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Abstract

Generalist vision–language models (VLMs) struggle on histopathology tasks due
to domain gaps and scarce labels. Pathology VLMs (PFMs) also fall short de-
spite costly pretraining. Parameter-efficient fine-tuning (PEFT) offers a scalable
lightweight approach to quickly adapt large pretrained models to target histopathol-
ogy tasks. We present the first benchmark of PEFT methods when applied to
VLMs/PFMs for histopathology tasks. We categorize existing PEFT methods
based on adaptation modality, strategy and locus. We curate a novel neuropathol-
ogy dataset for detecting neurofibrillary tangles (NFTs), a hallmark of Alzheimer’s
Disease, capturing annotator variability to evaluate reliability and alignment. Ex-
periments across prostate cancer, colorectal cancer, and neuropathology tasks show
that with full data, PEFT-adapted generalist VLMs rival adapted PFMs, but fall
short in few shot settings due to label scarcity, terminology mismatch, and modality-
specific biases. Visualization further reveals that models such as CONCH+MMRL
focus on NFT within annotated boxes, improving interpretability in single-NFT
cases, but their performance diminishes in complex multi-NFT scenarios. Together,
our benchmark and dataset highlight PEFT as a scalable strategy, but also indicate
the need for richer interpretability metrics and improved multimodal reasoning to
handle complex cases.

1 Introduction

Large vision–language models (VLMs) such as CLIP [Radford et al., 2021] have shown remarkable
zero-shot generalization across natural image domains, inspiring interest in their application to
medical image analysis. In histopathology, pathologists rely on careful interpretation of complex
tissue patterns to diagnose and grade disease—tasks that require fine-grained visual discrimination
under limited annotation regimes. For example, accurate detection of neurofibrillary tangles (NFTs),
in human brain, is essential for Alzheimer’s research [Alafuzoff et al., 2008, Dugger and Dickson,
2017], yet manual annotation of whole-slide images (WSIs) remains time-consuming and resource-
intensive [Ghandian et al., 2024]. Compared to natural images, WSIs present unique challenges:
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Figure 1: Zero-shot performance comparison of vision-language models (VLMs) across natural and
pathology domains. Bars show average accuracy of natural image classification task using CIFAR-100
and across three representative histopathology tasks. Downward arrows indicate performance drops
when transferring from natural to pathology domains, while upward arrows indicate models that
perform better on histopathology tasks.

gigapixel resolution, texture-dominated morphology, and highly imbalanced disease distributions, all
of which create a substantial domain gap that hinders direct transfer of general-purpose VLMs [Lai
et al., 2024]. As shown in Fig. 1 and Table A1, zero-shot VLMs like CLIP and DFN [Fang et al.,
2023] deteriorate in classification accuracy averaged across three pathology tasks - Gleason grading in
prostate cancer, NFT detection in Alzheimer’s brain tissue, and colorectal cancer tissue classification
(described in Section 2). To mitigate this gap, pathology-specific VLMs such as PLIP [Huang et al.,
2023], QuiltNet [Ikezogwo et al., 2023], BioMedCLIP [Zhang et al., 2023], and CONCH [Lu et al.,
2024] have been introduced to improve performance through pretraining with pathology datasets.
However, their heavy compute and data demands hinder clinical deployment— training CLIP required
12 days on 256 V100 GPUs for 400M samples, while QuiltNet used 4 A40 GPUs for 40 epochs on 1M
pairs, yet neither generalized to histopathology tasks, underscoring the high cost of domain-specific
pretraining. This motivates parameter-efficient fine-tuning (PEFT), which aligns frozen VLMs to the
target task through lightweight modules that update only a small fraction of parameters, hence more
efficient.

