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Abstract

Generalist vision—language models (VLMs) struggle on histopathology tasks due
to domain gaps and scarce labels, pathology VLMs (PFMs) also fall short de-
spite costly pretraining. Parameter-efficient fine-tuning (PEFT) offers a scalable
lightweight alternative, while improving performance. We present the first bench-
mark and taxonomy of PEFT for pathology VLLMs, organizing methods by adapta-
tion modality, strategy and locus. We curate a novel neuropathology dataset for
detecting neurofibrillary tangles (NFTs), capturing annotator variability to evaluate
reliability and alignment. Experiments across prostate cancer, colorectal cancer,
and neuropathology tasks show that with full data, PEFT-adapted generalist VLMs
rival adapted PFMs, while in few shot settings, a residual gap persists due to label
scarcity, terminology mismatch, and modality-specific biases. Visualization further
reveals that models such as CONCH+MMRL focus on NFT within annotated boxes,
improving interpretability in single-NFT cases, though performance diminishes
in complex multi-NFT scenarios. Together, our benchmark and dataset highlight
PEFT as a scalable strategy, but also indicate the need for richer interpretability
metrics and improved multimodal reasoning to handle complex cases.

1 Introduction

Large vision—language models (VLMs) such as CLIP [Radford et al.,[2021]] have shown remarkable
zero-shot generalization across natural image domains, inspiring interest in their application to
medical image analysis. In histopathology, pathologists rely on careful interpretation of complex
tissue patterns to diagnose and grade disease—tasks that require fine-grained visual discrimination
under limited annotation regimes. For example, accurate detection of neurofibrillary tangles (NFTs)
is essential for Alzheimer’s research [Alafuzoff et al., 2008} [Dugger and Dickson, 2017, yet manual
annotation of whole-slide images (WSIs) remains time-consuming and resource-intensive [Ghandian
et al., 2024]. Compared to natural images, WSIs present unique challenges: gigapixel resolution,
texture-dominated morphology, and highly imbalanced disease distributions, all of which create a
substantial domain gap that hinders direct transfer of general-purpose VLMs [Lai et al., [2024]]. As
shown in Fig. [Iand Table[AT] zero-shot VLMs like CLIP and DFN [Fang et al.,2023] deteriorate in
classification accuracy averaged across three pathology datasets (described in Section[2). To mitigate
this gap, pathology-specific VLMs such as PLIP [Huang et al., |2023], QuiltNet [Ikezogwo et al.|
2023|], BioMedCLIP [Zhang et al., [2023]], and CONCH |[Lu et al.| [2024] have been introduced to
improve performance through pretraining with pathology datasets. However, their heavy compute
and data requirements limit widespread deployment in clinical workflows. This motivates parameter-
efficient fine-tuning (PEFT), which aligns frozen VLMs to the target task through lightweight modules
that update only a small fraction of parameters, hence more efficient.

PEFT Prior Work: A variety of PEFT approaches have been proposed and shown to achieve strong
efficiency—accuracy trade-offs on natural image benchmarks. Linear probing [Radford et al.,2021]], a
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Figure 1: Zero-shot results: natural VLMs favor ~ Figure 2: Top panel: same image annotated by
CIFAR-100, pathology VLMs favor pathology  two different annotators; bottom panel: the inter-
tasks; arrows show domain performance gaps. section and union of their annotations.

Table 1: Head-to-head winners across four VLMs (best method per VLM chosen by full-data AUC).

Task CLIP Best (Method, AUC) DFN Best (Method, AUC) QuiltNet Best (Method, AUC) CONCH Best (Method, AUC) Winner (AUC)
SICAPV2 (Gleason) MMRL (92.73) MaPLe (93.14) MaPLe (94.14) CLIPath (94.16) CONCH (CLIPath, 94.16; +0.02)
NFT Detection MMRL (98.89) MMRL (98.67) MMRL++ (98.97) MMRL (98.02) QuiltNet (MMRL++, 98.97; +0.08)
NCT Classification MMRL++ (99.45) CLIPath (99.54) MMRL++ (99.79) MMRL++ (99.67) QuiltNet (MMRL++, 99.79; +0.12)

simple and efficient baseline — trains only a classifier on frozen CLIP features. CoOp
learns continuous contextual text tokens beyond class names; CoCoOp [Zhou et al.,
conditions those tokens on image features to aid generalization. ProVP 2025|] extends
prompting to vision by inserting learnable visual tokens across transformer layers, regularized to
align with frozen features. Adapter-based strategies like CLIP-RFC (CLIPath)
introduce residual connections on top of vision embeddings to stabilize adaptation. Multi-modal
approaches include MaPLe[Khattak et al.,2023]], which jointly learns coupled prompts for shallow
layers of both text and vision encoders to improve alignment, while MMA 2024], inserts
adapters into deeper layers of both modalities for finetuning. Finally, representation-regularized
approaches such as MMRL [Guo and Gu, 2025a]] and its streamlined variant MMRL++
optimize adapted features with distributional and consistency constraints to maintain
robustness and stability under limited data. However, systematic evaluations of PEFT for pathology
tasks are lacking 2025]], while other benchmark studies primarily focus on pathology
foundation models pretrained with large datasets and overlook PEFTs [Lee et al}, [2025] [Xiong et al]
2025| [Bareja et al.} [2025]). This leaves an open question: can PEFT enable reliable and interpretable
adaptation of VLMs to pathology tasks without relying on expensive domain-specific pretraining?

To fill this gap, we systematically characterize existing PEFT methods based on adapted modality,
locus, and parameterization strategy, and apply them to both VLMs and pathology-specific VLMs.
We compare their performance for pathology tasks along three dimensions:

(i) Full Data Adaptation. We investigate the performance of domain adaptation of VLMs under
full-data settings and find that PEFT substantially bridges domain gaps. PEFT consistently enable
generalist VLMs to rival or even surpass pathology-specific models. This challenges the common
belief that costly domain pretraining is indispensable and suggests that PEFT provides a scalable
alternative for clinical deployment.

(ii) Data Efficent (Few-Shot) Setting. We study few-shot regimes, which is practical as target
labeled data set can be limited for rare diseases and due to expensive annotation costs. In this setting,
pathology-specific models retain clear advantages, as their pretraining prior knowledge accelerate
learning and improve stability in extremely data-scarce scenarios. However, with moderate amounts of
data, multimodal PEFT strategies achieve robust performance, underscoring their efficiency—accuracy
trade-off. Our results demonstrate that while pathology pretraining provides strong initialization for
few-shot learning, PEFT ensures scalability and generalization in broader clinical applications.

