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Abstract

The ratio of “outlier” parameters in language pre-training models and vision pre-training
models differs significantly, making cross-modality (language and vision) inherently more
challenging than cross-domain adaptation1. As a result, many prior studies have focused
on cross-domain transfer rather than attempting to bridge language and vision modalities,
assuming that language pre-trained models are unsuitable for downstream visual tasks
due to disparate parameter spaces. Contrary to this assumption, we show that adding a
“bridge training ” stage as a modality adaptation learner can effectively align Large
Language Model (LLM) parameters with vision tasks. Specifically, we propose a simple yet
powerful solution random label bridge training that requires no manual labeling and helps
LLM parameters adapt to vision foundation tasks. Moreover, our findings reveal that partial
bridge training is often advantageous, as certain layers in LLMs exhibit strong foundational
properties that remain beneficial even without fine-tuning for visual tasks. This surprising
discovery opens up new avenues for leveraging language pre-trained parameters directly
within vision models and highlights the potential of partial bridge training as a practical
pathway to cross-modality adaptation.

1 Introduction
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Figure 1: In cross-domain adaptation, the data type
remains the same, though domains may vary in style
or distribution. In contrast, cross-modality adaptation
involves fundamentally different feature spaces, along-
side variations in style or distribution.

Recent advancements in large language models [1,
49, 50, 56] have shown their remarkable capacity for
capturing both syntactic and semantic information in
an unsupervised manner. However, despite the rich
internal representations these models develop, the
utility of language-pretrained parameters in domains
beyond text remains largely unexplored. Particularly
in computer vision, while cross-domain adaptation
(e.g., transforming a model trained on natural im-
ages to work on cartoon images) has received atten-
tion [53, 21, 55], true cross-modality transfer, i.e.,
from language to vision, presents a more substantial
challenge. The fundamental discrepancy in input
modalities (text tokens versus image pixels) suggests
that LLM parameters might be inherently incom-
patible with the convolutional or transformer-based
operations typical in visual tasks. As illustrated in Fig. 1, cross-domain adaptation modifies the distribution
within the same modality, whereas cross-modality adaptation must reconfigure parameters trained on text
tokens to handle image pixels.

1Cross-domain refers to different data distributions on the same modality, such as the adaptation from natural images to
cartoon images for the same visual modality, rather than studying cross-modality (language modality and vision modality).
Cross-modality is usually much more difficult than cross-domain as induced bias.
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One line of thought posits that the parameter spaces for language-based and vision-based models are simply
too different for overlapping fine-tuning approaches. This has led many researchers to either ignore cross-
modality transfer entirely or rely on cascading strategies where a vision model’s output is fed into a language
model like MLLMs scheme [2, 31, 9, 26] rather than overlapping fine-tuning them. While this division has
simplified experimental design, it has also limited the exploration of potential synergies between language
and vision. For instance, the ability of LLMs to capture high-level abstractions might help address challenges
in dense vision tasks like object detection.

In many specialized domains such as industrial inspection, medical imaging and remote sensing, large-scale
text corpora are readily available (manuals, logs, reports, protocols), while labeled images are scarce due
to annotation cost and expertise requirements. In this regime, it is valuable to reuse language-pretrained
parameters as a prior and adapt them to visual inputs with minimal annotation: we can first perform an
annotation-free bridge stage on unlabeled images, and then fine-tune with the small labeled image set for the
downstream task.

While direct cross-modality parameter transfer is often regarded as nontrivial in prior transfer or adaptation
settings [5, 13, 45, 17, 39, 61], our findings show that a properly designed “bridge training” stage can effectively
adapt language-pretrained parameters for visual tasks. This is also compatible with recent evidence that
representation alignment can emerge across diverse models and modalities [20]. Specifically, we propose a
random label bridge training protocol: we assign random labels to visual data and optimize the model using
a standard supervised objective, requiring no human annotation. Although the labels carry no semantic
information, this stage encourages the network to learn a broad mapping from image structure to internal
representations, thereby reshaping the parameter statistics and reducing the modality gap between text and
images. Importantly, random label training is flexible and label-free: it does not require a curated labeled
dataset, enabling rapid cross-modality adaptation without the constraints of supervised annotation.

A further important and surprising discovery in our work is that partial bridge training can sometimes yield
even better results than full-layer adaptation. Certain layers in large language models appear to contain
fundamental representational capacities that remain beneficial for vision tasks. By freezing these layers when
training, we preserve their internal structures and exploit the fact that some of the linguistic abstractions can
also be advantageous for visual processing. Through extensive empirical analysis, we find that retaining these
frozen layers not only reduces the number of trainable parameters but also preserves beneficial biases that
have been distilled through language pre-training.

Our results demonstrate consistent gains over various baselines that do not employ language-pretrained
parameters. Specifically, random label bridge training achieves +11.5% and +14.1% accuracy improvements
on CIFAR-10/100 under linear probing, leveraging language bias further boosts these gains to +19.6%
and +21.3%. Moreover, empirical studies show that random label training leads to more stable parameter
alignment than naive direct fine-tuning, highlighting the non-triviality of cross-modality adaptation.

Our contributions are threefold: (1) We challenge that, while architectures are shared across modalities and
cross-modal alignment has been observed, it remains nontrivial and not guaranteed that language-pretrained
weights can be directly repurposed for vision under weak supervision [28, 33, 35], we investigate this empirically
and theoretically; (2) We propose and validate a parameter alignment approach random label bridge training
that is entirely annotation-free; and (3) We demonstrate that partial bridge training can be sufficient to
preserve the valuable representations learned by large language models, thus laying the groundwork for
broader research into cross-modality transfer.

2 Related Work

Cross-Domain and Cross-Modality Adaptation. Adapting models to new domains or modalities
is a fundamental challenge in machine learning. Cross-domain adaptation transfers models within same
modality and addresses distributional shifts using techniques like domain adversarial training [10, 38], domain
alignment [40, 60], test-time training [48, 51], and self-supervised learning [18, 15, 8]. While effective for tasks
such as natural-to-synthetic image transfer, these methods are less suited for bridging different modalities.
Cross-modality adaptation, such as between language and vision, introduces challenges due to structural and
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Figure 2: Outlier parameters and weight distributions in models trained on different modalities.
Language-pretrained GPT-2 shows a markedly heavier-tailed distribution with numerous large-magnitude
“Outlier” weights, whereas vision-pretrained ViT and GPT-2 structure model trained on images exhibit fewer
outliers and narrower spreads.

distributional differences. Vision-language models (VLMs) like CLIP [44] and Flamingo [3], and Multimodal
LLMs [9, 29], leverage paired datasets to learn joint representations but rely heavily on aligned supervision and
task-specific designs. In contrast, our work explores inherent cross-modality capabilities of LLMs, leveraging
pretraining-induced biases for annotation-free, flexible adaptation without architectural changes.

Modality Difference in Pretraining. Pretraining on language and image data poses challenges due to
differences in input structures and parameter distributions. Existing multimodal approaches address this
differences via learning rate modulation [41, 27, 23], representative embeddings [12, 57], or alternating unimodal
training [58, 62, 54], but primarily focus on joint training setups. Our work leverages pretraining-induced
biases in LLMs for vision tasks through random label bridge training, aligning parameter distributions while
retaining beneficial linguistic abstractions. This approach offers a practical solution to modality difference
without requiring joint training.

Connection to representation alignment. Recent work suggests that representation spaces across
architectures, objectives, and even modalities may become increasingly aligned as models scale, motivating
the view that cross-modal representational similarity can emerge as a general phenomenon (e.g., The Platonic
Representation Hypothesis [20]). Building on this perspective, our focus is not to assert that language
and vision are “incompatible,” but to empirically characterize when and how cross-modality transfer can
be induced by a simple training procedure. In particular, we analyze the dynamics and outcomes of a
random-label bridge stage (which removes semantic label supervision) and layer-wise/partial updating (which
isolates where adaptation is most effective), providing both theoretical insight and controlled experiments on
cross-modality adaptation.

