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Abstract

How much collective intelligence can emerge from simple, decentralized rules with-
out heavy, predefined workflows? We explore this question through a framework
that couples Boids-style local coordination with explicit evaluation and selec-
tion in a survival-driven, tool-building ecology. Agents interact via three local
rules—cohesion, separation, and alignment—and follow an observe–reflect–build
loop to generate and refine tools within an ecosystem that includes automated
tests, shared registries, and a Tool Complexity Index capturing code, interface, and
compositional sophistication. Positioned as a preliminary study, this work treats
evolution as a complementary lens: local rules catalyze collaboration and mod-
ularity, while selective feedback favors strategies that persist across generations.
Across text analysis, data science, and simulation modeling tasks, evolutionary-
Boids societies increase throughput and balance contributions among agents while
maintaining reliability, though current prompting tends to suppress deep tool com-
position. The resulting systems produce more, smaller, and self-contained tools
rather than extended pipelines, suggesting a breadth-first mode of exploration.
Overall, the framework offers an early step toward understanding how simple, local
interactions and evolutionary pressure together shape the emergence of organized,
evolving agent ecosystems.

1 Introduction

How much collective intelligence can emerge from simple, decentralized rules—without heavy, prede-
fined workflows? Multi-agent systems have revealed striking forms of coordination, communication,
and division of labor, yet most contemporary setups still rely on task-specific scaffolds and rigid
pipelines. What remains underexplored is whether minimal local interactions alone can catalyze
collaboration and long-horizon adaptation in open-ended settings, and how such societies evolve,
specialize, and govern themselves over time.

Foundational work on flocking showed that three local rules—separation, alignment, and cohe-
sion—can yield sophisticated global structure without centralized control [1, 2, 3]. Similar principles
appear across biological and engineered collectives [4, 5, 6, 7, 8]. In parallel, evolutionary sys-
tems demonstrated how variation and selection can drive continual change, from early artificial life
platforms to diversity-seeking algorithms and autocurricula [9, 10, 11, 12, 13, 14? ]. Despite this
progress, gaps persist: swarm models typically lack long-term adaptation, evolutionary approaches
can stagnate prematurely, and emergent coordination is often bounded by narrow, workflow-centric
tasks [15, 16, 17, 18].

We argue that a unifying perspective is to decompose decentralized agent collaboration into local rules
plus an evolution algorithm. Local rules shape how agents interact and adopt each other’s artifacts;
evolutionary evaluation selects which behaviors and artifacts persist. Tool building is a particularly
revealing lens here: while tool use by LLMs and agents is well studied [19, 20, 21, 22, 23], the
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collaborative creation and refinement of tools exposes modularity, composability, and ecosystem
dynamics that are hard to observe in single-task workflows.

We introduce a preliminary framework that couples Boids-style local coordination with explicit evalu-
ation and selection in a survival-driven, tool-building ecology. Agents follow an observe–reflect–build
loop to create and refine tools; the ecosystem provides automated tests, shared registries, and a Tool
Complexity Index that quantifies code, interface, and compositional sophistication. Boids-inspired
rules encourage decentralized coordination (e.g., adoption without central planning and functional
specialization), while evolutionary pressure serves as a complementary lens to study longitudinal
adaptation, retention, and collapse. Our results show that Evolutionary-Boids has the potential to
reliably increase throughput and balance contribution across agents.

The paper is organised as follows. We begin by presenting the baseline system, followed by the
design of the agent society motivated by tool construction. Next, we introduce the computational
framework based on Boids dynamics, and subsequently describe the evolutionary algorithm that
governs system adaptation. Finally, a small-scale empirical study is conducted to validate the
framework and demonstrate its potential.

2 Related Work

Local Interaction Rules, Coordination, and Emergent Intelligence. Classical results demonstrate
that simple local interactions can produce coherent global structure without centralized control.
Reynolds’ Boids established that separation, alignment, and cohesion suffice for lifelike flocking
[1], while statistical physics models proved long-range order and nonequilibrium phase transitions
in self-propelled particles [2, 3]. Biology and crowd dynamics provide convergent evidence that
decentralized feedbacks and attractive/repulsive “social forces” yield large-scale coordination [4, 5],
and control-theoretic and swarm-engineering work formalizes distributed flocking with design and
verification principles [6, 7]. Behavioral ecology further links local cues to collective decisions
and leadership [8]. We adopt this micro-to-macro lens but recast alignment/cohesion/separation as
institutional primitives subject to evolutionary pressure in survival-driven ecologies.