PEFT Prior Work: A variety of PEFT approaches have been proposed and shown to achieve strong
efficiency–accuracy trade-offs on natural image benchmarks. Linear probing [Radford et al., 2021], a
simple and efficient baseline — trains only a classifier on frozen CLIP features. CoOp [Zhou et al.,
2022b] learns continuous contextual text tokens beyond class names; CoCoOp [Zhou et al., 2022a]
conditions those tokens on image features to aid generalization. ProVP [Xu et al., 2025] extends
prompting to vision by inserting learnable visual tokens across transformer layers, regularized to
align with frozen features. Adapter-based strategies like CLIP-RFC (CLIPath) [Lai et al., 2023]
introduce residual connections on top of vision embeddings to stabilize adaptation. Multi-modal
approaches include MaPLe[Khattak et al., 2023], which jointly learns coupled prompts for shallow
layers of both text and vision encoders to improve alignment, while MMA [Yang et al., 2024], inserts
adapters into deeper layers of both modalities for finetuning. Finally, representation-regularized
approaches such as MMRL [Guo and Gu, 2025a] and its streamlined variant MMRL++ [Guo and
Gu, 2025b] optimize adapted features with distributional and consistency constraints to maintain
robustness and stability under limited data. However, systematic evaluations of PEFT for pathology
tasks are lacking [Mai et al., 2025], while other benchmark studies primarily focus on pathology
foundation models pretrained with large datasets and overlook PEFTs [Lee et al., 2025, Xiong et al.,
2025, Bareja et al., 2025]. This leaves an open question: can PEFT enable reliable and interpretable
adaptation of VLMs to pathology tasks without relying on expensive domain-specific pretraining?
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Figure 2: Inter-annotator agreement on tau pathology across stains and scanners. (A) PHF-1 stained
brain section scanned on an Aperio AT2 (0.23 µm/pixel). (B) AT8–stained brain section scanned on
a Zeiss Axio Scan.Z1 (0.11 µm/pixel). Top row (A, B): annotations from two independent human
raters — R1 shown with blue bounding boxes and R2 with orange bounding boxes. Bottom row:
consensus annotations — R1 ∩R2 (agreement; green) and R1 ∪R2 (inclusive set; red). Intersection
regions serve as high-confidence references, while union regions provide comprehensive targets for
evaluating model focus on neurofibrillary tangles and reliability in task alignment.

Table 1: Head-to-head winners across four VLMs (best method per VLM chosen by full-data AUC).
Task CLIP Best (Method, AUC) DFN Best (Method, AUC) QuiltNet Best (Method, AUC) CONCH Best (Method, AUC) Winner (∆AUC)

SICAPv2 (Gleason) MMRL (92.73) MaPLe (93.14) MaPLe (94.14) CLIPath (94.16) CONCH (CLIPath, 94.16; +0.02)
NFT Detection MMRL (98.89) MMRL (98.67) MMRL++ (98.97) MMRL (98.02) QuiltNet (MMRL++, 98.97; +0.08)
NCT Classification MMRL++ (99.45) CLIPath (99.54) MMRL++ (99.79) MMRL++ (99.67) QuiltNet (MMRL++, 99.79; +0.12)

2 Methods

PEFT Taxonomy: We structure PEFT methods along three axes: Axis A: Adapted Modality
(What). Text-only (learn prompts; freeze vision), image-only (vision-side updates; e.g., ProVP, linear
probe, vision-LoRA), and multimodal (joint text–image adaptation; e.g., MaPLe, MMRL); Axis B:
Parameterization Strategy (How) - Prompting (static/conditional), adapters (bottlenecks/residual
fusion), LoRA (low-rank updates), and mixed; Axis C: Adaptation Locus (Where). Input-level,all
layers, shallow (early layers), deep (late semantic layers), and embedding/head-level; Table A13 in
Appendix described the method divided by axes in more details.

