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Abstract: Empowering autonomous agents with 3D understanding for daily ob-
jects is a grand challenge in robotics applications. When exploring in an un-
known environment, existing methods for object pose estimation are still not
satisfactory due to the diversity of object shapes. In this paper, we propose a
novel framework for category-level object shape and pose estimation from a sin-
gle RGB-D image. To handle the intra-category variation, we adopt a semantic
primitive representation that encodes diverse shapes into a unified latent space,
which is the key to establish reliable correspondences between observed point
clouds and estimated shapes. Then, by using a SIM(3)-invariant shape descriptor,
we gracefully decouple the shape and pose of an object, thus supporting latent
shape optimization of target objects in arbitrary poses. Extensive experiments
show that the proposed method achieves SOTA pose estimation performance and
better generalization in the real-world dataset. Code and video are available at
https://zju3dv.github.io/gCasp.
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1 Introduction

Estimating the shape and pose for daily objects is a fundamental function which has various
applications, including 3D scene understanding, robot manipulation and autonomous warehous-
ing [1, 2, 3, 4, 5, 6]. Early works for this task are focused on instance-level pose estima-
tion [7, 8, 9, 10, 11], which aligns the observed object with the given CAD model. However, such a
setting is limited in real-world scenarios since it is hard to obtain the exact model of a casual object
in advance. To generalize to these unseen but semantically familiar objects, category-level pose esti-
mation is raising more and more research attention [12, 13, 14, 15, 16, 17] since it could potentially
handle various instances of the same category in real scenes.

Existing works on category-level pose estimation usually try to predict pixel-wise normalized coor-
dinates for instances within one class [12] or adopt a canonical prior model with shape deformations
to estimate object poses [14, 15]. Although great advances have been made, these one-pass pre-
diction methods are still faced with difficulties when large shape differences exist within the same
category. To handle the variety of intra-class objects, some works [18, 16] leverage neural implicit
representation [19] to fit the shape of the target object by iteratively optimizing the pose and shape in
a latent space, and achieve better performance. However, in such methods, the pose and shape esti-
mation are coupled together and rely on each other to get reliable results. Thus, their performance is
unsatisfactory in real scene (see Sec. 4.2). So we can see that the huge intra-class shape differences
and coupled estimation of shapes and poses are two main challenges for the existing category-level
pose estimation methods.

To tackle these challenges, we propose to estimate the object poses and shapes with semantic primi-

tives from a generative perspective. The insight behind this is that the objects of a category are often
composed of components with the same semantics although their shapes are various, e.g., a cup is
usually composed of a semicircular handle and a cylindrical body (see Fig. 1(a)). This property
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Figure 1: (a) An example of different instances in the same categories, we highlight the same seman-
tic parts (e.g., lens of cameras) between different instances. (b) The detailed shapes (top row) are
decomposed into semantic primitives (bottom row). Different colors on primitives indicate different
semantic labels, which are consistent among different shapes. (c) An overview of the generative
model consisting of two auto-decoders (i.e., gf and gc) sharing the same latent space. gf captures
fine details, and gc represents the shapes by simple and semantically consistent shape primitives.

inspired us to handle huge differences in intra-class shapes by fusing this category-level seman-
tic information. Specifically, we propose to encode object shapes into semantic primitives, which
construct a unified semantic representation among objects in the same category (see Fig. 1(b)). Fol-
lowing Hao et al. [20], we map diverse shapes and the corresponding semantic primitives into the
same shared latent space of a generative model. In this way, we can obtain the correspondence be-
tween the observed point cloud and the latent space by dividing the observed point cloud into several
semantic primitives with a part segmentation network.

In order to disentangle the shape and pose estimation, we further extract a novel SIM(3)-invariant
descriptor from the geometric distribution of the point cloud’s semantic primitives. By leveraging
such SIM(3)-invariant descriptors, we can perform latent optimization of object shapes in arbitrary
poses and obtain the resulting shape consistent with the observation. After obtaining the estimated
shape, we use a correspondence-based algorithm to recover the size and pose by aligning semantic
primitives of the target object with that of the estimated shape.

In summary, our contributions are as follows: 1) We propose a novel category-level pose estima-
tion method, which uses semantic primitives to model diverse shapes and bridges the observed
point clouds with implicitly generated shapes. 2) We propose an online shape estimation method,
which enables object shape optimization in arbitrary poses with a novel SIM(3)-invariant descrip-
tor. 3) Even when training on the synthetic dataset only, our method shows good generalization and
achieves state-of-the-art category-level pose estimation performance on the real dataset.

