-8B-SFT SFT Math+Code 0.6%
Klear-Reasoner-8B-SFT Klear-Reasoner-8B GRPO Math+Code 69.5%
Qwen3-8B-Base GT-Qwen3-8B-Base GRPO Math 79.9%
Qwen3-8B-Base OURS DAPO Math 79.7%

Qwen3-14B-Base UniReason-Qwen3-14B-think-SFT SFT Math 18.8%
Qwen3-14B-Base UniReason-Qwen3-14B-RL GRPO Math 68.3%

Qwen3-4B Polaris-4B-Preview DAPO Math 79.3%
DS-R1-Distill-Qwen-7B Polaris-7B-Preview DAPO Math 61.7%
Qwen3-30B-A3B UloRL-A3B GRPO Math 91.7%

• Evidence. We present strong parameter-level validation consistently contrasting RL and SFT,
including invariant spectra, low overlap with principal weights, and causal interventions that con-
firm geometry as the steering core of optimization.

• Insight. A principled basis for rethinking optimization strategies in RL-based post-training; we
show that over-designed SFT-era sparse/low-rank priors (e.g., principal-targeted variants) are mis-
aligned with RLVR’s geometry-driven regime.

Our study provides the first parameter-space account linking RL optimization dynamics to weight
evolution, complementing concurrent works that focus primarily on policy-level or distributional
effects (Wu et al., 2025; Shenfeld et al., 2025). Crucially, our results reveal that RL operates in a
distinct optimization regime from SFT, calling for rethinking RL-targeted PEFT recipes (see Sec. 5).

2 A Persistent, Model-Conditioned Optimization Bias in RLVR

While RL is known to induce sparse parameter updates, we ask where it localizes these changes. We
identify a model-conditioned optimization bias: RL consistently routes updates to specific network
regions. This bias is largely invariant to the dataset or RL algorithm, yet dependent on the base
model. The observed sparsity is thus merely a superficial readout of this underlying mechanism.

Model suite. We analyze publicly released checkpoints, as shown in Tab. 1. The suite spans mul-
tiple RLVR variants (e.g., GRPO, DAPO, Reinforcement++), diverse data domains (math, coding,
instruction), and several model families and types (dense and Mixture-of-Experts). We place partic-
ular emphasis on DeepSeek-R1-Distill-Qwen-1.5B (DS-Qwen-1.5B), for which a long-horizon
RL checkpoint is available (Liu et al., 2025a). This model serves as a robust case study given its
extensive training for over 3,000 steps on a diverse data mixture encompassing mathematics, coding,
STEM, logic puzzles, and instruction-following tasks.

2.1 A Robust, bfloat16-aware Analysis of Update Sparsity

A bfloat16-aware probe for unchanged weights. bfloat16 (bf16) is standard in modern RL
frameworks like verl (Sheng et al., 2024), to improve throughput without compromising perfor-
mance. However, analyzing parameter changes under bf16 requires a careful probe. Its unique
numerical format, with only 7 mantissa bits for precision, means that the smallest representable dif-
ference between two numbers scales with their magnitude. Consequently, a fixed absolute-tolerance
check as used in (Mukherjee et al., 2025), is unreliable, which can over- or under-report the fraction
of unchanged weights (see Appendix F.1).

To ensure a rigorous report, we adopt a numerically robust, bfloat16-aware probe to define the
update sparsity sparsitybf16 as the fraction of parameters that remain unchanged.
Definition 2.1 (Unchanged Weight in bf16). Let wi, ŵi ∈ R be scalars stored in bf16 (finite,
nonzero). We say wi is unchanged with respect to ŵi iff

∣ ŵi −wi ∣ ≤ η max(∣wi∣, ∣ŵi∣), η = 10−3. (1)
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Figure 2: Consensus ratio of weight updates across five RLVR runs on the 13th layer’s projection (Q/K/V/O)
and the MLP down projection (zoom in for structures). Lighter bands indicate coordinates updated in most runs,
revealing a stable, stripe-like routing pattern rather than random scatter.

Choosing η=10−3 < 2−9 makes equation 1 equivalent to bitwise equality (See Appendix F.2,).
Definition 2.2 (bf16-aware Update Sparsity). Write x ≈bf16η y for Def. 2.1. Define the bf16 change
count ∥θ1 − θ0∥bf160,η ∶= ∣{ i ∶ θ1i /≈

bf16
η θ0i }∣ and the corresponding sparsity

sparsitybf16(θ
0, θ1;η) ∶= 1 − ∥θ1 − θ0∥bf160,η /n. (2)

where n is the total number of parameters. Values near 1 indicate few stored changes, while values
near 0 indicate dense apparent change.

RLVR update sparsity results. As shown in Tab. 1, our analysis confirms that RL yields substan-
tially higher update sparsity than SFT. Across models, SFT sparsity is consistently low (typically
0.6%–18.8%), whereas RL sparsity is an order of magnitude higher, ranging from 36% to 92%.
However, absolute levels on recent checkpoints are lower than earlier reports (Mukherjee et al.,
2025), underscoring the need for bf16-aware probes and re-evaluation on current models.

2.2 RLVR Exhibits Model-Conditioned Update Locality

Magnitude alone does not reveal where changes occur, impeding the deep analy-
sis on how sparse changes arise. We therefore examine the updated subnetwork.
We use 5 independent RLVR checkpoints from the same DS-Qwen-1.5B in Tab. 1,
trained on diverse data and different RLVR algorithms. For each layer ℓ and run r,

Table 2: Cross-run stability for 13th block.
Layer Jaccard Overlap Random Baseline
Q 0.580 0.430
K 0.580 0.413
V 0.597 0.467
O 0.552 0.373
MLP-down 0.585 0.453
MLP-up 0.578 0.443
MLP-gate 0.575 0.437

we first form the bf16-aware changed mask
M
(r)
ℓ ∶= 1[W

(r)
ℓ /≈

bf16
η W 0

ℓ ] (Def.2.2) against
the base weights W 0

ℓ .

Stability across runs. We first analyze their
spatial agreement using Jaccard Overlap. For
runs r, s, let A = {(i, j) ∶ M

(r)
ℓ,ij = 1} and

B = {(i, j) ∶ M
(s)
ℓ,ij = 1}. We report the mean

off-diagonal of the pairwise Jaccard matrix J(A,B) = ∣A∩B∣∣A∪B∣ and compare it to the independent
Bernoulli baseline E[J] = pq

p+q−pq . As summarized in Tab. 2, Jaccard is consistently high across
runs, confirming a shared footprint when trained from the same base model, with Jaccard matrix
shown in Fig. 10.

Consensus ratio (where updates land). Stability alone does not indicate where updates land. We
therefore visualize and analyze the consensus ratio Cℓ,ij =

1
R ∑

R
r=1M

(r)
ℓ,ij , the fraction of runs real-

izing a weight update at coordinate (i, j). Values near 1 indicate that all runs consistently change
that weight; values near 0 indicate that none do. As shown in Fig. 2, consensus maps reveal contigu-
ous row/column bands, stripe-like, localized routing rather than scattered noise. Especially, there
are obvious row-wise stripes in Q/K/V projections and column-wise stripes in O projections. This
exposes a clear optimization bias: RLVR consistently concentrates updates in specific regions of the
parameter matrices, even though the five runs use disjoint data and RL variants.

