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Scalable Multi-view Unsupervised Feature Selection with
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ABSTRACT
To tackle the high-dimensional data with multiple representations,
multi-view unsupervised feature selection has emerged as a signif-
icant learning paradigm. However, previous methods suffer from
the following dilemmas: (i) The emphasis is on selecting features to
preserve the similarity structure of data, while neglecting the discrim-
inative information in the cluster structure; (ii) They often impose
the orthogonal constraint on the pseudo cluster labels, disrupting
the locality in the cluster label space; (iii) Learning the similarity or
cluster structure from all samples is likewise time-consuming. To
this end, a Scalable Multi-view Unsupervised Feature Selection with
structure learning and fusion (SMUFS) is proposed to jointly exploit
the cluster structure and the similarity relations of data. Specifically,
SMUFS introduces the sample-view weights to adaptively fuse the
membership matrices that indicate cluster structures and serve as
the pseudo cluster labels, such that a unified membership matrix
across views can be effectively obtained to guide feature selection.
Meanwhile, SMUFS performs graph learning from the membership
matrix, preserving the locality of cluster labels and improving their
discriminative capability. Further, an acceleration strategy has been
developed to make SMUFS scalable for relatively large-scale data.
A convergent solution is devised to optimize the formulated prob-
lem, and extensive experiments demonstrate the effectiveness and
superiority of SMUFS.

CCS CONCEPTS
• Computing methodologies → Cluster analysis; Dimensionality
reduction and manifold learning.

KEYWORDS
Multi-view learning; Clustering; Unsupervised feature selection

1 INTRODUCTION
As the information technology advances, multi-view data generated
from diverse sources or descriptors become common in practical
fields, such as multimedia retrieval, image processing and document
analysis [15–17, 27, 40]. Despite providing richer feature repre-
sentations than single-view data, multi-view data are often high-
dimensional, in which there inevitably exist low-quality features and
even noises [10, 31, 34]. Therefore, the direct use of this kind of
data not only involves expensive computation and storage burden
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but also deteriorates the performance of subsequent tasks. To tackle
these problems, multi-view feature selection, aiming to select a com-
pact subset of salient features from heterogeneous feature spaces,
becomes a fundamental yet challenging paradigm in data mining.
Based on the availability for class labels, existing methods can be
performed in supervised, semi-supervised and unsupervised manners
[39], respectively. Due to the time-consuming and labor-intensive
process for labeling data, unsupervised multi-view feature selection
has garnered widespread attention in recent years, which focuses on
the intrinsic structures or relations of data and further leverages them
to identify discriminative features without the guidance of known
labels [19, 21, 43].

To select features from multiple feature spaces, the straightfor-
ward way is to concatenate different views first and then perform
single-view feature selection on the concatenated feature space.
Representative methods include spectral-based feature selection
[14, 41, 42] and graph-based feature selection [5, 20, 24], which
construct graphs to learn the similarity structures of data and choose
features according to the learned structures. Unfortunately, this fea-
ture concatenation manner is prone to overlooking the complemen-
tarity and correlation among views, such that the effectiveness of
selected features might be weakened [6, 13, 36]. Researchers have
noticed this issue and introduced weight factors to distinguish dif-
ferent views instead of simply concatenating them. For example,
Hou et al. [11] utilized view weights to fuse the similarity structures
of data in different views, thereby learning a consistent graph for
feature selection. Dong et al. [7] proposed to learn the collaborative
similarity structure by fusing multiple graphs and perform feature
selection simultaneously. In [38], Zhang et al. exploited both the
view-specific projections and consistent projection to learn the sim-
ilarity structures of data in heterogeneous feature spaces, so as to
guide feature selection. Despite leveraging the diversity and corre-
lation among views, these multi-view methods primarily focus on
learning graphs to characterize similarity structures and perform fea-
ture selection only from the perspective of preserving the similarity
information of data. As a result, the cluster structures containing the
discriminative information of data are generally overlooked, mak-
ing selected features hard to distinguish the samples from different
cluster centers.

To explore the cluster structure information, Liu et al. [18] intro-
duced regression models to learn projection matrices and assumed a
linear mapping between projected samples and the cluster indicator
matrix (i.e., the pseudo cluster labels), thereby using the pseudo
cluster labels provided by 𝑘-means to supervise the process of unsu-
pervised feature selection. To preserve the consensus and diversity
of different views in the cluster label space, Tang et al. [25] utilized
view-specific projection losses to learn a consensus cluster indicator
matrix with the orthogonal and nonnegative constraints for sparse
feature selection. To characterize the cluster structure, Fang et al.
[8] proposed a multi-view unsupervised feature selection method

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: The illustration of SMUFS. Concretely, SMUFS first employs the membership matrices generated by Fuzzy C-Means (FCM)
to explore the view-specific cluster structures. Afterward, the membership matrices are aligned and fused to capture the consistent
cluster information across views. Moreover, the similarity relations contained in the membership matrix can be dynamically updated,
facilitating feature selection. Finally, the 𝑙2,0-norm constraint is imposed on the feature projection matrix to identify the top-𝑘 features.

that simultaneously learns orthogonal cluster centers and an shared
cluster indicator matrix from projected samples. Generally, these
methods first define the feature projection matrices with row sparsity
constraints (e.g., the 𝑙2,1-norm) for feature selection and then per-
form the pseudo cluster label prediction on projected samples, with
the aim to learn the latent cluster information of data. To separate the
samples in different clusters, both the orthogonal and nonnegative
constraints are imposed on the cluster indicator matrix, which is in-
capable of guaranteeing nearby data samples having similar cluster
labels. To alleviate this issue, Bai et al. [1] proposed a multi-view
feature selection method that perform the pseudo label learning and
graph construction simultaneously, assigning similar samples with
similar cluster labels. Shi et al. [21] explicitly imposed a binary
hash constraint on the cluster label matrix to learn multiple binary
labels as the weak supervision information for unsupervised feature
selection. Despite making some progress, these methods directly
conduct orthogonal clustering on projected samples to explore clus-
ter structure, which is susceptible to low-quality samples due to
lacking the guidance of external cluster information, leading to sub-
optimal performance. Furthermore, to capture the intrinsic structures
of data, existing methods directly learn the pseudo cluster labels or
similarity graphs from all samples, such that the optimization proce-
dures involves the orthogonal decomposition or inverse operations
of high-order matrices, making them unbearable for large-scale data.
Another problem is that, the 𝑙2,𝑝 -norm (0 <𝑝 ≤ 1) constraint is often
applied to the feature projection matrix for feature selection, intro-
ducing an additional parameter to promote the sparsity of feature
space. Moreover, the 𝑙2,𝑝 -norm feature selection methods require to
calculate the scores of each feature and then rank the feature scores
to select features, in the procedures of which slight changes of the
feature scores can cause significant fluctuations in feature ranking
results [3], impairing the reliability of selected features.