2 Related Works

Instance-Level Object Pose Estimation. Instance-level pose estimation assumes the CAD model
of test objects is known in the training phase, and previous methods are mainly divided into three
categories. The first category of methods [21, 8, 7, 22] directly regress the 6D object pose from
RGB or RGB-D images. PoseCNN [7] extends 2D detection architecture to regress 6D object pose
from RGB images, and DenseFusion [8] combines color and depth information from the RGB-D
input and makes the regressed pose more accurate. The second are correspondence-based methods
[9, 10, 11, 23]. They predict the correspondences between 2D images and 3D models, and then
recover the pose by Perspective-n-Point algorithm [24]. For example, PVNet [9] predicts the 3D
keypoints on the RGB image by a voting scheme. CDPN [11] predicts the dense correspondences
between image pixels and 3D object surface. The third category is rendering-based methods [25, 26],
which recover the pose by minimizing the re-projection error between the posed 3D model and 2D
image through a differentiable render. Compared with these instance-level methods, our category-
level method does not need the known CAD model as prior.

Category-Level Object Pose Estimation. Category-level methods [12, 27, 13] aim at estimating
the pose for the arbitrary shape of the same category. To overcome the intra-category variations,
NOCS [12] introduces normalized object canonical space, which establishes a unified coordinate
space among instances of the same category. CASS [27] learns a variational auto-encoder to recover
object shape and predicts the pose in an end-to-end neural network. These methods directly regress
the pose or coordinates, and thus struggle to form an intra-category representation. Other methods
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Figure 2: Overview of the proposed method. The input of our method is the point cloud observed
from a single-view depth image. (a) Our method first extracts semantic primitives C̃ from object
point cloud P0 by a part segmentation network �. (b) We calculate a SIM(3)-invariant shape descrip-
tor f(C̃) from C̃ and optimize a shape embedding ẑ in the latent space by the difference between
f(C̃) and f(gc(z)), where gc and gf are the coarse and fine branches of the generative model g,
detailed in Sec. 3.1. (c) The similarity transformation {s̃, R̃, t̃} is recovered through the semantic
correspondences between C̃ and optimized shape gc(ẑ). (d) Further, we can simply apply the trans-
formation {s̃, R̃, t̃} on the fine geometry generated through gf (ẑ), and reconstruct the object-level
scene as a by-product besides our main results, which is detailed in the Sec. B in the supp. material.

utilize a prior model of each category for the category-level representation. For example, SPD [14]
and SGPA [15] predict deformation on canonical prior models and recover the 6D pose through
correspondence between the deformed model and the observed point cloud. However, when facing a
significant difference between the prior model and the target object, the deformation prediction tend
to fail. DualPose [28] takes the consistency between an implicit pose decoder and an explicit one into
account and refines the predicted pose during testing. Besides, FS-Net [13] proposes a novel data
augmentation mechanism to overcome intra-category variations. SAR-Net [17] recovers the shape
by modeling symmetric correspondence of objects, which makes pose and size prediction easier.
To utilize the diverse and continuous shapes in generative models, iCaps[16] and ELLIPSDF[18]
introduce the generative models [19, 20] to their shape and pose estimation. Shapes and poses
are jointly optimized in these works. Unlike these previous works, we establish a semantically
consistent representation and decouple the shape and pose estimation, which makes the optimization
more robust.

3 Method

Problem Formulation. Given observed point cloud P0 = {pi|i = 1, ..., N0} of an object with
known category, our goal is to estimate the complete shape, scale and 6D pose for this object. The
recovered shape is represented by a shape embedding ẑ in a latent space. The estimated scale and
6D pose are represented as a similarity transformation {s,R, t} 2 SIM(3), where scale s 2 R, 3D
rotation R 2 SO(3) and 3D translation t 2 R3. SIM(3) and SO(3) indicate the Lie group of 3D
similarity transformations and 3D rotation, respectively.