(iii) Annotator Alignment and Interpretability Assessment via Novel Dataset. We curated
a new neuropathology dataset with neurofibrillary tangle (NFT) localization, which allows us to
examine whether PEFT guides models to focus on clinically meaningful regions, hence improving
interpretability beyond just classification accuracy. Our results show that PEFT-tuned models align
better with annotator attention in single-NFT images, highlighting their potential for aiding diagnostic
workflows. However, they still struggle in complex scenarios with multiple NFTs or subtle boundaries.
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Our findings demonstrate that PEFT holds the key to unlocking the potential of VLMs in pathology,
but also point to the need for richer interpretability metrics and improved multimodal reasoning.

Table 2: Classification accuracy and AUCROC comparing CLIP vs CONCH across SICAPv2, NFT,
and NCT. The table shows results grouped by adaptation type (text-only, vision-only, multimodal)
and reports tuned parameters, compute and memory footprints for CLIP.

Method Type Location Tuned params ~ GFLOPs  Peak VRAM Model SICAPY2 NFT NCT Average

Acc AUC Acc AUC Acc AUC Acc AUC

Text-only
CLIP 64.84  86.81 90.52  96.81 91.21 99.34  82.19  94.32

CoOp Prompt input level 0.008M 1240 0.26 CONCH 5980 8274 90.52 9681 8897 9858 7976 9271
CoCoOp Prompt input level 0.035M 1240 026 Cg]#gﬁ 2%;3 ;z;g 233‘2‘ ggi; 22(51; ggéztfs) ;gig 3222
Vision-only
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e o w0 we o bR e R REOND 2w B8
2 Methods

PEFT Taxonomy: We structure PEFT methods along three axes: Axis A: Adapted Modality
(What). Text-only (learn prompts; freeze vision), image-only (vision-side updates; e.g., ProVP, linear
probe, vision-LoRA), and multimodal (joint text—image adaptation; e.g., MaPLe, MMRL); Axis B:
Parameterization Strategy (How) - Prompting (static/conditional), adapters (bottlenecks/residual
fusion), LoRA (low-rank updates), and mixed; Axis C: Adaptation Locus (Where). Input-level,all
layers, shallow (early layers), deep (late semantic layers), and embedding/head-level; Table@]in
Appendix described the method divided by axes in more details.

Datasets: We use three datasets in our benchmark experiments. 1) NCT-CRC-HE Kather et al.|[2019]]
contains 100K training and 7,180 test set patches labeled with 9 types of colorectal cancer tissues.
The distinctive textures make it a comparatively easier multi-class benchmark. 2) SICAPv2 [Silva-
Rodriguez et al.l 2020]] consists of 18,783 images of fine-grained prostate cancer Gleason grading
dataset with subtle glandular and nuclear cues. Appendix Fig. shows the finer morphological
cues making it a relatively difficult classification task. 3) NFT: We curated a novel neuropathology
dataset, consisting of ~3,961 images of neurofibrillary tangles (NFTs) from datasets by [Ghandian
et al.| 2024] and [[Vizcarra et al.}2023|]. The Emory dataset was scanned at a resolution of 0.23/0.25
microns per pixel, while the UC Davis dataset was scanned at 0.23/0.11 microns per pixel. The
original datasets were point annotated for NFT and preNFTs, with image processing techniques used
to obtain NFT object-localization bounding boxes. From these, we sampled 2002 NFT-positive and
1959 control images. Each image was annotated by at least two annotators to quantify inter-rater
variability, reflecting the intrinsic challenges of neuropathology where even specialists disagree
on subtle pre-NFT and NFT boundaries as illustrated in Fig. 2| This process produced a reliability-
and localization-aware NFT dataset, containing 1,002 images annotated with additional 1,208 NFTs
under strict consensus and 3,614 under union consensus, spanning multiple brain regions, centers,
scanners, and antibodies, suitable for evaluating alignment, calibration, and robustness of PEFT
methods. See more details in Appdendix

Evaluation: We consider two natural image VLMs (CLIP and DFN) and two PFMs (QuiltNet and
CONCH) in our benchmark experiments. We selected a set of representative PEFT methods that
fine-tune parameters learned over text modality (CoOp, CoCoOp), vision modality (CLIP-RFC,
ProVP, Linear Probing) and multi modality (MaPLe, MMA, MMRL, MMRL++) settings. These
methods are further categorized based on their parameterization strategy type (e.g., linear probing vs.
prompt-based) and location (input level, shallow, vs. deep) in Table[I] Details about the experimental
setups and the models/methods are included in Appendix [B.2]and [C] We applied these PEFT methods
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Figure 3: Avg. few-shot accuracies ofs PEFT methods (%) on 3 pathology tasks for CLIP & CONCH.

Original CLIP+MMRL CONCH+MMRL DFN+MMRL QuiltNet+MMRL++

Figure 4: Each row shows one input tile (left) followed by Grad-CAM heatmaps from four PEFT-
VLMs. Consensus NFT regions are marked in green, singly annotated regions in purple, and heatmaps
use a cold—hot colormap (blue = low, red = high) for areas most relied on for the explanation.

to each of the four VLMs/PFM models for the classification tasks using the three pathology datasets
described above. We evaluate the efficacy of PEFT techniques under two data availability regimes.
(1) Full data: We use PEFT to finetune the VLM/PFM on 100% of the training set of the pathology
target datasets. Performance metrics like accuracy, AUCROC, and efficiency metrics like GFLOPs
and VRAM utilization are recorded. For each task, we select the PEFT method scoring the highest
AUCROC score as the best/winning method for the VLM/PFM. (2) Data efficiency: We finetune
four models in a few shot training setup using PEFT. We randomly select 1, 8 and 16 labeled images
of each class from the target datasets and report average accuracies (repeated experiments with three
random seeds for each method.We visualize the explanation maps by the PEFT finetuned VLM for a
subset of true positive predicted samples from NFT detection task. Explanation maps are generated
by using gradcam over the last or second last attention layer of the vision transfomer block of the
VLM. Explanation maps generated by the zero shot VLM for the same samples are provided as a
baseline to illustrate the human-Al task alignment capabilities of the best PEFT methods.