Temporal stability (how the bias emerges). To examine within-run dynamics, we track the
row-wise ratio ρℓ,i(t) =

1
nℓ
∑j Mℓ,ij(t) and column-wise ratio κℓ,j(t) =

1
mℓ
∑iMℓ,ij(t) across

checkpoints at t steps. On DS-Qwen-1.5B (training setting in Appendix D.1), the relative profiles
ρℓ,⋅(t) and κℓ,⋅(t) remain aligned while overall density grows as shown in Fig. 3: peaks and troughs
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Figure 3: Temporal emergence of the optimization bias with row and column-
wise update ratios for the 13th attention block across gradient update steps (t ∈
{240,720,1200}), smoothed with a 3-step window. The row-dominant (Q) and
column-dominant (O) patterns are consistent with the bias structures in Fig. 2. We
visualize the head boundaries with grey dashed lines. The bias appears not only
across heads but also within heads.

persist. The routing
bias emerges early
and is reinforced over
training, indicating a
temporally stable phe-
nomenon rather than
a transient artifact.
Moreover, the peak
is consistent with the
bias structure shown
in Fig. 2. We also
show their remaining
column-wise (Q) and
row-wise (O) update ratio dynamics in Fig. 12, without a clear trend, indicating the bias is indeed
structured, not random.

Other model families (whether only on Qwen). We observe similar stripe-structured footprints on
Llama and Mistral (Fig. 11 in Appendix), suggesting the routing bias is generic to RLVR.

2.3 Sparsity Is a Superficial Artifact of the Optimization Bias

The stable footprint of where updates land, persisting both throughout training and in the final model,
suggests the focus should move from sparsity itself to the underlying optimization bias.

We find that sparsity is actually the readout of this optimization bias, whose visibility is amplified
by the precision limits of bf16 storage. Because bf16 has a limited mantissa, changes smaller than
the unit-in-the-last-place (ULP) threshold (Lemma F.2) are not representable. Therefore, if RLVR
consistently routes sub-ULP updates toward a particular subset of parameters, the stored values
will not change, and the result appears as sparsity.

We test this hypothesis by increasing the learning rate to scale otherwise sub-ULP updates above the
representable threshold. As predicted, the apparent update sparsity largely disappears. This directly
challenges the interpretation of (Mukherjee et al., 2025) that sparsity stems from zero gradients.
Instead, our results point to sparsity as a byproduct of an optimization bias interacting with finite
precision. Consistent with this view, concurrent work observes that sparsity mostly vanishes under
fp32 storage (Shenfeld et al., 2025), even though task performance does not improve.

Remark on precision. One natural confusion is treated the bf16 as the final cause, while it is
important to note that in verl, optimizer states and gradient reductions/accumulation are maintained
in float321. So the sparsity cannot show up unless the RL process is consistently biased toward
where to assign visible changes throughout the training.

Aha Finding! — RLVR exhibits a patterned, rather than random, optimization bias toward
where the visible changes land. The sparsity is a direct readout of this underlying bias.

3 A Mechanistic Theory of RL’s Unique Optimization Dynamics

In the post-training era, RL has become a key stage, albeit with intensive compute (xAI, 2025). Para-
doxically (Sec. 2), these gains arise not from broad parameter changes but from selective, patterned
edits that reveal a persistent optimization bias. Understanding this distinctive training behavior raises
the central question:

Where does this optimization bias originate, and how does it shape parameter evolution?

We characterize these optimization dynamics with the Three-Gate Theory, KL Anchor, Model Ge-
ometry, and Precision, which mechanistically explains how on-policy RL updates are constrained
via Gate I (KL Anchor; Sec. 3.1), steered via Gate II (Model Geometry; Sec. 3.2), and filtered via
Gate III (Precision; Sec. 3.3) into the observed update pattern.

1verl mixed-precision settings with {reduce type, buffer dtype}=float32.
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Notations. We consider a large language model with parameters θ, defining a conditional distribu-
tion πθ(y ∣ x) over possible output token sequences y = (y1, . . . , yT ) ∈ Y given a prompt x ∈ X
from the space X . Each sequence y is composed of tokens from a vocabulary V of size N .

3.1 Gate I: On-Policy RL Imposes a One-Step KL Leash

We first show that online policy gradient updates yield a per-step policy KL bound (an anchoring
effect), which in turn limits parameter movement during the RLVR update.

RLVR objective. Various RLVR algorithms including PPO, GRPO, DAPO, and REINFORCE++,
learn a policy πθ by optimizing variants of a KL-regularized objective:

max
θ

Ey∼πθ(⋅∣x),x∼X [R(x, y) − βKL(πθ(⋅ ∣ x) ∥πref(⋅ ∣ x))]. (3)

where πref is a fixed reference policy and β ≥ 0 controls the KL regularization (β = 0 recovers
the clip-only variants such as DAPO). Rewards R(x, y) are verifiable and (after normalization)
bounded (e.g., pass/fail or execution scores). Moreover, the surrogate typically uses the token-wise
importance ratio wt =

πθ(yt∣x,y<t)
πold(yt∣x,y<t) with clipping relative to πold.

One-step surrogate. With equation 3, a standard sequence-level online policy-gradient surrogate
is

LPG(θ) = −Ex∼X , y∼πθ(⋅∣x)[A
⊥(x, y) logπθ(y ∣ x)], (4)

where A⊥ is a (normalized) advantage estimate, optionally shaped by a reference-KL log-ratio term.
In practice, updates are performed over mini-batches, with a collected batch of data, not in a fully
on-policy manner. But the resulting error after a small step size ∆θ is O(∥∆θ∥2) (Lemma G.1).

Implicit KL leash. The KL leash emerges as policy gradient methods can be understood as a
conservative projection, keeping new policy close to its starting point while reweighting it toward
higher-reward outcomes, not pulling it toward a potentially distant external distribution like SFT:
Proposition 3.1 (One-step policy-KL leash). Let q(⋅ ∣ x) be a full-support reference and let q̃β(⋅ ∣
x) ∝ q(⋅ ∣ x) exp(R/β) denote the soft-regularized improvement oracle. Let θ+ be the parametric
fit obtained by the M -projection of q̃β onto the policy class, θ+ ∈ argminθ DKL(q̃β∥πθ). Then, for
a sufficiently small one-step update,

DKL(πθ+ ∥ πθ) ≤ (1 + o(1))DKL(q̃β ∥ πθ), (5)

where the o(1) term vanishes as DKL(q̃β∥πθ) → 0.

Notably, even when the explicit KL term is removed (e.g., in DAPO with β = 0), the ratio clip-
ping trick still imposes a KL bound O(ε2) in the small-step regime (Appendix. G.2.4), confirmed
empirically with a bounded KL divergence change during a DAPO run (Fig. 13).

Weight update constraint. Now we show the KL leash puts a constraint on weight update ∆W

Proposition 3.2 (Policy-KL leash⇒ weight bound). Assume logπθ is C3 and let F (θ) denote the
Fisher information. If a one-step update θ+ = θ +∆ satisfies DKL(πθ+∥πθ) ≤K and, on the update
subspace, F (θ) ⪰ µI for some µ > 0, then for K sufficiently small

∥∆∥F (θ) ≜
√
∆⊺F (θ)∆ ≤

√
2K (1 + o(1)), ∥∆∥2 ≤

√
2K
µ
(1 + o(1)). (6)

Consequently, for any weight matrix block W ⊂ θ, ∥∆W ∥F ≤
√
2K/µ (1 + o(1)).

