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ABSTRACT

Decentralized SGD can run with low communication costs, but its sparse communi-
cation characteristics deteriorate the convergence rate, especially when the number
of nodes is large. In decentralized learning settings, communication is assumed to
occur on only a given topology, while in many practical cases, the topology merely
represents a preferred communication pattern, and connecting to arbitrary nodes is
still possible. Previous studies have tried to alleviate the convergence rate degra-
dation in these cases by designing topologies with large spectral gaps. However,
the degradation is still significant when the number of nodes is substantial. In this
work, we propose TELEPORTATION. TELEPORTATION activates only a subset of
nodes, and the active nodes fetch the parameters from previous active nodes. Then,
the active nodes update their parameters by SGD and perform gossip averaging
on a relatively small topology comprising only the active nodes. We show that
by activating only a proper number of nodes, TELEPORTATION can completely
alleviate the convergence rate degradation. Furthermore, we propose an efficient
hyperparameter-tuning method to search for the appropriate number of nodes to
be activated. Experimentally, we showed that TELEPORTATION can train neural
networks more stably and achieve higher accuracy than Decentralized SGD.

1 INTRODUCTION

Distributed learning has emerged as an important paradigm for privacy preservation and large-scale
machine learning. In centralized approaches, such as federated learning (McMahan et al., 2017;
Kairouz et al., 2019) and All-Reduce, nodes update their parameters by using their local dataset and
then compute the average parameters of these nodes. Since computing the average of many nodes
incurs huge communication costs, communication is the major bottleneck in the training time. In
reducing communication costs, decentralized learning has attracted significant attention (Lian et al.,
2017; 2018; Assran et al., 2019; Koloskova et al., 2020b). In decentralized learning, a node exchanges
parameters with its few neighboring nodes and then computes their weighted average to approximate
the average of all nodes. This procedure is called gossip averaging. Since each node only needs to
communicate with a few neighboring nodes, decentralized learning is more communication efficient
than centralized counterparts (Lian et al., 2017; Assran et al., 2019; Ying et al., 2021).

While decentralized learning can run with low communication costs, the degradation of the conver-
gence rate due to its sparse communication characteristics is a trade-off (Koloskova et al., 2020b).
Especially, when the number of nodes is large, the parameters held by each node are likely to be
far away during the training, and gossip averaging deteriorates the convergence rate. This makes it
challenging for decentralized learning to scale to a large number of nodes.

In decentralized learning literature, it is commonly assumed that communication can only occur
on a given topology. However, in many practical cases, the topology merely represents a preferred
communication pattern, and connecting to arbitrary nodes is still possible, e.g., in a data center or
the case where nodes are connected on the Internet. Since we can choose which topology to use in
these cases, many prior studies designed topologies to reconcile the communication efficiency and
convergence rate, attempting to alleviate the degradation of the convergence rate caused by a large
number of nodes (Wang et al., 2019; Ying et al., 2021; Ding et al., 2023; Takezawa et al., 2023b).
Specifically, the communication costs are determined by the maximum degree of the topology, and
the convergence rate is determined by its spectral gap (Wang et al., 2019; Koloskova et al., 2020b).
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Thus, the prior studies designed topologies with large spectral gaps and small maximum degrees
and proposed performing gossip averaging on these topologies. However, the approximate average
estimated by gossip averaging deviates from the exact average of all nodes as the number of nodes
increases, and the convergence rate remains to degrade when the number of nodes is substantial.

In this study, we ask the following question: Can we develop a decentralized learning method whose
convergence rate does not degrade as the number of nodes increases? Our work yielded an affirmative
answer with the proposal of TELEPORTATION. TELEPORTATION can completely eliminate the
degradation of the convergence rate caused by increasing the number of nodes, and the convergence
rate is consistently improved as the number of nodes increases. Specifically, TELEPORTATION
activates only a subset of nodes and initializes their parameters with the parameters of previous active
nodes. Then, the active node updates its parameters by SGD and performs gossip averaging on a
relatively small topology comprising only the active nodes. By activating only a proper number of
nodes, gossip averaging can make the parameters of each node reach the consensus fast, and the
parameters of each node can be prevented from being far away even when the total number of nodes is
large. We show that by activating an appropriate number of nodes, the degradation of the convergence
rate can be completely alleviated. Furthermore, we propose an efficient hyperparameter-tuning
method to search for the proper number of active nodes. For an arbitrary number of nodes, the
proposed hyperparameter-tuning method can find the appropriate number of nodes to be activated
within 2T iterations in total, where T is the number of iterations to run TELEPORTATION once.
Experimentally, we demonstrated that TELEPORTATION can converge faster than Decentralized SGD
and train neural networks more stably.

Note: In this work, we consider a setting where any two nodes can exchange parameters as required,
similar to previous studies on topology design for decentralized learning (Marfoq et al., 2020; Ying
et al., 2021; Song et al., 2022; Takezawa et al., 2023b; Ding et al., 2023). A data center is an example,
and Assran et al. (2019) demonstrated that decentralized methods can train neural networks faster
than All-Reduce. In addition to a data center, when nodes are connected to the Internet, any two nodes
can communicate by specifying the IP address. TELEPORTATION is not applicable in the presence of
a pair of nodes that cannot communicate, as in wireless sensor networks.

Notation: A graph G is represented by (V,E) where V is a set of nodes and E is a set of edges. For
simplicity, we also write ({1, · · · , n}, E) to represent a graph G where n is the number of nodes. Id
denotes the d-dimentional identify matrix, 0 denotes a vector with all zeros, and 1 denotes a vector
with all ones.

2 PRELIMINARY

2.1 PROBLEM SETTING

We consider the following problem where the loss functions are distributed among n nodes:

min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

fi(x)

]
, fi(x) := Eξi∼Di

[Fi(x; ξi)] , (1)

where x is a model parameter, Di is a training dataset that the i-th node has, ξi is a date sample
following Di, and the local loss function fi : Rd → R is defined as the expectation of Fi(·; ξi) over
data sample ξi. Following previous works (Koloskova et al., 2020a; Yuan et al., 2021; Lin et al.,
2021), we assume that the loss functions satisfy the following assumptions.
Assumption 1. There exists f⋆ > −∞ that satisfies f(x) ≥ f⋆ for any x ∈ Rd.
Assumption 2. There exists L ≥ 0 that satisfies for any x,y ∈ Rd and i ∈ {1, 2, · · · , n},

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥. (2)

Assumption 3. There exists σ ≥ 0 that satisfies for any x ∈ Rd and i ∈ {1, 2, · · · , n},
E∥∇Fi(x; ξi)−∇fi(x)∥2 ≤ σ2. (3)

Assumption 4. There exists ζ ≥ 0 that satisfies for any x ∈ Rd,

1

n

n∑
i=1

∥∇fi(x)−∇f(x)∥2 ≤ ζ2. (4)
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2.2 DECENTRALIZED SGD

One of the most fundamental decentralized learning methods to solve Eq. (1) is Decentralized SGD
(Lian et al., 2017). Let xi ∈ Rd denote the i-th node parameter. Once the topology comprising n
nodes Gn = ({1, · · · , n}, E) is specified, Decentralized SGD updates xi as follows:

x
(t+1)
i =

n∑
j=1

Wij

(
x
(t)
j − η∇Fj(x

(t)
j ; ξ

(t)
j )
)
,

where η > 0 is the step size and Wij ∈ [0, 1] is the weight of edge (i, j) ∈ E that satisfies∑n
i=1 Wij =

∑n
j=1 Wij = 1. The following assumption is commonly used to represent how well

the topology Gn is connected (Yuan et al., 2021; Koloskova et al., 2020b; 2021; Aketi et al., 2023).
Assumption 5. Let λi is the i-th largest eigenvalue of W ∈ [0, 1]n×n. W is a doubly stochastic
matrix, and pn := 1−max{|λ2|, |λn|}2 satisfies pn ∈ (0, 1]. That is, it holds that∥∥XW − X̄

∥∥2
F
≤ (1− pn)

∥∥X − X̄
∥∥2
F
,

for any X ∈ Rd×n where X̄ := 1
nX11⊤.

We write pn to emphasize that pn depends on n. A small pn indicates that the topology is poorly
connected, and a large pn indicates that the topology is well connected. Generally, pn approaches
zero as the number of node n increases. For instance, when a ring is used as the underlying topology,
pn is Ω(n−2), which rapidly decreases as n increases (Nedić et al., 2018). Under these assumptions,
Decentralized SGD converges with the following rate.
Proposition 1 (Koloskova et al. (2020b)). Suppose that Assumptions 1, 2, 3, 4, and 5 hold. Let
{{x(t)

i }ni=1}Tt=0 denote the parameters generated by Decentralized SGD. Then, there exists the step
size η that satisfies:

1

T + 1

T∑
t=0

E∥∇f(x̄(t))∥2 ≤ O

(√
Lr0σ2

nT
+

(
L2r20(pnσ

2 + ζ2)(1− pn)

T 2p2n

) 1
3

+
Lr0
Tpn

)
, (5)

where r0 := f(x̄(0))− f⋆ and x̄(t) := 1
n

∑n
i=1 x

(t)
i .