3 “Outlier” Parameters in Foundation Models

“Outlier” parameters in language pre-training models and vision pre-training models. A key
observation in our study is that large language models exhibit a higher proportion of “outlier” parameters
compared to models pre-trained on visual data. Intuitively, this stems from the inherent difference between
discrete textual tokens and continuous image signals. In language tasks, each token typically maps to a sparse,
high-dimensional embedding space, which can lead to large fluctuations or “spikes” in certain parameter
values during training. As a result, the parameter distribution in LLMs tends to have heavier tails, reflecting
a higher likelihood of extreme values. Conversely, in visual models, continuous signals such as pixel intensities
provide smoother gradients and more uniformly distributed training examples, thereby reducing the tendency
for large, isolated parameter magnitudes.

Our statistical analysis in Fig. 2 supports these theoretical considerations. By comparing magnitude
distributions of weights in multiple layers, we find that LLMs contain a significantly greater percentage of
high-magnitude parameters and exhibit a heavier-tailed distribution overall. Visual models, on the other hand,
show relatively flatter distributions with fewer large outliers. These empirical findings validate the notion that
discrete tokens induce more extreme parameter values and show practical implications for model initialization,
optimization stability, and potential transfer learning strategies when bridging language and vision tasks. In
the following, we provide a formal definition of cross-modality adaptation and outline our problem setup,
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Figure 3: Train and test acc. curves for pretrained vs. scratch GPT-2 on CIFAR-10 using varying random
label proportions (0%, 15%, 30%, 100%). Pretrained models consistently show higher accuracy and faster
convergence, indicating enhanced robustness to label noise.

to explain the approach we use to mitigate the mismatch between these fundamentally different parameter
spaces.
Definition 3.1 (Cross-Modality Adaptation). Consider a source data distribution S (source modality) and a
target data distribution T (target modality), where S is defined over XS × YS and T is defined over XT × YT .
Let XS × YS be the input and output spaces associated with S, and XT × YT be the input and output spaces
associated with T . We define a learning task tS as the expected risk minimization problem induced by (S, ℓS):
learn a predictor fS : XS → YS by minimizing RS(f) = E(x,y)∼S

[
ℓS(f(x), y)

]
, and similarly define tT (and

fT ) induced by (T, ℓT ). Here, “derived from YS” means that the prediction target and loss are defined on the
output space YS (together with the conditional S(Y | X)). The goal of cross-modality adaptation is to enhance
the target predictive function fT for the target task tT by leveraging knowledge obtained from the source S and
tS , provided that S ≠ T . Here, S ≠ T implies both a difference in their marginal input distributions SX ̸= TX
(i.e., XS ̸= XT and SX(X) ̸= TX(X) ) or a difference in the tasks themselves tS ̸= tT (i.e., YS ̸= YT or
S(Y | X) ̸= T (Y | X) ).

4 Empirical Discoveries on Language Induced Bias for General Vision Tasks

It may appear counterintuitive [6] to leverage weights from one modality (e.g., language) to benefit another
(e.g., vision). However, in this section we provide both theoretical and empirical evidence that language-
pretrained parameters can indeed help visual tasks. Specifically, Section 4.1 demonstrates how a pretrained
language bias accelerates convergence and improves performance on image classification. Section 4.2 then
introduces random label training may potentially be a good robustness trainer and proves (see Theorem 4.1)
how training on unlabeled visual data aligns these language-driven parameters to the image distribution.
Section 4.3 analyzes loss landscapes, showing how pretraining smooths optimization and improves feature
discriminativeness. Finally, Section 4.4 demonstrates that language-induced bias enables models to learn
separable visual features even with random labels, reinforcing its role as a strong unsupervised regularizer.

4.1 Pretrained Language Accelerates Convergence & Improve Performance for Vision Tasks

To empirically investigate the optimization effects and benefits of language-pretrained LLM weights for vision
tasks, we compare the performance of pretrained GPT-2 against models trained from scratch on image
classification tasks. Specifically, we evaluate both approaches on CIFAR-10, CIFAR-100 and ImageNet-1k
datasets under identical training conditions. In our image adaptation, the first layer is a newly introduced patch
embedding/input projection (randomly initialized); pretrained GPT-2 weights are used only in subsequent
transformer blocks. As shown in Table 1 and Fig. 3 (leftmost plot), the pretrained models converge more
quickly and reach higher accuracies than their scratch-trained counterparts. Specifically, on CIFAR-10, the
Pretrained-GPT-2 model gains +0.5% Top-1 accuracy in training, while on CIFAR-100 it improves test
accuracy by +2.4%. Similar patterns hold for ImageNet-1K, where pretrained models consistently obtain
better test performance. These findings demonstrate that language-induced bias facilitates optimization on
vision modality by guiding the model toward better solutions. This not only accelerates convergence but also
results in improved performance on vision tasks.
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Table 1: Comparison of language-pretrained GPT-2 weights and scratch-initialized GPT-2 models on CIFAR-
10, CIFAR-100 and ImageNet-1K for image classification. (Note: we only train GPT-2 on ImageNet-1k for
150 Epochs and LLAMA3.2-1B for 50 Epochs because of resource limitations.)

Model CIFAR-10 CIFAR-100 ImageNet-1K
Train-acc1 Test-acc1 Train-acc1 Test-acc1 Train-acc1 Test-acc1

Scratch-GPT-2 98.7 86.0 98.8 58.0 56.4 66.5
Pretrained-GPT-2 99.2+0.5 87.1+1.1 99.1+0.3 60.4+2.4 59.2+2.8 68.8+2.3
Scratch-LLAMA3.2-1B 99.3 79.7 99.7 49.3 66.3 64.0
Pretrained-LLAMA3.2-1B 99.6+0.3 89.4+9.7 99.8+0.1 64.7+15.4 73.8+7.5 67.7+3.7

Table 2: Performance comparison of language-pretrained and scratch-initialized GPT-2 models under varying
ratios of random labels on CIFAR-10 and CIFAR-100. Darker “ ” and “ ” indicates higher Train-acc1 and
Test-acc1, respectively.

Model Random Ratio CIFAR-10 CIFAR-100
Train-acc1 Test-acc1 Train-acc1 Test-acc1

Scratch-GPT-2
15% 97.4 76.0 98.5 45.2
30% 75.4 67.8 98.2 32.5
100% 34.2 2.5 65.9 0.9

Pretrained-GPT-2
15% 98.6+1.2 77.2+1.2 99.0+0.5 48.1+2.9
30% 97.9+22.5 68.7+0.9 98.9+0.7 33.7+1.2
100% 93.9+59.7 6.3+3.8 98.7+32.8 0.8-0.1

Better Fitting Ability. Fig. 3 further compares accuracy across three different fractions of the random
labels: 15%, 30%, and the entire random (100%). In each scenario, the model initialized with GPT pre-trained
weights achieves notably higher training accuracy than a baseline trained from scratch, despite having the same
architecture. What makes this observation particularly intriguing is that the labels are completely random,
yet the GPT-pretrained model significantly exhibits a stronger ability to fit the data but scratch-trained
model is close to collapse. This phenomenon reflects that language pre-training furnishes an effective inductive
bias, one that remains useful even when the task’s labels have no inherent structure.

4.2 Is Random Label Tuning A Good Robustness Trainer and Adapter to Target Modality?

As analyzed in [34], it has been shown analytically for convolutional and fully connected networks that an
alignment occurs between the principal components of the network parameters and the data. However, our
focus is on Transformer-based LLM architectures like GPT [43]. While there are shared theoretical insights
between our work and prior studies regarding covariance matrix alignment between network parameters and
data, our approach diverges significantly. Specifically, we present that principle of random label training can
be formalized as:
Theorem 4.1 (Random Label Training Induces Covariance Alignment). Suppose x are drawn i.i.d. from a
distribution with covariance Σx, and the initial weights w in the first layer are drawn from an isotropic (e.g.,
Gaussian) distribution. Then when we train a neural network on these inputs x using random labels (under
typical conditions such as SGD training), the learned covariance Σw := E

[
wwT

]
of the first-layer weights

aligns with the data covariance Σx. Concretely, Σw shares eigenvectors with Σx, and the map from each
eigenvalue σ2

i of Σx to the corresponding eigenvalue τ2
i of Σw follows a well-defined (experimentally smooth)

transfer function f(·).