Overview. As illustrated in Fig 2, our method takes the RGB-D image as input. A Mask-RCNN[29]
network is used to obtain the mask and category of each object instance. In the following stages,
our method only processes the observed instance point cloud back-projected from the masked depth
image. To overcome the huge intra-category variations, we utilize a unified intra-category rep-
resentation of semantic primitives (Sec 3.1). Then, we process the observed point cloud with a
part segmentation network to extract semantic primitives which establish a connection between the
observed object and the latent space (Sec 3.2). To estimate the shape of the target with its pose
unknown, we design a SIM(3)-invariant descriptor to optimize the generative shape in the latent
space (Sec 3.3). Finally, we estimate the 6D pose and scale of the object through the semantic
correspondence between the observed point cloud and our recovered generative shape (Sec 3.4).
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3.1 Semantic Primitive Representation

The huge intra-category differences make it challenging to represent objects with a standard model.
To overcome this problem, we utilize a semantic primitive representation. The insight behind the
semantic primitive representation is that although different instances in the same category have var-
ious shapes, they tend to have similar semantic parts, e.g., each camera instance has a lens, and each
laptop has four corners (see Fig 1(a)). In semantic primitive representation, each instance is decom-
posed into several parts, and each part always corresponds to the same semantic part in different
instances (see Fig 1(b)). To generate this representation, we learn a generative model g following
the network structure in [20] and map instances of the same category into a latent space.

Specifically, Fig 1(c) gives an overview of the generative model. The generative model g ex-
presses shapes at two granular levels, one capturing detailed shapes and the other representing an
abstracted shape using semantically consistent shape primitives. We note the fine-scale model as
gf and the coarse-scale one as gc. gf and gc are two auto-decoders sharing the same latent code z.
gf (z,x) = SDF (x), where x is a 3D position in canonical space and SDF denotes the signed
distance function. gc(z) = {↵i|i = 1, ..., Nc}, where Nc is the number of primitives and ↵i is the
parameters of a primitive. We use sphere primitives here and ↵ = (c, r), where c is the 3D center of
a sphere and r is the radius. Please refer to [20] and Sec. A.3 in the supp. material for more details.

3.2 Extract Semantic Primitives from Point Cloud

We use a part segmentation network to obtain the semantic primitives of the observation point cloud
in two stages. First, we predict a semantic label li for each point pi in the observed point cloud P0,
and then a centralization operation is performed on the points to extract the center of each primitive.

Semantic Label Prediction. For each point pi 2 P0, its semantic label li is defined in terms of
closest primitive center cj :

li = argmin
j=1...Nc

||pi � cj ||2. (1)

We treat point label prediction as a classification problem and follow the part segmentation version
of 3D-GCN [30] to perform point-wise classification. Standard cross entropy is used as the loss
function. In addition, because of imperfect segmentation masks produced by Mask R-CNN, the
point cloud back-projected from the masked depth image may contain extra background points. For
these outlier points, we add another “dust” label in the point-wise classification to filter out them.

Symmetric Loss. Many common objects in robot manipulation have symmetrical structures, and
most objects (e.g., bottles) are symmetrical about an axis. The unique pre-labeled ground truth cause
ambiguity when the object rotates around the axis. In order to eliminate the influence of symmetric
structure on our classification task, we introduce the symmetric loss as the same as [12]. For each
symmetric object in the dataset, we define a symmetric axis and make the loss identical when the
object rotates around the axis. Specifically, we generate a separate ground truth for each possible
angle of rotational symmetry. Given the rotation angle ✓, the rotated semantic label l✓,i is defined
as:

l✓,i = argmin
j=1...Nc

||pi � c✓,j ||2, (2)

where c✓,j is the position of cj after ✓ degrees of rotation about the axis. Then we define the
symmetric loss Lsym as:

Lsym = min
✓2⇥

L(l̃i, l✓,i). (3)

where L is the standard cross entropy, l̃i is the predicted label by the network, and we set ⇥ = {0�}
for non-symmetric objects and ⇥ = {i · 60�|i = 0, ..., 5} for symmetric objects in our experiments.

Primitive centralization. After predicting the semantic label of each 3D point, we count the se-
mantic labels L̃ = {li|i = 1, ..., Ñc} which appear in the partially observed point cloud. Then, we
calculate the primitive centers C̃ = {cl|l = l1, ..., lÑc

} from the labeled points by averaging the
points with the same label. Specifically,

cl =
1

Nl

N0X

i=1

piI(l̃i = l). (4)
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Figure 3: The proposed atomic SIM(3)-invariant descriptor. The angle ✓1 and ✓2, which we called
atomic descriptors are invariant with different object poses. And our shape descriptor concatenated
by multiple atomic descriptors is also invariant.

where Nl is the total number of points with predicted label l, I is an indication function indicating
whether the predicted label l̃i equals l.

3.3 Shape Optimization with SIM(3)-Invariant Descriptor

We decouple the shape estimation from the pose estimation to perform shape estimation for the ob-
served object when the pose is unknown. In order to achieve this pose-invariant shape optimization,
we propose a novel SIM(3)-invariant descriptor extracted from semantic primitive representation.