Evolutionary algorithms for open-ended adaptation. Digital evolution showed that variation
and selection can sustain innovation and coevolution in silico [9, 10]. To mitigate deception and
premature convergence, novelty search and quality–diversity (QD) maintain behaviorally diverse,
high-performing repertoires [11, 12, 13], with repertoire-based control enabling rapid self-recovery in
robotics [24]. Open-ended approaches co-evolve challenges and solutions via transfer across stepping
stones (POET and variants) [14], while unsupervised environment design induces curricula that yield
robust zero-shot transfer [25]. We adopt this diversity-first view but define fitness at the societal level:
evolution acts jointly on agent policies and the institutional/tool layer, retaining strategies and rules
that improve collective performance and stability.

Open sandbox simulations with a slice toward tool creation. Open multi-agent sandboxes probe
social generalization and emergent dynamics at scale: self-play yields staged strategies and emergent
tool use [15]; XLand trains generally capable agents across procedurally generated social tasks [17];
Melting Pot 2.0 targets novel-partner generalization in mixed-incentive settings [26]; Neural MMO 2.0
offers persistent many-agent worlds with multi-task evaluation [18]; and Overcooked-based setups
benchmark zero-shot human–AI coordination and layout generalization [16, 27]. Complementary
LLM-agent work studies how tools and skills are acquired and orchestrated: Toolformer learns API
calling [19]; Voyager accumulates persistent embodied skill libraries [20]; multi-agent scaffolds
(CAMEL, AutoGen) coordinate role-specialized LLMs [21, 22]; and “generative agents” simulate
long-horizon social behavior [23]. Reviewer-authored systems extend this frontier—Agent LUMOS
(modular training) [28], OASIS (scaling to one million agents) [29], OWL (hierarchical multi-agent
workforce) [30], and schema-guided, culture-aware role-play [31]—while CollabUIAgents analyzes
credit re-assignment for collaboration and generalization [32]. Our contribution is a minimalist,
Boids-style survival-driven sandbox in which agents not only use tools but also create and retain
tools and rules, with evolutionary selection determining which institutions persist or collapse.

2



3 Methodology

3.1 Baseline System: Self-Reflective Tool-Building Agent Society

Overview and agent loop. Our baseline establishes the minimal viable setting in which decen-
tralized agents generate and share tools while collective structure emerges. Each agent follows
a simple observe–reflect–build loop grounded in five conceptual components: an Agent Identity
with a light specialization prior; a Shared Tool Registry that records community-visible artifacts;
a Personal Tool Space for private development and testing; a Reflection History logging prompts,
generated reflections, and bookkeeping metadata; and an Environment Manager abstracting resources
and constraints. At each timestep, the agent inspects available tools and their test outcomes and
proposes a new tool. Tools expose a standardized interface that enables composition—simple primi-
tives combine into larger workflows—executed in a centralized context guarded by recursion-depth
limits. Adoption signals are approximated by static scans of promoted tools for references. This
compositional substrate encourages dependency chains across agents and provides the basic medium
for emergent collaboration.

Assurance and specialization dynamics. Every tool proposal triggers smoke-test–oriented quality
control comprising autogenerated test harnesses (candidate calls validating execution without excep-
tions), execution outcomes (pass/fail and error logs), visibility (propagating outcomes of promoted,
passing tools to all agents; failing tools remain private), and persistence (structured logs for longitudi-
nal study). These mechanisms steer the ecosystem toward reliability without claiming deep functional
coverage. On top of this, we incorporate light biases that promote division of labor: Meta-Prompt
Influence nudges agents toward broad domains without hard constraints; Usage-Based Reinforcement
is realized by prioritizing more widely adopted tools when presenting exemplars back to agents;
Alignment-conditioned guidance is emitted only when higher-producing, successful neighbors exist;
no explicit failure-driven branch is enacted. Together, assurance and bias produce a feedback loop in
which successful tools become more visible, unsuccessful ones are inspected and revised, and niches
of specialization gradually crystallize.