Intuition and key ideas. Theorem 4.1 is aligned with prior analyses of random-label training; our novelty
is the covariance-alignment formulation, spectral transfer function perspective and direct connection to our
bridge-stage method. (i) Isotropy and symmetry: Initially drawing w from an isotropic distribution means
there is no preferred direction in parameter space. During random-label training, every label is equally
“wrong”, so the only structure that can be exploited or “learned” is in the input data x. (ii) Eigenvector
alignment: By gradient descent dynamics (or SGD), directions in w-space that correspond to larger variance
directions in x-space receive larger updates on average. Over the course of training, despite the labels being
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random, the weight vectors align with the most significant eigenspaces of Σx. As a result, the principal
components of Σw converge to those of Σx. (iii) Eigenvalue mapping: Each eigenvalue σ2

i of Σx gets mapped
to a corresponding τ2

i for Σw.. Empirically, one finds a smooth function f(σ) such that τi ≈ f (σi). Typically,
larger input variances σ2

i lead to higher effective learning rates, increasing the corresponding τ2
i before

backpropagation balances out other directions in the network. (iv) Implication for “real” labels: Surprisingly,
even when labels are random, the network still adapts its first-layer weights to the input structure. Once
this alignment occurs, subsequent fine-tuning or re-training with real labels can proceed more efficiently,
as the first-layer filter directions already match the major modes of variation in the data. Importantly, we
emphasize that unlike prior method [34], random label training is uniquely feasible within our approach.
Furthermore, self-supervised or TTT methods, such as entropy minimization [52], could also be incorporated
into our framework.

We evaluated the robustness of language-pretrained LLM weights under noisy conditions using varying random
label ratios (15%, 30%, and 100%) on CIFAR-10 and CIFAR-100. As shown in Table 2 and Fig. 3, pretrained
models consistently outperformed scratch-initialized ones across all conditions. For instance, with 15%
random labels, pretrained models achieved 77.2% and 48.1% test accuracies on CIFAR-10 and CIFAR-100,
respectively, compared to 76.0% and 45.2% for scratch models. Even with 100% random labels, pretrained
models demonstrated significantly better structured learning, achieving 93.9% training accuracy on CIFAR-10
versus 34.2% for scratch models. These results underscore the robustness of language-pretraining-induced
biases as a powerful regularizer for extracting meaningful patterns without semantic labels.

4.3 Language Bias Induces Better Optimized Loss
Landscapes

Scratch GPT-2 Pretrained GPT-2

(2) 100% Random Labels

(1) Correct Labels

Figure 4: Loss landscape on CIFAR-
10. We visualize a 2D cross-section
of the high-dimensional loss surface
by plotting L(θ0 + αd1 + βd2), where
d1 = θT − θ0 is the training direction
and d2 is a random direction orthogo-
nal to d1 (both per-layer normalized).
The X-axis and Y-axis correspond to
the coefficients α and β, respectively
(height/color indicates loss). Top: Cor-
rect Labels Training. Bottom: 100%
Random Labels Training. Left: Scratch
GPT-2. Right: Pretrained GPT-2.

Although Theorem 4.1 demonstrates how random-label training can
induce first-layer weight alignment under simplified conditions (e.g.,
single-layer settings and controlled data distributions), real-world
large models and complex natural-image data introduce additional
challenges. To bridge this gap, we investigate a deeper architecture
(GPT-2) on actual image data, again leveraging random labels.
Fig. 4 reveals that the scratch model has a rugged landscape in both
cases, indicating many local minima that can hinder optimization.
In contrast, the pretrained GPT-2 starts from a very different
point: although the landscape is not necessarily smoother overall,
quantitative analysis in Table 15 shows it begins near a high-energy
saddle point, which is easier to escape during training. Specifically,
we observe a sharper eigenvalue decay rate (–11.6 vs. –3.7), a higher
Hessian trace (305k vs. 21k), and a much larger spectral gap (207k
vs. 226), all suggesting stronger curvature in select directions [14].
Yet, most directions remain flat, as indicated by a lower participation
ratio (0.34 vs. 0.78), and the model shows lower noise sensitivity
and gradient predictiveness [36]. The pretrained model also has
a higher ratio of negative eigenvalues (0.65 vs. 0.35) and greater
sensitivity to certain parameters. Together, these findings imply
that language pretraining positions the model in a landscape that
facilitates optimization by guiding it out of poor local minima and
toward more stable, generalizable solutions.

4.4 Language-Pretraining-Induced Bias
Helps Models Learn Separable Features without Annotations

Beyond the robustness observations in Section 4.2, we further investigate the representational differences
between pretrained and scratch-initialized GPT-2 models when trained with 100% random labels on CIFAR-10.
Concretely, we extract the final-layer hidden states hi ∈ Rd for each sample i, where d denotes the hidden
dimension. We then apply a t-SNE mapping ft-SNE : Rd → R2 and perform KMeans clustering on the reduced
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Figure 6: Overview of our two-stage Language Bias Bridge Learning framework. In Stage 1, the
pretrained LLM is adapted to the target modality under random labels, In Stage 2, a lightweight classifier
refines these representations on real labels.

features. Formally, each sample hi is assigned to a cluster ci via:

ci = arg min
k

∥∥ ft-SNE
(
hi

)
− µk

∥∥2
, ∀i ∈ {samples}, (1)

where µk is the centroid of cluster k.
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Figure 5: t-SNE embeddings for pretrained (top) and
scratch-initialized (bottom) GPT-2 models on CIFAR-
10 under 100% random labels. Left: Before training,
both appear partly disordered. Right: After training,
the pretrained model achieves far tighter, more coher-
ent clusters, indicating superior feature separability
compared to the scratch model.

As illustrated in Fig. 5, pretrained GPT-2 model’s
embeddings become more separable (top right), form-
ing tight intra-class clusters even under completely
random labels, while scratch model exhibits less
structure. This indicates a powerful cross-modal
transfer effect: random-label procedure still lever-
ages the language-induced parameter bias, enabling
the model to uncover latent image structures. In
contrast, scratch model lacks such an inductive bias,
yielding minimal improvement. These results corrob-
orate our earlier findings that language pretraining
serves as a strong regularizer under noisy conditions,
leading to faster convergence and better unsuper-
vised discriminative capabilities in visual domain.

5 Language Bias Bridge Training
as A Modality Adaptation Learner

5.1 Overall Proposed Formulation

Building on the insights from Section 3, we propose a Language Bias Bridge Training (LBBT, )
paradigm, designed to leverage language-pretraining-induced bias for Cross-Modality adaptation. In particular,
we exploit a 100% random-label setting on the target modality to train a large language model (LLM) for
vision tasks, followed by a lightweight adaptation stage for downstream domains. Fig. 6 illustrates the
proposed two-stage framework.

Let S = (XS , YS) be the source modality, where XS = {xi}N
i=1 and YS = {ỹi}N

i=1 denote inputs and random
labels, respectively. Let T = (XT , YT ) be the target modality with inputs XT = {xj}M

j=1 and true labels
YT = {yj}M

j=1. We assume SX ̸= TX and tS ̸= tT , reflecting discrepancies in either the input distributions or
the tasks themselves. Our goal is to learn a representation function LLM(·; θ) that transfers knowledge from
S to T , improving the predictive function fT for the target task. We also train a lightweight adapter A(·; ϕ)
to refine the LLM representations for downstream use on T . Formally, we minimize:

min
θ,ϕ

[
Lbridge

(
SX, SY ; LLM(·; θ)

)︸ ︷︷ ︸
Stage 1:

+ Ladapt
(
TX, TY ; LLM(·; θ), A(·; ϕ)

)︸ ︷︷ ︸
Stage 2: Downstream Adaptation

]
, (2)

where Lbridge is a supervised loss on random-labeled data (Stage 1), and Ladapt is a supervised or semi-
supervised loss on real-labeled data (Stage 2). The bridge stage aligns the pretrained LLM with the target
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modality without requiring semantic labels, and the downstream stage then fine-tunes these representations
with actual task supervision.