See a detailed proof for Proposition 3.1 in Appendix G.2.1 and Proposition 3.2 in Appendix G.2.2.

Take-away 1: RL update imposes an implicit KL leash (anchor effect), ensuring that the per-
step drift from the current policy is small. This aligns with recent work arguing that even the
final policy is KL-proximal (Wu et al., 2025; Shenfeld et al., 2025). Our focus, however, is to
understand how this leash affects the weight change dynamics.

3.2 Gate II: Model Geometry Determines Where a KL-Bounded Step Goes

From Gate I to location. Gate I supplies a one-step KL leash that bounds the move, but it does not
specify where the update lands. We propose Gate II(Model Geometry), where we argue that, unlike
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a randomly initialized network, a well-pretrained model possesses a highly structured geometry,
e.g., spectral statistics and high-curvature directions during optimization, that determines where a
KL-constrained update goes.

Layerwise norm bound from the KL leash. Let W0 be a pretrained linear block, W+ =W0 +∆W
the post-step block, and let SW ⪰ µW I be a per-layer curvature proxy . If the per-layer KL budget
satisfies 1

2
⟨vec∆W,SW vec∆W ⟩ ≤ δW , then (Appendix G.10)

∥∆W ∥F ≤
√

2δW
µW

, ∥∆W ∥2 ≤
√

2δW
µW

. (7)

We then show this conservative update yields three consequences making them preserve pretrained
weight spectrum instead of destroying them based on weight perturbation theory (Stewart, 1998).

Limited subspace rotation. First, as shown in Theorem 3.3, the angle between the original and
updated subspaces is quadratically bounded, meaning the fundamental directions are preserved.
Theorem 3.3 (Constrained subspace rotation with Wedin’s sin–Θ theorem (Wedin, 1972)). For any
k with γk > 0,

max(∥ sinΘ(Uk(W0), Uk(W+))∥2, ∥ sinΘ(Vk(W0), Vk(W+))∥2 ≤
∥∆W ∥2

γk
≤
√
2δW /µW

γk
. (8)

Singular value stability. Second, the magnitudes of the principal components themselves are pre-
served. The change in each singular value is bounded by the norm of the update.
Corollary 3.4 (Singular-value stability). For each k,

∣σk(W+) − σk(W0)∣ ≤ ∥∆W ∥2 ≤
√

2δW
µW

, ∑
i

(σi(W+) − σi(W0))
2 ≤ ∥∆W ∥2F ≤

2δW
µW

. (9)

Top-k energy preservation. Finally, these effects combine to ensure the cumulative energy of the
top-k components of the weights remains stable.

Corollary 3.5 (Top-k energy and Ky Fan norms). Let ∥ ⋅ ∥(k) ∶= ∑
k
i=1 σi(⋅) be the Ky Fan k-norm.

Then

∣ ∥W+∥(k) − ∥W0∥(k) ∣ ≤
k

∑
i=1

∣σi(W+) − σi(W0)∣ ≤ k ∥∆W ∥2 ≤ k

√
2δW
µW

. (10)

See a detailed proof in Appendix G.3.

Take-away 2: Under the KL leash, RL updates tend to preserve the model’s original weight
structure rather than destroy it. This naturally favors updates in low-curvature directions of
the optimization landscape, which avoids dramatic changes in model behavior. Since directly
quantifying curvature in LRM with long CoTs is computationally prohibitive, we instead adopt a
powerful and efficient proxy, principal weights (Liu et al., 2025c), as detailed in Sec. 4.2.

3.3 Gate III: Precision Acts as a Lens Revealing the Compass

Building on the optimization bias, the bfloat16 with limited precision acts as a lens: it hides those
micro-updates that occur where the RL consistently holds a weak willingness to apply large changes.
Corollary 3.6 (Magnitude-dependent realization threshold). A stored weight Wij changes at a step
iff ∣∆Wij ∣ ≳

1
2
ULPbf16(Wij).

The effect of this gate has been discussed aforementioned. We would emphasize again that precision
is more an amplifier for visible sparsity, not the cause of optimization bias, as optimizer states, etc.,
are still in float32 (See Sec. 2.3).

4 Theory-Guided Validation of RLVR’s Optimization Dynamics

We conduct theory-guided experiments analyzing how RLVR modifies parameters and interacts with
pretrained geometry. These results validate our central prediction: the pretrained model geometry
steers KL-constrained updates, yielding distinct, off-principal optimization dynamics that set RLVR
apart from SFT.
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RL

SFT

Principal Angle
(single-layer)

Singular Value
(single-layer)

Specturm Drift
(all-layer)

Max Principal Angle
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Figure 4: The spectrum probe results on the RL and SFT version on the Qwen3-8B Su et al. (2025). For
the same exemplar layer, we display top-k principal angles and singular value curves; the right panels report
the maximum principal angles and spectrum drift across all layers. RLVR maintains a stable top-k spectrum
with minimal subspace rotation, unlike SFT.

Figure 5: RL avoids updating principal weights. We compare the RL update mask with principal weight
mask Mprinc, low magnitude mask Mlow, and the one Mprinc ∩Mc

low. The layer-wise overlap between
RL updates and principal weights is consistently sub-random, an effect more pronounced when removing its
overlapped weights with Mlow, i.e., Mprinc ∩Mc

low.

4.1 RLVR Preserves Spectral Geometry, While SFT Distorts It

We begin by probing spectral changes to test whether RL updates are steered toward low-curvature,
spectrum-preserving directions. If so, RLVR should largely preserve the pretrained spectral struc-
ture, whereas SFT, lacking this steering, should significantly distort it.

Setups. We analyze checkpoints from a standard SFT→RLVR pipeline on Qwen3-8B-Base (Su
et al., 2025) and a long-horizon RL run on DS-Qwen-1.5B (Liu et al., 2025a). We also consider a
setting where SFT and RL are applied separately to Qwen3-14B-Base, matched on in-domain math
performance (Huan et al., 2025). In all cases, we compare base weights W0 and fine-tuned weights
W+.

Metrics. We compare the base weights W0 with the finetuned weights W+:

• Subspace rotation. For the top-k left (U )/right(V ) singular subspaces, we check the rotation
using principal angles via cos θi(U) ∶= σi(U

⊺
0,kU+,k) and cos θi(V ) ∶= σi(V

⊺
0,kV+,k).

• Spectrum drift. Beyond showing the singular value curve, we quantify singular-value change
with a normalized ℓ2 shift: NSS(W ) = ∥σ(W+) − σ(W0)∥2/∥σ(W0)∥2

Our findings. RLVR checkpoints exhibit a Insightably stable spectrum within the top principal
components: across layers, RLVR shows consistently small principal-subspace rotation and minimal
spectral drift. The singular-value profiles are even nearly identical to the base model. By contrast,
SFT induces substantially larger rotations and pronounced drifts on the same metrics (Fig. 4).
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4.2 RLVR Avoids Principal Weights, While SFT Targets Them

We now move from macro-level spectral analysis to a micro-level examination of individual
weights, probing which parameters RLVR favors or avoids to update, a deeper investigation into
the parameter-space dynamics.