Infrastructure, observables, and study design. All experiments are designed to run in isolated,
reproducible executions that could emit structured logs of reflections, tool creations, and evaluations,
together with quantitative traces in JSON for potential post-hoc analysis and rich console visual-
izations to monitor ecosystem dynamics. We propose a set of observables that could be used to
summarize emergent behavior in future studies: Tool Creation Rate (new tools per agent per round),
Composition Depth (average dependency-chain length), Specialization Index (diversity of tool types
across agents), Collaboration Events (frequency with which tools build on others), Test Success
Rate (ecosystem reliability), and adoption trends estimated from static dependency scans. This
proposed instrumentation outlines how experimental control and comparability could be achieved
across conditions, establishing a quantitative foundation on which communication protocols and
evolutionary pressures may later be layered to assess their impact on coordination, specialization,
and long-horizon performance.

3.2 Computational Framework for Boids-Inspired Cognitive Coordination

Our framework adapts the classical boids model from spatial coordination to the cognitive domain
of multi-agent tool creation. The core of an agent’s decision-making process is governed by three
rules—separation, alignment, and cohesion—which we formulate mathematically to guide behavior
based on local information within the agent’s neighborhood. In the present implementation, these
rules act as prompt-level conditioning signals, and the orchestrator deterministically proceeds to a
build action each round; the mathematical treatment that follows is retained for exposition.

3.2.1 Mathematical Formulation of Boids Rules

Let the set of possible actions for an agent be A, which includes building tools of various types
(abuild,t) and using existing tools (ause). Each boids rule produces a preference function P (·) over this
action space. In our experiments, P (·) serves as a descriptive scaffold.
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3.2.2 Separation: Functional Niche Specialization

The separation rule enforces functional diversity and encourages niche specialization by discouraging
the creation of tools that are redundant within an agent’s local neighborhood. We model this through
two distinct mechanisms.

Saturation-Based Model. This model calculates the saturation S(t) of a given tool type t within
the recent history of an agent i’s neighborhood Ni. Let Tj,recent be the set of recently created tools by
a neighbor j. The saturation is:

S(t) =
∑
j∈Ni

|{τ ∈ Tj,recent | type(τ) = t}|. (1)

The preference for building a tool of type t, Psep(abuild,t), is modulated by a penalty function fsep(S(t))
that decreases preference as saturation increases:

Psep(abuild,t) ∝ fsep(S(t)) =


0.1 if S(t) ≥ 2,

0.5 if S(t) = 1,

1.0 if S(t) = 0.

(2)

Operationally, saturation counts are gathered over a recent-neighborhood window of the last three
rounds (default W=3) using inferred tool types; the resulting tiers {1.0, 0.5, 0.1} are presented as
textual guidance in the prompt.

Semantic Similarity Model. For a more nuanced differentiation, this model leverages natural
language processing. Each tool τ is represented by a TF–IDF vector v(τ) derived from its name and
functional description. The semantic similarity between a proposed tool τp and an existing tool τe is
their cosine similarity:

sim(τp, τe) =
v(τp) · v(τe)

∥v(τp)∥ ∥v(τe)∥
. (3)

Conceptually, separation prefers proposals that diverge from nearby artifacts. In practice, the prompt
highlights at most the top two neighbors whose similarity exceeds a threshold θ=0.30 and includes
brief code snippets as “diverge-from” anchors; when there are fewer than two neighbor tools, when
vectorization fails, or when both similarity and saturation signals are empty, the rule emits no
fragment.

3.2.3 Alignment: Propagation of Successful Strategies

The alignment rule facilitates the propagation of effective behaviors by encouraging agents to learn
from their most productive neighbors. Success of a neighbor agent j relative to the current agent i is
defined by a productivity function, IsSuccessful(j, i), where success is correlated with the number of
tools created (|Tj | > |Ti|):

IsSuccessful(j, i) =
{
1 if |Tj | > |Ti|,
0 otherwise.

(4)

Let Aj,recent be the set of recent actions performed by agent j. The alignment preference for a,
Palign(a), is increased if a has been recently taken by successful neighbors:

Palign(a) = Pbase(a) + ∆Palign ·max
j∈Ni

(IsSuccessful(j, i) · I(a ∈ Aj,recent)) , (5)

where I(·) is the indicator function. In the implementation, alignment filters neighbors to those
currently out-producing the focal agent when such counts are available, and surfaces narrative
exemplars—complexity, quality, and adoption leaders—within the prompt; if no qualifying exemplars
exist, the rule emits no fragment.