5.2 Random Label Bridge Training

The foundation of our approach lies in the inherent biases induced by language pretraining, which, as
demonstrated in Section 4.2, serve as a powerful regularizer under noisy conditions. To fully leverage these
biases for cross-modality adaptation, we introduce LBBT that aligns the feature representations of LLMs
with vision tasks, even though the labels we use are random and offer no semantic guidance. Training a model
on 100% random labels typically seems infeasible because there is no meaningful supervisory signal. However,
we hypothesize and empirically confirm that language-pretrained weights encode robust feature hierarchies
that can still be refined through a supervised objective, even when the labels themselves are random. Rather
than relying on semantically correct annotations, the model learns to harness the structural properties of
the input data, guided by its strong, language-induced initialization. Formally, let S = (XS , YS) denote our
source modality with inputs XS and random labels YS . Let LLM(x; θ) represent the feature embedding of
input x under parameters θ. Our bridge learning objective is then given by:

Lbridge(S; θ) = 1
|XS |

∑
x∈XS

ℓRSL
(
LLM(x; θ), YS

)
, (3)

where ℓRSL is a supervised loss function (e.g., cross-entropy) computed against the random labels. Despite
offering no true semantic structure, these labels force the model to refine its features based on the patterns
present in XS , effectively bridging the domain gap from language to vision.

As shown in Section 4.2, pretrained LLM weights exhibit notable robustness even under extreme noise such
as 100% random labels due to the biases acquired during language pretraining. These biases naturally
organize the feature space, promoting better separability and coherence. We preserve and further shape these
beneficial biases by treating bridge training as a supervised task with random labels. During LBBT, the
LLM parameters θ adapt to the statistical properties of visual data, thereby transferring language-induced
structures into effective visual representations even in the absence of meaningful labels.
Target Modality Downstream Adaptation Following the initial alignment achieved through LBBT, the
second stage refines representations for specific target tasks. This involves training a lightweight downstream
adapter A(·; ϕ) with task-specific labeled data while optionally fine-tuning pretrained LLM parameters θ.
The supervised loss function for this stage is:

Ladapt(T ; θ, ϕ) = 1
|XT |

∑
(x,y)∈T

ℓCE (A(LLM(x; θ); ϕ), y), (4)

where ℓCE is cross-entropy loss. This stage leverages language-pretraining-induced biases to accelerate
convergence and improve generalization, completing an two-step framework for cross-modality transfer.

Extend to partial bridge training. Prior work shows that neural networks memorize random labels largely
through their later layers [34], supported by evidence from classification accuracy on layer activations and
intrinsic dimensionality estimates [4]. Inspired by these findings, we hypothesize selectively freezing certain
layers during LBBT preserves inductive biases formed in earlier layers of pretrained LLMs. Early layers
shaped by language pretraining capture broad structural features are readily transferable across modalities.
Updating only layers most prone to task-specific memorization can improve cross-modality adaptation.

Our experiments confirm this hypothesis (Fig. 8). Surprisingly, training only the first five layers of the
LLM during Language Bias Bridge Training yields faster convergence and better downstream performance
compared to updating all layers. This underscores the critical role of early layers in maintaining robust,
transferable representations. Moreover, results suggest tuning every layer can weaken beneficial semantic
structures acquired from language pretraining, ultimately hindering generalization. In summary, partial
bridge training offers an effective and computationally efficient strategy by focusing on the layers most
pertinent to modality-specific adjustments. This approach reduces training overhead while leveraging the
inherent strengths of pretrained LLMs, making them more adaptable to diverse downstream tasks.
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Figure 7: Layer-wise neuron activation ratios for image samples in GPT-2 models. For each block
ℓ, we record the MLP post-GELU activations A(ℓ)(x) ∈ RT ×dmlp on real images, compute token-averaged
neuron responses, and count neuron k as activated by image x if ā

(ℓ)
k (x) > 0. Left: before training. Middle:

random-label bridge training. Right: correct-label bridge training. Training increases rℓ, indicating greater
utilization of MLP capacity for visual inputs.

6 Final Empirical Analysis

Dataset and Implementation Details. Experiments are conducted on CIFAR-10, CIFAR-100 [24],
TinyImagenet-200 [25], and ImageNet-1K [11] using GPT-2-medium [42] with 355M parameters. For Bridge
Training, the model is trained for 400 epochs on CIFAR-10 (batch size 64, single L20 GPU) and 100 epochs
on ImageNet-1K (batch size 32, 6×4090 GPUs). Linear probing experiments use a batch size of 128 for 100
epochs on an L20 GPU. And all the sacle up experiments for Qwen3-8B, Qwen3-14B and LLaVA series are all
conducted on 8×A100 GPUs. All experiments use a consistent training setup with 224×224 input resolution,
a learning rate of 1e-3 (Adam optimizer, cosine annealing), weight decay of 0.05, drop path regularization [19]
of 0.1, and gradient clipping with max norm 1.0.

Hyperparameter selection and robustness. We clarify how hyperparameters are chosen and evaluate
sensitivity to optimization choices. We acknowledge that learning rate and weight decay can affect absolute
performance; thus, we perform a small learning-rate × weight-decay sweep. To avoid unintentionally favoring
LBBT, we select a single hyperparameter setting using a method-agnostic criterion on the baseline w/o LBBT
(e.g., held-out validation or best-performing baseline setting), and then freeze this choice and apply the same
hyperparameters to LBBT and all other comparisons. We summarize the sensitivity results in Table 3. While
absolute accuracy varies across lr/wd, LBBT consistently improves over w/o LBBT across all evaluated
settings. For example, under lr = 1e−3 and wd = 0.05, LBBT improves the CIFAR-100 linear-probe test
accuracy from 17.4% (w/o LBBT) to 35.0% (w/ LBBT), i.e., a +17.6% absolute gain.

Table 3: Hyperparameter sensitivity study. We sweep learning rate (lr) and weight decay (wd) under
the same training protocol and report linear-probe test acc1 on CIFAR-100 (%). Each entry is reported as
w/o LBBT / LBBT ; we additionally report the absolute gain as subscript.

wd = 0.05 wd = 0.1 wd = 0.2

lr = 5e−4 15.1/31.0+15.9 10.5/30.3+19.8 10.3/23.5+13.2
lr = 3e−4 17.2/32.4+15.2 13.9/31.1+17.2 12.6/24.8+12.2
lr = 1e−3 17.4/35.0+17.6 16.6/33.3+16.7 13.7/26.8+13.1

Neurons Activating Ratio by Images. To quantify how much of the MLP capacity is utilized by visual
inputs, we measure a layer-wise neuron activation ratio using real image samples. For each Transformer block
ℓ, we record the MLP hidden activations after the nonlinearity (GELU), denoted by A(ℓ)(x) ∈ RT ×dmlp for
an image x, where T is the number of visual tokens and dmlp is the MLP hidden width. We aggregate per
neuron by token-averaging:

ā
(ℓ)
k (x) = 1

T

T∑
t=1

A(ℓ)
t,k(x), (5)
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and count neuron k as activated by image x if ā
(ℓ)
k (x) > 0. The layer-wise activation ratio is then

rℓ = 1
N dff

N∑
i=1

dff∑
k=1

1
[
ā

(ℓ)
k (xi) > 0

]
, (6)

i.e., the fraction of (image, neuron) pairs that are activated at layer ℓ.