As the number of nodes n increases, the first term O(
√

Lr0σ
2

nT ) is improved, while the second and
third terms degrade since pn reaches zero. Thus, as the number of nodes n increases substantially, the
second and third terms dominate the convergence rate, and the convergence rate deteriorates. In many
practical cases, Gn merely represents a preferred communication pattern, and any two nodes can
communicate as needed, as introduced in Sec. 1. Since we can choose which topology to use in these
cases, many recent studies have attempted to alleviate the convergence rate degradation by proposing
topologies with large pn (Ying et al., 2021; Ding et al., 2023; Takezawa et al., 2023b). However, their
pn still approach zero as n increases, and the convergence rate degrades when n is substantially large.
Table 2 in Sec. D lists the convergence rates of Decentralized SGD with various topologies.

3 PROPOSED METHOD

In this section, we propose TELEPORTATION, which can completely eliminate the degradation of
the convergence rate caused by increasing the number of nodes. In the remainder of this section, we
describe TELEPORTATION in Sec. 3.1 and analyze its convergence rate in Sec. 3.2. Then, we propose
an efficient hyperparameter search method in Sec. 3.3 and analyze its convergence rate in Sec. 3.4.

3.1 TELEPORTATION

pn represents the speed at which the gossip averaging makes the parameter of each node {xi}ni=1

reach the average 1
n

∑n
i=1 xi. As the number of nodes n increases, averaging all node parameters

becomes difficult with gossip averaging, and pn reaches zero. Thus, as n increases, the parameters of
each node {xi}ni=1 comes to be apart during the training, and the convergence rate deteriorates, as
discussed in Sec. 2.2.
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Algorithm 1 Simple version of TELEPORTATION

1: Input: the number of nodes n, set of nodes Vn, number of active nodes k, total number of
iteration T , step size η, and topology comprising k active nodes Gk = ({1, · · · , k}, E).

2: for t ∈ {0, 1, · · · , T} do
3: sample next active k nodes V (t)

active from Vn without replacement, and assign {1, 2, · · · , k} to
variables {token_id(t)

i | vi ∈ V
(t)

active} randomly without overlap.
4: for i ∈ {1, 2, · · · , n} in parallel do
5: if vi ∈ V

(t)
active thena

6: if t > 0 then
7: Let vj ∈ V

(t−1)
active denote the node such that token_id(t−1)

j = token_id(t)
i .

8: receive x
(t)
j from vj ∈ V

(t−1)
active , and x

(t)
i ← x

(t)
j .

9: end if
10: y

(t)
i ← x

(t)
i − η∇Fi(x

(t)
i ; ξ

(t)
i ).

11: receive y
(t)
j from vj ∈ {vj ∈ V

(t)
active | (token_id

(t)
i ,token_id(t)

j ) ∈ E}.
12: x

(t+1)
i ←

∑
vj∈V

(t)
active

W
token_id(t)

i ,token_id(t)
j
y
(t)
j .

13: end if
14: end for
15: end for

aThe update rule of the parameters of the inactive nodes is not described because the parameters held by the
inactive nodes are discarded and initialized with the parameters of the other active nodes when they are activated
in line 8. The parameters of inactive nodes do not affect the behavior of active node parameters.

To prevent the parameters in each node {xi}ni=1 from being away when the number of nodes n is large,
we propose updating the parameters of only a small subset of nodes and performing gossip averaging
on a small topology. We refer to the proposed method as TELEPORTATION.1 Let k ∈ {1, · · · , n}
denote the number of active nodes and Gk = ({1, · · · , k}, E) be the topology comprising k active
nodes. Essentially, TELEPORTATION consists of the following three steps:

(1) We sample k active nodes V
(t)

active from Vn without replacement and assign {1, 2, · · · , k} to
variables {token_id(t)

i | vi ∈ V
(t)

active} without overlap.2

(2) The active node vi ∈ V
(t)

active fetches the parameters from the previous active node vj ∈ V
(t−1)

active

whose token_id(t−1)
j stores the same value as that of token_id(t)

i . Then, the active node vi
initializes its parameters with the fetched parameter and updates them by SGD.

(3) The active node vi ∈ V
(t)

active exchanges its parameters with its neighbors {vj ∈ V
(t)

active |
(token_id(t)

i ,token_id(t)
j ) ∈ E} and computes the weighted average with them.

We show the pseudo-code and illustration in Alg. 1 and Fig. 1. In the above implementation, the first
step does not start until the third step is completed. We can solve this issue so that gossip averaging
in the third step is performed on the next active node vj , and the first and third steps can be executed
simultaneously. We show the optimized version in Sec. A.

In TELEPORTATION, gossip averaging is performed on a relatively small topology Gk, which can
make the parameters of k active nodes reach the average fast. Therefore, using the proper number of
active nodes k, we can mitigate the degradation of the convergence rate by increasing the number of
nodes n. In the next section, we analyze the convergence rate and show that our proposed method
successfully circumvents the negative effect of increasing the number of nodes n.

Comparison with Client Sampling: TELEPORTATION randomly samples a subset of nodes and
activates them, but TELEPORTATION is different from the client sampling (Liu et al., 2022). TELE-

1We named our proposed method TELEPORTATION to reflect the manner in which the active nodes copy
their parameters to the next active nodes.

2The first step can be performed in a decentralized manner by sharing the same seed value to sample active
nodes before starting the training.
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Figure 1: Illustration of Alg. 1 with n = 8 and k = 3. We use a line as the topology consisting of
active nodes Gk = ({1, 2, 3}, {(1, 1), (1, 2), (2, 2), (2, 3), (3, 3)}). The black nodes represent active
nodes, and the number written on the node is token_id(t)

i . The blue nodes represent the next
active nodes, and the number on the node is token_id(t+1)

i . The first and third graphs from the left
represent the communication in line 12 in Alg. 1, and the other graphs represent the communication
in line 8.

PORTATION can prevent the parameters of nodes from being away by using the small k because gossip
averaging is performed on the small topology Gk. In contrast to TELEPORTATION, client sampling
incites the parameters of nodes to drift away because gossip averaging is performed on the topology
comprising all nodes, and nodes can exchange parameters only when two neighboring nodes are
sampled simultaneously, which makes it more difficult for gossip averaging to make the parameters
reach the consensus. Thus, client sampling cannot alleviate the degradation of the convergence
rate caused by a large number of nodes n and degrades the convergence rate as well as the vanilla
Decentralized SGD (see Sec. E for more detailed discussion).

3.2 CONVERGENCE ANALYSIS OF TELEPORTATION

We assume that the topology comprising k active nodes Gk satisfies the following assumption.
Assumption 6. Let λi is the i-th largest eigenvalue of W ∈ [0, 1]k×k. W is a doubly stochastic
matrix, and pk := 1−max{|λ2|, |λk|}2 satisfies pk ∈ (0, 1]. That is, it holds that∥∥XW − X̄

∥∥2
F
≤ (1− pk)

∥∥X − X̄
∥∥2
F
, (6)

for any X ∈ Rd×k where X̄ := 1
kX11⊤.

Note that W is a k × k matrix, and pk depends on the number of active nodes k, but is independent
of the total number of nodes n. Under Assumptions 1, 2, 3, 4, and 6, Theorem 1 provides the
convergence rate of TELEPORTATION for any number of active nodes k.

Theorem 1. Suppose that Assumptions 1, 2, 3, 4, and 6 hold. Let {{x(t)
i }ni=1}Tt=0 denote the

parameters generated by Alg. 1, and suppose that {x(0)
i }ni=1 is initialized with the same parameter

x̄(0). Then, for any number of active nodes k ∈ {1, 2, · · · , n}, there exists the step size η such that
1

T+1

∑T
t=0 E∥∇f(x̄

(t)
active)∥2 is bounded from above by

O

√Lr0(σ2 + (1− k−1
n−1 )ζ

2)

kT
+

(
L2r20(σ

2 + ζ2)(1− pk)

T 2pk

) 1
3

+
Lr0
Tpk

 , (7)

where x̄
(t)
active :=

1
k

∑
vi∈V

(t)
active

x
(t)
i and r0 := f(x̄(0))− f⋆.

By tuning the number of active nodes k, we obtain the following theorem. To determine the proper
number of active nodes k, the explicit form of pk is necessary. Here, we show the rates when we use
a ring and exponential graph (Ying et al., 2021) as Gk.

Theorem 2. Suppose that Assumptions 1, 2, 3, 4, and 6 hold. Let {{x(t)
i }ni=1}Tt=0 be the parameters

generated by Alg. 1, and suppose that {x(0)
i }ni=1 is initialized with the same parameter x̄(0).