To address the aforementioned issues, a novel method named
scalable multi-view unsupervised feature selection with structure
learning and fusion (SMUFS) is proposed, whose basic framework

is illustrated in Fig. 1. The main contributions of this paper are
summarized as follows:

• We propose a scalable multi-view unsupervised feature selec-
tion method, which learns view-specific membership matrices
to explore the cluster structure of data and further leverages
them to preserve similarity of cluster labels, improving the
quality of cluster labels and facilitating feature selection.

• We design an adaptive manner for membership matrices fu-
sion, which integrates the aligned membership matrices from
the sample-view perspective to capture the compatible clus-
ter structure across views, not only weakening the negative
impacts of poor-quality views and samples but also properly
balancing the complementarity and correlation among views.

• We devise an acceleration strategy by learning a bipartite
graph between generated anchors and samples, significantly
reducing the computational complexity of SMUFS from O(𝑛3)
to O(𝑛𝑚2 +𝑚3), so as to efficiently handle large-scale data.

2 METHOD
To effectively leverage the underlying structures of the data (i.e.,
similarity structure and cluster structure), we integrate the adap-
tive membership fusion, graph learning and feature selection into a
unified framework. The details will be elaborated in this section.

2.1 Notations and Definitions
Throughout the paper, vectors are denoted in bold lowercase, while
matrices are written in bold uppercase. Given an arbitrary matrix M,
m𝑖 and 𝑚𝑖 𝑗 represent its 𝑖-th row vector and (𝑖, 𝑗)-th element, and
Tr(M) represents the trace of M. Moreover, ∥M∥𝐹 =

√
Tr(M𝑇 M),

∥M∥2,1 =
∑
𝑖 ∥m𝑖 ∥2 and ∥M∥2,0 =

∑
𝑖 ∥m𝑖 ∥02 denote the Frobenius

norm, 𝑙2,1-norm and 𝑙2,0-norm of M, respectively. (𝑥)+ = max(𝑥, 0).
Table 1 lists the important notations in this paper.
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Table 1: Description of Notations

Notation Description
𝑛 ,𝑚 The numbers of samples and anchors, respectively
𝑐, 𝑉 The number of classes and views, respectively
𝑘 The number of selected features
𝑑𝑣 The dimension of 𝑣-th view
𝑑 =

∑𝑉
𝑣=1 𝑑𝑣 The total dimension of 𝑉 views

x𝑣
𝑖
∈ R𝑑𝑣×1 The 𝑖-th sample in 𝑣-th view

x𝑖 = [x1
𝑖
, ..., x𝑉

𝑖
] ∈ R𝑑×1 The 𝑖-th sample

X = [x1, ..., x𝑛] ∈ R𝑑×𝑛 The concatenated feature matrix of samples
{U𝑣}𝑉𝑣=1 ∈ R𝑛×𝑐 The initialized membership matrices of samples
{Ũ𝑣}𝑉𝑣=1 ∈ R𝑛×𝑐 The aligned membership samples
Z ∈ R𝑚×𝑐 The learned membership matrix of anchors
W ∈ R𝑑×𝑐 The feature selection matrix
1 ∈ R𝑐×1 The all-one vector

2.2 Adaptive Membership Matrix Fusion
The membership matrix, indicating the probability of samples to dif-
ferent clustering centers, can be considered as an effective represen-
tation that reflects the data distribution (i.e., soft labels) and contains
latent discriminative information [9, 22]. To deal with multi-view
data, previous methods typically involve two steps, i.e., generating
view-specific membership matrices separately and integrating them
directly for further analysis. As the correspondences between cluster
centers from multiple views are neglected, different membership
matrices are not aligned column-widely [23, 28, 29]. Therefore, the
traditional fusion manner without guaranteeing alignment encounter
the inconsistent cluster information [35]. Considering that multiple
membership matrices should be similar since the relations between
samples and cluster centers will not vary with views, the alignment
can be achieved by solving the following problem:

min
P𝑣

∥U1 − U𝑣P𝑣 ∥2𝐹 s.t. P𝑇𝑣 P𝑣 = P𝑣P𝑇𝑣 = I, (1)

where P𝑣 represents the permutation matrix of 𝑣-th view, making
U1 and U𝑣 consistency in columns (i.e., cluster centers). By de-
composing U𝑇

1 U𝑣 as A𝚺B (i.e., singular value decomposition), the
closed-form solution of Eq. (1) can be calculated as P𝑣 = BA𝑇 [30],
and the aligned membership matrix can be written as Ũ𝑣 = U𝑣P𝑣
(𝑣 = 1, 2, · · · ,𝑉 ).

To learn the distinction and correlation information from data,
existing methods usually introduce weight factors to fuse different
views, focusing on the information interaction in the view level.
However, data collected from heterogeneous sources inevitably con-
tain poor-quality samples, such a fusion manner fails to consider
the contribution diversity of samples, impairing the effectiveness of
fusion models. To enhance the robustness of multi-view fusion, the
differences of samples should be taken into consideration. Thus, an
adaptive membership matrix fusion manner devised as follows:

min
𝜶1=1,𝜶 ≥0

𝑛∑
𝑖=1

∥u𝑖 −
𝑉∑
𝑣=1

𝛼𝑣𝑖 ũ𝑣𝑖 ∥
2
2, (2)

where u𝑖 represents the 𝑖-th row of the unified membership matrix
and ũ𝑣

𝑖
is the 𝑖-th row of the 𝑣-th aligned membership matrix. 𝜶 =

[𝜶1; · · · ;𝜶𝑛] ∈ R𝑛×𝑣 is the sample-view weight matrix, whose 𝑖-th
row 𝜶𝑖 = [𝛼1

𝑖
, · · · , 𝛼𝑣

𝑖
] ∈ R1×𝑣 measures the importance of 𝑖-sample

in each view. In contrast to previous models, Eq. (2) integrates
the aligned membership matrices from both the sample and view
levels, not only avoiding the effects caused by misalignment but

also discriminating different views and samples, so as to obtain a
consistent cluster structure across views.