Principal weights as a proxy for high-curvature directions. Directly identifying high-curvature
directions is computationally prohibitive, especially given LRM with long CoTs. Instead, we adopt
a powerful proxy from recent work Liu et al. (2025c), principal weights, which is defined as the
weights with the largest magnitude after low-rank approximation, representing its most influential
computational pathways. The validity of this proxy is confirmed by their perturbation studies, which
show that modifying these specific weights causes sharp reasoning performance degradation. This
degradation is directly linked to high-curvature regions via a Taylor expansion of the loss. The
principal mask, M (k)

princ = Topα(s
(k)
ij ), is defined as the top-α fraction of weights with the highest

score, s(k)ij = ∣W
(k)
0 (i, j)∣, where W k

0 is the rank-k SVD reconstruction of W0.

Low-magnitude weights as low-resistance pathway. We further include the top-α lowest magni-
tude weights, as Mlow = Bottomα(∣W0∣). The magnitude is also a bias from the model geometry
(distribution prior), impacting how easily the weights can be updated based on our precision gate.

Metrics. Let M be the weight update update mask from an RLVR run. We report the overlap ratio
between our identified mask M● with it, defined as Overlap(M●,M) =

∣M●∩M ∣
∣M ∣ ., with a random

guess baseline overlap ratio as the density of M● itself., i.e., α.

Our findings. Fig. 5 visualizes the RL update mask M in relation to the principal mask Mprinc

and the low-magnitude mask Mlow, reporting their layer-wise overlap against a random baseline as
well. The results show a clear dichotomy. RL updates exhibit a sub-random overlap with principal
weights, indicating a strong tendency to avoid them. Conversely, the updates show a super-random
overlap with low-magnitude weights due to their low-resistance to micro-updates. Besides, we found
that the residual overlap between updates and principal weights is highly accounted for by weights
that are both principal (defined by the rank-k approximation of W0) and low-magnitude (original
W0). After excluding this intersection, i.e., Mprinc ∩M

c
low, the overlap drops significantly.

Insight. This points to a central implication: RLVR and SFT operate in distinct optimization regions
of parameter space, even at comparable task performance. RLVR avoids high-curvature, principal
regions, whereas SFT targets them. This regional mismatch helps explain the limited transferability
of SFT-oriented PEFT under RL (Sec. 5).

4.3 RLVR Relies on Model Geometry, Disrupting Geometry Destroys the Bias

Figure 6: Overlap ratio after
intervention.

Gate II posits that the pretrained model’s geometry steers RL up-
dates. To test this causal link, we deliberately ”scramble” the geom-
etry of specific layers in a Qwen3-4B-Base model using orthogonal
rotations for O/V layers (ROTATE) and head permutations for all
Q/K/V/O layers (PERMUTE) (details in Appendix E) and compare
the update overlap ratio Overlap(M●,M) =

∣M●∩M ∣
∣M ∣ . between the

base run with another independent run without intervention and one
run with intervention.

Our Findings. We modify (i) layer 20 with ROTATE+PERMUTE, and (ii) layer 25 with ROTATE.
As shown in Fig. 6, the update overlap collapsed to a random level in the intervened layers, while
remaining high in all untouched layers. This provides strong causal evidence that the pretrained
model’s geometry is the source of the optimization bias.

5 Theory-Guided Rethinking of RL Learning Algorithms

A good theory should not only explain observations but also inform design. Our account shows that
RLVR and SFT follow disjoint parameter-space dynamics, implying that successful SFT-era efficient
PEFT variants, especially those over-aligned with principal directions via sparse or low-rank priors,
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may fail to transfer to RLVR. This section both validates our predictions and demonstrates how they
inform the redesign of learning algorithms for RL. We put the LoRA study at Appendix A.

5.1 Probing Sparse Fine-Tuning in RL

We construct a parameter mask identified without any additional training and apply it to per-
form sparse RL fine-tuning. Following (Shenfeld et al., 2025), we track the token-wise forward
KL divergence KL(π ∥πref) between the fine-tuned policy and the base model throughout training.
This metric quantifies how closely a sparse run follows the dense baseline trajectory, if pruning

0 100 200 300
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0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

K
L
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o
ss
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princ

Mlow

Mlow ∪Mc
princ

rand-Mlow ∪Mc
princ

Figure 7: KL loss curves on DS-Qwen-1.5B under
different masks.

certain weights impedes learning, the KL
drift will slow, indicating blocked optimization
progress.

Mask design. We evaluate several masks con-
structed directly from the pretrained model:
(i) Mprinc (principal-only, top-50% principal
weights), (ii) M c

princ (non-principal-only, the
complementary subspace), (iii) Mlow (low-
magnitude-only), (iv) Mlow ∪M

c
princ (safe mask,

favoring non-principal and low-magnitude
weights), , and (v) a random mask with the
same layer-wise sparsity as (iv). We choose
50% for (i) as we want to isolate the effect of
the number of parameters for a fair comparison
to see the difference between (i) and (ii).

Our findings. (KL in Fig. 7 and accuracy in
Tab. 3) As shown in Fig. 7, the safe mask Mlow∪M

c
princ most closely tracks the dense RLVR run’s KL

curve and achieves comparable final accuracy, indicating that our theory correctly identifies highly
touchable weights. In contrast, the principal-only mask yields the worst optimization trend-its
KL curve rises slowly, showing excessive intervention and degraded training dynamics. This directly
confirms that the directions favored by SFT (principal weights) are ineffective for RL.

Insight. Our results suggest a simple yet effective alternative: Freezing principal and
large-magnitude weights while updating non-principal, low-magnitude ones closely reproduces
dense RLVR behavior (KL trajectory and final accuracy) using roughly 70% the parameters This
shows that our theory provides practical guidance for identifying the effective subspace of RL
updates, entirely without additional training. While the masks used here are one-shot and fixed,
combining this framework with dynamic mask refresh or adaptive scheduling (Zhao et al., 2024;
Zhu et al., 2024; Liu et al., 2025c) is a promising next step.

Takeaway. RLVR operates in a distinct, geometry-driven optimization regime, so your old
PEFT tricks may not work.

6 Conclusion

We revisited the paradox of visible update sparsity in RLVR and showed that it is a superficial
readout of a deeper, model-conditioned, geometry-aligned optimization bias that determines where
updates land. We formalized this mechanism with the Three-Gate Theory: a KL anchor constrains
each on-policy step; pretrained geometry steers updates off principal directions into low-curvature,
spectrum-preserving subspaces; and finite precision renders the bias visible as sparsity by mask-
ing micro-updates. Empirically, RLVR preserves spectral structure and avoids principal weights,
whereas SFT targets principal directions and distorts the spectrum; when the pretrained geometry is
disrupted, these signatures vanish, establishing geometry as the steering core. Beyond explanation,
our case studies bridge mechanism and practice: SFT-era principal-aligned PEFT (e.g., sparse/low-
rank variants) often misaligns with RLVR’s off-principal regime. Taken together, these results pro-
vide the first parameter-level account of RLVR’s training dynamics, replacing a black-box view
with a white-box understanding of how parameters evolve under RLVR, and laying the foundation
for geometry-aware, RLVR-native parameter-efficient learning algorithms.
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A Revisiting LoRA through the Lens of Our Theory

A recent report (Schulman & Lab, 2025) finds that low-rank LoRA, even rank-1, can match full-
parameter RL performance. Our theory offers an explanation: in full-parameter RL, effective up-
dates lie off the principal directions and induce only small spectral changes. Low-rank adapters
can approximate these off-principal updates, while freezing the base weights regularizes training
and discourages moves toward principal directions. With an appropriately scaled learning rate, the
limited adapter capacity is therefore sufficient to catch up to full-parameter performance at least in
short run.