Ring: Suppose that the active nodes are connected by a ring, i.e., pk = Ω(k−2). Then, if we set the
number of active nodes k as follows:

k = max

{
1,min

{⌈(
T (σ2 + ζ2)

Lr0

) 1
7

⌉
,

⌈(
T (σ2 + ζ2)

Lr0

) 1
5

⌉
, n

}}
,
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there exists η such that 1
T+1

∑T
t=0 E∥∇f(x̄

(t)
active)∥2 is bounded from above by

O

√Lr0σ2

nT
+

(
Lr0(σ

2 + ζ2)
3
4

T

) 4
7

+

(
Lr0(σ

2 + ζ2)
2
3

T

) 3
5

+
Lr0
T

 ,

where x̄
(t)
active :=

1
k

∑
vi∈V

(t)
active

x
(t)
i and r0 := f(x̄(0))− f⋆.

Exp. Graph: Suppose that the active nodes are connected by an exponential graph, i.e., pk =
Ω(log−1

2 (k)). Then, if we set the number of active nodes k as follows:

k = max

{
1,min

{⌈(
T (σ2 + ζ2)

Lr0

) 1
3

⌉
,

⌈
T (σ2 + ζ2)

Lr0

⌉
, n

}}
,

there exists η such that 1
T+1

∑T
t=0 E∥∇f(x̄

(t)
active)∥2 is bounded from above by

O

√Lr0σ2

nT
+

(
L2r20(σ

2 + ζ2)

T 2
log2

(
T (σ2 + ζ2)

Lr0

) 1
3

) 1
3

+
Lr0
T

log2

(
T (σ2 + ζ2)

Lr0

)
+

Lr0
T

 .

All proofs are presented in Sec. B. The first term in Eq. (7) is worse than the first term in Eq. (5),
but Theorem 2 indicates that the first term becomes the same as that of Decentralized SGD by
carefully tuning k. For both cases, only the first term depends on the number of nodes n, which
is improved as n increases. Therefore, TELEPORTATION can completely eliminate the negative
effect by increasing the number of nodes n, and its convergence rate is consistently improved as n
increases. As discussed in Sec. 2.2, several previous studies have attempted to avoid convergence rate
degradation caused by large n by designing topologies with large spectral gaps (Ying et al., 2021;
Song et al., 2022; Takezawa et al., 2023b). However, no prior topology, except for a complete graph,
can completely remove this degradation. By comparing with the complete graph, TELEPORTATION
is more communication efficient. For instance, if a ring is used as Gk, each node only needs to
communicate with three nodes per iteration. Therefore, TELEPORTATION is the first method that
does not suffer from large n without sacrificing the communication efficiency.

3.3 EFFICIENT HYPERPARAMETER SEARCH FOR NUMBER OF ACTIVE NODES

TELEPORTATION can eliminate the convergence rate degradation caused by a large number of
nodes n, while the number of active nodes k ∈ {1, · · · , n} needs to be tuned carefully. If k
is tuned by grid search, it requires nT iterations in total. This hyperparameter-tuning becomes
expensive as n increases. To alleviate this issue, we further extend TELEPORTATION by proposing an
efficient hyperparameter-tuning method for the number of active nodes k. The key idea for efficient
hyperparameter-tuning is based on the following lemma.
Lemma 1. Let k⋆ ∈ {1, 2, 3, · · · , n} be the optimal number of active nodes. If k⋆ < n, there
exists k ∈ {1, 2, 4, 8, · · · , 2⌊log2(n+1)⌋−1} that satisfies k⋆

4 < k ≤ k⋆. Furthermore, it holds that∑⌊log2(n+1)⌋−1
i=0 2i ≤ n.

Algorithm 2 Efficient hyperparameter search for TELEPORTATION.

1: Input: the total number of iteration 2T , and the number of nodes n.
2: run Alg. 1 for T iterations with number of active nodes n, and let {{x(t)

n,i}ni=1}Tt=0 denote the
generated parameters.

3: for k ∈ {1, 2, 22, 23, · · · , 2⌊log2(n+1)⌋−1} in parallel do
4: run Alg. 1 for T iterations with number of active nodes k.
5: end for
6: let {{x(t)

k,i}vi∈V
(t)

active
}Tt=0 denote the parameters generated by Alg. 1 with k active nodes.

7: return the bestb parameters among k ∈ {1, 2, 22, · · · , 2⌊log2(n+1)⌋−1, n}.
bTheoretically, we select the parameters with the smallest gradient norm as in Theorem 2. In practice, we can

select k that achieves the best accuracy on the validation datasets as in the vanilla grid search.
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Lemma 1 shows that for any optimal number of active nodes k⋆ ≤ n − 1, a similar number of
active nodes is contained in {1, 2, 22, · · · , 2⌊log2(n+1)⌋−1}. This suggests that we only need to search
from {1, 2, 22, · · · , 2⌊log2(n+1)⌋−1, n} to obtain the appropriate k and we do not need run Alg. 1
for all k ∈ {1, 2, 3, · · · , n}. Moreover, Lemma 1 indicates that Alg. 1 can be run with various
k ∈ {1, 2, 22, · · · , 2⌊log2(n+1)⌋−1} in parallel because the total number of active nodes is less than or
equal to n. Based on these observations, we propose an efficient hyperparameter-tuning method. The
pseudo-code is shown in Alg. 2.

3.4 CONVERGENCE ANALYSIS OF TELEPORTATION WITH EFFICIENT HYPERPARAMETER
SEARCH

Under the same assumptions as in Theorem 2, Theorem 3 provides the convergence rate of Alg. 2.
The proof is deferred to Sec. C.

Theorem 3. Suppose that Assumptions 1, 2, 3, 4, and 6 hold. Let {{x(t)
k,i}vi∈V

(t)
active
}Tt=0 denote the

parameters of active nodes generated by Alg. 1 when the number of active nodes is set to k, and we
define K := {1, 2, 22, 23, · · · , 2⌊log2(n+1)⌋−1, n}. Then, suppose that the parameters are initialized
with the same parameter x̄(0).

Ring: If the active nodes are connected by a ring, i.e., pk = Ω(k−2), there exists η such that

mink∈K

(
1

T+1

∑T
t=0 E∥∇f(x̄

(t)
active,k)∥2

)
is bounded from above by

O

√Lr0σ2

nT
+

(
Lr0(σ

2 + ζ2)
3
4

T

) 4
7

+

(
Lr0(σ

2 + ζ2)
2
3

T

) 3
5

+
Lr0
T

 ,

where r0 := f(x̄(0))− f⋆ and x̄
(t)
active,k := 1

k

∑
vi∈V

(t)
active

x
(t)
k,i.

Exp. Graph: If the active nodes are connected by an exponential graph, i.e., pk = Ω(log−1
2 k), there

exists η such that mink∈K

(
1

T+1

∑T
t=0 E∥∇f(x̄

(t)
active,k)∥2

)
is bounded from above by

O

√Lr0σ2

nT
+

(
L2r20(σ

2 + ζ2)

T 2
log2

(
T (σ2 + ζ2)

Lr0

) 1
3

) 1
3

+
Lr0
T

log2

(
T (σ2 + ζ2)

Lr0

)
+

Lr0
T

 .

Theorem 3 shows that Alg. 2 can achieve exactly the same convergence rate as the one shown in
Theorem 2 (i.e., the convergence rate with optimal k). Algorithm 2 requires only 2T iterations to find
the proper number of active nodes, whereas grid search requires nT iterations in total. Thus, Alg. 2
can find the appropriate number of active nodes more efficiently than the vanilla grid search.

4 RELATED WORK

Decentralized SGD and its Variants: The literature on decentralized learning can be traced back
to Tsitsiklis (1984), and Decentralized SGD (Lian et al., 2017) is currently the most widely used for
reasons of its simplicity. Recently, many researchers have improved Decentralized SGD in various
aspects. Pu & Nedić (2021), Yuan et al. (2019), Tang et al. (2018b), Yuan et al. (2021), Vogels et al.
(2021), Takezawa et al. (2023a), Aketi et al. (2023), and Di et al. (2024) proposed decentralized learn-
ing methods that are robust to data heterogeneity. Tang et al. (2018a), Koloskova et al. (2019), Vogels
et al. (2020), Kovalev et al. (2021), and Zhao et al. (2022) proposed communication compression
methods. Liu et al. (2022) analyzed Decentralized SGD with client sampling.