3 Results

Fig. [T]shows CONCH achieves much higher zero shot classification accuracy for pathology datasets
than CIFAR10 because its pretraining corpora is more aligned with the pathology domain than natural
images. The reverse is true for CLIP and DFN. QuiltNet’s performance is subpar. Nevertheless, under
zero-shot setting, all four VLMs (including CLIP and DFN) achieve comparable best performances
with PEFT, as shown in Table[]that lists the specific PEFT methods that achieve the best classification
accuracy when applied to the four VLMs of each of the three target pathology datasets and tasks. This
demonstrates that PEFT techniques can successfully bridge domain gap between pretrained
datasets (natural images) and target pathology domain. Due to space limitation, we will focus on
comparing CLIP and CONCH for subsequent analysis. Details in Appendix Table[A2]and Table[A3]
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(i) Full-data adaptation: For CLIP (a natural image VLM), along Axis A-Modality, multimodal
methods dominate, with MMRL/MMRLA++ achieving the best performance across SICAPv2, NFT,
and NCT datasets, and MaPLe (94.15/97.85) beating all image- or text-only methods on NCT.
Comparing different parameterization strategies (Axis B)) for vision-only PEFTs reveal that
prompt based approach (ProVP 0.46M) and adapters (CLIPath 0.145M) are lightweight but effective,
compared to LoRA. For multi-modal adaptation, mixed modules (MMRL++ and MMRL) achieve
the strongest results over prompt-only or adapter-only methods (MaPLe, MMA, and PromptSRC).
When we compare the adaptation location (Axis C) of prompt-based approaches, deep/all-layer
parameter updates are decisively superior, especially on morphology-rich SICAPv2 where MMRL++
(76.53 Acc/92.28 AUC) outperform shallow, input, or embedding loci (MaPLe 64.93/89.50, CoCoOp
64.84/86.81, CLIPath 69.84/89.13).

For CONCH (pathology VLM), the advantage of multi-modality (Axis A) is less apparent: vision-
only methods performs best on SICAPv2 while multimodal wins on NFT tasks and NCT shows a tie.
Comparing different parameterization strategies (Axis B)) for vision-only PEFTS, adapters/linear
heads methods such as CLIPath and Linear Probe excel perform better than prompting or LoRA.
Along Axis C, embedding/head-level linear adapters suffice for SICAPv2 and NCT, but deep updates
are needed for NFT (MMRL 94.34/98.02); shallow/input loci trail on morphology-heavy SICAPv2.
Overall, the trend highlights a key divergence in VLM and PFM: CLIP requires deep, mixed,
multimodal adaptation to counter domain shift, whereas CONCH, already domain-aligned, favors
lightweight image-only head/embedding updates on morphology-focused tasks, reserving deep
multimodal adaptation for NFT where cross-modal alignment matters most.

(i) Few-shot settings: (Fig.[3) shows average few shot performance over 3 datasets. We observe a
domain-contingent pattern aligned with our taxonomy. CLIP (natural-image VLM): PromptSRC
(prompting, all-layers, multimodal) best exploits priors and wins with 1-shot learning. With 8—-16
shots, deep/mixed multimodal modules (e.g., MMRL++) overtake, while shallow prompting (MaPLe)
and deep adapters (MMA) lag the linear adapter methods. The gains are largest from 1—8 and then
taper. CONCH (pathology VLM): across 1/8/16 shots, updating vision-only embeddings methods
such as Linear probe and ClIPath consistently lead in performance. The performance of multimodal
adaptation improves with 8-16 shots but saturates early and remains inferior to vision-only methods.
This validates our conjecture that pretrained PFM with knowledge of pathology morphology features
require only a few thousand tunable parameters. CLIP benefits from multimodal (Axis A), mixed
(Axis B) and deep (Axis C) parameter adaptation as available target labels increase. CONCH prefers
lightweight vision-only, embedding-level parameter tuning to achieve good performance with fewer
shots. Overall, pathology-pretrained encoders retain a clear edge in extreme low-label regimes
(Appendix Table [A4), whereas with modest labels (16-shots), lightweight multimodal PEFT becomes
robust and scalable, delivering comparable performance by tuning only a small fraction of weights.

(iii) Task alignment: Fig. |4]illustrates these strengths and limitations by comparing model expla-
nations against pathologist annotations. In single-NFT tiles, CLIP+MMRL and CONCH+MMRL
generate focused high-activation maps that overlap with the consensus (green) boxes, showing that
the interpretation of the target task by both VLM/PFM aligns with human annotators in single-NFT
cases. In contrast, multi-NFT tiles reveal the weaknesses of the models: activations scatter across the
tissue or shift to siloed annotated regions (purple), underscoring their sensitivity to task understanding
in complex cases with annotation variability. CONCH+MMRL overlaps more often with at least one
annotation mark, suggesting that domain-specific priors help, but alignment remains inconsistent.

4 Conclusion

Our benchmarking experiments demonstrate that PEFT is a practical alternative to pretraining large
VLMs with target pathology data. With modest labeled data, mixed multimodal and deeper PEFTs
can close the domain/lexicon gap and enable generalist VLMs (e.g., CLIP) to match or exceed PFMs
(e.g.,CONCH). Under extreme few-shot conditions, CONCH retain an advantage, though multimodal
PEFTs close the performance gap with increasing number of target labels. Visualization reveals that
PEFT improves task alignment in simple, single-NFT cases (CLIP+MMRL, CONCH+MMRL) but
fails to consistently localize consensus regions in tiles with multiple or subtle aggregates, exposing
limitations under annotation variability. Our work provides a road map for future research at the
intersection of performance, data/model efficiency, and interpretability, helping to bridge the gap
between VLMs and practical deployment in real-world pathology settings.
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A Additional Results

Table Al: Zero-shot classification accuracy (%) of open-domain and pathology-specific VLMs on
SICAPv2, NFT, and NCT datasets, with averaged pathology accuracy.

Method SICAPv2 NFT NCT Avg. Pathology Acc.

Zero-shot Open VLMs

CLIP 31.57 64.71 2321 39.83
DFN 40.19 67.56  34.82 47.52
Zero-shot Pathology VLM

CONCH 40.81 67.56  61.49 56.62
QuiltNet 25.30 5038 26.75 34.14




Table A2: Classification accuracy and AUCROC of natural-image VLMs (CLIP, DFN) adapted
using PEFT methods across SICAPv2, NFT, and NCT. The table stratifies methods into text-only,
image-only, and multimodal groups. Results show that text-only methods improve accuracy but
often plateau in AUCROC, image-only methods like ProVP improve both, and multimodal adapters
(MMRL, MMRL++) achieve the highest balance of accuracy and AUCROC. This demonstrates that
accuracy and AUCROC can diverge across modalities, with AUCROC revealing robustness missed
by accuracy alone.