However, the same report suggests principal-targeted variants such as PiSSA (Meng et al., 2024)
should yield further gains. Our geometry account disagrees: aligning updates to top-r principal
directions enforces SFT-style behavior that is misaligned with RLVR’s off-principal bias.

Empirical test. On DS-Qwen-1.5B with DeepMath-103K (He et al., 2025), we sweep ranks
{8,32,64} and learning rates {1×10−4, 5×10−5, 1×10−5} for 200 steps, and report pass@1 (mean
over 16 samples) on AIME24 and AMC23 (Fig. 8). To control for model effects, we repeat on
Llama-3.2-3B-Instruct with a Math corpus and report pass@1 (mean over 4) on MATH500
(Fig. 9).

Our findings. Across settings, the principal-targeted PiSSA provides no clear gain over LoRA. At
the higher learning rates used for low-rank adapters to match full-parameter performance, PiSSA
often becomes unstable and collapses earlier than LoRA. This occurs because scaling the learning
rate in PiSSA enforces updates along principal directions, higher-curvature and spectrum-distorting,
precisely the directions RLVR tends to avoid. The result is brittle optimization and early collapse,
whereas LoRA’s off-principal updates remain better aligned with RLVR’s geometry.

Insight. These results support the geometry-based account: principal-aligned LoRA variants are
over-fit to SFT’s update geometry and misaligned with RL’s training dynamics, so success in SFT
does not transfer to RL.
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Figure 8: LoRA vs. PiSSA on DS-Qwen-1.5B (DeepMath-103K). We sweep ranks {8,32,64}
and learning rates {1×10−4,5×10−5,1×10−5} for 200 steps, reporting pass@1 (avg@16) on AIME24
(top) and AMC23 (bottom). Across settings, PiSSA (principal-targeted) provides no additional
gains over LoRA and, at higher learning rates that force principal-direction updates, often collapses
early; LoRA remains more stable. This supports our geometric account: forcing updates into prin-
cipal directions (favored in SFT) is misaligned with RL, offering no obvious gain and leading to
training collapse when scaling up learning rates.
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Figure 9: LoRA vs. PiSSA on LLaMA-3.2-3B. We sweep learning rates {1×10−4,5×10−5,1×10−5}
with a fixed rank of 64 for 200 steps, reporting pass@1 (mean@4) on MATH500. Consistent with
the DS-Qwen-1.5B results in Fig. 8, PiSSA provides no additional gain over LoRA and, under
higher learning rates that emphasize principal-direction updates, often collapses early.

15



B Clarification of LLM Usage

In this work, we employ LLMs to polish the writing throughout the paper and to assist in generating
code for figure plotting. Besides, we use it for drawing the teaser figure.

C More Related works

Post-training Large-scale models pre-trained on broad domains serve as general-purpose back-
bones with extensive domain knowledge and notable zero-shot capabilities (Radford et al., 2021;
Achiam et al., 2023; Touvron et al., 2023; Hu et al., 2023; Li et al., 2024; Radford et al., 2018; Brown
et al., 2020). However, such pre-trained models often fail to meet the specific application require-
ments or align with domain-specific constraints. Post-training methods address this gap by adapting
foundation models to downstream tasks. Common approaches include supervised fine-tuning on
curated datasets (Howard & Ruder, 2018; Dodge et al., 2020; Wei et al., 2021; Chung et al., 2024),
reinforcement learning from human or automated feedback (Ziegler et al., 2019; Ouyang et al., 2022;
Guo et al., 2025; Zhai et al., 2024), and other recent techniques (Rafailov et al., 2023).

Especially, the recent advances in LLM reasoning (DeepSeek-AI, 2025) highlight the effectiveness
of Reinforcement Learning with Verifiable Rewards (RLVR), which replaces subjective human judg-
ments with automatically verifiable signals. RLVR has been shown to significantly enhance reason-
ing ability using policy optimization algorithms such as PPO (Ouyang et al., 2022) and GRPO (Shao
et al., 2024). Building on these successes, a growing body of work (Yu et al., 2025; Liu et al., 2025b;
Luo et al., 2025a; Zhang et al., 2025; Liu et al., 2025a; Xiong et al., 2025) continues to refine RL
methods tailored for LLM reasoning.

SFT versus RL. Prior work comparing these paradigms has largely focused on downstream per-
formance. A foundational result shows that on-policy RL can outperform offline SFT even with the
same expert data (Ross et al., 2011). Recent empirical studies consistently reinforce this, finding
that RL-tuned models often generalize better out-of-distribution (Han et al., 2025; Chu et al., 2025)
and transfer more effectively to new tasks (Huan et al., 2025) than their SFT counterparts.

While these studies establish a performance hierarchy, our work investigates a different dimension:
how these distinct methods affect the model’s internal structure. A recent study observed that RL
fine-tunes only a fraction of the network’s parameters (Mukherjee et al., 2025), but this empirical
finding left the underlying mechanism unexplored and did not characterize or predict the affected
subnetwork. Our work aims to bridge this gap by providing a mechanistic explanation for this
phenomenon.

D Experimental Details

D.1 Training Settings

Models & Datasets. We run post-training experiments on three open models:
DeepSeek-R1-Distill-Qwen-1.5B (Yang et al., 2024), Qwen2.5-Math-7B (Yang et al.,
2024), and Qwen3-Base (Team, 2025). The maximum context length is set to 8192 for
DeepSeek-R1-Distill-Qwen-1.5B and Qwen2.5-Math-7B, and to 20480for Qwen3-4B-Base.

We evaluate primarily on mathematics using two training corpora to reduce dataset-specific
confounds. (1) DAPO+MATH (DM): a union of the DAPO-Math-17k set2 and the MATH
dataset (Hendrycks et al., 2021). (2) DS+SR: the 47k DeepScaler collection (Luo et al., 2025b) com-
bined with high-difficulty (levels 3–5) problems extracted from SimpleRL (Zeng et al., 2025a).We
use the version from Huan et al. (2025).

Training details. We implement RLVR on the VeRL pipeline (Sheng et al., 2024) (v4.0) and use
vLLM (Kwon et al., 2023)(v8.5) for rollouts. We use FSDPv2 with the default mixed precision con-
figuration. All experiments run on NVIDIA H200 GPUs. Unless otherwise noted, we use DAPO (Yu
et al., 2025) without an explicit reference-KL penalty (ratio clipping as in DAPO), a global batch

2DAPO-Math-17k
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size of 256 (mini-batch 64) with 4 gradient update per step. We use DAPO primarily to eliminate the
confounding effect of the KL penalty, which can otherwise obscure the intrinsic parameter update
dynamics during training.

Per-model configurations without specific mention:

• Qwen2.5-Math-7B on DM: 16 rollouts per prompt; 8 x H200 GPUs; 300 training steps.
• DeepSeek-R1-Distill-Qwen-1.5B on DS+SR: 12 rollouts per prompt; 16 x H200 GPUs; 320

steps.
• Qwen3-4B-Base on DS+SR: 16 rollouts per prompt; 32 x H200 GPUs; 150 steps.

For LoRA and PiSSA studies, to reduce compute cost during learning-rate sweeps, we use the same
DAPO recipe with a global batch size of 128 (mini-batch 32), four gradient updates per step, and
16 rollouts per prompt. Both DeepSeek-R1-Distill-Qwen-1.5B and LLaMA-3.2-3B are trained for
200 steps.