Token Algorithm: Token algorithms (Johansson et al., 2007; Dorfman & Levy, 2022; Even, 2023;
Hendrikx, 2023) are a variant of decentralized learning methods different from consensus-based
decentralized learning methods, such as Decentralized SGD. In contrast to the consensus-based
decentralized learning methods, a parameter called token randomly walks on the topology and is
updated on each node. Since token algorithms have only one parameter, they do not suffer from
the issue of parameters held by each node drifting away. However, their convergence rates cannot
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achieve linear speedup as that in Decentralized SGD (Even, 2023). In TELEPORTATION, k parameters
randomly move from previous active nodes to the next active nodes and are updated on the active
nodes. Then, by carefully selecting k, TELEPORTATION can alleviate the issue of parameter drifting
without sacrificing linear speedup property.

Client Sampling: Client sampling is widely studied in federated learning to reduce the commu-
nication costs between the central server and nodes (McMahan et al., 2017; Fraboni et al., 2021;
Wu et al., 2023). McMahan et al. (2017) proposed sampling a subset of nodes randomly. Cho et al.
(2020) proposed selecting nodes according to the loss values. Chen et al. (2022) and Wang et al.
(2023) proposed sampling nodes according to their gradient norms. In decentralized learning, Liu
et al. (2022) studied client sampling and analyzed the convergence rate. However, as discussed in
Sec. 3.1, the client sampling cannot alleviate the degradation of the convergence rate caused by a
large number of nodes.

5 EXPERIMENT

5.1 SYNTHETIC EXPERIMENT

Setting: We followed the experimental setting in Koloskova et al. (2020b) and set the number of
nodes n to 100 and loss function as fi(x) := 1

2∥Ai(x − bi)∥2 with Ai :=
i√
n
Id and d = 50. bi

was drawn from N (0, ζ2

i2 Id) for each node. We defined the stochastic gradient as ∇Fi(x; ξ) :=

∇fi(x) + ϵ where ϵ was drawn fromN (0, σ2

d Id) at each iteration. We used a ring and Base-2 Graph
(Takezawa et al., 2023b) as the topology. The ring is one of the most commonly used topologies for
decentralized learning. The Base-2 Graph is the state-of-the-art topology for Decentralized SGD,
and Takezawa et al. (2023b) demonstrated that the Base-2 Graph can be superior to the various
topologies, e.g., an exponential graph, 1-peer exponential graph (Ying et al., 2021), and EquiTopo
(Song et al., 2022). Note that the Base-2 Graph assumes that any two nodes can communicate as
in TELEPORTATION. For each setting, we tuned the step size to reach the target accuracy as few
iterations as possible. See Sec. G for a more detailed setting.
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Figure 2: Convergence of the error to the target accuracy 0.001 for different stochastic noise σ2 and
heterogeneity ζ2. We plotted 1

k

∑
vi∈V

(t)
active
∥x(t)

i − x⋆∥2 and 1
n

∑n
i=1 ∥x

(t)
i − x⋆∥2 as the error for

TELEPORTATION and Decentralized SGD, respectively. TELEPORTATION consistently reached the
target accuracy faster than Decentralized SGD.
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Table 1: The number of active nodes k selected by
Alg. 2 in Fig. 2. The left value is the number of active
nodes when the topology is a ring, and the right value
is the number when the topology is the Base-2 Graph.

ζ2 = 0 ζ2 = 10 ζ2 = 100

σ2 = 0 1 / 1 1 / 1 4 / 4
σ2 = 10 1 / 1 1 / 1 8 / 8
σ2 = 100 8 / 8 8 / 8 4 / 16

Results: We depict the results in Fig. 2.
For all cases, TELEPORTATION required
fewer iterations to reach the target accuracy
than Decentralized SGD. By comparing De-
centralized SGD with a ring, TELEPORTA-
TION converged up to three orders of mag-
nitude faster than Decentralized SGD. Even
in the case when the state-of-the-art topol-
ogy, Base-2 Graph, is used, TELEPORTA-
TION converged up to 10 times faster than
Decentralized SGD. Table 1 lists the number of active nodes k selected by Alg. 2. Although the total
number of nodes n is 100, a small number of nodes k was selected. Therefore, activating only a few
nodes can prevent the parameters from being far away and lead to a faster convergence rate than that
of Decentralized SGD.

5.2 NEURAL NETWORKS

Setting: We used Fashion MNIST (Xiao et al., 2017) and CIFAR-10 (Krizhevsky, 2009) as datasets
and used LeNet (LeCun et al., 1998) and VGG (Simonyan & Zisserman, 2015) as neural networks,
respectively. To use the momentum in TELEPORTATION, the momentum is copied from the previous
active nodes to the next active nodes, as well as the parameters. We set the number of nodes n to 25
and distributed the data to nodes using Dirichlet distribution with parameter α (Hsu et al., 2019). As
α approaches zero, each node comes to have a different dataset. We repeated all experiments with
three different seed values, reporting the averages. See Sec. G for a more detailed setting.

Results: We depict the results in Fig. 3. When α = 0.1, TELEPORTATION outperformed Decentral-
ized SGD and trained the neural networks more stably. When α = 10.0, all comparison methods
achieved a competitive accuracy. By comparing the results with α = 0.1 and 10.0, the accuracy
curves of Decentralized SGD became unstable in the heterogeneous setting, whereas the accuracy
curves of TELEPORTATION were stable in both cases. This is because Decentralized SGD suffers
from client drift, while TELEPORTATION can suppress it by initializing the parameters of active nodes
by using the parameters of other nodes.

0 50 100 150 200
Epoch

70

75

80

85

90

Ac
cu

ra
cy

Fashion MNIST

0 100 200 300 400 500
Epoch

70

75

80

85

90

Ac
cu

ra
cy

CIFAR-10
Teleportation (Ring)
Teleportation (Base-2 Graph)
Decentralized SGD (Ring)
Decentralized SGD (Base-2 Graph)

(a) α = 10.0 (homogeneous case)
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(b) α = 0.1 (heterogeneous case)
Figure 3: Test accuracy of TELEPORTATION and Decentralized SGD for different heterogeneity.
All methods achieved competitive accuracy in the homogeneous case, while TELEPORTATION
outperformed Decentralized SGD in the heterogeneous case.
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Figure 4: Test accuracy of TELEPORTATION and Decentralized SGD under the heterogeneous
networks with τ = 5. Decentralized SGD with the ring reached a high accuracy faster than the other
methods in the homogeneous case, while TELEPORTATION reached a high accuracy faster in the
heterogeneous case. Note that the number of epochs was set the same for all methods.

5.3 COMPARISON UNDER HETEROGENEOUS NETWORKS

Next, we examine the effectiveness of TELEPORTATION in terms of wallclock time. In TELEPORTA-
TION, active nodes send the parameters to the next active nodes, which are randomly sampled from
the entire set of nodes. Thus, the communication may happen between distant nodes, e.g., nodes
located in distant regions. In this section, we evaluate TELEPORTATION under the heterogeneous
networks where communication costs differ between pairs of nodes.

Setting: We used Fashion MNIST and LeNet as with Sec. 5.2. To simulate a heterogeneous net-
work, we added τ ×mod(|i− j|, 24)µs delay when nodes i and j communicate, where mod(a, b) is
the remainder of dividing a by b. We constructed a ring by connecting node i to node (1+mod(i, 25)).
This ring is the optimal topology in terms of the communication delay, and the communication in
Decentralized SGD with the ring was delayed by τ µs, whereas the communication in TELEPORTA-
TION was delayed by at most 24τ µs. The communication in Decentralized SGD with the Base-2
Graph was also delayed by at most 24τ µs since the Base-2 Graph assumes that any two nodes can
communicate, and communication occurs between various nodes.

Results: We depict the results with τ = 5 in Fig. 4. In the Appendix, we also show the results with
τ = 0 in Fig. 6. Decentralized SGD with the ring finished the training faster than Decentralized SGD
with the Base-2 Graph and TELEPORTATION. However, when α = 0.1, the accuracy of Decentralized
SGD with the ring increased very slowly, and TELEPORTATION reached a high accuracy faster than
Decentralized SGD. When α = 10.0, Decentralized SGD with the ring reached a high accuracy faster
than the other methods. Therefore, Decentralized SGD with a sparse topology is the preferred method
when the data distributions are homogeneous, while when the data distributions are heterogeneous,
TELEPORTATION can be a preferred method even if the network is heterogeneous since the methods
that can prevent the parameter drifting are necessary to achieve high accuracy.

6 CONCLUSION AND LIMITATION

In this paper, we propose TELEPORTATION, which activates a subset of nodes and performs gossip
averaging on a relatively small topology comprising only active nodes. We showed that TELEPORTA-
TION converges to the stationary point without suffering from a large number of nodes by activating
a proper number of nodes. Furthermore, we proposed an efficient hyperparameter tuning method
to search for this appropriate number of nodes. We experimentally investigated the effectiveness of
TELEPORTATION, demonstrating that TELEPORTATION can converge faster than Decentralized SGD
and train neural networks more stably when the data distributions are heterogeneous.