Method Type Location Model SICAPv2 NFT NCT Avg
Acc AUC Acc AUC Acc AUC Acc AUC

Text-only

CoOp Prompt input level CLIP 6484 8681 90.52 96.81 91.21 9934 82.19 9432
DFEN 68.57 88.64 90.26 9643 9292 9950 8392  94.86

CoCoOp Prompt input level CLIP 6239 8536 8944 9627 89.57 9925 8047  93.63
DFN 64.80  75.80 9046  96.71 9226  99.37 8251  90.63

Vision-only
CLIP  69.84 89.13 89.64 9744 88.14 9941 8254 9533
CLIPath (RFC)  Adapter  embed. level  ppy 69.08 88.16 91.89 9749 9233  99.54 8443  95.06

CLIP 61.07 8483 8276 90.77 92.09 99.54 78.64 91.71

LR Aumg LoRA  alllayers DEN 6560 8636 8858 9554 8980 9935 8136 9375
LinearProbe  Adapter  embed. fevel  CLIP 6376 8635 9003 9654 8860 9889 LIS 9303
DEN 6758 8751 9159 97.12 8770 9858 8220  94.40
CLIP 7393 9147 9331 0743 9284 9611 8669 9500
ProVP Prompt all layers

DFN 7436  92.00 9352 9733 9268 9952  86.85 96.28

Multi-modal
CLIP 6493 8950 92.19 9724 9415 9785 8376  94.86

MaPLe Prompt  shallow repr. gy 7558 9314 9352 9779 9230 97.88 8713 9627
MMA Adaoter  deen revr CLIP 6324 8820 8643 9791 7197 9489 7388 93.67
P prepr DFN 69.50 9026 91.89 97.62 5161 9479 7100 9422

PrompiSRC Promot il laver CLIP 7389 9227 7455 9420 9224  99.13 8023  95.20
omp! ompt all layers DEN 7205 9173 8286 9527 9142 9895 8211 9532
. CLIP 7597 9273 9536 9889 9623 9876 89.19  96.79

MMRL Mixed  deep repr: DEN 7601 9270 9480 9867 9611 99.51 8897  96.96
MMRLtt Mixed  deep repr CLIP 7653 9228 9531 9886 9411 9945 88.65  96.86

DFN 76.86 9296 9516 9846 9572 9940 89.25  96.94

Table A3: Classification Accuracy and AUCROC of various Path VLMs + PEFT techniques after
training on 100% of SICAPv2, NFT, and NCT datasets, with the adaptation location. An Avg column
reports the mean Acc/AUC over the three datasets.

Method Type Location Model SICAPv2 NFT NCT Avg
Acc AUC Acc AUC Acc AUC Acc AUC

Text-only

CoOp Prompt input level QuiltNet 7479 9223  91.74 96.79  93.15 9825 86.56  95.76
CONCH 59.80 8274 90.52 96.81 88.97 9858 79.76 9271

CoCoOp Prompt input level QuiltNet 7493  92.31 90.62 9583 9096 99.28 8550  95.81

CONCH 6324 8502 9092 9648 93.05 9949 8240 93.66

Vision-only
QuiltNet 7262 9091 9229 9753 7121 9548 7871 9464
CLIPath (RFC)  Adapter  embed. level  coNey 7968 9416 9245 9779 9329 9962 8847  97.19

QuiltNet ~ 71.35  90.19  83.27 9228  93.62 99.69 8275  94.05

LOoR Aimg LoRA — dll layers CONCH 7116 9132 7940 9339 9511 9950 8189  94.74

. QuiliNet 6819 9092 8628 0598 9305 9944 8251 9545
Linear Probe Adapter  embed. level  CoNeH 7945 9380 9271 9791 9547 9927 8921  96.99
ProvP promptall layers QuiliNet 7400 9142 9479 9753 9247 9938 87.09 96.11

CONCH 6437 8451 9337 97.68 9443  98.01 84.06  93.40

Multi-modal
QuiltNet 7827  94.14 9459  98.11 93,70  99.76  88.85  97.34

MaPLe Prompt  shallow repr. CoONCH 6687 9023 92.19 9724 9353  99.60 8420  95.69
QuiliNet 7243  90.15 8949 9706 6077 9463 7423  93.95

MMA Adapter  deep repr: CONCH 4370 7171 4997 6546 2323 63.02 3897 6840
PromoSRC promot all lovers QuiltNet 7549 9305 7674 9320 9405 9945 8209 9523
P P Y CONCH 5292 8003 8082 9422 9338 9965 7571 9130

. QuiliNet 7795 90.15 9526 98.80 9480 9976 8934  96.24

MMRL Mixed  deep repr CONCH 7088 87.06 9434 9802 9550 9917 8691 9475
MMRLos Mixed  deep repe QuiliNet 7776  89.81 9587 9897 9554 9979 8972  96.19

CONCH 6748 86.00 90.87 9592 9398 99.67 84.11 93.86
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Figure Al: NCT dataset: few-shot patch classification. Comparison of PEFT strategies—applied
to open-domain CLIP-like VLMs and pathology-pretrained VLMs across K-shot regimes (K €
{1,8,16}). Curves summarize the accuracy metric.

A.1 Taxonomy-based guidance on results
A.1.1 Full-data Adaptation

Full-data Adaptation of Natural VLMs (CLIP). CLIP’s behavior follows the taxonomy closely.
When Axis A = text-only, Axis B = prompting (CoOp/CoCoOp), and Axis C = input-level, it saturates
the coarse NCT task (CoOp: NCT AUC 99.34, Acc 91.21; CoCoOp: AUC 99.25, Acc 89.57) but
underperforms on fine-grained tissue labeling (SICAPv2: CoOp Acc 64.84 / AUC 86.81; CoCoOp
Acc 62.39 / AUC 85.36). Moving to Axis A = image-only with Axis B = adapters/prompt-like
residuals at Axis C = embedding/head or all layers (e.g., CLIPath at embedding-level; ProVP across
all layers) yields steadier gains across datasets (CLIPath: SICAPv2 Acc 69.84 / AUC 89.13; ProVP:
NFT Acc 93.31 / AUC 97.43). Finally, compact Axis A = multimodal methods with Axis B = mixed
at Axis C = deep representations (MMRL/MMRL++) deliver the best overall balance (MMRL:
SICAPvV2 Acc 75.97 / AUC 92.73; NFT Acc 95.36 / AUC 98.89; MMRL++: NCT AUC 99.45 with
0.813M tuned params), indicating that cross-modal, deep-locus adaptation is especially helpful for
rare-lesion and fine-grained settings. Appendix [A2]details these trends (and DFN).