2.3 Feature Selection with Graph Learning
In unsupervised scenarios, learning the pseudo label that reveals
the cluster structure and projecting samples to the label space can
facilitate the selection of informative features [21]. Therefore, the
unified membership matrix that contains the consistent cluster struc-
ture information across multiple views can be used as the cluster
indicators to guide feature selection, formulated as:

min
∥W∥2,0=𝑘

∥X𝑇 W − U∥2𝐹 . (3)

In Eq. (3), the 𝑙2,0-norm constraint is applied directly rather than
the 𝑙2,𝑝 -norm constraint, such that the informative features related
to the membership matrix U can be selected automatically and an
additional parameter for the 𝑙2,𝑝 -norm regularization is likewise
avoided. To ensure that close samples have similar pseudo labels,
we propose graph learning to preserve locality in the learned cluster
labels (i.e., the membership matrix):

min
S1=1,S≥0

𝑛∑
𝑖, 𝑗=1

∥u𝑖 − u𝑗 ∥22𝑠𝑖 𝑗 + 𝛽 ∥S∥2𝐹 , (4)

where 𝑠𝑖 𝑗 measures the similarity between the 𝑖-th and 𝑗-th samples,
and 𝛽 is the regularization parameter. Eq. (4) assigns larger similarity
to the samples that are close to each other in the membership matrix,
making the learned membership matrix U vary smoothly on the
graph S. By combining the membership matrix fusion, graph learning
and feature selection into a unified framework, the final objective
function of SMUFS is derived as follows:

min
U,𝜶 ,S,∥W∥2,0=𝑘

𝑛∑
𝑖=1

∥u𝑖 −
𝑉∑
𝑣=1

𝛼𝑣
𝑖 ũ𝑣

𝑖 ∥22 + 𝜆

𝑛∑
𝑖,𝑗=1

∥u𝑖 − u𝑗 ∥22𝑠𝑖 𝑗

+ 𝛽 ∥S∥2𝐹 + 𝛾 ∥X𝑇 W − U∥2𝐹
s.t. 𝜶1 = 1,𝜶 ≥ 0,U1 = 1,U ≥ 0, S1 = 1, S ≥ 0. (5)

In Eq. (5), U can be dynamically derived from the aligned view-
specific membership matrices and the similarity graph S, such that
the cluster structure and the similarity structure can promote each
other mutually, not only enhancing the discriminative capability of
U but also further facilitating the ultimate feature selection.

2.4 Alternate Optimization
Since the 𝑙2,0-norm constraint is hard to be solved directly, the Aug-
mented Lagrangian Method (ALM) [2] is employed to address it.
Specifically, an auxiliary variable E = W is first introduced, and thus
Eq. (5) can be transformed into the following equivalent form:

min
U,𝜶 ,S,W,∥E∥2,0=𝑘

𝑛∑
𝑖=1

∥u𝑖 −
𝑉∑
𝑣=1

𝛼𝑣
𝑖 ũ𝑣

𝑖 ∥22 + 𝜆

𝑛∑
𝑖,𝑗=1

∥u𝑖 − u𝑗 ∥22𝑠𝑖 𝑗

+ 𝛽 ∥S∥2𝐹 + 𝛾 ∥X𝑇 W − U∥2𝐹 + 𝜇

2
∥E−W +𝚷

𝜇
∥2𝐹

s.t. 𝜶1 = 1,𝜶 ≥ 0,U1 = 1,U ≥ 0, S1 = 1, S ≥ 0, (6)

where 𝜇 ∈ R1×1 and 𝚷 ∈ R𝑛×𝑐 represent the penalty parameter and
Lagrange multipliers, respectively. Noting that Eq. (6) is not jointly
convex with respective to (i.e., w.r.t.) all variables, we design an itera-
tive strategy to archive the optimal solution by alternately optimizing
each variable. The optimization procedures are as follows:
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• Update U: By fixing other variables, the optimization problem
of Eq. (6) w.r.t. U becomes:

min
U

𝑛∑
𝑖=1

∥u𝑖 −
𝑉∑
𝑣=1

𝛼𝑣𝑖 ũ𝑣𝑖 ∥
2
2 + 𝜆

𝑛∑
𝑖, 𝑗=1

∥u𝑖 − u𝑗 ∥22𝑠𝑖 𝑗

+ 𝛾 ∥X𝑇 W − U∥2𝐹 s.t. U1 = 1,U ≥ 0. (7)

To efficiently solve Eq. (7), a fast two-stage way is adopted. First,
we disregard the constrains about U and solve the following problem
to obtain the latent solution U∗:

min
U∗

𝑛∑
𝑖=1

∥u∗
𝑖 −

𝑉∑
𝑣=1

𝛼𝑣
𝑖 ũ𝑣

𝑖 ∥22 + 𝜆

𝑛∑
𝑖,𝑗=1

∥u∗
𝑖 − u∗

𝑗 ∥22𝑠𝑖 𝑗 + 𝛾 ∥X𝑇 W − U∗ ∥2𝐹 . (8)

Taking derivative of Eq. (8) w.r.t. U∗ to zero, we have:

U∗ =
(
(1 + 𝛾 )I + 𝜆L𝑠

)−1 (C + 𝛾X𝑇 W) , (9)

where L𝑠 is the Laplacian matrix of S, and C denotes the merged
membership matrix whose 𝑖-th row c𝑖 =

∑𝑉
𝑣=1 𝛼

𝑣
𝑖

ũ𝑣
𝑖
. Subsequently,

the optimal solution of U can be derived via projecting U∗ into the
constrained space, formulated as follows:

min
U1=1,U≥0

∥U − U∗ ∥2𝐹 , (10)

which can be efficiently solved with a closed-form solution [12].
• Update 𝜶 : By fixing other variables except 𝜶 , we have the

following subproblem:

min
𝜶 1=1,𝜶≥0

𝑛∑
𝑖=1

∥u𝑖 −
𝑉∑
𝑣=1

𝛼𝑣
𝑖 ũ𝑣

𝑖 ∥22. (11)

Considering that Eq. (11) is independent for different rows, so that
each row of 𝜶 (i.e., 𝜶𝑖 ) can be separately optimized. Specifically,
the objective function of Eq. (11) can be reformulated as follows
(the detailed process is given in Appendix):

min
𝜶𝑖 1=1,𝜶𝑖≥0

𝜶𝑖D𝑖D𝑇
𝑖 𝜶𝑖 . (12)

where D𝑖 = [d1
𝑖
; ...; d𝑉

𝑖
] ∈ R𝑉×𝑐 , and d𝑣

𝑖
= u𝑖 − ũ𝑣

𝑖
∈ R1×𝑐 . Since

D𝑖D𝑇
𝑖

is semi-definite, Eq. (12) is a quadratic convex programming
problem, which can be solved efficiently.