Limitation: TELEPORTATION is not applicable in the case that there exists a pair of nodes that
cannot communicate. Extending TELEPORTATION to such a setting is one of the most promising
future directions. Furthermore, since active nodes are randomly sampled from the entire set of nodes,
communication may happen between distant nodes in the heterogeneous networks. In Sec. 5.3, we
demonstrated that when the data distributions are heterogeneous, TELEPORTATION can be a preferred
method even if the network is heterogeneous, while it would be a promising future direction to ease
this condition to prevent nodes from communicating with distant nodes.
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A TELEPORTATION WITH COMMUNICATION OVERLAP

In the implementation shown in Alg. 1, line 7 in Alg. 1 does not start until line 12 is completed. We
can modify Alg. 1 so that the exchanges of parameters in lines 7 and 12 are performed simultaneously.
We show the pseudo-code and illustration in Alg. 3 and Fig. 5. The communication in lines 7 and 12
in Alg. 1 corresponds to that in lines 9 and 13 in Alg. 3.

Algorithm 3 TELEPORTATION

1: Input: the number of nodes n, set of nodes Vn, number of active nodes k, total number of
iteration T , step size η, and topology comprising k active nodes Gk = ({1, · · · , k}, E).

2: sample active k nodes V (0)
active from Vn without replacement.

3: assign {1, 2, · · · , k} to variables {token_id(0)
i | vi ∈ V

(0)
active} randomly without overlap.

4: for t ∈ {0, 1, · · · , T} do
5: sample next active k nodes V (t+1)

active from Vn without replacement, and assign {1, 2, · · · , k} to
variables {token_id(t+1)

i | vi ∈ V
(t+1)

active } randomly without overlap.
6: for i ∈ {1, 2, · · · , n} in parallel do
7: if vi ∈ V

(t)
active thenc

8: y
(t)
i = x

(t)
i − η∇Fi(x

(t)
i ; ξ

(t)
i ).

9: send y
(t)
i to vj ∈ {vj ∈ V

(t+1)
active | (token_id

(t)
i ,token_id(t+1)

j ) ∈ E}.
10: end if
11: if vi ∈ V

(t+1)
active then

12: receive y
(t)
j from vj ∈ {vj ∈ V

(t)
active | (token_id

(t+1)
i ,token_id(t)

j ) ∈ E}.
13: x

(t+1)
i =

∑
vj∈V

(t)
active

W
token_id(t+1)

i ,token_id(t)
j
y
(t)
j .

14: end if
15: end for
16: end for

cThe update rule of the parameters of the inactive nodes is not described because the parameters held by the
inactive nodes are discarded and initialized with the parameters of the other active nodes when they are activated
in line 13. The parameters of inactive nodes do not affect the behavior of active node parameters.

3

1

1

3

2

2

3

1

2

3

21

Figure 5: Illustration of Alg. 3 with n = 8 and k = 3. We use a line as the topology consisting of
active nodes Gk = ({1, 2, 3}, {(1, 1), (1, 2), (2, 2), (2, 3), (3, 3)}). The black nodes represent active
nodes, and the number written on the node is token_id(t)

i . The blue nodes represent the next active
nodes, and the number on the node is token_id(t+1)

i .
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B PROOF OF THEOREMS 1 AND 2

B.1 USEFUL INEQUALITY

Lemma 2. For any a, b ∈ Rd, it holds that

∥a+ b∥2 ≤ (1 + γ)∥a∥2 + (1 +
1

γ
)∥b∥2, (8)

for any γ > 0.

Lemma 3. For any a, b ∈ Rd, it holds that

2⟨a, b⟩ ≤ ∥a∥2 + ∥b∥2. (9)

B.2 NOTATION

In this section, we introduce the notation used in the proof. TELEPORTATION has n parameters,
{x(t)

i }ni=1, while the parameters of inactive nodes are not used and do not affect the behavior of
the parameters of active nodes. To simplify the notation, we introduce the variables {z(t)

m }km=1 that
correspond to the active nodes parameters.

From line 5 in Alg. 3, text_id(t)
i has a different value for each active node vi ∈ V

(t)
active. That is,

there is one-to-one correspondence between {i | vi ∈ V
(t)

active} and {1, 2, · · · , k}. Let g(t) : {i | vi ∈
V

(t)
active} → {1, 2, · · · , k} be the function that takes node index i and returns token_id(t)

i . Since g(t)

is a bijection function, there exists an inverse function (g(t))−1 : {1, 2, · · · , k} → {i | vi ∈ V
(t)

active}.
Using this inverse function, we define variable node_id(t)

m as follows:

node_id(t)
m := (g(t))−1(m),

for any m ∈ {1, 2, · · · , k}. node_id(t)
m stores the node index i whose token_id(t)

i stores m.
Using this notation, we define z

(t)
m ∈ Rd as follows:

z(t)
m = x

(t)

node_id(t)
m

,

for all m ∈ {1, 2, · · · , k} and t. From the definition of z(t)
m , we can get its update rule as follows:

z(t+1)
m = x

(t)

node_id(t+1)
m

=
∑

vj∈V
(t)

active

W
token_id(t+1)

node_id
(t+1)
m

,token_id(t)
j

(
x
(t)
j − η∇Fj(x

(t)
j ; ξ

(t)
j )
)

=
∑

vj∈V
(t)

active

W
m,token_id(t)

j

(
x
(t)
j − η∇Fj(x

(t)
j ; ξ

(t)
j )
)

=

k∑
l=1

Wm,l

(
x
(t)

node_id(t)
l

− η∇F
node_id(t)

l

(x
(t)

node_id(t)
l

; ξ
(t)

node_id(t)
l

)

)

=

k∑
l=1

Wm,l

(
z
(t)
l − η∇F

node_id(t)
l

(z
(t)
l ; ξ

(t)

node_id(t)
l

)

)
.

In the next section, we analyze the convergence behavior of {z(t)
m }km=1. Note that sets {z(t)

m }km=1

and {x(t)
i | vi ∈ V

(t)
active} are equivalent, and their averages are equivalent, i.e.,

1

k

k∑
m=1

z(t)
m =

1

k

k∑
m=1

x
node_id(t)

m
=

1

k

n∑
i=1

x
(t)
i 1

vi∈V
(t)

active
=

1

k

∑
vi∈V

(t)
active

x
(t)
i , (10)
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where 1
vi∈V

(t)
active

is an indicator function. Furthermore, let Z ∈ Rd×k, G ∈ Rd×k, and ∇f(Z) ∈
Rd×k as follows:

Z(t) :=
(
z
(t)
1 , z

(t)
2 , · · · , z(t)

k

)
,

G(t) :=

(
∇F

node_id(t)
1
(z

(t)
1 ; ξ

(t)

node_id(t)
1

), · · · ,∇F
node_id(t)

k

(z
(t)
k ; ξ

(t)

node_id(t)
k

)

)
,

∇f(Z(t)) :=
(
∇f(z(t)

1 ),∇f(z(t)
2 ), · · · ,∇f(z(t)

k )
)
.

By using the above notation, Alg. 3 can be rewritten as follows:

Z(t+1) =
(
Z(t) − ηG(t)

)
W⊤.

B.3 MAIN PROOF

Lemma 4. Suppose that Assumptions 2, 3, 4, and 6 hold. If the step size satisfies η ≤ 1
4L , then it

holds that

Ef(z̄(t+1)) ≤ Ef(z̄(t))− η

4
E
∥∥∥∇f(z̄(t))

∥∥∥2 + L2ηΞ(t) +
Lσ2

2k
η2 +

Lζ2

2k

(
1− k − 1

n− 1

)
η2,

where z̄(t) := 1
k

∑k
i=1 z

(t)
i and Ξ(t) := 1

k

∑k
i=1 E∥z

(t)
i − z̄(t)∥2.