Full-data Adaptation of Pathology VLMs (CONCH). CONCH’s strongest gains appear under
Axis A = image-only with Axis B = adapters/linear readout at Axis C = embedding/head-level.
Vision-focused updates (CLIPath, Linear Probe) produce the largest improvements on fine-grained
SICAPv2 and remain strong on NFT/NCT (CLIPath: SICAPv2 Acc 79.68 / AUC 94.16; NFT Acc
92.45 / AUC 97.79; NCT AUC 99.62; Linear Probe: SICAPv2 Acc 79.45 / AUC 93.80; NFT Acc
92.71 / AUC 97.91; NCT Acc 95.47 / AUC 99.27). Text-only prompting (A=text-only, B=prompting,
C=input) still achieves NCT ceilings (CoOp NCT AUC 98.58; CoCoOp AUC 99.49) but is weak on
SICAPv2 (CoOp Acc 59.80 / AUC 82.74). Multimodal mixed strategies at deep layers (MMRL: NFT
Acc 94.34 / AUC 98.02) are competitive on NFT/NCT but show variable gains versus vision-only
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Figure A2: NFT dataset: few-shot patch classification. Comparison of PEFT strategies—applied
to open-domain CLIP-like VLMs and pathology-pretrained VLMs across K-shot regimes (K €
{1,8,16}). Curves summarize the accuracy metric.

adapters—consistent with CONCH’s pathology-specific pretraining favoring lightweight vision-side
adaptation. Appendix [A3]expands on these patterns alongside QuiltNet.

Natural vs. Pathology VLMs. Task winners align more with taxonomy choices than pretraining
domain alone. For SICAPv2 (fine-grained), the winning recipe is Axis A = image-only + Axis
C = embedding/head (shallow) with Axis B = adapters/linear: CONCH+CLIPath (Acc 79.68 /
AUC 94.16) and CONCH-+Linear Probe (Acc 79.45 / AUC 93.80) outperform CLIP’s best text-only
prompts. For NFT, higher-capacity Axis A = multimodal with Axis B = mixed at Axis C = deep repr.
slightly favors CLIP at the top end (CLIP+MMRL: Acc 95.36 / AUC 98.89; CLIP+MMRL++: Acc
95.31 / AUC 98.86), while CONCH remains competitive under vision-centered adapters (CLIPath:
Acc 92.45/ AUC 97.79). For NCT (coarse), Axis A = text-only, Axis B = prompting, Axis C = input
attains ~99% AUC for both families (CLIP CoOp/CoCoOp: 99.34/99.25; CONCH CoOp/CoCoOp:
98.58/99.49), so the edge depends on minor PEFT choices and whether one optimizes Acc vs. AUC.

B Experiment Setup

B.1 Datasets

In our benchmark experiments, we evaluate three histopathology datasets spanning colorectal cancer,
prostate cancer, and neuropathology.

NCT-CRC-HE is a large-scale colorectal cancer dataset derived from hematoxylin & eosin
(H&E)—stained whole slide images collected from the National Center for Tumor Diseases (NCT,
Heidelberg) and the University Medical Center Mannheim (UMM), Germany [Kather et al|| [2019].
It contains 100,000 training and 7,180 independent test patches, the latter commonly referred to as
CRC-VAL-HE-7K. Each patch is 224 x 224 pixels at 0.5 pm per pixel (~20x magnification), and all
images were color normalized to mitigate staining variability |Kather et al.|[2019]. Patches are anno-
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Figure A3: NCT dataset: few-shot patch classification. Comparison of PEFT strategies—applied
to open-domain CLIP-like VLMs and pathology-pretrained VLMs across K-shot regimes (K €
{1,8,16}). Curves summarize the accuracy metric.

tated across nine histologic classes, including normal mucosa, tumor epithelium, cancer-associated
stroma, smooth muscle, lymphocytes, debris, mucus, adipose tissue, and background. Owing to its
size and standardized train/test split, it has become a widely used benchmark for tissue classification;
however, the dataset is comparatively easier, as models can sometimes exploit low-level color or
compression artifacts rather than robust morphological cues Ignatov and Malivenko| [2024]].

SICAPv2 is a prostate cancer dataset designed for Gleason grading and fine-grained morphological
analysis. It consists of 18,783 image patches of size 512 x 512 pixels at 10x magnification, sampled
from 155 annotated whole slide images of biopsies and prostatectomy specimens Silva-Rodriguez et al.|
[2020]]. Unlike texture-driven datasets such as NCT-CRC-HE, prostate grading requires recognition
of subtle glandular architecture and nuclear morphology, which is intrinsically more challenging.

We sampled 3961 images randomly from these two datasets. To ensure reliability, we re-annotated the
NFT dataset with two independent annotators. The test set of the dataset contained 1,961 images, each
with a single NFT annotation from a previous annotator. Our QC process revealed that many images
contained additional NFTs and that annotators frequently disagreed on NFT boundaries. Annotator
group G1 marked 2,571 NFT boxes (mean ~1.10 per image, max 8), while Annotator group G2
marked 2,320 NFT boxes (mean ~1.04 per image, max 9). From these, an intersection consensus
(NFTs agreed upon by both annotators) produced 1,208 NFTs across 1,173 images (mean ~1.03
per image, max 5). In contrast, a union consensus (NFTs marked by either annotator) expanded to
3,614 NFTs across 2,340 images (mean ~1.54 per image, max 13). This QC process transformed the
original single-annotation dataset into a reliability- and localization-aware NFT resource, explicitly
capturing inter-rater variability and the true multiplicity of tangles per image, as illustrated in
Figure[2] Together, this yields a reliability- and localization-aware NFT corpus with explicit rater
variability, heterogeneous antibodies (PHF-1, pan-tau, AT8, CP13), multiple centers and scanners
(Aperio AT2, ZEISS AxioScan), sub-micron pixel resolutions (0.11, 0.23-0.25 pm/pixel), and varied
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Table A4: Few-shot classification accuracy (%) of PEFT techniques on SICAPv2, NFT, and NCT
grouped by method with subrows for the underlying VLM (CLIP, DFN, QuiltNet, CONCH). Each
dataset shows 1-shot (1S), 8-shot (8S), and 16-shot (16S) accuracy; Avg columns are per-shot means
across datasets (SICAPv2, NFT, NCT). We dont showcase results from LoR Ay, because of failures
in full data adaptation

Method Adaptation Type Adaptation Location ~ Model SICAPV2 NFT NCT Avg
N 8S 16S IN 8S 168 1S 8S 168 1S 8S 168
Adapted modality: Text
CoOp Prompt Input-level CLIP 3469 3654 3677 4802 63.06 6384 5513 7538 73.67 4595 5833 58.09
DEN 27.95 36.00 4500 5657 60.65 6102 53.03 72.66 7744 4585 5644 61.15