The actor is optimized with AdamW (Loshchilov & Hutter, 2017) (constant learning rate 1×10−6,
β1=0.9, β2=0.999). Rewards are verifiable: +1.0 if the extracted final answer is correct and −1.0
otherwise (no separate format score), following the verifier implementation of Su et al. (2025). We
enable an over-length penalty with an additional 1024-token budget and a penalty factor of 1.0.

D.2 Evaluation settings

We evaluate models on four widely used benchmarks: AIME24 (MAA, 2024), AIME25 (MAA,
2025), AMC23 (MAA, 2023), MATH-500 (Lightman et al., 2023), as we main train using math
daastets. We used Eval-Chemy (Raoof et al., 2025) with their default temperature 0.7 and 0.8 as
the top-p value. In our experiments, we used the averaged accuracy, i.e., pass@1(avg@k) for
all benchmarks. to evaluate the models’ performance. Specifically, for AIME24 and AIME 25, we
averaged accuracy on 64 samples, for AMC, we average accuracy on 32 samples, For MATH 500,
our score is the average accuracy over 2 samples.

E Intervention details

Intervention 1: loss–preserving V/O rotation. Let D be the head dimension, Hq the number of
query heads, Hkv the number of key/value heads, and nrep =Hq/Hkv (grouped GQA). Denote

Wv ∈ Rdmodel×(HkvD), Wo ∈ Rdmodel×(HqD).

Draw any orthogonal R ∈ RD×D (Haar/Hadamard) and form the block rotations

Rkv = diag(R, . . . ,R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Hkv

) ∈ R(HkvD)×(HkvD), Rq = diag(R, . . . ,R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nrep

, R, . . . ,R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nrep

, . . .) ∈ R(HqD)×(HqD).

We edit the weights by right–multiplication along the head axis:

W ′
v =WvRkv, W ′

o =WoRq. (11)

If bv exists, reshape bv per head and set b′v = bvRkv .

Proposition E.1 (Exact invariance). Let Ctx = Attn(Q,K,V ) ∈ R⋅×(HqD). Under equation 11,

out′ = Attn(Q,K,V Rkv) (WoRq)
⊺
= CtxRqR

⊺
qW

⊺
o = CtxW ⊺

o = out.

Intervention 2: head shuffle (lossless). Let Pkv be a permutation of the Hkv KV heads and Pq

its grouped expansion to Hq heads. Apply

cols of (Wk,Wv) ← Pkv, cols of Wq ← Pq, columns of Wo ← P −1
q .

This relabels which head carries which subspace, while leaving the block function unchanged.

We show that after weight intervention, the model weights update position has a sub-random overlap
while those untouched weights stay a high overlap.
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F Examples of why previous identified method fails

F.1 Failures of a Fixed Absolute Tolerance Rule

• False positives at large scale. Within [210,211)=[1024,2048), the bf16 spacing is ULPbf16 =

210−7 = 8. Numbers like 1024.001 and 1024.002 differ by 10−3>10−5, hence would be flagged as
“changed” by the 10−5 rule, yet both round to the same bf16 code (1024), i.e., no storage-level
change.

• False negatives at small scale. Around 10−6 ≈ 2−20, the bf16 spacing is ULPbf16 = 2−27 ≈
7.45×10−9. Weights w=10−6 and ŵ=2×10−6 differ by 10−6≤10−5 and would be marked “equal”
by the 10−5 rule, yet they are separated by ≈ 134 ULPs and quantize to different bf16 codes.

F.2 Justification of our probe

Lemma F.1 (Gap between distinct bf16 representables). If x ≠ y are normalized bf16 numbers in
the same binade [2e,2e+1), then

∣x − y∣ ≥ 2 e−7 and
∣x − y∣

max(∣x∣, ∣y∣)
> 2−8.

The strict inequality also holds across the binade boundary.
Lemma F.2 (ULP lens: magnitude-dependent threshold). For normalized bf16 values x with ∣x∣ ∈
[2e,2e+1),

ULPbf16(x)

∣x∣
∈ (2−8, 2−7] = (0.390625%, 0.78125%].

Hence the minimal realized relative update at magnitude ∣x∣ is ≳ 1
2
ULPbf16(x)/∣x∣ ∈

(0.195%, 0.391%]. In particular, larger ∣x∣ requires a larger absolute step to register.
Proposition F.3 (Soundness and completeness of the probe). Let wi, ŵi be normalized bf16 values
(finite, nonzero), and suppose η < 1

2
minxULPbf16(x)/∣x∣ = 2

−9 ≈ 1.953 ⋅ 10−3. Then

∣ ŵi −wi ∣ ≤ ηmax(∣wi∣, ∣ŵi∣) ⇐⇒ bf16(wi) = bf16(ŵi).

Proof. (⇒)If wi ≠ ŵi, Lemma F.2 gives ∣ŵi −wi∣/max(∣wi∣, ∣ŵi∣) > 2
−8 > 2η, contradiction. Hence

wi = ŵi as bf16 numbers.

(⇐) If the stored bf16 values are equal, the difference is 0, which satisfies equation 1.

Corollary F.4 (Choice η = 10−3 is safe). Since 10−3 < 2−9, Proposition F.3 applies: the test equa-
tion 1 passes iff the two bf16 entries are bit-wise identical (or both zero). Thus η = 10−3 yields a
scale-aware probe that flags equality only when storage is unchanged.

G Math Analysis

G.1 Policy-Gradient Fine-Tuning (DAPO)

Assume an old policy πold that we use to sample G candidate completions y1∶G for each prompt
x ∈ X . For a single token yi,t (token t in completion i) we define the importance-weighted advantage

wi,t =
πθ(yi,t∣x, y<t)

πold(yi,t∣x, y<t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

importance ratio

Âi,t Iclip ∈ R, (1)

where Âi,t is the estimated advantage and Iclip ∈ {0,1} implements the usual trust-region clipping.

Token-level objective. The DAPO loss can be written as a sum of weighted log-probabilities

JRL(θ) = Ex∼X , y1∶G∼πold
[ 1
∑i ∣yi∣

G

∑
i=1

∣yi∣
∑
t=1

wi,t logπθ(yi,t ∣ x, y
i
<t)]. (2)
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G.2 Proof of Gate I: On-Policy RL Implies a One-Step KL Leash

This appendix provides the standard tilting oracle and M -projection facts, local second-order ex-
pansions, and the proof of the one-step policy-KL leash (Prop. 3.1 in the main text). We keep the
proof concise, otherwise too lengthy, especially for those has shown in some prior work Shenfeld
et al. (2025); Wu et al. (2025). Our one-step analysis is inspired by recent work Wu et al. (2025);
Shenfeld et al. (2025), which uses a similar variational approach to show that even the final con-
verged policy remains KL-proximal to the base policy. We also record a trust-region/clipping bound
used when β = 0.

Throughout, x is fixed, q(⋅ ∣ x) has full support on Y , and πθ(⋅ ∣ x) is a C3 parametric family with
log-density logπθ locally smooth. Expectations without explicit subscript are conditional on x.

We first show useful lemmas here.
Lemma G.1 (Frozen-policy surrogate is second-order tight). Let f(θ) ∶= LPG(θ) in equation 4 and
g(θ) ∶= L̃PG(θ; θt) be the frozen-policy surrogate with Aθt . Then f(θt) = g(θt) and ∇f(θt) =
∇g(θt). If ∇f and ∇g are L-Lipschitz in a neighborhood of θt, then

∣ f(θt +∆θ) − g(θt +∆θ) ∣ ≤ L
2
∥∆θ∥2.