Datasets: We use three datasets in our benchmark experiments. 1) NCT-CRC-HE Kather et al. [2019]
contains H&E stained 100K training and 7,180 test set patches labeled with 9 types of colorectal
cancer tissues. The distinctive textures make it a comparatively easier multi-class benchmark. 2)
SICAPv2 [Silva-Rodríguez et al., 2020] consists of H&E stained 18,783 images of fine-grained
prostate cancer Gleason grading dataset with subtle glandular and nuclear cues. Appendix Fig.
A4 shows the finer morphological cues making it a relatively difficult classification task. 3) NFT:
We curated a novel neuropathology dataset, consisting of ∼3,961 images of neurofibrillary tangles
(NFTs) from datasets by [Ghandian et al., 2024] and [Vizcarra et al., 2023]. The Emory dataset,
stained using PHF-1 antibody, was scanned at a resolution of 0.23/0.25 microns per pixel by Aperio
AT2 scanner; while the UC Davis dataset, stained using AT8 antibody, was scanned at 0.23/0.11
microns per pixel by Zeiss Axio Scan Z1 scanner. The original datasets were point annotated for NFT
and preNFTs, with image processing techniques used to obtain NFT object-localization bounding
boxes. From these, we sampled 2002 NFT-positive and 1959 control images. Each image was
re-annotated by at least two human annotators, using bounding boxes, to quantify inter-rater
variability, reflecting the intrinsic challenges of neuropathology where even specialists disagree
on subtle pre-NFT and NFT boundaries as illustrated in Fig. 2. This process produced a reliability-
and localization-aware NFT dataset, containing 1,002 images annotated with additional 1,208 NFTs
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Table 2: Classification accuracy and AUCROC comparing CLIP vs CONCH across SICAPv2, NFT,
and NCT. The table shows results grouped by adaptation type (text-only, vision-only, multimodal)
and reports tuned parameters, compute and memory footprints for CLIP.

Method Type Location Tuned params GFLOPs Peak VRAM Model SICAPv2 NFT NCT Average

Acc AUC Acc AUC Acc AUC Acc AUC

Text-only

CoOp Prompt input level 0.008M 124.0 0.26 CLIP 64.84 86.81 90.52 96.81 91.21 99.34 82.19 94.32
CONCH 59.80 82.74 90.52 96.81 88.97 98.58 79.76 92.71

CoCoOp Prompt input level 0.035M 124.0 0.26 CLIP 62.39 85.36 89.44 96.27 89.57 99.25 80.47 93.63
CONCH 63.24 85.02 90.92 96.48 93.05 99.49 82.40 93.66

Vision-only

CLIPath (RFC) Adapter embed. level 0.145M 47.0 0.58 CLIP 69.84 89.13 89.64 97.44 88.14 99.41 82.54 95.33
CONCH 79.68 94.16 92.45 97.79 93.29 99.62 88.47 97.19

LoRAImg LoRA all layers 0.490M 35.0 0.57 CLIP 61.07 84.83 82.76 90.77 92.09 99.54 78.64 91.71
CONCH 71.16 91.32 79.40 93.39 95.11 99.50 81.89 94.74

Linear Probe Adapter embed. level 0.002M 35.2 0.35 CLIP 63.76 86.35 90.93 96.54 88.69 98.89 81.13 93.93
CONCH 79.45 93.80 92.71 97.91 95.47 99.27 89.21 96.99

ProVP Prompt all layers 0.460M 88.9 0.91 CLIP 73.93 91.47 93.31 97.43 92.84 96.11 86.69 95.00
CONCH 64.37 84.51 93.37 97.68 94.43 98.01 84.06 93.40

Multi-modal

MaPLe Prompt shallow repr. 3.555M 124.7 0.27 CLIP 64.93 89.50 92.19 97.24 94.15 97.85 83.76 94.86
CONCH 66.87 90.23 92.19 97.24 93.53 99.60 84.20 95.69

MMA Adapter deep repr. 0.675M 70.5 0.58 CLIP 63.24 88.20 86.43 97.91 71.97 94.89 73.88 93.67
CONCH 43.70 71.71 49.97 65.46 23.23 68.02 38.97 68.40

PromptSRC Prompt all layers 0.046M 125.0 0.43 CLIP 73.89 92.27 74.55 94.20 92.24 99.13 80.23 95.20
CONCH 52.92 80.03 80.82 94.22 93.38 99.65 75.71 91.30

MMRL Mixed deep repr. 4.992M 83.9 0.87 CLIP 75.97 92.73 95.36 98.89 96.23 98.76 89.19 96.79
CONCH 70.88 87.06 94.34 98.02 95.50 99.17 86.91 94.75

MMRL++ Mixed deep repr. 0.813M 71.0 0.80 CLIP 76.53 92.28 95.31 98.86 94.11 99.45 88.65 96.86
CONCH 67.48 86.00 90.87 95.92 93.98 99.67 84.11 93.86

under strict consensus and 3,614 under union consensus, spanning multiple brain regions, centers,
scanners, and antibodies, suitable for evaluating alignment, calibration, and robustness of PEFT
methods. Please see more details in Appdendix B.1.