Fig. 7 compares the percentage of image samples that trigger neuron activations across GPT-2 layers in three
stages: initialization, random-label bridge training, and correct-label bridge training. We observe a clear
increase in activation ratios under both training methods, indicating the model devotes more neurons to
processing visual inputs. Notably, the random-label bridge training yields higher activation rates in some
layers and is more consistent with the correct-label counterpart. This suggests that random labels not only
align the model’s parameters for cross-modality adaptation but also make the model more sensitive to images,
potentially even more so than correct-label supervision.

Language Bias Bridge Training. From Table 4, we compare Bridge Training (models weights are random
initialized and trained from scratch) and Language Bias Bridge Training (load pretrained model weights
with language data). It is evident that leveraging language-pretraining-induced bias significantly improves
performance across diverse datasets. On CIFAR-10, Language Bias Bridge Training achieves a train accuracy
of 93.9%, surpassing standard Bridge Training by +59.7%. Similar trends are observed on CIFAR-100
(+32.8%) and ImageNet-1K (+2.8%), highlighting the consistent advantage of incorporating language-induced
biases. These results demonstrate the effectiveness of our approach in aligning LLM parameters with visual
tasks, even under challenging scenarios with random labels. In addition, in Table 5, we extend the scale to
8B and 14B LLMs to show that the observed benifits can still hold in large-scale models.

Table 4: Random-label bridge training across datasets of varying scale. We report training top-1
accuracy (Train-acc1) on the random bridge labels. Bridge Training denotes training the same GPT-2
architecture on the visual dataset with 100% random labels, starting from randomly initialized weights.
Language Bias Bridge Training (LBBT) uses the identical random-label bridge objective, data, and
hyperparameters, but initializes from language-pretrained GPT-2 weights.

Paradigm CIFAR-10 CIFAR-100 TinyImageNet-200 ImageNet-1K
Train-acc1 Train-acc1 Train-acc1 Train-acc1

Bridge Training 34.2 65.9 94.2 53.7
Language Bias Bridge Training 93.9+59.7 98.7+32.8 95.3+1.1 56.4+2.8

Table 5: LBBT’s Benefits also hold when scale up to larger LLMs.

Paradigm LLM Backbone CIFAR-10 CIFAR-100 TinyImageNet-200
Train-acc1 Train-acc1 Train-acc1

Bridge Training Qwen3-8B 88.2 84.2 90.0
Language Bias Bridge Training Qwen3-8B 95.9+7.7 93.3+9.1 92.4+2.4

Bridge Training Qwen3-14B 91.6 88.3 91.7
Language Bias Bridge Training Qwen3-14B 97.9+6.3 97.7+9.4 94.3+3.4

Downstream Linear Probe. To assess the effectiveness of our bridge training paradigm in a cross-modality
setting, we employ a linear probe to evaluate the quality of the learned representations. As shown in
Table 14, a model trained without bridge training achieves 62.7% on CIFAR-10 and 35.0% on CIFAR-100.
Incorporating the bridge training step boosts performance to +11.5% and +14.1%, demonstrating that
aligning representations under random labels yields more discriminative features. Finally, adopting language
bias bridge training further raises accuracies by +19.6% and +21.3%, indicating that leveraging the inherent
bias in language-pretrained parameters provides an additional strong advantage for cross-modality adaptation.

Compare with other Self-Supervised Methods. To address the concern that a scratch GPT-2 baseline
may be non-standard for vision, we additionally compare LBBT with representative SSL objectives under
a controlled protocol (ImageNet-100 pretraining with the same backbone and training budget, followed by
identical linear probing). As shown in Table 7, LBBT achieves the strongest linear-probe test accuracy

10
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Table 6: Object Detection Results on COCO 2017 Dataset.
Model AP AP50 AP75 APs APm APL
DETR 36.2 58.0 38.4 15.0 39.1 53.8
Language Bias DETR 38.3+2.1 59.2+1.2 39.6+1.2 16.6+1.6 41.7+2.6 54.2+0.4

among the compared SSL objectives in this matched-budget setting. We also report DINO with a ViT-L/16
backbone as a strong vision-native SSL reference (not directly comparable due to different backbone/recipe),
to contextualize the absolute performance gap between general-purpose language initialization and specialized
vision SSL pretraining.

Table 7: Linear-probe image-classification accuracy on CIFAR-100. (all pretrained on imagenet100 first.)

Method Train-acc1 Test-acc1
Unstructured SSL Methods
Language Bias Bridge Training 21.8 33.4
Rotation Image 25.1 32.2
Structured SSL Methods
MAE 24.5 30.7
SimCLR 16.2 26.2
Standard vision SSL reference (different backbone/recipe)
DINO (ViT-L/16) – 62.2†
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Figure 8: Partial Bridge Training results under both random-label and correct-label settings.
Updating only the first 2 layers already matches the performance of training all layers, and training the first
5 layers surpasses it.

Partial Bridge Training. Fig. 8 compares training all layers versus only the early layers under both
correct-label and random-label regimes. Surprisingly, restricting updates to just the first few layers can match
or even outperform full-layer training. Specifically, Table 8 and Table 12 show that on CIFAR-10 with correct
labels, training only the first 5 layers achieves 85.5%, close to 87.1% from training all layers. Under random
labels, the gap is even more striking: updating only the first 5 layers yields +2.6% training accuracy than
training all layers. A similar trend holds for CIFAR-100, confirming that early layers shaped by language
pretraining are key to robust, transferable representations. By contrast, fully updating deeper layers can
weaken these beneficial linguistic biases. Hence, partial bridge training reduces computational costs and
preserves valuable language-induced structures, enabling strong cross-modality performance.

Extend to Vision Dense Prediction Tasks. For dense prediction tasks, we do not directly use GPT-2 as
a visual backbone. Instead, we leverage the architectural compatibility of Transformer blocks and initialize
the Transformer modules in dense prediction models using pretrained GPT-2 weights. DETR. We follow the
standard DETR pipeline with a convolutional backbone (e.g., ResNet) that produces a spatial feature map,
which is flattened into a token sequence and processed by a Transformer encoder–decoder. For compatibility
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Table 8: Partial Bridge Training. Darker “ ” and “ ” indicates higher Train-acc1 and Test-acc1,
respectively. Note that under random-label training, the test accuracy is naturally low because the labels
have no true class semantics; hence, the training accuracy is the primary indicator of model’s fitting ability.

Layers CIFAR-10 CIFAR-100
Train-acc1 Test-acc1 Train-acc1 Test-acc1

Correct Labels :
All Layers 99.2 87.1 99.1 60.4
First 1 Layer 90.2 73.9 88.5 49.4
First 2 Layers 97.5 82.6 97.9 54.7
First 5 Layers 98.9 85.5 99.3 59.7
Random Labels :
All Layers 93.9 6.3 98.7 0.8
First 1 Layer 69.9 4.3 77.7 1.3
First 2 Layers 90.1 7.2 95.7 1.2
First 5 Layers 96.5 6.7 99.2 0.9

with GPT-2, we instantiate the DETR Transformer with the same hidden size / head count / FFN width
and depth as the chosen GPT-2 checkpoint (e.g., d=768, 12 heads, FFN 3072, 12 encoder layers and 12
decoder layers). We then copy GPT-2 block parameters into each DETR Transformer layer: the self-attention
projection weights, FFN weights, and LayerNorm parameters. Since GPT-2 does not contain a cross-attention
module, we initialize the decoder cross-attention using GPT-2 attention weights as an initialization. All
other DETR components (CNN backbone, input projections, object queries, and prediction heads) follow the
original DETR design and are trained normally. The Scratch baseline uses the same DETR architecture but
with random initialization. Segmenter. We follow Segmenter with a ViT encoder and a mask-transformer
decoder. We keep the ViT encoder unchanged, and initialize the mask-transformer decoder blocks by copying
pretrained GPT-2 block weights (attention/MLP/LayerNorm) for as many layers as available.Other decoder-
specific parameters (e.g., class embeddings and projection layers) are initialized as in original Segmenter
implementation. The Scratch baseline uses same Segmenter architecture without GPT-2 initialization.
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Figure 9: Train and test loss curves for DETR. Language-pretrained initialization accelerates convergence
and lowers final loss, highlighting its benefit for dense vision tasks.