QuiltNet  41.67  57.01  58.00 59.60 64.13 6376 6749 8197 8535 5625 6770 69.04
CONCH  19.54 2762 2647 6291 6554 66.12 49.04 6795 7392 4383 5370 55.50
CoCoOp Prompt Input-level CLIP 2504 3828 3445 4234 6375 6350 3679 5504 6494 3472 5236 5430
DFN 2884 2405 36.04 7041 6223 6222 5015 68.65 7261 4980 51.64 5696
QuiltNet  30.99 5454 5294 6406 6398 6500 6059 7225 8146 51.88 63.59  66.47
CONCH 2741 3542 3296 6626 6265 6536 3254 5299 61.17 4207 5035 53.16

Adapted modality: Image

Linear Probe Adapter Embed. / head-level CLIP 40.18 19.81 39.51 3372 6376 6432 3272  68.69  72.08 3554 5075 58.64
DEN 24.11 3478 4599 4950 5997 6558  43.11 65.17 7474 3891 5331 62.10
QuiltNet 2926 5232 47.06 4474 6689  68.01 40.66 8143 8426 3822 66.88  66.44
CONCH  39.68 61.77 6470  69.61 7226 71.19 7634 9097 9372 6188 7500 76.54

CLIPath (RFC)  Adapter Embed. / head-level CLIP 2504 2625 2813 3605 6452 6386 3410 3946 59.10 31.73 4341 5036
DFN 2185 3560 3992 4945 6296 6335 2640 4263 6372 3257 4706 5566
QuiltNet 3574 4376 4130 4646 6332 6512 2871 36.87 7099 3697 4798  59.14
CONCH 3534 6192 70.14 6206 7020 6770  52.11 88.28  90.57 49.84 7347  76.14
ProVP Prompt All layers CLIP 24.03 3290 3450 4625 6451 6429 5647 7611 7856 4225 5784 59.12
DFN 2743 2989 3658 4926 6262 6354 5721 7997 8729 44.63 5749 6247

QuiltNet ~ 38.00 47.73 5520 4348 6434 6507 6457 8370 91.88 4868 6526 7072
CONCH 3197 4186 4007 7571 6264 6510 3878 49.60 5021 4882 5137 5179

Adapted modality: Multi-modal

PromptSRC Prompt all-layers CLIP 3806 4592 5376 4923 58.67 6342 5617 6944 7412 4782 5801 63.77
DFN 3588 4462 5173 4627 57.16  63.04 5432 6828 7495 4549 56.69 63.24
QuiltNet  39.82  47.16 5348 4854 5729 6273 5512 70.65 7631 47.83 5837 64.17
CONCH  33.11 4127 4759 4283 5546 6137 4905 6192 7036 4166 5288 59.77
MaPLe Prompt Shallow repr CLIP 29.74 3985 47.63 3588 4792 5634 39.07 5575 6565 3490 4784 5654
DFN 1338 21.60 2358 2744 3679 48.61 48.02 5854 69.27 29.61 3898  47.15

QuiltNet 4195 3079 49.08 4472 5586 6298 4995 7556 7870 4554 5407  63.59
CONCH 2828 3413 3179 31.04 4185 5267 1896 4452 5446 2609 40.17 4631
MMA Adapter Deep repr CLIP 2254 3327 4192 2748 4185 5206 2393 3287 4727 24.65 36.00 47.08
DFN 3880 3880 37.80 2546 3464 4273 3053 3423 3943 3160 3589 3999
QuiltNet  23.80  23.87 4453 3226 4437 5501 3290 52.63 7643 29.65 4029  58.66
CONCH 2574 3369 41.12 3655 4480 5503 2864 3647 4782 3031 3832 4799
MMRL Adapter Deep (late semantic) CLIP 3159 4397 5322 3477 5764 6288 5642 7155 8249 4093 5772  66.20
DFN 3092 4392 5038 4433 5347 59.62 5824 8222 8747 4450 59.87 6582
QuiltNet 4389 5542 6178 5277 6392 7046 73.68 8942 91.64 5678 69.59  74.63
CONCH  31.05 3525 4203 4367 5488 6191 5760 7678 8482 4411 5564 6292
MMRL++ Adapter Deep repr CLIP 2895 4559 4931 33.07 6389 6472 6273 8425 8844 4158 6458 6749
DFN 2646 4595 5157 4775 6195 6295 6096 8238 87.10 4506 6343 67.21
QuiltNet 4485 6126  58.13 5044 6037 6721 72.10 88.06 9049 5580 69.90 71.94
CONCH  29.03 3126 3387 4177 5132 5884 5264 5707 6352 4115 4655 5208

case demographics — key for evaluating detection, calibration, and cross-site generalization in
NFT-pathology modeling.

B.2 Experimental Evaluation

B.2.1 Zero Shot

Prompts such as, "a pathology tissue showing", "a photo of" and "a histopathological image of" is
appended before the class labels of the respective pathology and natural image datasets, as a prompt
tuning method. No training data is provided, and the prompt tuning experiment reporting highest
accuracy is recorded for the VLM in Table[AT] Figure|I]also illustrates performance on CIFAR-100
dataset to show affinity to natural image vs pathology domain respectively.

B.2.2 PEFT

We implemented a diverse set of parameter-efficient fine-tuning (PEFT) methods spanning prompt-
based, adapter-based, and low-rank approaches in order to evaluate their adaptability across both
vision—language models (CLIP, DFN) and pathology foundation models (QuiltNet, CONCH). All
experiments were initialized from official pretrained checkpoints, with all parameters frozen except
for the lightweight modules introduced by each PEFT method. To ensure rigor and fairness, we
closely followed the training protocols recommended in the original works, while conducting narrow
hyperparameter tuning grids to address instability or outlier behaviors.

Text-modality adaptation. CoOp was trained for 50 epochs with 16 learnable tokens (fp16),
initialized with either natural language prompts (“a pathology tissue showing,” “a photo of,” “a
histopathological image of””) or pure tokens. CoCoOp used four tokens initialized with three prompts
and converged within 10 epochs.
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Figure A4: Randomly sampled images from three representative tasks and datasets.

Image-modality adaptation. Linear probing trained only a shallow classifier. CLIP-RFC fine-tuned
a residual feature connection on ViT-B/16 for 10 epochs with cross-entropy loss, AdamW, learning
rate 1 x 1074, and @ = 0.8. ProVP trained 16 learnable prompts on CLIP ViT-B/16 with SGD,
cosine LR scheduler, batch size 64, weight decay 0.0005, and max 50 epochs.