Proof. By calculating the average of the update rule of z(t)
i , we obtain

z̄(t+1) =
1

k

k∑
m=1

k∑
l=1

Wm,l

(
z
(t)
l − η∇F

node_id(t)
l

(z
(t)
l ; ξ

(t)

node_id(t)
l

)

)

= z̄(t) − η

k

k∑
l=1

∇F
node_id(t)

l

(z
(t)
l ; ξ

(t)

node_id(t)
l

),

where we use
∑k

m=1 Wm,l = 1. Using Assumption 2, we get

Et+1f(z̄
(t+1))

= Et+1f

z̄(t) − η

k

k∑
j=1

∇F
node_id(t)

j
(z

(t)
j ; ξ

(t)

node_id(t)
j

)


≤ f(z̄(t))− η

〈
∇f(z̄(t)),

1

k

k∑
j=1

Et+1∇Fnode_id(t)
j
(z

(t)
j ; ξ

(t)

node_id(t)
j

)

〉

+
Lη2

2
Et+1

∥∥∥∥∥∥1k
k∑

j=1

∇F
node_id(t)

j
(z

(t)
j ; ξ

(t)

node_id(t)
j

)

∥∥∥∥∥∥
2

= f(z̄(t))− η

〈
∇f(z̄(t)),

1

k

k∑
j=1

∇f(z(t)
j )

〉
︸ ︷︷ ︸

T1

+
Lη2

2
Et+1

∥∥∥∥∥∥1k
k∑

j=1

∇F (t)

node_id(t)
j

(z
(t)
j ; ξ

(t)

node_id(t)
j

)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
T2

,
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where we use the fact that active nodes are randomly selected, i.e., node_id(t)
j is randomly assigned

to {1, 2, · · · , n}, in the last equality. T1 and T2 are bounded as follows:

−T1 = −
∥∥∥∇f(z̄(t))

∥∥∥2 +〈∇f(z̄(t)),
1

k

k∑
j=1

∇f(z(t)
j )−∇f(z̄(t))

〉

≤ −1

2

∥∥∥∇f(z̄(t))
∥∥∥2 + 1

2

∥∥∥∥∥∥1k
k∑

j=1

∇f(z(t)
j )−∇f(z̄(t))

∥∥∥∥∥∥
2

≤ −1

2

∥∥∥∇f(z̄(t))
∥∥∥2 + 1

2k

k∑
j=1

∥∥∥∇f(z(t)
j )−∇f(z̄(t))

∥∥∥2
≤ −1

2

∥∥∥∇f(z̄(t))
∥∥∥2 + L2

2k

k∑
j=1

∥∥∥z(t)
j − z̄(t)

∥∥∥2 .

T2 = Et+1

∥∥∥∥∥∥1k
k∑

j=1

∇f (t)

node_id(t)
j

(z
(t)
j )

∥∥∥∥∥∥
2

+ Et+1

∥∥∥∥∥∥1k
k∑

j=1

∇F
node_id(t)

j
(z

(t)
j ; ξ

(t)

node_id(t)
j

)−∇f
node_id(t)

j
(z

(t)
j )

∥∥∥∥∥∥
2

≤ Et+1

∥∥∥∥∥∥1k
k∑

j=1

∇f
node_id(t)

j
(z

(t)
j )

∥∥∥∥∥∥
2

+
σ2

k

≤

∥∥∥∥∥∥1k
k∑

j=1

∇f(z(t)
j )

∥∥∥∥∥∥
2

+ Et+1

∥∥∥∥∥∥1k
k∑

j=1

∇f
node_id(t)

j
(z

(t)
j )−∇f(z(t)

j )

∥∥∥∥∥∥
2

+
σ2

k

≤

∥∥∥∥∥∥1k
k∑

j=1

∇f(z(t)
j )

∥∥∥∥∥∥
2

+
ζ2

k

(
1− k − 1

n− 1

)
+

σ2

k

≤ 2

∥∥∥∥∥∥1k
k∑

j=1

∇f(z(t)
j )−∇f(z̄(t))

∥∥∥∥∥∥
2

+ 2
∥∥∥∇f(z̄(t))

∥∥∥2 + ζ2

k

(
1− k − 1

n− 1

)
+

σ2

k

≤ 2L2

k

k∑
j=1

∥∥∥z(t)
j − z̄(t)

∥∥∥2 + 2
∥∥∥∇f(z̄(t))

∥∥∥2 + ζ2

k

(
1− k − 1

n− 1

)
+

σ2

k
,

where we use the fact that the active nodes V (t)
active are sampled from Vn without replacement in the

third inequality. Using the above inequalities, we obtain

Et+1f(z̄) ≤ f(z̄(t))− η

2

∥∥∥∇f(z̄(t))
∥∥∥2 + L2η

2k

k∑
j=1

∥∥∥z(t)
j − z̄(t)

∥∥∥2
+

L3η2

k

k∑
j=1

∥∥∥z(t)
j − z̄(t)

∥∥∥2 + Lη2∥∇f(z̄(t))∥2 + Lζ2

2k

(
1− k − 1

n− 1

)
η2 +

Lσ2

2k
η2.

Using η ≤ 1
4L , we obtain the desired result.

Lemma 5. Suppose that Assumptions 2, 3, 4, and 6 hold. If the step size satisfies η ≤ pk√
24L

, then it
holds that

Ξ(t+1) ≤ (1− pk
4
)Ξ(t) +

6(1− pk)η
2

pk
E
∥∥∥∇f(z̄(t))

∥∥∥2 + (1− pk)(σ
2 + ζ2)η2,

where z̄(t) := 1
k

∑k
i=1 z

(t)
i and Ξ(t) := 1

k

∑k
i=1 E∥z

(t)
i − z̄(t)∥2.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof.

Et+1

∥∥∥Z(t+1) − Z̄(t+1)
∥∥∥2
F

= Et+1

∥∥∥(Z(t) − ηG(t))W⊤ − (Z̄(t) − ηḠ(t))
∥∥∥2
F

≤ (1− pk)Et+1

∥∥∥(Z(t) − ηG(t))− (Z̄(t) − ηḠ(t))
∥∥∥2
F

≤ (1− pk)Et+1

∥∥∥(Z(t) − ηG(t))− Z̄(t)
∥∥∥2
F

≤ (1− pk)
∥∥∥(Z(t) − η∇f(Z(t)))− Z̄(t)

∥∥2
F + (1− pk)η

2Et+1

∥∥G(t) − f(Z(t))
∥∥∥2

≤ (1− pk)
∥∥∥(Z(t) − η∇f(Z(t)))− Z̄(t)

∥∥∥2
F
+ (1− pk)k(σ

2 + ζ2)η2

≤ (1− pk
2
)
∥∥∥Z(t) − Z̄(t)

∥∥∥2
F
+

3(1− pk)η
2

pk

∥∥∥∇f(Z(t))
∥∥∥2
F︸ ︷︷ ︸

T

+(1− pk)k(σ
2 + ζ2)η2.

T is bounded as follows:

T ≤ 2
∥∥∥∇f(Z(t))−∇f(Z̄(t))

∥∥∥2
F
+ 2

∥∥∥∇f(Z̄(t))
∥∥∥2
F

≤ 2L2
∥∥∥Z(t) − Z̄(t)

∥∥∥2
F
+ 2k

∥∥∥∇f(z̄(t))
∥∥∥2 ,

where Z̄(t) := 1
kZ

(t)11⊤. Then, we get

Et+1

∥∥∥Z(t+1) − Z̄(t+1)
∥∥∥2
F

≤ (1− pk
2
)
∥∥∥Z(t) − Z̄(t)

∥∥∥2
F
+

6(1− pk)L
2η2

pk

∥∥∥Z(t) − Z̄(t)
∥∥∥2
F

+
6(1− pk)kη

2

pk

∥∥∥∇f(z̄(t))
∥∥∥2 + (1− pk)k(σ

2 + ζ2)η2.

Using η ≤ pk√
24L

, we obtain the desired result.

Lemma 6. Suppose that Assumptions 2, 3, 4, and 6 hold, and {x(0)
i }ni=1 is initialized with the same

parameter x̄(0). If the step size satisfies η ≤ pk√
24L

, then it holds that

1

T + 1

T∑
t=0

Ξ(t) ≤ 24(1− pk)

p2k(T + 1)
η2

T∑
t=0

E∥∇f(z̄(l))∥2 + 4(1− pk)(σ
2 + ζ2)

pk
η2,

where z̄(t) := 1
k

∑k
i=1 z

(t)
i and Ξ(t) := 1

k

∑k
i=1 E∥z

(t)
i − z̄(t)∥2.

Proof. From Lemma 5, we get

Ξ(t+1) ≤ 6(1− pk)η
2

pk

t∑
l=0

(1− pk
4
)t−lE∥∇f(z̄(l))∥2 + (1− pk)(σ

2 + ζ2)η2
t∑

l=0

(1− pk
4
)t−l

≤ 6(1− pk)η
2

pk

t∑
l=0

(1− pk
4
)t−lE∥∇f(z̄(l))∥2 + 4(1− pk)(σ

2 + ζ2)

pk
η2.
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By summing up the above inequality from t = 0 to T − 1, we obtain

1

T + 1

T∑
t=1

Ξ(t) ≤ 6(1− pk)η
2

pk(T + 1)

T∑
t=1

t−1∑
l=0

(1− pk
4
)t−lE∥∇f(z̄(l))∥2 + 4(1− pk)(σ

2 + ζ2)

pk
η2

=
6(1− pk)η

2

pk(T + 1)

T−1∑
l=0

E∥∇f(z̄(l))∥2
T∑

t=l+1

(1− pk
4
)t−l +

4(1− pk)(σ
2 + ζ2)

pk
η2

=
6(1− pk)η

2

pk(T + 1)

T−1∑
l=0

E∥∇f(z̄(l))∥2
T−l∑
t′=1

(1− pk
4
)t

′
+

4(1− pk)(σ
2 + ζ2)

pk
η2

≤ 24(1− pk)η
2

p2k(T + 1)

T−1∑
l=0

E∥∇f(z̄(l))∥2 + 4(1− pk)(σ
2 + ζ2)

pk
η2.