Table 9: Semantic Segmentation Results on AED20K and Pascal Context.

Model AED20K Pascal
miou(ss) miou(ms) miou(ss) miou(ms)

Segmenter-T-Mask/16 37.8 39.1 44.9 45.5
Language Bias Segmenter-T-Mask/16 38.5+0.7 39.5+0.4 46.7+1.8 47.4+1.9

To further validate the effectiveness of language pretraining bias beyond classification, we evaluate its
impact on dense prediction tasks, specifically object detection using DETR [7] on COCO2017 [30], semantic
segmentation on AED20K [59], Pascal Context [37] with Segmenter [47] (Image Retrieval in Appendix
Table 11). Table 6, Table 9 and Fig. 9 demonstrate the models initialized with language-pretrained weights
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exhibit better performance than training the model from scratch. This suggests that language pretraining-
induced biases not only enhance representation learning for classification but also benefit structured vision
tasks requiring fine-grained spatial reasoning.

Apply Language Bias to Vision Encoder of Multimodal Large Language Model. We further
explore our hypothesis that initializing vision models with language-biased weights enhances cross-modal
capabilities. To substantiate this claim, we conduct experiments under LLaVA-style training pipelines across
different model scales (7B and 13B) and different LLM backbones (Vicuna and Mistral). Due to the complexity
of directly comparing language-initialized models against randomly initialized ones in a fully end-to-end
multimodal pretraining setup, we adopt an alternative experimental design. Specifically, we replace the
default CLIP [44] ViT-based vision encoder in LLaVA [32] with a GPT-2 Transformer-based encoder. In our
Language Bias setting, we initialize the GPT-2 vision encoder with weights pretrained on language tasks.
Conversely, in the Scratch setting, the vision encoder is initialized randomly. Both configurations follow the
identical training regimen and data used in the corresponding LLaVA recipes. Results in Table 10 show that
language-pretrained initialization consistently improves performance over scratch initialization on multiple
VQA and visual reasoning benchmarks, and the gains persist across model scales and LLM backbones.

Table 10: Comparison on three Multimodal VQA and one Reasoning Benchmarks across different model scales
and LLM backbones. (Pretrained rows are highlighted; subscript denotes absolute gain over the corresponding
scratch setting.)

Model LLM Backbone SQA TextVQA GQA MM-Vet
Scratch-gpt2-encoder-LLaVA1.5-7B Vicuna-7B 65.5 42.7 38.6 11.1
Pretrained-gpt2-encoder-LLaVA1.5-7B Vicuna-7B 66.7+1.2 44.2+1.5 41.2+2.6 18.5+7.4

Scratch-gpt2-encoder-LLaVA1.6-7B Mistral-7B 17.7 68.5 47.8 40.9
Pretrained-gpt2-encoder-LLaVA1.6-7B Mistral-7B 21.0+3.3 69.1+0.6 49.3+1.5 43.2+2.3

Scratch-gpt2-encoder-LLaVA1.6-13B Vicuna-13B 22.5 70.3 51.9 44.3
Pretrained-gpt2-encoder-LLaVA1.6-13B Vicuna-13B 24.6+2.1 71.8+1.5 56.1+4.2 48.7+4.4

7 Conclusion

This work showed that language-pretrained parameters can serve as an effective prior for vision adaptation,
improving both optimization dynamics and learned representations. Across multiple settings, a simple random-
label bridge stage induces substantial alignment to visual inputs and improves downstream performance
without semantic supervision. A learning-rate and weight-decay sensitivity study further shows that while
absolute performance varies across hyperparameters, LBBT consistently improves over the corresponding w/o
LBBT baseline under all evaluated settings. Partial training, updating only a small subset of early layers,
retains useful pretrained structure, reduces adaptation cost, and can match full-layer updating in several
regimes. We further validate transfer beyond image classification. Initializing Transformer components in
dense prediction models with language-pretrained weights yields gains on object detection and semantic
segmentation, suggesting the benefit extends to spatially structured tasks. In multimodal settings, initializing
a GPT-2-based vision encoder in LLaVA-style pipelines improves performance across VQA and reasoning
benchmarks, model scales, and LLM backbones. Overall, these results suggest cross-modality transfer from
language to vision can emerge under weak supervision, motivating Language Bias Bridge Training (LBBT) as
a practical, label-free, and compute-efficient framework for cross-modality adaptation. Future work includes
scaling to larger language backbones, extending to other modalities, and combining random-label bridging
with weak/self-supervised signals to further improve semantic alignment while keeping label cost low.
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Appendix

In this appendix, we provide additional material that complements the main paper:

• Section A: Detailed Proofs. Formal derivations supporting Theorem 4.1, showing how
random-label training induces first-layer alignment (see §4.1 of the main paper).

• Section B: More Visualizations. Additional qualitative figures that expose weight-distribution
shifts and outlier emergence (Fig. 10, Fig. 11); complements the discussion in §3.

• Section C: Results on Partial Training. Layer-freeze ablations and learning-curve analysis
under both correct and random labels (Tab. 8, Fig. 13); extends §6.

• Section D: Fine-grained Layer-wise Outlier Analysis. Heat-maps of neuron-level outliers
across all 24 GPT-2 layers (Fig. 14); augments the main outlier study in §3.

• Section E: Comparison with Time-Series Pretraining Bias. Side-by-side evaluation of
language- vs. time-series-pretrained weights on vision datasets (Tab. 13).

• Section F: More Linear Probing Results on w/o Bridge Training and With Bridge
Training Comparison. (Tab. 14).

• Section G: Quantitative Loss-Landscape Analysis. Hessian statistics and stability metrics
(Tab. 15); supports the landscape visualizations in §4.3.

Limitation Statement

Our study focuses on standard image-classification (CIFAR-10/100, Tiny-ImageNet-200, ImageNet-1K) and
dense-prediction tasks (COCO2017, ADE20K, Pascal Context), so although results suggest broad promise,
confirming generality on additional modalities such as audio, video, and long-range vision–language reasoning
remains future work; similarly, while we demonstrate the method with GPT-2-medium (355M parameters)
and give preliminary evidence that larger backbones behave consistently (LLaMA3.2-1B), a systematic
sweep across model scales and transformer variants is deferred to follow-up studies. Finally, because the
annotation-free bridge stage relies on 100% random labels, tasks demanding fine-grained semantic alignment
e.g, captioning could benefit from hybrid schemes that mix random and weak supervision, which we leave for
future investigation.

A Detailed Proof

Below is the self-contained, more formal proof of our stated Theorem 4.1, drawing on the standard group-
invariance argument to show why training with random labels can align first-layer parameters to the data
covariance. Throughout, we assume the following:

1. Input Assumptions. Each input x ∈ Rd is drawn i.i.d. from a distribution with zero mean and
covariance Σx ∈ Rd×d. For concreteness and simplicity, x can be taken to be Gaussian (i.e., x ∼ N (0, Σx), or
more generally, drawn from a distribution D whose symmetry group is large enough to include all orthogonal
transformations that preserve Σx.

2. Network Assumptions. The first layer of the neural network is either fully connected embedding or (a
patch-based) convolution for image input. In either case, each first-layer weight vector w ∈ Rd interacts with
x primarily through inner products ⟨w, x⟩. The initial weights w ∈ Rd in the first layer are drawn i.i.d. from
an isotropic distribution with mean zero and covariance σ2I. (For concreteness, w ∼ N

(
0, σ2I

)
.)

3. Label Assumptions (Random Labels). Each training instance (x, y) has label y drawn independently
and uniformly from a finite label set {1, 2, . . . , c}, regardless of x. This implies there is no genuine correlation
between input x and label y.
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4. Training Assumption. We train the first-layer parameters (and possibly deeper layers) by stochastic
gradient descent (SGD) for T steps. The crucial point being random, the only structure the model sees is in
x.