SIM(3)-invariant Descriptor. Given a set of 3D points C = {ci|i = 1, ..., N} and a SIM(3)-
transformation {s,R, t}, a SIM(3)-invariant descriptor f0 can be expressed as:

f0(C) = f0(sRC + t). (5)
To make our descriptor SIM(3)-invariant, first, we obtain a translation-invariant descriptor by calcu-
lating the vectors v composed of every two points:

vij = (ci + t)� (cj + t) = ci � cj . (6)
After that, we normalize the vector v to eliminate the scale factor s:

vij =
svij

||svij ||2
=

vij

||vij ||2
. (7)

Finally, we eliminate the effect of rotation transformation by calculating the dot product between
two vectors (see Fig. 3):

✓(ci, cj , ck, co) = Rvij ·Rvko = vT
ijR

TRvko = vT
ijvko, (8)

where · denotes the dot product of two vectors, and ✓ denotes a function which takes 4 points as
input and a SIM(3)-invariant scalar as output (as the angles shown in Fig. 3)

We call ✓ the atomic descriptor. However, only a single atomic descriptor calculated from 4
points (primitives centers) is not enough to describe an object’s shape. Thus, we design the SIM(3)-
invariant shape descriptor through a function f , which concatenates multiple atomic descriptors to
form a SIM(3)-invariant shape descriptor. With our estimated primitives C̃ and their semantic labels
L̃, the set L̃4 is denoted as:

L̃4 = {(i, j, k, o) | i, j, k, o 2 L̃, i 6= j, k 6= o}, (9)

and the SIM(3)-invariant shape descriptor f is denoted as:
f(C̃, L̃) = �

(i,j,k,o)2L̃4
sub

✓(ci, cj , ck, co), (10)

where � denotes the concatenate operation which concatenates multiple scalars into a vector in
order, and L̃4

sub is a subset randomly chosen from L̃4 for each optimization. We choose the subset
of L̃4 because |L̃4| would be large, which is computational expensive. In Sec. 4.3, an ablation is
conducted to analyze the effect of |L̃4

sub|, which indicates the number of atomic descriptors in a
shape descriptor.

Online Shape Optimization. Given the shape embedding ẑ in the latent space and estimated prim-
itives C̃ with semantic labels L̃, we can measure the shape difference between the generative shape
gc(ẑ) and the observation P0 through the SIM(3)-invariant descriptor. We denote this difference as
ẽ:

ẽ = ||f(C̃, L̃)� f(Ĉ(gc(ẑ)), L̃)||2 + ⌘||ẑ||2, (11)

where Ĉ(gc(ẑ)) = {ĉi|i = 1, ..., Nc} is the primitive centers of gc(ẑ). Obviously, f is a differen-
tiable function and gc is a differentiable neural network. We optimize the shape embedding ẑ via
gradient descent in an online iterative way and set ⌘ = 0.0001 to weight the regularization term.
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Table 1: Comparison of our method with other five SOTA methods [12, 14, 15, 17, 16] on REAL275
and CAMERA25. ‘S’ is synthetic data and ‘R’ is real data.

Dataset Methods Training
Data

Canonical
Model IoU50 IoU75 5�2cm 5�5cm 10�2cm 10�5cm

Learnable
Parameters(M)

REAL275
(real)

NOCS [12] RGB(S+R) Regress 78.0 30.1 7.2 10.0 13.8 25.2 -
SPD [14] RGBD(S+R) Deform 77.3 53.2 19.3 21.4 43.2 54.1 18.3

SGPA [15] RGBD(S+R) Deform 80.1 61.9 35.9 39.6 61.3 70.7 23.3
SAR-Net [17] D(S) Deform 79.3 62.4 31.6 42.3 50.3 68.3 6.3

iCaps [16] D(S) Generate - - - 22.3 - - 80.9
Ours D(S) Generate 79.0 65.3 46.9 54.7 64.2 76.3 2.3

CAMERA25
(synthetic)

NOCS [12] RGB(S+R) Regress 83.9 69.5 32.3 40.9 48.2 64.6 -
SGPA [15] RGBD(S+R) Deform 93.2 88.1 70.7 74.5 82.7 88.4 23.3

SAR-Net [17] D(S) Deform 86.8 79.0 66.7 70.9 75.3 80.3 6.3
Ours D(S) Generate 95.7 89.3 71.7 77.0 80.1 86.9 2.3

Ours

SGPA

Figure 4: Qualitative comparisons between our method and SGPA [15] on REAL275 dataset [12].
The red arrows and dotted box point out the inaccurate results of SGPA compared with our method.