• Update W: When other variables are fixed expect W, the opti-
mization subproblem of Eq. (6) becomes:

min
W

𝛾 ∥X𝑇 W − U∥2𝐹 + 𝜇

2
∥E−W +𝚷

𝜇
∥2𝐹 . (13)

Calculating the derivative of Eq. (13) w.r.t. W and setting it to zero,
we obtain the optimal solution of W as:

W = (𝛾XX𝑇 + 𝜇

2
I)−1 (𝛾XU + 𝜇

2
E + 𝚷

2
) . (14)

When the number of samples (i.e., 𝑛) is less than the total feature di-
mension (i.e., 𝑑), the matrix identity1 can be used to reformulate the
solution of W, with the aim to reduce the computation complexity:

W =


(𝛾XX𝑇 + 𝜇

2 I)−1 (𝛾XU + 𝜇

2 E + 𝚷

2 ), if 𝑑 < 𝑛( 2
𝜇

I𝑑 − 4
𝜇2

X( 1
𝛾

I𝑛 + 2
𝜇

X𝑇 X)−1X𝑇
)
(𝛾XU + 𝜇

2 E + 𝚷

2 ), otherwise
. (15)

• Update S: By fixing other variables except S, we have the
following subproblem:

min
S1=1,S≥0

𝜆 ∥u𝑖 − u𝑗 ∥22𝑠𝑖 𝑗 + 𝛽 ∥S∥2𝐹 . (16)

1 (A + CBC𝑇 )−1 = A−1 − A−1C(B−1 + C𝑇 A−1C)−1C𝑇 A−1

Similar to the 𝜶 subproblem, each row of S (i.e., s𝑖 ) is uncorre-
lated with others, hence Eq. (16) can be optimized for each row
independently as follows:

min
s𝑖 1=1,s𝑖≥0

∥s𝑖 +
1
2𝛽

d𝑖 ∥22, (17)

where d𝑖 is a row vector with 𝑑𝑖 𝑗 = 𝜆∥u𝑖−u𝑗 ∥22. Sorting the elements
of d in ascending order to get d̃ and assuming that each sample
has 𝑓 -nearest neighbors, then the parameter 𝛽 can be determined
automatically as: 𝛽 =

∑𝑛
𝑖=1

1
2𝑛 (𝑘𝑑𝑖,𝑓 +1 −

∑𝑓

𝑗=1 𝑑𝑖,𝑗 ) [20]. The solution
of s𝑖 can be derived as (the detailed process is given in Appendix):

𝑠𝑖 𝑗 = (
𝑑𝑖,𝑓 +1 − 𝑑𝑖,𝑗

𝑓 𝑑𝑖,𝑓 +1 −
∑𝑓

𝑗=1 𝑑𝑖,𝑗
)+. (18)

• Update E: By fixing other variables except E, we have the
following subproblem:

min
∥E∥2,0=𝑘

∥E−W +𝚷

𝜇
∥2𝐹 . (19)

Denoting Θ as the set of the 𝑘 smallest 𝑙2-norm row vector of W− 𝚷

𝜂
,

then the optimal solution of E can be obtained as:

e𝑖 =

{
w𝑖 − 𝚷𝑖

𝜂
, if 𝑖 ∈ Θ;

0, others
(20)

where e𝑖 , w𝑖 and 𝚷𝑖 are the 𝑖-th rows of E, W and 𝚷, respectively.
• Update ALM parameters: In each iteration, we update the

penalty parameter 𝜇 and the Lagrange multipliers 𝚷 as follows:

𝚷 = 𝚷 + 𝜇 (E − W)
𝜇 = 𝜌𝜇. (21)

where 𝜌 is a constant update rate. After iteratively solving these sub-
problems until convergence, we can directly obtain the top-𝑘 features
from the feature selection matrix W. The entire process for solving
Eq. (6) is summarized in Algorithm 1. Now, we further analyze
the computation complexity of the proposed SMUFS. Specifically,
updating U and W involve the inverse operation of matrices, costing
O(𝑛3) and O

(
𝑛𝑑 ∗min(𝑛,𝑑)

)
respectively. When calculating S, it re-

quires O(𝑛) for each row and incurs O(𝑛2) for the entire S. Besides,
the optimization of 𝜶 and E needs poly(𝑉 ) and O(𝑑𝑘+𝑑𝑐). Since 𝑉
and 𝑐 are small constants in practice, the main computational com-
plexity of SMUFS is approximated by O

(
𝑇∗(𝑛3+𝑛2+𝑛𝑑∗min(𝑛,𝑑))

)
,

where 𝑇 represents the number of iterations.

2.5 Accelerated SMUFS with Bipartite Graph
Since SMUFS involves constructing the 𝑛-order similarity graphs
and calculating the inverse of an 𝑛 × 𝑛 dense matrix

(
i.e., (1 +

𝛾)I + 𝜆L𝑠 in Eq. (10)
)
, it is impractical to handle relatively large-

scale problems. Inspired by the bipartite graph strategy [4, 32, 37]
that constructs a similarity matrix between representative anchors
and samples, an accelerated solution has been devised for SMUFS.
Specifically, we firstly employ the FCM to generate 𝑚 clustering
centers as anchors, and then learn a bipartite graph R ∈ R𝑛×𝑚
to explore the similarity relations between samples and anchors.
Therefore, the objective function of SMUFS can be reformulated as:
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Algorithm 1 : Optimization Algorithm for SMUFS

Input: Data X, the cluster number 𝑐, and the parameters 𝜆 and 𝛾 ;
1: Calculate the view-specific U𝑣 by FCM and learn the permuta-

tion matrices T𝑣 by solving Eq. (1);
2: Initialize 𝛼𝑖𝑣 = 1/𝑉 (𝑣 = 1, · · · ,𝑉 ); Initialize W by min ∥X𝑇 W−

U∥2
𝐹

; Initialize S by Eq. (18);
3: repeat
4: Update U by Eq. (10);
5: Update 𝜶 by Eq. (12);
6: Update W by Eq. (14);
7: Update S by Eq. (18);
8: Update E by Eq. (20);
9: Update 𝜇 and 𝚷 by Eq. (21);

10: until Eq. (6) converges;
Output: The projection matrix W that contains 𝑘 nonzero rows.

min
U,Z,𝜶 ,R,W,∥E∥2,0=𝑘

𝑛∑
𝑖=1

∥u𝑖 −
𝑉∑
𝑣=1

𝛼𝑣
𝑖 ũ𝑣

𝑖 ∥22 + 𝜆Tr(
[

U
Z

]𝑇
LR̃

[
U
Z

]
)