Proof.
We adopt an invariance argument using the orthogonal group [22, 16, 34]:

G =
{

G ∈ O(d)
∣∣ GT Σx G = Σx

}
, (7)

where the set of all orthogonal matrices that leave Σx invariant. The proof proceeds in two main steps:

1. Step 1 (Invariance in Distribution). We show that, at each iteration t, the distribution of w remains
invariant under the action of G. That is, if w ∼ µt is the distribution of weights at iteration t, then Gw ∼ µt

for all G ∈ G.

2. Step 2 (Alignment of Covariances). Because the data distribution and the random labels provide no
directional bias other than Σx itself, the limiting covariance Σw of w must share the same eigenspaces as Σx.
Concretely, any distribution µ that is invariant under all G ∈ G must be aligned with Σx. One then shows
that each eigenvalue σ2

i of Σx maps to a corresponding eigenvalue τ2
i of Σw via some function f .

We now detail these two steps:

Step 1: Invariance in Distribution Under Orthogonal Transformations

1. Definition of Group Action on w and x.

Let w ∈ Rd and x ∈ Rd. For each G ∈ G ⊆ O(d), define

(G · w, G · x) = (Gw, Gx), (8)

Since G ∈ O(d) preserves inner products, ⟨Gw, Gx⟩ = ⟨w, x⟩.

2. Invariance of Data Distribution.

Because G ∈ G satisfies GT ΣxG = Σx, it leaves the distribution of x invariant. Concretely, x ∼ N (0, Σx)
implies Gx ∼ N (0, Σx) as well. Thus sampling x and then applying G yields a sample from the same
distribution.

3. Initial Weights Are Isotropic.

By assumption, the initial weight distribution w0 is isotropic: E
[
w0wT

0
]

= σ2I. Hence Gw0 ∼ w0. This
implies that at t = 0, the distribution µ0 of w0 is invariant under G.

4. Loss Function Under Random Labels.

The training loss at iteration t is
L(wt; x, y) = ℓ

(
⟨wt, x⟩, y

)
. (9)

Since y is random and uncorrelated with x, each gradient update

wt+1 = wt − η∇wL (wt; x, y)

depends only on the scalar product ⟨wt, x⟩. Crucially, if wt and x follow distributions that are invariant
under group action by G, the next update remains invariant as well.

5. SGD Update Commutes with Group Action.

Formally, one must show that for each G ∈ G,

Gwt+1 = G
(
wt − η ∇wL(wt; x, y)

)
= (Gwt

) − η ∇Gwt
L(Gwt

; Gx, y), (10)

where the last equality holds because ⟨Gwt , Gx⟩ = ⟨wt, x⟩ and the label y is unchanged by G. By induction,
this invariance holds at every iteration t. Thus the distribution µt of wt satisfies Gwt ∼ wt for all G ∈ G.
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Step 2: Covariance Alignment Follows from Distribution Invariance

We now argue that a distribution µ on w ∈ Rd invariant under G implies that its covariance Σw = E
[
wwT

]
aligns with Σx. More precisely: 1. Spectral Decomposition of Σx.

Since Σx ∈ Rd×d is symmetric positive semi-definite, we can decompose Σx = K1 ⊕ K2 ⊕ · · · ⊕ Kr where
each Ki ⊆ Rd is an eigenspace of Σx corresponding to eigenvalue σ2

i . By definition of G, each Ki is invariant
under G.

2. G-Invariance Implies Each Ki Is an Invariant Subspace of Σw.

Because w ∼ µ is invariant under G, for any G ∈ G, we also have w′ := Gw ∼ µ. By taking expectations, one
shows that if a vector subspace Ki is G-invariant for Σx, it must also be G-invariant for Σw. Concretely, if
u ∈ Ki, consider Gu for all G ∈ G. This forces Σw to preserve Ki, otherwise Σw would not be consistent
with the distribution-level invariance.

3. Hence Σw Shares Eigenspaces with Σx.

Since each Vi is forced to be an invariant subspace of Σw, we conclude that Σw and Σx must diagonalize in
the same basis. In other words, there exist scalars τ2

i such that

Σw(v) = τ2
i v, ∀v ∈ Vi

This shows that Σw and Σz share eigenvectors but differ in their eigenvalues τ2
i vs. σ2

i .

4. Eigenvalue Mapping σ2
i 7→ τ2

i .

Empirically, one observes a smooth function f(·) such that τi ≈ f (σi). Intuitively, directions in x-space with
larger variance σ2

i yield (via random-label SGD) more significant updates to w, driving the corresponding τ2
i

higher until other competing directions partially balance out. This effect is captured by a stable “transfer
function” f , which can be measured experimentally by plotting τi vs. σi.

B More Visualizations

Weight Distributions Expose Language Pretraining’s Advantage for Visual Tasks. In addition
to the weight parameter distribution visualization (shown on the right) in Fig. 2, we also provide further
comparisons between pretrained and from-scratch GPT-2 models trained on correct labels, as well as an
analysis of these models’ distributions under random-label bridge training. Fig. 10 compares the learned
weight distributions of GPT-2 models trained from scratch on images (blue) versus pretrained on language
data (orange), under both correct labels (left plot) and 100% random labels (right plot). When trained with
correct labels, the scratch model’s distribution remains narrowly peaked near zero, suggesting many weights
do not significantly deviate from their initialization. In contrast, the pretrained model shows a broader
spread of values, reflecting a more active reconfiguration of parameters that appears guided by its preexisting
linguistic priors.
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Correct Label Random Label

Figure 10: Weight Parameter Distribution.We compare weight distributions of GPT-2 models trained
from scratch (blue) and with language-pretrained weights (orange) under correct labels (left) and 100% random
labels (right). The pretrained model displays a smoother, more heavily tailed distribution, highlighting its
ability to adapt to visual data—even with noisy, non-semantic supervision, thanks to latent linguistic priors.
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Figure 11: Comparison of weight parameter distributions and outlier counts. For models trained on
either random or correct labels, starting from either a pretrained initialization or from scratch. Even under
random labels (top row), the pretrained model continues to exhibit stronger performance than its from-scratch
counterpart despite producing more high-magnitude “outlier” parameters. With correct labels (bottom row),
the pretrained initialization still outperforms the from-scratch model, though outlier occurrences remain more
frequent in the pretrained setup than in the randomly initialized one.

Figure 12: Train and test acc. curves for pretrained vs. scratch GPT-2 on CIFAR-100.

Under random labels, these differences become even more pronounced: the pretrained model exhibits a re-
markably smoother and heavier-tailed distribution, demonstrating that its parameters can adapt meaningfully
to visual signals despite complete label noise. This underscores our central claim that language-pretraining
imparts structural biases conducive to organizing visual features, whereas the scratch-initialized model is less
equipped to handle the absence of semantic guidance. Such breadth in the pretrained distribution aligns with
our earlier “outlier” analysis in Section 3, revealing how even seemingly irrelevant label tasks may realign
GPT-2’s language-induced priors in ways that prove beneficial for visual understanding.

Outliers Weights. The results in Fig. 11 presence of numerous outlier parameters in the pretrained model
under random labeling (top-left) reflects how a well-initialized feature space can amplify the impact of
nonsensical supervision. Paradoxically, although random labels induce many large-magnitude weights, the
pretrained model consistently surpasses the from-scratch baseline, demonstrating the robustness conferred by
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Figure 13: More Partial Training Ablation studies on layers.

prior training. When switching to correct labels (bottom row), the number of outliers in the pretrained model
decreases substantially, showing that semantically valid supervision aligns more naturally with the pretrained
parameters. Nonetheless, the pretrained model still registers slightly higher outlier counts than the scratch
model, revealing that its parameter space remains more specialized—and thus more reactive—compared to the
uniformly initialized parameters. Crucially, in both label scenarios, the pretrained initialization outperforms
the from-scratch approach, underscoring the lasting benefits of pretrained representations even when facing
adverse or unusual supervision signals.