3.4 6D Pose and Size Estimation

With the primitive centers Ĉ(gc(ẑ)) of the optimized shape and the observed point cloud, we use
Umeyama algorithm [31] to compute the SIM(3) transformation by minimizing following error
function:

s̃, R̃, t̃ = argmin
s,R,t

1

N0

N0X

i=1

||pi � sR(ĉli + t)||2. (12)

4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate our method on NOCS [12] dataset which consists of six objects categories including
bottle, bowl, camera, can, laptop and mug. The NOCS dataset contains a virtual dataset called
CAMERA25 and a real-world dataset called REAL275. The CAMERA25 dataset contains 300K
synthetic images and there are 25K images for evaluation among them. The REAL275 contains
4.3K real-scene images for training and 2.75K real-scene images for evaluation.

Two aspects of metrics are adopted for evaluation: 3D IoU and pose error. 3D IoU measures the
overlap of two posed 3D bounding boxes, and we compute the average precision at threshold values
of 50% and 75%. The pose error measures the rotation and translation errors between the predicted
pose and ground truth pose, and we compute the average precision at threshold values (5�, 2cm),
(5�, 5cm), (10�, 2cm) and (10�, 5cm).

4.2 Comparison with State-of-the-Art Methods

We compared our proposed method with several SOTA methods [12, 14, 15, 17, 16]. NOCS [12]
directly regress pixel-level canonical coordinate. SPD [14] and SGPA [15] are the methods which
recover canonical shape by deforming a prior shape. iCaps [16] and our methods utilize a gener-
ative model to refine and recover the canonical model respectively. Table 1 shows the quantitative
results. Overall, our method needs the minimum parameters learned for the shape and pose esti-
mation task and shows the results of the smallest domain gap between the synthetic dataset and
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Table 2: Pose estimation results with recovered
shape by mean, random and optimized shape em-
bedding on REAL275.
Embedding IoU50 IoU75 5�2cm 5�5cm 10�2cm 10�5cm

Mean 77.7 54.5 31.7 36.0 51.4 61.0
Random 76.8 51.6 28.7 34.4 47.6 60.3

Optimized 79.0 65.3 46.9 54.7 64.2 76.3

Table 3: Results of our method with different
numbers of primitives on REAL275
Number IoU50 IoU75 5�2cm 5�5cm 10�2cm 10�5cm

64 79.2 63.7 41.2 51.4 58.9 74.9
128 78.9 64.5 43.5 51.2 61.2 74.6
256 79.0 65.3 46.9 54.7 64.2 76.3

512 77.2 63.3 45.7 53.6 61.7 74.4

Figure 5: Curves of each category under different thresholds on IoU, rotation and translation on
REAL275 (left) and CAMERA (right) dataset.

the real-world dataset. In detail, our method outperforms other existing methods on all metrics but
IoU50 on the real-world REAL275 dataset. Fig. 4 shows qualitative comparisons with SGPA [15].
On the synthetic CAMERA25 dataset, our method also shows improvement on most metrics com-
pared with other methods, except for a small gap with SGPA [15] on two metrics, (10�, 2cm) and
(10�, 5cm). Besides, Fig. 5 shows the average precision curves of each category under different
thresholds on IoU, rotation and translation on REAL275 and CAMERA25 dataset. Compared to the
other generative method iCaps [16], our method shows far better results, indicating the advantage
of our decoupled shape and pose estimation. It should be noted here that our trained generative
model (Sec. 3.1) consists of about 4.3M parameters for each category. The generative models are
only pre-trained on ShapeNetCore [32] and need no more fine-tuning for the specific shape and pose
estimation task. Thus, we compare the learnable parameters with other methods. Specifically, our
method needs only additionally train a part segmentation network (2.3M) for all categories on the
synthetic training data provided by CAMERA25 [12], which leads to our better generalization in
real scenes.

4.3 Ablation Study

To justify the design choices of our method, we explore the following issues through experiments:

• Effectiveness of the SIM(3)-invariant descriptor. Does the descriptor-based shape opti-
mization make the optimized shape more accurate and benefit the pose estimation?

• Effect of different numbers of primitives. Semantic primitives are the basis of our method.
How many primitives are better for pose estimation?

• Effect of different numbers of atomic descriptors |L̃4
sub|. Our shape descriptor is concate-

nated by multiple atomic descriptors. How many atomic descriptors are more effective for
shape optimization?