+ 𝛽 ∥R∥2𝐹 + 𝛾 ∥X𝑇 W − U∥2𝐹 + 𝜇

2
∥E−W +𝚷

𝜇
∥2𝐹

s.t. 𝜶1 = 1,𝜶 ≥ 0,U1 = 1,U ≥ 0,Z1 = 1,Z ≥ 0,R1 = 1,R ≥ 0. (22)

where Z ∈ R𝑚×𝑐 represents the learned membership matrix of
anchors, and LR̃ ∈ R(𝑛+𝑚)×(𝑛+𝑚) denotes the Laplacian matrix of

the augmented graph R̃ =

[
0 R

R𝑇 0

]
, calculated as:

LR̃ =

[
D 0
0 Λ

]
−
[

0 R
R𝑇 0

]
=

[
I𝑛 −R
−R𝑇 Λ

]
, (23)

where D and Λ are diagonal matrices whose elements are row sums
and column sums of the bipartite graph R, respectively. Noting that
the subproblems of W, 𝜶 and E remain consistent with the Eq. (6),
indicating that they can be directly solved using the corresponding
steps in Algorithm 1. When updating R, the subproblem is:

min
R1=1,R≥0

𝑛∑
𝑖=1

𝑚∑
𝑗=1

∥u𝑖 − z𝑗 ∥22𝑟𝑖 𝑗 + 𝛽 ∥R∥2𝐹 , (24)

which can be computed by rows, requiring the computational com-
plexity of O(𝑛𝑚). To optimize U and Z, the subproblem of Eq. (22)
is transformed into:

min
U,Z

∥U − C∥2𝐹 + 𝜆Tr(
[

U
Z

]𝑇
LR̃

[
U
Z

]
) + 𝛾 ∥X𝑇 W − U∥2𝐹

s.t. U1 = 1,U ≥ 0,Z1 = 1,Z ≥ 0. (25)

Setting the derivative of Eq. (25) w.r.t. Z to zero directly, the latent
solution of Z is derived as:

Z∗ = Λ−1R𝑇 U. (26)

Noting that Z∗ satisfies the constrains of Z (i.e., Λ−1R𝑇 U1 = 1 and
Λ−1R𝑇 U > 0), thus Z∗ is the optimal solution of Eq. (25). Then,
substituting Z = Λ−1R𝑇 U into Eq. (25) and setting its derivative w.r.t.
U to zero, the latent solution of U∗ is obtained as:

U∗ = (H − 𝜆RΛ−1R𝑇 )−1 (C + 𝛾X𝑇 W) , (27)

where H = (1+𝜆 +𝛾)I. Noting that Eq. (27) also involves the inverse
operation of an 𝑛×𝑛 dense matrix (i.e., H−𝜆RΛ−1R𝑇 ), requiring the

Table 2: Detailed information on multi-view datasets.

Dataset Classes Data size Feature size
MSRC-v1 7 210 2418(1302/48/512/100/256/200)
ORL 40 400 1689(512/59/864/254)
Cal-9 9 900 3766(48/40/254/1984/512/928)
COIL-20 20 1440 2801(512/420/1239/630)
Leaves 100 1600 192(64/64/64)
HW 10 2000 649(240/76/216/47/64/6)
Voxceleb 50 18354 757(179/475/21/17/65)
Mnist 10 20000 459(256/144/59)

computation complexity of O(𝑛3) at least. To this end, we further
simplifies the solution of U∗ by the matrix identity2:

U∗ = H−1 (C+𝛾X𝑇 W) +H−1R( Λ
𝜆
− R𝑇 H−1R)−1R𝑇 H−1 (C+𝜆X𝑇 W) . (28)

Therefore, the inverse of H − 𝜆RΛ−1R𝑇 is equivalently substituted
by the inverses of a diagonal matrix (i.e., H) and an 𝑚 ×𝑚 matrix
(i.e., Λ

𝜆
− R𝑇 H−1R). By calculating the above formula from right

to left, the computation complexity of solving U∗ can be reduced
from O(𝑛3) to O(𝑛𝑚2 +𝑚3). Considering that 𝑚 ≪ 𝑛 for large-
scale data, our accelerated strategy can reduce the main computation
complexity of SMUFS from O(𝑛3 +𝑛2 +𝑛𝑑 ∗min(𝑛,𝑑)) to O(𝑛𝑚2 +
𝑛𝑑 ∗min(𝑛,𝑑) +𝑚3).

3 EXPERIMENTS
3.1 Experimental Settings
In this section, eight real-word datasets are employed, including:
MSRC-v13, ORL4, Cal-95, Leaves6, COIL-207, HW8, Mnist9 and
Voxceleb10. The details of datasets are summarized in Table 2. To
fully evaluate the effectiveness and efficiency of SMUFS, we con-
duct the comparative experiments with five state-of-the-art feature
selection methods, including (1) Multi-view Unsupervised Feature
Selection with Adaptive Similarity and View Weight (ASVW) [11];
(2) Multilevel Projections with Adaptive Neighbor Graph for Unsu-
pervised Multi-View Feature Selection (MAMFS) [38]; (3) Robust
Unsupervised Feature Selection via Multi-Group Adaptive Graph
Representation (MGAGR) [33]. (4) Unsupervised Feature Selec-
tion with Binary Hashing (FSBH) [21]. (5) Joint Multi-View Un-
supervised Feature Selection and Graph Learning (JMVFS) [8].
To ensure fair comparisons, the parameters of all compared meth-
ods are searched according to their respective works. For the pro-
posed SMUFS, the regularization parameters 𝜆 and 𝛾 are tuned from
{10−3, 10−2, · · · , 103}. To enhance the efficiency of SMUFS on the
Mnist and Voxceleb datasets, the acceleration strategy proposed in
Section 2.5 is employed to construct bipartite graphs by setting the
number of anchors as𝑚 = 10% × 𝑛. After obtaining feature subsets
by each feature selection method, K-means clustering is executed
20 times independently on the samples represented by the selected

2 (A + CBC𝑇 )−1 = A−1 − A−1C(B−1 + C𝑇 A−1C)−1C𝑇 A−1
3http://research.microsoft.com/en-us/projects/objectclassrecognition/
4https://www.kaggle.com/datasets/tavarez/the-orl-database-for-training-and-testing
5https://data.caltech.edu/records/mzrjq-6wc02
6https://archive.ics.uci.edu/dataset/
7https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
8https://archive.ics.uci.edu/dataset/72/multiple+features
9https://www.kaggle.com/datasets/hojjatk/mnist-dataset
10https://www.robots.ox.ac.uk/~vgg/data/voxceleb/
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Table 3: ACC of different methods with different numbers of features. The best and second results are in bold and underlined.