Train and test acc. curves for pretrained vs. scratch GPT-2 on CIFAR-100. Fig. 12 shows training
accuracy curves for pretrained versus scratch-initialized GPT-2 on CIFAR-100 under 15% and 100% random
labels. Even with fully corrupted labels, the pretrained model rapidly reaches high training accuracy, whereas
the from-scratch model converges more slowly and to a much lower plateau. Under partial corruption (15%
random labels), the pretrained model again exhibits a faster, smoother climb in accuracy, demonstrating its
enhanced robustness and more efficient adaptation compared to training from scratch.

Image Retrieval Results on Tiny-Imagenet200. We also demonstrate the effectiveness of language bias
on image retrieval. In Table 11, the results show that Language Bias Bridge Training can surpass the model
without Langugae Bias a lot on performance e.g., 14.9% on mAP .

Table 11: Image Retrieval Results on Tiny-ImageNet200.

Model mAP Pass@1 Recall@1 NDCG@1 Pass@5 Recall@5 NDCG@5
Bridge Training 72.3 72.1 72.1 72.1 71.7 88.1 81.3
Language Bias Bridge Training 87.2 86.6 86.6 86.6 86.5 93.5 90.5

C Detailed Results on Partial Training

Table 8 compares training all layers versus only the early layers under both correct-label and random-label
regimes. Surprisingly, restricting updates to just the first few layers can match or even outperform full-layer
training. For example, on CIFAR-10 with correct labels, training only the first 5 layers achieves 85.5%, close
to 87.1% from training all layers. Under random labels, the gap is even more striking: updating only the
first 5 layers yields +2.6% training accuracy than training all layers. A similar trend holds for CIFAR-100,
confirming that early layers shaped by language pretraining are key to robust, transferable representations.
By contrast, fully updating deeper layers can weaken these beneficial linguistic biases. Hence, partial bridge
training reduces computational costs and preserves valuable language-induced structures, enabling strong
cross-modality performance.

We futher conduct additional ablation studies on partial bridge training with random labels, further investi-
gating which subsets of layers to fine-tune in a pretrained language model. As shown in Fig. 13 and Table 12,
training only first few layers consistently converges faster and achieves higher accuracy than tuning only the
last layers. Notably, when adapting random labels on CIFAR-100, updating the first five layers surpasses
updating the last fourteen layers by a significant margin. This supports our claim that early layers, shaped
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Figure 14: Fine-grained parameter outlier and distribution comparison.

by language pretraining, provide more flexible, general-purpose features for cross-modality adaptation—even
in highly unconstrained settings such as random-label learning.

Table 12: Extend ablation study on Random Label Partial Bridge Training. Darker “ ” indicates
higher Train-acc1 and Test-acc1, respectively. Note that under random-label training, the test accuracy is
naturally low because the labels have no true class semantics; hence, the training accuracy is the primary
indicator of model’s fitting ability.

Layers CIFAR-10
Train-acc1 Test-acc1

Last Layer 43.1 5.2
Last 14 Layers 87.9 6.3
First Layer 69.9 4.3
All Layers 93.9 6.3
First 5 Layers 96.5 6.7
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These observations align with recent work by Skean et al. [46], who show that intermediate (non-final) layers
often yield richer representations than the final layer. They attribute this to broader syntactic and structural
information persisting in the middle of large language models. In our context, selectively training those early
or intermediate layers appears to harness these more generalizable linguistic biases while keeping later layers
frozen and less susceptible to overfitting nonsensical label mappings. By contrast, fine-tuning only the last
few layers, where specialized or domain-specific transformations accumulate, impedes the model’s ability to
effectively relearn and adapt to new modalities.

Overall, these additional ablation studies underscore the practical benefits of partial bridge training: (1) it
preserves the model’s valuable early-layer representations that are crucial for robust convergence under noisy
or random labels; (2) it helps maintain performance on real-label tasks; and (3) it reduces computational
overhead by updating fewer parameters. Coupled with the findings of Skean et al., our results reinforce the
growing recognition that early or intermediate layers in large language models are an ideal pivot point for
cross-modality adaptation, offering both flexibility and a strong inductive bias from language pretraining.

D Fine-grained Layer-wise Outlier Analysis

Fig. 14 extends our main analysis by providing a layer-wise comparison of weight distributions in GPT-2 and
its image-trained counterpart. The left column shows that GPT-2 exhibits a substantial number of outlier
parameters (highlighted in red), particularly in Layer 1, Layer 5, Layer 23, and Layer 24, where thousands of
extreme values emerge. In contrast, the image-trained GPT-2 (right column) has no significant outliers across
all layers, with its weight distributions appearing smoother and more compact. This contrast reinforces the
idea that discrete language tokens induce sharp parameter fluctuations, whereas continuous visual signals
result in more uniform parameter magnitudes.

A closer look at GPT-2’s layer-wise distribution reveals a pattern: early layers (e.g., Layer 1) have the highest
concentration of outliers, likely due to the initial token embedding process, while deeper layers show a gradual
reduction in extreme values. However, the final layers (e.g., Layer 23 and Layer 24) again exhibit a resurgence
of outliers, suggesting that language models tend to amplify certain parameter magnitudes when mapping
hidden states to output space. In comparison, the vision-trained model maintains a consistently well-behaved
distribution across all layers, further indicating that language pre-training inherently leads to more volatile
weight dynamics. This finding underscores the challenges in cross-modal adaptation, particularly when
transferring pre-trained language models to vision tasks.

E Compare with the Pretrain Bias from Time Series Modality

To further show that the parameter distribution learned through language pre-training can benefit vision
modality, we compare the pretrained bias between language and time series using GPT-2 and chronos-t5 ( A
model based on language model architectures pretrained on time series data). Table 13 shows that language
pretrained bias can outperform time series pretrained bias on both correct label and random label settings
across different datasets.

Table 13: Comparison between Language Pretrained and Time Series Pretrained Bias.

Model Imagenet100 CIFAR-100 CIFAR-10
Train-acc1 Test-acc1 Train-acc1 Test-acc1 Train-acc1 Test-acc1

Correct Label
Pretrained-GPT-2 86.6 76.2 99.1 60.4 99.2 87.1
Pretrained-Chronos-t5 78.7 79.7 94.5 58.1 98.3 88.2
Random Label
Pretrained-GPT-2 94.1 1.5 98.7 0.8 93.9 6.3
Pretrained-Chronos-t5 80.9 1.3 92.4 1.1 87.9 4.3
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F More Linear Probing Results

Table 14 shows the linear probing results of LBBT on CIFAR-10 and CIFAR-100, demonstrating its
effectiveness.

Table 14: Linear probing image classification performance across CIFAR-10 and CIFAR-100. All models are
random label bridge trained on TinyImagenet-200 first.

Paradigm CIFAR-10 CIFAR-100
Test-acc1 Test-acc1

w/o Bridge Training 62.7 35.0
Bridge Training 74.2 49.1
Language Bias Bridge Training 82.3 56.3

Table 15: Quantitave analysis of loss landscape between Pretrained GPT2 and Scratch GPT2.

Metric Pretrained GPT2 Scratch GPT2
Eigenvalue decay rate -11.603 -3.691
Kurtosis of eigenvalue distribution 14.511 -1.409
Trace of Hessian 305,404 20,785
Spectral gap 207,779.44 226.10
Participation ratio 0.336 0.778
Noise sensitivity AUC -0.011 0.003
Gradient predictiveness 0.044 0.830
Max parameter sensitivity 97.296 23.599
Negative eigenvalue ratio 0.65 0.35

G Quantitative Analysis of Loss Landscape.

In Section 4.3, we visualize the loss landscape of models initiated with and without language pretrained
bias. Here, to further support our findings, we conduct extensive quantitative analysis comparison of the loss
landscapes. Table 15 demonstrates that
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