Effectiveness of SIM(3)-invariant descriptors. We verify the effectiveness of our SIM(3)-
invariant descriptors in two aspects. First, we verify that descriptor-based shape optimization im-
proves the accuracy of shape reconstruction. We compare the reconstruction error of our optimized
shape with the shape when the shape embedding z = 0 (denoted as “Mean” shape) and a random
shape when the shape embedding z ⇠ N (0,1) (denoted as ”Random” shape). Table 4 shows that
our optimized shapes are more accurate. In Table 4, we also compare our method with SGPA [15],
even without shape loss to supervise our method, our coarse-level shape reconstruction shows com-
parable results with SGPA. Second, we verify that descriptor-based shape optimization improves
the pose estimation results. We compare the results of the pose estimation under the three canon-
ical shapes (mean, random and optimized) in the Table 2. The results show that we get far better
pose estimation results based on the optimized shape. Besides, Fig. 6 visualizes cases where shapes
become more consistent with observations as optimization progresses.
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Table 4: Comparison of shape reconstruction accuracy
of our methods and SGPA in CD metric (⇥10�3) on
REAL275. Mean and Random refer to the shape when
shape embedding z = 0 and z ⇠ N (0,1).

Methods bottle bowl camera can laptop mug all

SGPA [15] 2.93 0.89 5.51 1.75 1.62 1.12 2.44

Mean 9.55 4.39 12.4 3.03 6.59 2.26 6.05
Random 11.6 5.49 16.1 3.74 7.12 3.63 7.56

Optimized 2.05 1.55 10.1 1.63 2.12 2.93 3.46

Table 5: Comparison of shape reconstruc-
tion accuracy when different number of
atomic primitives are randomly chosen to
optimize the shape in CD (⇥10�3) metric.

|L̃4
sub| w/o. RANSAC w. RANSAC

101 6.79 ± 6.50 4.38 ± 5.41
102 4.86 ± 5.38 3.97 ± 5.15
104 3.68 ± 4.34 3.59 ± 4.54
106 3.46 ± 4.05 3.44 ± 4.13

Real Scene Target Objects Iterative Optimization
Figure 6: Visualization of the shape optimization process. As optimization progresses, our opti-
mized shapes are more consist with observations.

Effect of different numbers of primitives. We conduct an ablation study on the number of se-
mantic primitives. We experiment the number with 64, 128, 256, and 512. As shown in Table 3,
the results show that the accuracy of pose estimation is improved with the increase of the number of
primitives, which indicates that more primitives can represent more complex geometry. The results
show a decline when the number is set to 512 because 512 primitives are relatively redundant for
our 1024 input points, and more primitive classes also decline the accuracy of part segmentation
network (Sec. 3.2). Based on these observations, we use 256 primitives as the default setting in
other experiments.

Effect of different numbers of atomic descriptors. As illustrated in Sec. 3.3, a single atomic
descriptor is insufficient to describe an object’s shape, and concatenating all atomic descriptors to
form a shape descriptor would be computationally expensive and unnecessary. Thus, we conduct
experiments and analyze the influence of the number of atomic descriptors on the shape optimization
results. Specifically, we randomly choose {101, 102, 104, 106} atomic descriptors to form the shape
descriptor and use the chamfer distance to evaluate the quality of the optimized shape. As shown in
Table. 5, the reconstruction error of the optimized shape decreases as the number of atomic descrip-
tors increases, and applying RANSAC in the random selection can further reduce this error. In the
main experiments, we choose 106 atomic descriptors depending on the computational resources and
do not use RANSAC for efficiency.

5 Conclusion and Limitations

We propose a novel category-level shape and pose estimation framework by utilizing the semantic
primitive representation. Leveraging a novel SIM(3)-invariant descriptor, we decouple shape and
pose estimation and optimize the implicitly generated shape in an online iterative way. Experiments
results demonstrate the advantages of our method on the real-scene data compared with other SOTA
methods.

Limitations. As other methods [14, 15, 17], our method also relies on the pre-processed masks of
object instances by Mask R-CNN and extra annotation of symmetry axes when training. Further-
more, although we can reconstruct the object mesh (Sec. B in the supp. material), this by-product
has no influence or contribution to our work. Future work could consider the mesh reconstruction
to get better shape and pose estimation results. Besides, our method does not consider the occlusion
and collision between objects, and may cause ambiguity from single-view observation. Feasible fu-
ture work could fuse color information into our input, or expand the proposed method to multi-view
observation to address these problems.
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