Datasets Feature ratio 10% 15% 20% 25% 30% 35%

MSRC-v1

ASVW 78.67±1.74 80.81±0.83 81.00±0.62 82.10±1.26 82.43±1.51 81.95±1.48
MAMFS 66.76±3.96 65.62±3.94 65.67±3.10 65.95±4.43 66.81±5.37 69.71±6.42
MGAGR 84.71±6.05 89.29±4.62 90.57±3.63 90.71±4.06 92.19±1.45 92.19±3.97

FSBH 91.95±2.79 92.48±1.50 92.86±0.98 92.38±1.00 91.86±0.75 92.95±1.08
JMVFS 94.24±0.69 94.00±0.56 94.67±1.17 94.43±1.03 94.10±0.56 93.67±0.61
SMUFS 97.43±0.49 96.19±1.02 95.71±0.82 96.05±0.85 95.62±0.92 94.76±0.48

ORL

ASVW 65.05±1.71 64.90±1.68 68.28±2.34 67.98±2.96 69.90±3.90 70.53±2.45
MAMFS 64.17±2.47 63.25±2.14 63.85±3.27 64.20±2.47 64.18±2.04 64.15±3.89
MGAGR 65.35±4.07 67.10±2.38 67.55±2.10 68.90±2.44 67.90±3.19 68.58±2.96

FSBH 67.30±2.09 64.97±2.83 65.85±2.35 65.33±3.23 65.78±2.59 65.33±3.37
JMVFS 74.58±3.01 74.32±3.42 72.63±2.39 73.38±3.35 74.00±2.21 72.78±2.35
SMUFS 74.93±2.71 74.02±2.08 72.73±2.67 75.87±1.62 74.08±2.43 74.48±2.87

Cal-9

ASVW 72.40±0.74 74.01±1.29 74.63±1.06 74.50±1.12 74.42±0.54 74.23±0.52
MAMFS 69.71±0.65 69.98±1.13 71.26±1.16 72.12±0.37 72.99±0.77 73.12±0.61
MGAGR 72.60±1.63 73.64±1.25 74.57±0.68 75.29±1.01 75.01±0.48 74.89±1.06

FSBH 72.86±1.47 74.68±1.71 75.69±0.76 75.48±1.03 75.08±0.61 75.46±0.44
JMVFS 75.09±0.61 75.49±0.55 76.03±0.58 75.64±0.39 76.21±0.47 76.16±0.64
SMUFS 76.08±1.03 76.04±0.59 76.22±0.58 76.01±0.76 76.12±0.46 76.22±0.79

Leaves

ASVW 46.16±1.04 53.62±1.33 58.54±1.06 62.44±1.67 66.39±2.12 68.49±1.55
MAMFS 50.19±0.99 54.98±1.13 59.79±2.21 63.64±1.46 65.93±1.95 67.31±1.34
MGAGR 43.71±0.52 54.20±1.76 59.78±1.18 64.93±1.77 67.93±1.83 70.79±1.61

FSBH 56.54±1.06 61.53±1.44 65.79±1.66 67.75±0.81 67.19±1.38 68.58±1.17
JMVFS 52.95±0.89 61.26±1.29 66.27±1.70 68.98±2.02 70.20±1.16 73.56±1.81
SMUFS 57.01±1.44 61.29±1.36 66.99±1.56 69.76±1.74 70.92±1.73 74.91±1.53

COIL20

ASVW 73.22±2.34 74.51±2.29 74.76±2.55 73.68±3.23 75.13±3.15 77.25±2.53
MAMFS 75.77±2.12 76.71±2.76 75.20±2.32 75.49±3.51 75.69±2.66 75.76±1.55
MGAGR 66.22±2.15 69.77±2.57 70.89±2.44 71.17±3.91 72.15±5.19 71.29±3.18

FSBH 74.45±2.62 74.40±2.89 75.06±3.85 74.50±2.46 76.29±4.42 74.01±3.67
JMVFS 76.49±2.74 76.83±3.83 75.53±2.55 76.55±2.29 76.42±3.86 76.01±2.69
SMUFS 77.02±1.99 76.97±2.18 75.78±3.80 76.70±3.28 76.75±2.90 76.29±3.00

HW

ASVW 92.23±1.05 93.28±0.18 93.09±0.10 94.91±1.78 93.13±0.14 94.76±3.18
MAMFS 82.08±3.72 89.09±0.11 89.75±0.47 89.87±0.23 89.96±0.24 90.75±0.16
MGAGR 65.06±2.24 69.44±3.97 82.56±0.81 89.90±0.10 91.71±0.22 91.05±0.13

FSBH 87.68±0.56 88.75±0.39 90.29±0.24 90.87±0.26 91.01±0.29 92.04±0.13
JMVFS 92.35±0.12 94.21±0.08 93.82±0.10 94.11±0.08 94.08±0.17 93.88±1.34
SMUFS 91.85±1.25 94.38±0.15 94.07±0.56 95.06±0.28 94.30±0.31 94.81±0.21

Voxceleb

ASVW 75.66±2.93 76.00±2.88 76.23±2.69 77.90±2.59 77.83±4.06 80.45±2.15
MAMFS 58.76±1.69 72.52±3.45 76.12±2.51 79.85±2.35 80.08±3.44 80.11±3.23
MGAGR 75.26±2.65 76.67±3.20 77.26±1.01 78.45±2.01 78.57±1.67 79.06±1.83

FSBH 77.53±2.08 77.88±3.52 78.86±3.94 79.17±2.34 80.45±3.76 80.14±2.96
JMVFS 76.37±2.28 78.72±1.48 79.08±2.81 78.85±1.34 80.17±3.35 79.37±1.78
SMUFS 77.21±1.83 78.55±2.46 78.94±2.25 80.11±3.29 80.51±1.31 80.57±2.61

Mnist

ASVW 30.16±0.17 32.20±0.91 34.40±0.57 30.85±0.46 31.26±0.58 32.49±0.30
MAMFS 32.46±0.47 34.33±0.55 33.74±1.85 32.62±1.70 33.30±2.34 32.06±0.60
MGAGR 23.97±0.71 25.66±0.38 35.17±2.34 37.43±2.53 34.04±3.02 37.29±2.80

FSBH 35.65±0.48 37.80±1.85 35.15±1.63 35.68±0.12 33.43±2.08 33.21±1.69
JMVFS 34.68±0.09 36.76±0.71 35.52±1.92 36.44±1.11 33.94±0.21 36.98±0.25
SMUFS 35.36±0.46 38.30±0.69 35.66±1.55 36.23±1.48 33.58±1.98 37.82±1.64

features. The average results, including accuracy (ACC) and normal-
ized mutual information (NMI), are reported to evaluate the quality
of the selected features by different methods.