Using Ξ(0) = 0 and E∥∇f(z̄(T ))∥2 ≥ 0, we obtain the desired result.

Lemma 7. Suppose that Assumptions 2, 3, 4, and 6 hold, and {x(0)
i }ni=1 is initialized with the same

parameter x̄(0). If the step size satisfies η ≤ pk√
192L

, then it holds that

1

T + 1

T∑
t=0

E∥∇f(x̄(t)
active)∥2

≤ 8(f(x̄(0))− f⋆)

(T + 1)η
+

32L2(σ2 + ζ2)(1− pk)

pk
η2 +

4L

k

(
σ2 +

(
1− k − 1

n− 1

)
ζ2
)
η, (11)

where x̄
(t)
active :=

1
k

∑
vi∈V

(t)
active

x
(t)
i .

Proof. Rearranging Lemma 4, we obtain

E∥∇f(z̄(t))∥2 ≤ 4(Ef(z̄(t))− Ef(z̄(t+1)))

η
+ 4L2Ξ(t) +

2Lσ2

k
η +

2Lζ2

k

(
1− k − 1

n− 1

)
η.

Using Lemma 6, we get

1

T + 1

T∑
t=0

E∥∇f(z̄(t))∥2

≤ 4(f(z̄(0))− f⋆)

(T + 1)η
+

4L2

T + 1
Ξ(t) +

2Lσ2

k
η +

2Lζ2

k

(
1− k − 1

n− 1

)
η

≤ 4(f(z̄(0))− f⋆)

(T + 1)η
+

96L2(1− pk)

p2k(T + 1)
η2

T∑
t=0

E∥∇f(z̄(l))∥2 + 16L2(1− pk)(σ
2 + ζ2)

pk
η2

+
2Lσ2

k
η +

2Lζ2

k

(
1− k − 1

n− 1

)
η.

Using η ≤ pk√
192L

and x̄
(t)
active = z̄(t) (see Eq. (10)), we obtain the desired result.

Lemma 8. Suppose that Assumptions 2, 3, 4, and 6 hold, and {x(0)
i }ni=1 is initialized with the same

parameter x̄(0). There exists a step size η that satisfies

1

T + 1

T∑
t=0

E∥∇f(x̄(t)
active)∥2

≤ O

√Lr0(σ2 + (1− k−1
n−1 )ζ

2)

kT
+

(
L2r20(σ

2 + ζ2)(1− pk)

T 2pk

) 1
3

+
Lr0
Tpk

 , (12)

where x̄
(t)
active :=

1
k

∑
vi∈V

(t)
active

x
(t)
i and r0 := f(x̄(0))− f⋆.
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Proof. Choosing the step size as follows:

η = min

{√
2kr0

L(T + 1)(σ2 + ζ2)
,

(
r0pk

4L2(T + 1)(1− pk)(σ2 + ζ2)

) 1
3

,
pk√
192L

}
,

we have three cases:

• When η =
√

2kr0
L(T+1)(σ2+(1− k−1

n−1 )ζ
2)

, 1
T+1

∑T
t=0 E∥∇f(x̄

(t)
active)∥2 is bounded from above

by √√√√128Lr0

(
σ2 + (1− k−1

n−1 )ζ
2
)

k(T + 1)
+

(
2048L2r20(1− pk)(σ

2 + ζ2)

(T + 1)2pk

) 1
3

.

• When η =
(

r0pk

4L2(T+1)(1−pk)(σ2+ζ2)

) 1
3

, 1
T+1

∑T
t=0 E∥∇f(x̄

(t)
active)∥2 is bounded from above

by √√√√32Lr0

(
σ2 + (1− k−1

n−1 )ζ
2
)

k(T + 1)
+

(
16384L2r20(1− pk)(σ

2 + ζ2)

(T + 1)2pk

) 1
3

.

• When η = pk√
192L

, 1
T+1

∑T
t=0 E∥∇f(x̄

(t)
active)∥2 is bounded from above by

√
12288Lr0
(T + 1)pk

+

√√√√32Lr0

(
σ2 + (1− k−1

n−1 )ζ
2
)

k(T + 1)
+

(
2048L2r20(1− pk)(σ

2 + ζ2)

(T + 1)2pk

) 1
3

.

Lemma 9. Suppose that Assumptions 2, 3, 4, and 6 hold, and {x(0)
i }ni=1 is initialized with the same

parameter x̄(0). Then, if the active nodes are connected by a ring, i.e., pk = Ω(k−2), there exists a
step size η > 0 and the number of active nodes k ∈ {1, 2, · · · , n} that satisfies

1

T + 1

T∑
t=0

E∥∇f(x̄(t)
active)∥2

≤ O

√Lr0σ2

nT
+

(
Lr0(σ

2 + ζ2)
3
4

T

) 4
7

+

(
Lr0(σ

2 + ζ2)
2
3

T

) 3
5

+
Lr0
T

 ,

where x̄
(t)
active :=

1
k

∑
vi∈V

(t)
active

x
(t)
i and r0 := f(x̄(0))− f⋆.

Proof. From Lemma 8, we obtain

1

T + 1

T∑
t=0

E∥∇f(x̄(t)
active)∥

2

≤ O

√Lr0(σ2 + (1− k−1
n−1 )ζ

2)

kT
+

(
L2r20(σ

2 + ζ2)k2

T 2

) 1
3

+
Lr0k

2

T

 . (13)

For simplicity, let A, B, and C denote as follows:

A =
Lr0(σ

2 + ζ2)

T
, B =

(
L2r20(σ

2 + ζ2)

T 2

) 1
3

, C =
Lr0
T

.
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Using these notations, we obtain

1

T + 1

T∑
t=0

E∥∇f(x̄(t)
active)∥

2 ≤ O

(√
A

k
+Bk

2
3 + Ck2

)
. (14)

We choose k as follows:

k = max

{
1,min

{⌈(A3

B6

) 1
7 ⌉

,
⌈( A

C2

) 1
5 ⌉

, n

}}
.

Note that it holds that k ∈ {1, 2, 3, · · · , n}.
When r0(σ

2 + ζ2) = 0, it holds that k = 1, A = 0, and B = 0. In this case,
1

T+1

∑T
t=0 E∥∇f(x̄

(t)
active)∥2 is bounded from above by

O
(
Lr0
T

)
.

When r0(σ
2 + ζ2) > 0, it holds that

k = min

{⌈(A3

B6

) 1
7 ⌉

,
⌈( A

C2

) 1
5 ⌉

, n

}
.

In this case, we have three cases:

• When k =
⌈(

A3

B6

) 1
7
⌉

, we have√
A

k
= O

(
A

2
7B

3
7

)
, Bk

2
3 = O

(
A

2
7B

3
7

)
, Ck2 ≤ O

(
A

2
5C

1
5

)
,

where we use k ≤
⌈(

A
C2

) 1
5

⌉
. By using the above inequalities, 1

T+1

∑T
t=0 E∥∇f(x̄

(t)
active)∥2

is bounded from above by

O
(
A

2
7B

3
7 +A

2
5C

1
5

)
.

• When k =
⌈(

A
C2

) 1
5

⌉
, we have√

A

k
= O

(
A

2
5C

1
5

)
, Bk

2
3 ≤ O

(
A

2
7B

3
7

)
, Ck2 = O

(
A

2
5C

1
5

)
,

where we use k ≤
⌈(

A3

B6

) 1
7
⌉

. By using the above inequalities, 1
T+1

∑T
t=0 E∥∇f(x̄

(t)
active)∥2

is bounded from above by

O
(
A

2
7B

3
7 +A

2
5C

1
5

)
.

• When k = n, we have√
Lr0(σ2 + (1− k−1

n−1 )ζ
2)

kT
=

√
Lr0σ2

nT
, Bk

2
3 ≤ O

(
A

2
7B

3
7

)
, Ck2 ≤ O

(
A

2
5C

1
5

)
,

where we use k ≤
⌈(

A3

B6

) 1
7
⌉

and k ≤
⌈(

A
C2

) 1
5

⌉
. By using the above inequalities,

1
T+1

∑T
t=0 E∥∇f(x̄

(t)
active)∥2 is bounded from above by

O

(√
Lr0σ2

nT
+A

2
7B

3
7 +A

2
5C

1
5

)
.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

By summarizing the above inequalities, we obtain the desired results.