3.2.4 Cohesion: Fostering Collaborative Tool Use

The cohesion rule promotes the development of an integrated tool ecosystem by incentivizing agents
to use and build upon their neighbors’ existing tools. The preference for using tools, Pcoh(ause), is
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conditioned on the availability of tools in the local environment. Let NT =
∑

j∈Ni
|Tj | be the total

number of tools held by all neighbors. The cohesion preference is formulated as:

Pcoh(ause) ∝ 1 + δuse · I(NT > 0), (6)

where δuse amplifies usage when a local ecosystem exists; a smaller boost δbuild encourages com-
plementary builds. In practice, cohesion relies on recent-neighborhood windows when available;
when no global summary is present, no cohesion fragment is emitted; and fixed coefficients δuse=0.3
and δbuild=0.1 are stated directly in the prompt (and accompanying metadata) as communicative
guidance.

3.3 Evolutionary Algorithm Module

Evolutionary pressure is introduced through periodic selection and reproduction. Every few rounds,
agents are ranked by their average Tool Complexity Index (TCI); the bottom segment is eliminated
subject to a minimum-population constraint and replaced via prompt-level crossover or mutation of
surviving specializations. This mechanism provides a Darwinian loop in which strategies associated
with more complex, reusable tools persist, while less helpful behaviors fade. We study boids-only,
evolution-only, and combined conditions against a no-constraint control to isolate contributions of
local coordination and global selection. In the present setup, neighborhood structure uses a fixed ring
topology, and selection is TCI-based without directly weighting correctness or collaboration metrics.

System performance is evaluated using both correctness and complexity metrics. The TCI measures
tool sophistication along code structure, interface design, and compositional reuse. Higher-level
indicators capture emergent phenomena such as diversity, specialization divergence, collaboration
events, and ecosystem coherence. Experiments are conducted under the fixed neighborhood topology
described above; randomized multi-topology replications are left to future work.

4 Experiments & Results

4.1 Tool Complexity Index (TCI)

TCI = Ccode︸ ︷︷ ︸
[0,3]

+Ciface︸ ︷︷ ︸
[0,2]

+Ccomp︸ ︷︷ ︸
[0,5]

.

where Ccode ∈ [0, 3] quantifies code surface, Ciface ∈ [0, 2] quantifies caller-facing interface burden,
and Ccomp ∈ [0, 5] quantifies compositional breadth. All quantities are obtained via static analysis of
the tool’s execute entrypoint and its module directory, without executing code.

Code complexity. We map code surface to a capped linear score Ccode = 3min(1,LOC/300),
where LOC counts effective lines aggregated over the tool directory (excluding blank/comment-only
lines). This reflects reading and change costs while preventing size-only inflation via saturation at
300 lines.

Interface complexity. We combine input arity and output surface using Ciface = min(1, p/5) +
min(1, r/5), where p is the number of formal parameters of execute and the return proxy is
r = min(5, K+D+T ). Here K is the average top-level key count across dictionary-literal return
sites, D is the maximum literal nesting depth, and T is top-level kind heterogeneity (number of
distinct top-level kinds minus one).

Compositional complexity. We reward modular orchestration using Ccomp = min(4, 0.5 t) +
min(1, 0.1 e), where t counts distinct tools referenced and e counts distinct non-standard-library im-
ports at top level. Prioritizing breadth over depth encourages decomposition into reusable components
while acknowledging ecosystem surface without letting external dependencies dominate.

Parsing quality gate. A parsing quality gate down-weights the raw sum by a factor of 0.6 when
the module fails to parse to an AST, ensuring syntactically invalid tools are retained for analysis but
penalized in ranking.
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Table 1: Baseline (Global) vs Boids+Evolution per task. Code/Comp. are last-round complexities.

Metric Text Analysis Data Science Simulation/Modeling
Baseline Boids Baseline Boids Baseline Boids

Tools created 9 13 10 18 14 16
Pass rate (%) 89 85 100 89 86 88
Avg. TCI 2.10 1.95 2.45 2.32 2.07 2.05
Code complexity 0.50 0.52 0.86 0.88 0.63 0.64
Compos. complexity 0.21 0.03 0.19 0.04 0.03 0.01

4.2 Observations

Evolutionary-Boids reliably lifts throughput and balances contribution across agents without materi-
ally harming pass rates, but under current prompting it suppresses multi–tool composition.