3.2 Comparison Results
Tables 3 and 4 present the means and standard deviations of ACC
and NMI, where the optimal and sub-optimal results are highlighted
in bold and underlined, respectively. From the results, we can drawn
the following conclusions: (1) As the number of selected features
varies, SMUFS consistently achieves competitive or superior results
to others, indicating its effectiveness when handle multi-view un-
supervised feature selection tasks. (2) The ACC and NMI obtained
by SMUFS outperform the methods that focus on selecting fea-
tures to preserve the similarity structure (i.e., ASVW, MAMFS and
MGAGR), underscoring the importance of leveraging discriminative
information in the cluster structure. (3) Compared to the methods

that consider both cluster structure and similarity structure (i.e.,
FSBH and JMVFS), SMUFS exhibits better performance in most
cases, emphasizing the significance of integrating external cluster
information and preserving the locality of cluster labels. Meanwhile,
Table 5 presents the training time of each method on small datasets,
validating that SMUFS can obtain comparable efficiency to other
methods. And Fig. 2 further depicts the relation between the running
time and the data size on the Voxceleb and Mnist datasets. As the
size of the training samples increase, we observe that the training
time of other methods rises exponentially, whereas the accelerated
SUMFS exhibits a linear growth, demonstrating the scalability of
SMUFS when dealing with large datasets.
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Table 4: NMI of different methods with different numbers of features. The best and second results are in bold and underlined.

Datasets Feature ratio 10% 15% 20% 25% 30% 35%

MSRC-v1

ASVW 68.37±2.30 71.36±0.76 71.14±0.41 70.97±1.37 71.74±1.81 71.88±1.44
MAMFS 63.09±1.48 62.39±1.28 62.23±1.68 63.05±1.23 63.15±1.76 64.32±2.07
MGAGR 78.67±5.61 84.40±3.36 85.53±2.82 85.43±3.68 86.54±2.10 87.05±3.56

FSBH 85.19±3.66 85.78±3.21 86.37±3.09 86.40±2.78 86.02±4.72 87.60±1.66
JMVFS 87.75±3.26 87.51±0.82 86.77±1.09 85.59±1.34 86.41±1.12 86.11±0.83
SMUFS 94.68±0.91 92.25±1.59 91.32±1.36 92.15±1.33 91.12±1.60 89.70±2.18

ORL

ASVW 82.71±1.14 83.12±0.62 84.86±1.27 85.73±1.54 86.75±1.39 87.50±1.16
MAMFS 81.97±1.18 81.02±0.79 81.51±1.25 82.05±1.44 81.73±1.12 82.47±1.44
MGAGR 83.74±1.69 84.22±1.22 85.09±1.42 86.21±1.53 85.29±1.17 85.54±1.30

FSBH 83.66±1.72 83.16±1.94 83.17±1.33 83.31±1.45 83.09±1.48 83.35±0.99
JMVFS 89.93±0.87 90.35±1.26 89.28±1.13 89.55±1.09 89.11±1.23 88.78±1.07
SMUFS 90.22±1.13 89.57±1.16 89.81±1.18 90.90±1.07 89.81±0.99 89.94±0.98

Cal-9

ASVW 59.32±0.46 61.70±0.36 63.22±0.50 64.17±0.34 64.54±0.49 64.52±0.45
MAMFS 59.67±0.65 60.38±0.62 60.87±0.54 61.68±1.09 62.30±0.61 62.71±0.55
MGAGR 62.84±0.98 63.68±1.19 64.59±0.75 65.60±1.10 65.75±0.49 65.08±0.77

FSBH 61.55±1.13 65.66±0.70 66.46±0.77 66.96±0.89 66.71±0.48 67.37±0.53
JMVFS 64.67±0.31 65.45±0.32 66.06±0.41 65.67±0.58 66.39±0.65 66.42±0.58
SMUFS 66.34±0.65 66.36±0.52 66.18±0.72 67.05±0.79 66.83±0.59 66.48±0.83

Leaves

ASVW 71.41±0.32 76.90±0.40 79.98±0.41 82.72±0.77 85.14±0.62 87.20±0.53
MAMFS 74.58±0.51 77.26±0.55 79.77±0.71 82.46±0.45 83.85±0.53 84.94±0.44
MGAGR 69.45±0.43 76.41±0.63 80.57±0.40 83.92±0.70 85.72±0.47 87.51±0.71

FSBH 78.14±0.44 82.69±0.65 86.03±0.49 87.26±0.43 88.49±0.40 89.00±0.31
JMVFS 75.70±0.29 81.65±0.55 85.75±0.35 86.63±0.71 88.30±0.42 89.26±0.54
SMUFS 78.96±0.46 81.35±0.53 86.10±0.52 86.91±0.48 88.76±0.57 90.11±0.76

COIL20

ASVW 83.81±1.25 84.28±1.02 85.35±1.20 84.73±1.23 85.21±1.40 86.74±1.63
MAMFS 84.48±1.40 85.24±0.93 84.78±1.60 85.37±1.30 85.39±1.51 85.43±0.79
MGAGR 81.02±2.10 82.78±0.94 83.22±1.16 84.31±1.91 84.63±1.76 84.53±2.07

FSBH 84.86±0.58 85.22±1.60 85.69±1.20 85.90±1.22 87.43±1.58 85.48±2.22
JMVFS 86.67±1.44 85.80±1.13 86.21±1.28 86.31±1.07 87.55±1.12 86.37±1.61
SMUFS 87.57±1.48 86.89±0.74 86.56±1.14 87.24±1.20 86.70±1.07 86.61±1.50

HW

ASVW 85.30±0.91 89.05±0.71 88.46±1.47 89.60±0.29 87.93±1.67 89.40±0.14
MAMFS 77.87±1.79 81.29±0.20 82.31±0.66 83.58±0.21 83.87±1.87 84.35±0.30
MGAGR 48.29±1.40 54.88±2.02 70.46±0.70 80.61±0.18 83.82±0.23 83.77±0.26

FSBH 78.21±0.19 80.41±0.29 82.26±0.34 83.63±2.77 83.51±0.32 84.85±1.19
JMVFS 89.24±0.20 88.54±0.09 88.04±0.14 88.96±0.16 88.93±2.03 89.18±1.88
SMUFS 88.18±0.80 89.65±0.16 90.08±1.36 91.14±0.25 89.36±1.54 89.67±0.24