Lemma 10. Suppose that Assumptions 2, 3, 4, and 6 hold, and {x(0)
i }ni=1 is initialized with the

same parameter x̄(0). Then, if the active nodes are connected by an exponential graph, i.e., pk =
Ω(log−1

2 k), there exists a step size η > 0 and the number of active nodes k ∈ {1, 2, · · · , n} that
satisfies

1

T + 1

T∑
t=0

E∥∇f(x̄(t)
active)∥2

O

√Lr0σ2

nT
+

(
L2r20(σ

2 + ζ2)

T 2
log2

(
T (σ2 + ζ2)

Lr0

) 1
3

) 1
3

+
Lr0
T

log2

(
T (σ2 + ζ2)

Lr0

)
+

Lr0
T

 ,

where x̄
(t)
active :=

1
k

∑
vi∈V

(t)
active

x
(t)
i and r0 := f(x̄(0))− f⋆.

Proof. From Lemma 8, we obtain

1

T + 1

T∑
t=0

E∥∇f(x̄(t)
active)∥

2

≤ O

√Lr0(σ2 + (1− k−1
n−1 )ζ

2)

kT
+

(
L2r20(σ

2 + ζ2) log2(k)

T 2

) 1
3

+
Lr0 log2(k)

T

 .

For simplicity, let A, B, and C denote as follows:

A =
Lr0(σ

2 + ζ2)

T
, B =

(
L2r20(σ

2 + ζ2)

T 2

) 1
3

, C =
Lr0
T

.

Using these notations, we obtain

1

T + 1

T∑
t=0

E∥∇f(x̄(t)
active)∥

2 ≤ O

(√
A

k
+B log

1
3
2 (k) + C log2(k)

)
.

We choose k as follows:

k = max

{
1,min

{⌈ A

B2

⌉
,
⌈ A

C2

⌉
, n

}}
.

When r0(σ
2 + ζ2) = 0, it holds that k = 1, A = 0, and B = 0. In this case,

1
T+1

∑T
t=0 E∥∇f(x̄

(t)
active)∥2 is bounded from above by

O
(
Lr0
T

)
.

When r0(σ
2 + ζ2) > 0, it holds that

k = min

{⌈ A

B2

⌉
,
⌈ A

C2

⌉
, n

}
.

In this case, we have three cases:

• When k =
⌈

A
B2

⌉
, 1
T+1

∑T
t=0 E∥∇f(x̄

(t)
active)∥2 is bounded from above by

O
(
B log

1
3
2

(
A

B2

)
+ C log2

(
A

C2

))
.
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• When k =
⌈

A
C2

⌉
, 1
T+1

∑T
t=0 E∥∇f(x̄

(t)
active)∥2 is bounded from above by

O
(
B log

1
3
2

(
A

B2

)
+ C log2

(
A

C2

))
.

• When k = n, 1
T+1

∑T
t=0 E∥∇f(x̄

(t)
active)∥2 is bounded from above by

O

(√
Lr0σ2

nT
+B log

1
3
2

(
A

B2

)
+ C log2

(
A

C2

))
.

By summarizing the above inequalities, we obtain the desired result.

C PROOF OF THEOREM 3

Lemma 1. For any k⋆ < n, there exists k ∈ {1, 2, 4, 8, · · · , 2⌊log2(n+1)⌋−1} that satisfies k⋆

4 < k ≤
k⋆. Furthermore, it holds that

∑⌊log2(n+1)⌋−1
i=0 2i ≤ n.

Proof. We define K := {1, 2, 4, 8, · · · , 2⌊log2(n+1)⌋−1}. We have two cases:

• When 1 ≤ k⋆ < 2⌊log2(n+1)⌋, there exists k ∈ K that satisfies k ≤ k⋆ < 2k.

• When 2⌊log2(n+1)⌋ ≤ k⋆ < n, it holds that k < k⋆ for all k ∈ K. Then, we have

k⋆ < n < 4× 2⌊log2(n+1)⌋−1.

Thus, there exists k ∈ K that satisfies k < k⋆ < 4k.

By combining the above two cases, we obtain the desired result.

Lemma 11. Suppose that Assumptions 1, 2, 3, 4, and 6 hold. Let {{x(t)
k,i}vi∈V

(t)
active
}Tt=0 denote the

parameters of active nodes generated by Alg. 3 when the number of active nodes is set to k and define
K := {1, 2, 22, 23, · · · , 2⌊log2(n+1)⌋−1, n}. Then, suppose that the parameters are initialized with
the same parameter x̄(0).

Ring: If the active nodes are connected by a ring, i.e., pk = Ω(k−2), there exists η such that

mink∈K

(
1

T+1

∑T
t=0 E∥∇f(x̄

(t)
active,k)∥2

)
is bounded from above by

O

√Lr0σ2

nT
+

(
Lr0(σ

2 + ζ2)
3
4

T

) 4
7

+

(
Lr0(σ

2 + ζ2)
2
3

T

) 3
5

+
Lr0
T

 ,

where r0 := f(x̄
(0)
active,k)− f⋆ and x̄

(t)
active,k := 1

k

∑
vi∈V

(t)
active

xk,i.

Exp. Graph: If the active nodes are connected by an exponential graph, i.e., pk = Ω(log−1
2 k), there

exists η such that mink∈K

(
1

T+1

∑T
t=0 E∥∇f(x̄

(t)
active,k)∥2

)
is bounded from above by

O

√Lr0σ2

nT
+

(
L2r20(σ

2 + ζ2)

T 2
log2

(
T (σ2 + ζ2)

Lr0

) 1
3

) 1
3

+
Lr0
T

log2

(
T (σ2 + ζ2)

Lr0

)
+

Lr0
T

 .

Proof. By combining Lemmas 1, 9, and 10, we obtain the statement.
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D CONVERGENCE RATE OF DECENTRALIZED SGD WITH VARIOUS
TOPOLOGIES

Table 2: Convergence rates of DSGD over various topologies.

Topology Convergence Rate

Ring (Nedić et al., 2018) O
(√

Lr0σ2

nT +
(

L2r20n
2(σ2+n2ζ2)
T 2

(
1− 1

n2

)) 1
3

+ Lr0n
2

T

)
Torus (Nedić et al., 2018) O

(√
Lr0σ2

nT +
(

L2r20n(σ
2+nζ2)

T 2

(
1− 1

n

)) 1
3

+ Lr0n
T

)
Exponential Graph (Ying et al., 2021) O

(√
Lr0σ2

nT +
(

L2r20 log3(n)(σ
2+log2(n)ζ

2)
T 2

(
1− 1

log2(n)

)) 1
3

+ Lr0 log2(n)
T

)
Base-2 Graph (Takezawa et al., 2023b) O

(√
Lr0σ2

nT +
(

L2r20 log2(n)(σ
2+log2(n)ζ

2)
T 2

) 1
3

+ Lr0 log2(n)
T

)

E CONVERGENCE RATE OF DECENTRALIZED SGD WITH CLIENT SAMPLING

Proposition 2 (Liu et al. (2022)). Suppose that Assumptions 1, 2, 3, 4, and 5 hold. Let k be the
number of active nodes and {{x(t)

i }ni=1}Tt=0 denote the parameters generated by Decentralized SGD
with client sampling. Then, there exists the step size η that satisfies:

1

T + 1

T∑
t=0

E∥∇f(x̄(t))∥2 ≤ O

√Lr0(σ2 + (1− k−1
n−1 )ζ

2)

kT
+

(
n

k

Lr0(σ
√
pn + ζ2)

Tpn

) 2
3

+
Lr0
Tpn

 ,

where r0 := f(x̄(0))− f⋆ and x̄(t) := 1
n

∑n
i=1 x

(t)
i .

Remark 1. The convergence rate in Proposition 2 consistently deteriorates as k decreases.

Unlike TELEPORTATION, the convergence rate shown in Proposition 2 depends on pn, and the second
and third terms degrade as n increases.

F ADDITIONAL EXPERIMENT
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Figure 6: Test accuracy of TELEPORTATION and Decentralized SGD under heterogeneous networks
with τ = 0.
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G EXPERIMENTAL SETUP

Table 3: Experimental setups for Fig. 2.

Step size Grid search over {0.1, 0.075, 0.05, 0.025, 0.01, · · · , 0.0001}
Computational resources AMD Epyc 7702 CPU or Intel Xeon Gold 6230 CPU

Table 4: Experimental setups for Fashion MNIST in Fig. 3.

Model LeNet
Step size Grid search over {0.1, 0.01, 0.001}
Batch size 32
Momentum 0.9
Epoch 200
Computational resources Titan × 8

Table 5: Experimental setups for CIFAR-10 in Fig. 3.

Model VGG
Step size Grid search over {0.1, 0.01, 0.001}
Scheduler Cosine decay
Batch size 32
Momentum 0.9
Epoch 500
Computational resources A6000 × 8 or RTX 3090 × 8

Table 6: Experimental setups for Figs. 4 and 6.

Model LeNet
Step size Grid search over {0.1, 0.01, 0.001}
Batch size 32
Momentum 0.9
Epoch 200
Computational resources A6000 × 8
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