Across all three tasks, Evolutionary-Boids produces more artifacts per run under identical agent
counts and rounds (13–18 vs. 9–14 in the global baselines; cf. Table 1). The gain is ecosystem-wide
rather than star-driven: the most productive agent accounts for a smaller share of total output (lower
top_share), and the leading contributors each deliver 3–5 tools rather than a single dominant performer.
Reliability remains comparable overall (mid– to high–80% pass rate), with one global data-science
run reaching 100% on fewer attempts. In contrast, Boids increases the number of attempts (“shots on
goal”) without noticeably degrading correctness, suggesting that lightweight, failure-aware retries
could close the residual gap while preserving the throughput advantage.

Complexity differences manifest primarily in composition rather than unit difficulty. The average tool
complexity index (TCI) remains in the 2.0–2.5 band for all regimes, indicating similar per-artifact
difficulty. However, compositional complexity is near-zero under Boids, while global baselines trend
toward ∼0.2 due to more frequent reuse/chaining of prior tools. Flocking cues (alignment/separation)
and per-round build enforcement stimulate fresh tool ideation, yet the current prompts—and a
conservative dependency policy—bias agents toward self-contained solutions. Reflection traces
corroborate this: agents consistently propose distinct primitives even after failures but rarely invoke
existing ones.

Synthesis. Stepping back, our findings suggest a design pattern for multi-agent tool ecosystems:
begin with breadth-first modular exploration driven by simple local rules, then transition—under
explicit incentives and constraints—toward depth-oriented assembly and integrated pipelines. In
this view, evolution functions as institutional governance: selection retains artifacts and interaction
rules that are socially useful, gradually specializing the ecosystem while preserving optionality.
The practical guidance is to couple diversity pressure (separation, novelty, quality–diversity) with
time-varying mechanisms that nudge reuse (composition quotas, reward shaping, lineage-aware
telemetry), yielding heavier but more integrated workflows only when the parts bin is sufficiently
rich. Beyond engineering benefits (maintainability, reuse, fault isolation), this staged strategy offers
a tractable scientific handle on emergent intelligence: it externalizes coordination into measurable
institutions and lets usefulness act as the unifying currency across agents, artifacts, and generations.

5 Conclusions and Limitations

5.1 Conclusions

In this paper, we introduced Evolutionary-Boids, a simple yet effective coordination mechanism
for large-scale multi-agent tool generation. By combining flocking dynamics with evolutionary
specialization, the framework transforms local behavioral rules into emergent collective productivity:
agents self-organize to explore diverse regions of the design space while maintaining steady reliability
and balance. Empirically, Evolutionary-Boids produced 30–50% more valid artifacts than global
baselines across three domains, distributing output more evenly and expanding the system’s functional
coverage without compromising pass rates.
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However, our analysis also revealed a clear trade-off between breadth and depth: while the method
excels at generating a broad range of primitives, it falls short in spontaneous tool reuse and multi-
step composition. This finding frames Evolutionary-Boids as an early-phase engine for rapid
ideation—building the component library upon which deeper coordination can later emerge. Looking
ahead, we envision extending the framework to support composition-aware prompting, adaptive
reward shaping, and evolutionary selection that favors cooperative behaviors. Beyond improving
technical metrics, these extensions will allow us to study how simple coordination rules scale into
structured, self-improving ecosystems—an essential step toward understanding collective intelligence
in open-ended agent systems.

Evolutionary-Boids is well-suited to the early phase of system construction: it rapidly populates a
diverse “parts bin” while maintaining broad participation across the agent pool. For downstream
stages that prioritize multi-step pipelines and reuse of shared utilities, the framework should make
reuse both salient and rewarded. Concretely, we recommend (i) generation-time salience and guards
(memory traces that surface relevant prior tools; AST checks that reject self-contained proposals when
feasible reuse exists), (ii) evaluation-time incentives (rubric bonuses and pass criteria that require at
least one correct prior-tool invocation where applicable), and (iii) failure-aware retries targeted at
composed artifacts. A sandboxed whitelist of third-party dependencies (e.g., numpy, pandas) can
safely raise the ceiling on legitimate composition. We will track deltas in pass rate, TCI and more to
quantify the effect of these interventions.

5.2 Limitations

This study is a preliminary step toward answering a broader question: how far can flocking-style
coordination and lightweight evolution push multi-agent tool building before explicit planning and
strong composition constraints become necessary? While our results are encouraging, they should be
interpreted with care.