Proof. At θt, both objectives evaluate to −Eπθt
[Aθt logπθt]. For the gradient, using the

log-derivative trick and the centering of Aθt , both yield −Eπθt
[Aθt∇ logπθt]. Thus f(θt) = g(θt)

and ∇f(θt) = ∇g(θt). The bound is the standard second-order Taylor remainder under Lipschitz
gradients.

1: Exponential tilting and M-projection
Lemma G.2 (Gibbs variational principle / exponential tilting). Fix β > 0 and a full-support refer-
ence q(⋅ ∣ x). Then

max
π≪q

{Ey∼π[R(x, y)] − βDKL(π∥q)}

is uniquely maximized by

q̃β(y ∣ x) =
q(y ∣ x) exp(R(x, y)/β)

Ey∼q[exp(R(x, y)/β)]
.

Proof. Consider L(π,λ) = Eπ[R] − βEπ[ log
π
q
] + λ(∑y π(y) − 1). Stationarity in π gives log π

q
=

R/β − λ − 1, hence π ∝ q eR/β . Strict concavity in π yields uniqueness.

Lemma G.3 (Policy Gradient Update as Parametric M -projection). For fixed q̃β ,
argmin

θ
DKL(q̃β∥πθ) = argmax

θ
Ey∼q̃β [logπθ(y ∣ x)].

Proof. DKL(q̃β∥πθ) = Eq̃β [log q̃β] − Eq̃β [logπθ], where the first term is θ-independent. We omit
the full proof here, with one can be found in Shenfeld et al. (2025).

2: Local second-order identities
Lemma G.4 (Local Pythagorean identity for the M -projection). Let f(θ) ∶= DKL(q̃β∥πθ) =

Eq̃β [− logπθ] + const. Assume logπθ is C3 near θ, and let θ+ ∈ argmin f . Writing ∆ ∶= θ+ − θ, for
∥∆∥ small,

f(θ) − f(θ+) = 1
2
∆⊺Hq̃(θ)∆ +O(∥∆∥

3
), Hq̃(θ) ∶= −Eq̃β [∇

2 logπθ].

Proof. Taylor-expand f at θ+: f(θ) = f(θ+) + 1
2
∆⊺Hq̃(θ

+)∆+O(∥∆∥3) since ∇f(θ+) = 0. Local
C3 smoothness implies Hq̃(θ

+) =Hq̃(θ)+O(∥∆∥), which is absorbed into the cubic remainder.

Lemma G.5 (Quadratic expansion of policy KL). Let F (θ) ∶= −Eπθ
[∇2 logπθ] be the Fisher

information. Then
DKL(πθ+∆∥πθ) =

1
2
∆⊺F (θ)∆ +O(∥∆∥3).

Proof. Expand log πθ+∆

πθ
=∆⊺∇ logπθ+

1
2
∆⊺∇2 logπθ ∆+O(∥∆∥

3), take expectation under πθ+∆ =

πθ +O(∥∆∥), use Eπθ
[∇ logπθ] = 0 and −Eπθ

[∇2 logπθ] = F (θ).
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3. Relating projection Hessian and Fisher under small tilt
Lemma G.6 (Hessian–Fisher proximity). Suppose ∥∇2 logπθ(y ∣ x)∥op ≤ L uniformly near θ. Then

∥Hq̃(θ) − F (θ)∥op ≤ 2LTV(q̃β , πθ) ≤ L
√
2DKL(q̃β∥πθ).

In particular, with κ ∶=DKL(q̃β∥πθ) → 0, we have Hq̃(θ) = (1+O(
√
κ))F (θ) as quadratic forms.

Proof. For bounded matrix-valued h, ∥Eq̃h − Eπh∥op ≤ 2∥h∥∞TV(q̃, π). Apply this with h ∶=

−∇2 logπθ and Pinsker’s inequality TV(p, q) ≤
√

1
2
DKL(p∥q).

4. Remainder control
Lemma G.7 (Cubic remainder is o(f)). If Hq̃(θ) ⪰ mI on the update subspace (local strong
convexity), then for ∥∆∥ small

∥∆∥2 ≤ 2
m
(f(θ) − f(θ+)), O(∥∆∥3) = o(f(θ)).

Proof. From Lemma G.4, f(θ)−f(θ+) ≥ m
2
∥∆∥2+O(∥∆∥3). Rearranging yields ∥∆∥2 = O(f(θ)−

f(θ+)), so the cubic term is lower order.

G.2.1 Proof of Proposition 3.1

Proof of Proposition 3.1. Let f(θ) =DKL(q̃β∥πθ) and ∆ = θ+ − θ. By Lemma G.4,

f(θ) − f(θ+) = 1
2
∆⊺Hq̃(θ)∆ +O(∥∆∥

3
).

By Lemma G.5,
DKL(πθ+∥πθ) =

1
2
∆⊺F (θ)∆ +O(∥∆∥3).

By Lemma G.6 with κ = f(θ), ∆⊺F∆ = (1 +O(
√
κ))∆⊺Hq̃∆. Hence

DKL(πθ+∥πθ) = (1 +O(
√
κ)) (f(θ) − f(θ+)) + O(∥∆∥3).

Since f(θ+) ≥ 0, f(θ) − f(θ+) ≤ f(θ) = κ. By Lemma G.7, O(∥∆∥3) = o(f(θ)). Therefore

DKL(πθ+∥πθ) ≤ (1 + o(1)) f(θ) = (1 + o(1))DKL(q̃β∥πθ),

which is the desired inequality.

G.2.2 Proof of Proposition 3.2

Proof of Proposition 3.2. By the quadratic expansion of policy KL (Lemma G.5),

DKL(πθ+∆∥πθ) =
1
2
∆⊺F (θ)∆ + R(∆), ∣R(∆)∣ ≤ C ∥∆∥3 (12)

for some local constant C > 0 (from C3 smoothness). Let a ∶= ∆⊺F (θ)∆. Using the spectral lower
bound F (θ) ⪰ µI on the update subspace,

∥∆∥2 ≤ a
µ
. (13)

Combining equation 12–equation 13 yields

DKL(πθ+∆∥πθ) ≥
1
2
a − C ( a

µ
)
3/2

.

Since DKL(πθ+∥πθ) ≤K, we have

K ≥ 1
2
a − C µ−3/2a3/2. (14)

For a sufficiently small (equivalently, K small), the cubic term is dominated by the linear term:
choose a0 > 0 so that C µ−3/2

√
a ≤ 1

4
whenever 0 < a ≤ a0. Then from equation 14

K ≥ ( 1
2
− 1

4
)a = 1

4
a ⇒ a ≤ 4K.

20



Substituting a ≤ 4K back into equation 12 refines the remainder: ∣R(∆)∣ ≤ C∥∆∥3 ≤ C(a/µ)3/2 =
O(K3/2) = o(K), so DKL(πθ+∆∥πθ) =

1
2
a + o(K). Hence a = 2DKL(πθ+∆∥πθ) + o(K) ≤

2K + o(K), i.e.
∆⊺F (θ)∆ ≤ 2K (1 + o(1)).

Taking square roots gives the Fisher-norm bound in equation 6: ∥∆∥F (θ) =
√
∆⊺F (θ)∆ ≤

√
2K (1 + o(1)). The Euclidean bound follows from equation 13:

∥∆∥2 ≤

√
∆⊺F (θ)∆

µ
≤
√

2K
µ
(1 + o(1)).