Multi-modality adaptation. PromptSRC added both text and vision prompts (4 tokens each, depth
9), with losses weighted following the original paper. MaPLe, MMA, MMRL, and MMRL++ jointly
tuned text and vision modules with default bottleneck or prompt dimensions, applying light tuning for
CONCH. LoRA inserted rank-16, o = 32 low-rank adapters into ViT-B/16 attention layers, trained
for 10 epochs with batch size 16, learning rate 1 x 10~4, and weight decay 0.005.

All experiments were capped at 10-50 epochs or early-stopped by non-decreasing training loss with
a patience of 5 epochs. Few-shot experiments used 1, 8, and 16 samples per class across three seeds;
no extra labeled data was provided. FLOPs, trainable parameters, and VRAM usage were recorded
on Tesla T4 GPUs (16 GB). Most runs were performed on Tesla T4 GPUs (16 GB), with large-scale
LoRA and adapters configuration design also tested on NVIDIA L40S GPUs (48 GB).

C Related Background Literature

C.1 Vision—-Language Models (VLMs)

Contrastive pretraining. CLIP-style VLMs comprise an image encoder fy : R7*Wx3 5 R4,
and a text encoder g4 : 7 — R, trained on paired image—text data {(z;,t;)}2 , with a symmetric
InfoNCE objective and temperature 7. With L2-normalized embeddings and dot-product similarity,

the batch loss is,
1L exp((fo(:), go(t:))/7) )
— —lo
B 2::1 ( ° S exp({fo(@i), go(t;))/7)

c=1

(1)
1< exp((g5(ti), folz:))/7) > ]
— —1lo .
"B ; ( © Ele exp((gy(ti), fo(x;))/7)

Zero-shot classification forms class prototypes z. = g4 (t.) from prompts ¢, and predicts § =
arg max.(fo(z), zc).

From web-scale pretraining to pathology. Generic CLIP models learn from noisy web corpora.
The domain gap to histopathology stems from ultra-high resolution, stain and scanner variability,
texture-dominant cues, and specialized terminology [2024]. CLIP (and stronger Open-
CLIP/DEN variants) provides the open-domain baseline; Domain-adapted VLMs aim to reduce
this gap via curated image—text corpora: QuiltNet leverages the large curated Quilt-1M pathology
corpus with template captions Ikezogwo et al.[[2023]; CONCH mines pathology-specific captions
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for contrastive pretraining [Lu et al.|[2024]]; and PLIP/BioMedCLIP are broader biomedical-tilted
VLMs Huang et al.|[2023]],/Zhang et al.| [2023]].

Vision-only pathology foundational models : Although there have been multiple foundational
vision-only pathology models such as UNI [?] and Virchow [?]. They are beyond the scope for this
work as we focus only on VLM:s.

C.2 Parameter-Efficient Fine-Tuning (PEFT)

Having already mentioned the PEFT strategies by their modalities (Axis A) in[2} we now classify
PEFT strategies by their parameterization strategy: (i) prompt learning, (if) adapter modules, (iif)
low-rank updates (LoRA), and (iv) mixed methods. Each strategy modifies a frozen VLM differently,
trading off efficiency, expressivity, and alignment.

Table AS: Taxonomy placement of PEFT methods arranged by Axis A (What) and ordered within
each block by Axis B (How) and Axis C (Where).

Method Axis A: Modality (What) Axis B: Parameterization (How) Axis C: Locus (Where)
Text-only

CoOp Text-only Prompting Input-level
CoCoOp Text-only Prompting Input-level
Image-only

ProVP Image-only Prompting All layers

CLIPath (RFC) Image-only Adapters (residual fusion) Embed. / head-level
Linear Probe Image-only Adapters (head) Embed. / head-level
LoRAjyg Image-only LoRA (low-rank updates) Deep repr
Multimodal

MaPLe Multimodal Prompting Shallow repr
PromptSRC Multimodal Prompting All layers

MMA Multimodal Adapters Deep repr

MMRL Multimodal Mixed Deep repr
MMRL++ Multimodal Mixed (prompts + Deep repr

C.2.1 Prompt-based PEFT

Prompt-based methods learn additional tokens that steer the frozen text or vision encoder. The
prototypical formulation comes from CoOp. Let p € R™*¢ denote m learnable context vectors
prepended to the textual embedding of class y. The logit for class c is:

ze(x) = (fo(7), go([p; “‘class 7)), @

and the cross-entropy loss is:

o _oP(y(@)/7) -
2 cexp(ze(w)/7)

CoCoOp generalizes this by generating p(z) conditioned on image features, improving base-to-novel

generalization. ProVP extends prompting into the vision encoder by inserting learnable tokens

progressively across transformer blocks. PromptSRC introduces self-regularization to stabilize

learned prompts under scarce labels for both text and vision encoders. MaPLe couples image and text

prompts hierarchically to improve multimodal alignment.

Lcoop(z,y) = —lo

C.2.2 Adapter-based PEFT

Adapter methods insert light trainable layers into frozen encoders. A general formulation is given
by CLIPath (RFC) [Lai et al.,2024], which fuses frozen CLIP features fp(x) with residual adapters

ry(2):
[f=al(f)+(1~-a)f, 4)

We then replace f with f* in the CLIP contrastive objective (Eq.[1) and optimize the trainable layers
using the symmetric InfoNCE loss. This residual fusion connection (RFC) stabilizes learning in
pathology with limited data.

CLIP-Adapter [[Gao et al., 2024] implements a shallow MLP on visual features, while Tip-
Adapter [Zhang et al., |2022] builds from cached training features for training-free adaptation.
MMA [Yang et al., [2024] extends adapters to both image and text encoders, jointly fine-tuning
lightweight modules across modalities.
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C.2.3 Low-Rank Update (LoRA)

LoRA [?] injects trainable low-rank decompositions into weight matrices. Given a frozen weight
W € R¥* LoRA reparameterizes it as:

W' =W + AW, AW =

Q

% AB, AeR™" BeR™* r <« min(d, k), (5)
r

while r < min(d, k). Only A and B are trainable; oo, is a scaling hyperparameter. This significantly
reduces parameters, and has been applied to both text and vision transformer blocks in VLMs. Variants
include LoRA-Text, LoRA-Image, and multimodal LoRA, depending on placement.

C.24 Mixed PEFT

Mixed methods like Representation-learning methods add regularizers that directly constrain multi-
modal embeddings, using a combination of multiple strategies like prompt-based and LoRA. MMRL
introduces multimodal robust learning by aligning image and text adapters with consistency and
distributional regularizers. Let fo(z) and g4(t) be frozen features, and fy (), gy (t) their adapted
representations. MMRL minimizes:

Lavre = Las(fo (@), G5 (1); )
+ Aime || fo(2) — fe(f)Hz + Aw [|Gu(t) — 9¢(t)H§ (©)

+ /\align D(.ﬁ[) (.ﬁ), Qw (t)) )
where L is the classification cross-entropy and D(+, -) enforces multimodal agreement (e.g., cosine
distance, MMD, or InfoNCE-style alignment).