Our prompts currently encourage but do not enforce reuse, which likely contributes to low compo-
sitional complexity under Boids. Execution-safety restrictions on third-party libraries may further
inhibit legitimate chaining. Evolutionary pressure was not fully exercised in the reported sessions (no
pruning occurred), limiting conclusions about selection dynamics. Finally, the tasks studied (text
analysis, data science, simulation) do not cover domains where long-horizon composition is intrinsic
(e.g., robotics, multimodal research pipelines). Future work will harden composition constraints and
rewards, introduce a sandboxed dependency whitelist, scale population size/rounds and selection
intensity to realize prune/replicate/mutate dynamics, and evaluate in settings that demand chaining
to test whether Evolutionary-Boids can transition from breadth-first exploration to depth-oriented
assembly.

Our findings reflect the current instrumentation and scale. Construct validity: TCI-Lite is a static
proxy and does not capture runtime semantics, side-effects, or true data-flow depth; compositional
complexity may undercount “soft reuse” (e.g., protocol alignment without explicit calls). Internal
validity: telemetry is partial (limited adoption graphs, shallow call-graph instrumentation), and
the sandbox may mask latency/cost trade-offs or swallow failure modes that matter in production.
External validity: experiments are Python-centric with small populations, short horizons, and few
seeds; tests emphasize internal consistency over downstream task utility, and dependency policies
restrict otherwise reasonable compositions. To mitigate these issues we matched budgets/prompts
across regimes and release structured logs plus per-run artifacts; the sandbox is designed to extend
with rule-level telemetry and runtime metrics (adoption graphs, call-graph depth, latency/cost) to
strengthen attribution and connect modularity gains to end-task usefulness.

Two additional threats merit emphasis. Prompt/policy confounds: the observed throughput gains and
lower composition could be driven as much by per-round build enforcement and “novelty-seeking”
cues as by flocking itself; targeted ablations (flocking only, enforcement only, retry only) are needed
to disentangle contributions. Stochasticity and reproducibility: with limited seeds and unswept
hyperparameters, variance remains; future releases will pin toolchains, containerize environments,
and report confidence intervals to bound effect sizes.

In short, our current framework prioritizes breadth—rapidly populating a diverse parts bin—over
depth. This is a deliberate early-phase choice, not a fundamental limitation of the paradigm. The
next iteration will explicitly test the transition from exploration to assembly via composition quotas,
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reward shaping, dependency whitelists, richer telemetry, larger/evolving populations, and evaluation
on tasks where chaining is the dominant success mode.
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key, and the gpt-4.1-nano deployment (API version 2024-12-01-preview) from the environment
template, along with default temperature constants of 0.7 for free-form calls and 0.1 for structured
outputs. The client remains fixed to this deployment when issuing chat completions with a 30,000-
token ceiling.

The agent loop then defines a stage-specific sampling schedule: reflections query the model at
temperature 0.7; tool blueprints reduce this to 0.5 for more deterministic specifications; concrete tool
code generation lowers it further to 0.1 to minimize drift; and the subsequent unit tests also execute
at 0.1 under the same model.
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Answer: [C]
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and the execution of these experiments.
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the experiments under human supervision.

3. Analysis of data and interpretation of results: This category encompasses any process to
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the results of the study.
Answer: [D]
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paper’s contributions and scope?
Answer: [Yes]
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cereating outcomes across domains; Methods, Experiments and Conclusions section support
these claims within scope.
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made in the paper.
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much the results can be expected to generalize to other settings.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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nal/conclusion validity limits.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The work formalizes decision rules/metrics but does not present theorems; no
proofs are required.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The agent loop, defaults, observables, and protocols are specified; runs emit
structured logs or JSON with per-run directories for rebuilding tables/figures.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• We recognize that reproducibility may be tricky in some cases, in which case authors

are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The submission provides logs, JSON traces, run folders and github repo and
explains how to reconstruct results from these artifacts.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the Agents4Science code and data submission guidelines on the conference

website for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: It reports agent counts/rounds, neighborhood size, separation threshold, deci-
sion weights, TCI formula, and evaluation metrics.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper describes replicated runs across randomized initializations/topolo-
gies.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, or overall run with given experimental
conditions).

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: API used for each experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics (see conference website)?

Answer: [Yes]

Justification: No human subjects or sensitive data.

Guidelines:

• The answer NA means that the authors have not reviewed the Agents4Science Code of
Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Positive implications for alignment/governance and evolving tool ecosystems
are discussed alongside risks.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,
privacy considerations, and security considerations.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies.
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