Finally, for any parameter block W ⊂ θ, its Frobenius change is the ℓ2-norm of the corresponding
subvector of ∆; therefore ∥∆W ∥F ≤ ∥∆∥2.

G.2.3 One-step KL budget (used in Gate II)

Corollary G.8 (KL budget). If DKL(πθ+∥πθ) ≤K, then
1
2
∆⊺F (θ)∆ ≤ K (1 + o(1)).

Proof. Apply Lemma G.5 and Lemma G.7.

G.2.4 Trust-region / clipping bound (for β = 0)

Lemma G.9 (Implicit KL leash from ratio clipping). Let rt =
πθ+(yt∣x,y<t)
πθ(yt∣x,y<t) and suppose clipping

enforces rt ∈ [1 − ε, 1 + ε] on the batch. Then

D̂KL(πθ+∥πθ) ≤ Ê[T (x)] ⋅max{− log(1 − ε), log(1 + ε)} = O(ε) ⋅ Ê[T (x)],
and in the small-step regime (mean-zero advantage) this tightens to O(ε2).

Proof. Autoregressive factorization gives DKL(πθ+∥πθ) = Eπθ+
[∑t log rt]. Because log rt ∈

[log(1 − ε), log(1 + ε)], we have ∣ log rt∣ ≤ c(ε); summing over t and taking batch expectation
yields the stated bound. Using log(1± ε) = ±ε+O(ε2) and small-step arguments gives O(ε2).

G.3 Proofs for Gate II (Sec. 3.2)

Setup (layer-conditioned budget). Partition θ = (vec(W ), θ¬W ) and let the Fisher at θ = θt be

F (θ) = [
FW,W FW,¬W
F¬W,W F¬W,¬W

] ⪰ 0.

For a one-step update ∆θ, the global KL leash implies 1
2
∆θ⊺F (θ)∆θ ≤ K. Define the

layer-conditioned curvature

SW ∶= FW,W − FW,¬WF −1
¬W,¬WF¬W,W ⪰ 0,

and the per-layer budget δW ∶= 1
2
vec(∆W )⊺SW vec(∆W ) ≤ K. Let µW ∶= λmin(SW ) > 0 on the

update subspace.

Lemma G.10 (Layer-conditioned Frobenius/operator bounds). ∥∆W ∥F ≤
√
2δW /µW and

∥∆W ∥2 ≤ ∥∆W ∥F .

Proof. Since SW ⪰ µW I , δW ≥ 1
2
µW ∥∆W ∥2F .

Lemma G.11 (Wedin’s sin–Θ). For W+ = W0 + ∆W , the principal subspace angles satisfy
∥ sinΘ(Uk(W0), Uk(W+))∥2 ≤ ∥∆W ∥2/γk and similarly for Vk.
Lemma G.12 (Weyl/Mirsky and Hoffman–Wielandt). ∣σk(W+) − σk(W0)∣ ≤ ∥∆W ∥2 and
∑i(σi(W+) − σi(W0))

2 ≤ ∥∆W ∥2F .
Corollary G.13 (Projection stability). With the same assumptions,

∥Uk(W0)Uk(W0)
⊺
−Uk(W+)Uk(W+)

⊺∥
2
= ∥ sinΘ(Uk(W0), Uk(W+))∥2 ≤

√
2δW /µW

γk
.

The analogous bound holds for the right subspaces with Vk. Interpretation. The leading invariant
subspaces rotate by at most O(

√
δW /µW /γk); when the gap is moderate, the rotation is small.
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Figure 10: Pair-wise Jaccard similarity of update masks from five independent RLVR runs on Layer
13 of the DS-Distill-Qwen-1.5B model.

H More Visualization

H.1 Jaccard matrix

RL updates are highly consistent across independent training runs. Fig. 10 shows the pair-wise
Jaccard similarity between the final update masks from five RLVR runs on different data and algo-
rithms. The high similarity scores demonstrate that the optimization process consistently targets the
same subset of parameters, providing strong evidence for a deterministic, non-random optimization
bias.

H.2 Spectrum shift for DS-1.5B and Qwen3-1

We also show the spectrum shift for DS-1.5B and Qwen3-14B here.
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Figure 11: Structured Update observed on Llama(Llama-3.1-8B) and Mistral (Mistral-Small-24B)
models. Here we plot the weight update mask using the zero-RL checkpoints from Zeng et al.
(2025b).

Figure 12: Temporal emergence of the optimization bias with row and column-wise update ratios for
the 13th attention block across gradient update steps (t∈{240,720,1200}), smoothed with a 3-step
window. The column-wise (Q) and row-wise (O) update ratios show a much weaker bias.

Table 3: Performance of DS-Qwen-1.5B with different masking strategies at 320 steps. Parameter
counts shown are for linear layers only, excluding the embedding and head layers. Detailed evalu-
ation settings are available in Appendix D.2. We observe that training only on principal weights
Mprinc results in a clear accuracy gap compared to both the dense baseline and its complement
M c

princ. The models using the Mlow and M c
princ ∪Mlowest masks achieve performance closest to

the dense baseline.

Model Mask Math500 AMC23 AIME24 AIME25 Average #params

DS-Qwen-1.5B

Dense 84.20 81.56 36.98 27.03 57.44 100%
Mprinc 83.60 77.19 30.16 24.32 53.82 50%
Mc

princ 82.70 78.90 34.28 25.73 55.40 50%
Mlow 84.50 80.08 35.62 26.56 56.69 58.59%

Mc
princ ∪Mlow 85.20 78.83 34.74 26.20 56.24 74.02%

Random-Mc
princ ∪Mlow 84.50 77.35 34.48 25.01 55.34 74.02%
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Table 4: Performance of DS-Qwen-1.5B with different masking strategies with a extended training
window to 500 steps. Parameter counts shown are for linear layers only, excluding the embedding
and head layers. Detailed evaluation settings are available in Appendix D.2. We observe that train-
ing only on principal weights Mprinc results in a clear accuracy gap compared to both the dense
baseline and its complement M c

princ. The models using the Mlow and M c
princ ∪Mlowest masks

achieve performance closest to the dense baseline.

Model Mask Math500 AMC23 AIME24 AIME25 Average #params

DS-Qwen-1.5B

Dense 84.5 83.52 38.28 28.075 58.59 100%
Mprinc 83.60 78.83 34.06 25.63 55.44 50%
Mc

princ 84.0 77.97 38.64 27.81 56.90 50%
Mlow 83.8 82.42 37.03 27.82 57.77 58.59%

Mc
princ ∪Mlow 84.10 81.41 40.30 27.70 58.37 74.02%

Random-Mc
princ ∪Mlow 84.10 81.72 34.69 27.34 56.89 74.02%

Figure 13: Token-wise KL loss. We show the token-wise KL loss during a DAPO run without a KL
loss penalty, which shows a steadily increasing KL loss instead of being unconstrained.
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Figure 14: The spectrum probe results on the RL and SFT version on the
DS-Distill-Qwen-1.5B Liu et al. (2025a). RLVR shows surprisingly stable top-k spec-
trum with minimal subspace rotation and top-k eigenvalue changes.
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Figure 15: The spectrum probe results on the RL and SFT version on the Qwen3-14B Huan et al.
(2025). RLVR shows surprisingly stable top-k spectrum with minimal subspace rotation and top-k
eigenvalue changes.
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