Voxceleb

ASVW 86.28±1.00 88.72±1.12 89.39±0.84 90.39±1.08 90.77±1.30 91.91±0.62
MAMFS 71.79±0.81 86.87±1.02 89.19±0.92 90.41±0.68 91.41±0.39 92.18±1.07
MGAGR 82.33±0.87 84.11±0.58 85.83±0.74 86.99±0.75 89.98±1.22 88.12±1.04

FSBH 86.84±0.82 87.64±1.09 87.74±1.52 88.48±0.85 89.20±0.95 89.39±0.96
JMVFS 87.44±0.79 89.72±0.58 90.57±0.88 91.32±1.08 91.77±0.78 91.52±0.99
SMUFS 86.94±0.35 89.65±0.72 90.95±0.74 91.46±0.57 91.52±0.54 91.81±0.94

Mnist

ASVW 19.10±0.11 21.18±0.35 22.42±0.59 20.48±0.21 21.51±0.62 22.87±0.38
MAMFS 22.78±0.44 25.38±0.90 25.29±1.04 25.05±0.60 25.32±1.65 24.33±0.29
MGAGR 12.18±0.29 17.04±0.37 26.28±1.36 27.54±1.44 26.73±2.08 28.09±1.92

FSBH 22.20±0.74 25.39±1.33 21.94±1.31 23.89±0.24 23.50±0.97 23.82±1.31
JMVFS 23.59±0.24 24.22±0.36 25.97±0.98 24.06±0.31 26.14±2.05 23.26±0.03
SMUFS 25.88±0.65 26.02±1.08 28.07±1.27 26.61±1.32 25.93±1.07 27.51±1.35

Table 5: Running time (in seconds) of each method. The best
and second results are in bold and underlined, respectively.

Datasets ASVW MAMFS MGAGR FSBH JMVFS SMUFS
MSRC-v1 1.83 9.89 1.48 2.48 0.16 0.45

ORL 1.53 4.05 1.61 1.42 0.23 0.27
Cal-9 4.60 37.36 20.08 9.93 1.42 1.21

Leaves 0.63 0.52 2.13 0.31 1.44 0.40
COIL20 2.41 14.11 31.17 6.53 1.55 0.93

HW 0.91 2.04 9.41 7.68 3.27 0.55

3.3 Ablation Study
To verify the effectiveness of each components in the proposed
structure learning and fusion model, an ablation experiment is con-
ducted. Specifically, three variants of SMUFS have been designed:
SMUFS1 neglects the correspondence of clustering centers from
multiple views, learning the cluster information from unaligned
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Figure 2: Running time versus the number of samples.

membership matrices; SMUFS2 directly employs the view weights
to discriminate multiple views and fuse membership matrices only
from the view perspective; SMUFS3 retains membership matrix fu-
sion and excludes the graph learning part. The experimental results
of SMUFS and its simplified versions are presented in Fig. 3, where
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Figure 3: ACC and NMI of SMUFS and its simplified versions.

-20 -10 0 10 20 30 40

-10

-5

0

5

10

15

20

25

30

35

(a) ASVW

-40 -35 -30 -25 -20 -15 -10 -5 0 5 10

-30

-25

-20

-15

-10

-5

0

5

10

15

20

(b) MAMFS

-30 -20 -10 0 10 20 30

-40

-30

-20

-10

0

10

20

(c) MGAGR

-30 -20 -10 0 10 20 30

-20

-15

-10

-5

0

5

10

15

20

25

30

(d) FSBH

-30 -25 -20 -15 -10 -5 0 5 10 15

-30

-20

-10

0

10

20

30

(e) JMVFS

-20 -15 -10 -5 0 5 10 15 20 25 30

-30

-20

-10

0

10

20

30

40

(f) SMUFS

Figure 4: The T-SNE visualizations on the COIL-20 dataset us-
ing different feature subsets selected by each method.

the number of selected features is fixed as 25%×𝑑 . We can conclude
that: (1) Comparative results between SMUFS and SMUFS1 vali-
date that directly fusing membership matrices without alignment
compromises the consistency of cluster structures among views. (2)
SMUFS consistently outperforms SMUFS2, demonstrating that dis-
criminating different samples can reduce the impact of outliers and
facilitate the ultimate feature selection. (3) The clustering perfor-
mance of SMUFS is superior to SMUFS3, indicating that dynamic
graph learning preserves the locality of indicator labels and exerts a
crucial influence on the overall performance.

3.4 Visualization
To intuitively demonstrate the quality of selected features, we apply
the T-SNE method [26] to project the high-dimensional feature
space in a two-dimensional space. Specifically, 400 samples from 20
clusters of COIL20 dataset are selected for visualization, and Fig. 4
illustrates the results of feature subsets selected by each method,
in which the number of selected features is fixed at 25% × 𝑑. As
displayed in Fig. 4, we can observe that the feature subset selected
by SMUFS can effectively separate samples from different clustering
centers, while the visualizations of others exhibit different degrees
of overlaps. Furthermore, the distances between clustering centers
obtained by SMUFS are larger compared to others, indicating that
utilizing the external cluster information can benefit the feature
selection process as well as facilitate subsequent clustering tasks.
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Figure 5: ACC with different parameters on COIL20, Leaves
and Voxceleb.
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Figure 6: Variation curves of objective function values.

3.5 Parameter Sensitivity and Convergence
SMUFS involves two inherent parameters, where 𝜆 controls the
smoothness of the fused membership matrix and 𝛾 balances the influ-
ence of projecting samples to the cluster label space. To evaluate the
effects of these parameters, Fig. 5 illustrates the clustering accuracy
with different parameter settings and the numbers of selected fea-
tures. We observe that when 𝛾 is smaller than 1, SMUFS can achieve
superior performance, which suggests that maintaining the locality
of cluster labels effectively improves its discriminative capability.
Meanwhile, Fig. 6 displays the objective function value versus the
number of iterations, showing that the objective function decreases
rapidly and converges within a few iterations, which validates the
effectiveness of the proposed optimization strategy.

4 CONCLUSION
In this paper, we propose a novel scalable multi-view unsupervised
feature selection method (SMUFS). To fully leverage the underlying
structures of data, SMUFS not only fuses the aligned membership
matrices as the external cluster information to obtain a unified mem-
bership matrix but also learns the similarity graph to preserve the
locality of the learned cluster labels, such that the interaction be-
tween similarity structure and clustering structure can enhance the
discriminative of the membership matrix, facilitating the selection of
informative features. Further, SMUFS incorporates anchor strategy
to reduce the computational complexity and extend its applicability
to large multi-view datasets. Comprehensive experiments demon-
strate the superiority of SMUFS over the state-of-the-art methods.
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