MMRL++ simplifies these regularizers with fewer parameters and faster convergence, while preserv-
ing cross-modal robustness.

C.3 Related Work: Benchmarks of PEFT+VLM:s in Pathology

Recent surveys and benchmarks have begun to evaluate parameter-efficient finetuning (PEFT) in
vision-language models (VLMs), but none provide a systematic, pathology-focused treatment. [Mai
et al., |2025] unify PEFT strategies such as LoRA, adapters, and prompts across vision backbones,
yet only include a single small pathology dataset (Camelyon) and one VLM configuration, without
analyzing patch-based pathology, few-shot regimes, or alignment/localization under PEFT choices.
[Lee et al.,2025]] benchmark pathology FMs across 14-20 datasets and note that PEFT can be effective,
but their scope is finetuning strategies for pathology-specific FMs, not systematic taxonomies of
PEFT across CLIP-like VLMs or neuropathology tasks> They also do not provide evaluations for
different types of PEFT methods. Related surveys catalog computational pathology (CPath) FMs and
applications but similarly lack PEFT-structured comparisons or patch-level interpretability analyses
Ochi et al.|[2025]],|Chanda et al.|[2024]. In contrast, our work is the first benchmark of PEFT+VLMs
specifically for pathology, spanning cancer (SICAPv2, NCT) and neurodegeneration (NFT), across
both open-domain and pathology-pretrained VLMs. We contribute a modality-aware taxonomy and
a multi-dataset benchmark under both full-data and few-shot settings, explicitly linking accuracy
vs. AUCROC trade-offs to efficiency (compute/storage), and uniquely incorporating alignment and
localization insights for task alignment.

C.4 Broader Impact

Parameter-efficient fine-tuning (PEFT) lowers the cost, memory, and expertise required to adapt vision—
language models for histopathology. Our benchmark suggests that lightweight adapters/prompts/low-
rank updates allow generalist models to approach—and sometimes exceed—pathology-pretrained
models under full-data settings, while using a small fraction of trainable parameters and VRAM. This
can broaden access for resource-constrained labs and modestly reduce environmental footprint. Our
re-annotated NFT localization set also encourages evaluation beyond topline accuracy by testing
whether models attend to pathologically meaningful regions. Our dataset is also already de-identified.

Risks remain: inconsistent localization on complex cases, a residual few-shot gap favoring pathology-
pretrained models, domain shift across scanners/stains/sites, and annotation variability. We recom-
mend (i) conservative, domain-bounded claims and research-only use; (ii) pairing accuracy with
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46 localization/uncertainty metrics; (iii) We report hardware and compute footprints to aid replication
467 and impact estimation.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract/intro state the key claims—a pathology-focused PEFT taxon-
omy/benchmark across VLMs+PFMs, and that PEFT can let generalist VLMs rival or

exceed PFMs under full-data, while PFMs keep a few-shot edge; these are borne out in the
results. See Intro Sec[I]and Sec 3| Results.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper notes inconsistent localization in complex multi-NFT tiles and
that pathology VLMs retain an advantage in extreme few-shot; it recommends align-
ment/localization evaluation beyond topline accuracy. See Conclusion, Sec[d}

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] e
Justification: Theoretical or formal proofs are not a contribution of this work.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:We specify models, datasets, data regimes (full vs. 1/8/16-shot), training recipes
(epochs, early stopping, optimizers, etc ), and PEFT-specific hyperparameters; few-shot runs
are repeated over three seeds. [B.2] Further, we will make our code repository and dataset
avaialble for public use and reproducibility.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: At submission, no code/data URL is included. The paper relies on public
images and introduces NFT localization annotations described in the text; code and novel
annotation releases are planned post-review. Code will be made available at a GitHub
repository. The author can not share the dataset and code at present, without violating
confidentiality or annonymity. The dataset currently includes the annotators’ personal
information, code also includes substantial information about the authors. This information
will be scrubbed from the dataset and will be provided for public use.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Data preparation/splits, prompts, training schedules, and method-specific
settings (e.g., token counts, ranks, adapter depths) are documented; evaluation metrics
(Acc/AUC) are defined. See Appendix [B.2]and Section[2]

7. Experiment statistical significance

17



518
519

520

521
522

523

524
525
526

527

528
529
530
531
532
533

534

535
536

537

538
539

540

541
542

543

544
545
546
547

548

549
550
551

552

553
554

555

556

558

559

560
561
562
563
564
565
566

567

10.

11.

12.

13.

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We report averages over three seeds for few-shot but do not include error
bars/confidence intervals for brevity sake; adding stdev/Cls is feasible in the camera-ready.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report GPU types (T4 16 GB; L40S 48 GB) and efficiency metrics
(GFLOPs, trainable params, peak VRAM by method; [2), but not wall-clock time or total
compute for each run. We can provide that in the camera-ready version, it was omitted for
brevity sake as it did not affect the messaging of the paper. The full research project did not
require more compute than mentioned, and we do report compute workers, relevant memory
and storage.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Work uses de-identified pathology datasets and expert re-annotation; no
personal data or interventions with human subjects; anonymity preserved for review.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss positive impacts (lowering compute/memory barriers, alignment-
aware evaluation) and risks (domain shift, miscalibration, reduced reliability in complex
cases, inconsistent localization) with mitigations; see Broader Impact Appendix section [C.4]
and Conclusion sectiori4]

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No high-risk generative models or scraped web corpora are released with this
submission; any planned assets will follow controlled and de-identified release practices.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: No licence provided by [Vizcarra et al) [2023] - https://github|
com/Gutman-Lab/yolo-braak-stage, [[Ghandian et al., |2024] make their data avail-
able athttps://www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD1165 un-
der https://creativecommons.org/publicdomain/zero/1.0/legalcode CCO li-
cence. We credit and cite them, as well as properly respect the terms of their licence. The
authors of both the studies were reached out to, for the purposes of this study and duly
informed about the usage of their datasets.

New assets
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14.

15.

16.

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: The NFT annotation resource is introduced and documented (consensus/union

labels, inter-rater variability), but no packaged release/docs accompany the submission; a
dataset card will be provided upon release.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or human-subject experiments were conducted; annotations
were made by domain experts on de-identified images.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The study analyzes existing de-identified images with expert re-annotation
only; no recruitment or intervention with human participants.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The research methods and results do not rely on LLMs for experiments; any
editing assistance is unrelated to methodology.
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