Evaluation: We consider two natural image VLMs (CLIP and DFN) and two PFMs (QuiltNet and
CONCH) in our benchmark experiments. 2 We selected a set of representative PEFT methods that
fine-tune parameters learned over text modality (CoOp, CoCoOp), vision modality (CLIP-RFC,
ProVP, Linear Probing) and multi modality (MaPLe, MMA, MMRL, MMRL++) settings. These
methods are further categorized based on their parameterization strategy type (e.g., linear probing vs.
prompt-based) and location (input level, shallow, vs. deep) in Table 1. Details about the experimental
setups and the models/methods are included in Appendix B.2 and C. We applied these PEFT methods
to each of the four VLMs/PFM models for the classification tasks using the three pathology datasets
described above. We evaluate the efficacy of PEFT techniques under two data availability regimes.
(1) Full data: We use PEFT to finetune the VLM/PFM on 100% of the training set of the pathology
target datasets. Performance metrics like accuracy, AUCROC, and efficiency metrics like GFLOPs
and VRAM utilization are recorded. For each task, we select the PEFT method scoring the highest
AUCROC score as the best/winning method for the VLM/PFM. (2) Data efficiency: We finetune
four models in a few shot training setup using PEFT. We randomly select 1, 8 and 16 labeled images
of each class from the target datasets and report average accuracies (repeated experiments with three
random seeds for each method.We visualize the explanation maps by the PEFT finetuned VLM for a
subset of true positive predicted samples from NFT detection task. Explanation maps are generated
by using gradcam over the last or second last attention layer of the vision transfomer block of the
VLM. Explanation maps generated by the zero shot VLM for the same samples are provided as a
baseline to illustrate the human-AI task alignment capabilities of the best PEFT methods.

3 Results
Fig. 1 shows CONCH achieves much higher zero shot classification accuracy for pathology datasets
than CIFAR10 because its pretraining corpora is more aligned with the pathology domain than natural
images. The reverse is true for CLIP and DFN. QuiltNet’s performance is subpar. Nevertheless, under
zero-shot setting, all four VLMs (including CLIP and DFN) achieve comparable best performances
with PEFT, as shown in Table 1 that lists the specific PEFT methods that achieve the best classification
accuracy when applied to the four VLMs of each of the three target pathology datasets and tasks. This
demonstrates that PEFT techniques can successfully bridge domain gap between pretrained
datasets (natural images) and target pathology domain. Due to space limitation, we will focus on
comparing CLIP and CONCH for subsequent analysis. Details in Appendix Table A2 and Table A3.

2Full code will be available at https://www.github.com/ucdrubinet/VLM_PEFT
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Figure 3: Avg. few-shot accuracies of PEFT methods (%) on 3 pathology tasks for CLIP & CONCH.

Figure 4: VLM-PEFT task alignment capability across stains : Each row shows an original input
tile (first column), AT8-stained in the first row and PHF-1–stained in the remaining rows, followed
by Grad-CAM heatmaps from four VLMs fine-tuned with their best performing PEFT method.
Consensus NFT regions (NFTs independently identified by both annotators) are outlined with green
bounding boxes, while singly annotated regions (NFTs marked by only one annotator) are shown
with purple bounding boxes in the first column. Heatmaps use a cold→hot colormap (blue = low, red
= high) to indicate the areas most relied upon for NFT prediction. In single-NFT tiles, CLIP+MMRL
and CONCH+MMRL concentrate activations within green boxes, whereas in multi-NFT tiles their
focus scatters or drifts toward purple regions, revealing reduced reliability under annotation ambiguity

(i) Full-data adaptation: For CLIP (a natural image VLM), along Axis A-Modality, multimodal
methods dominate, with MMRL/MMRL++ achieving the best performance across SICAPv2, NFT,
and NCT datasets, and MaPLe (94.15/97.85) beating all image- or text-only methods on NCT.
Comparing different parameterization strategies (Axis B)) for vision-only PEFTs reveal that
prompt based approach (ProVP 0.46M) and adapters (CLIPath 0.145M) are lightweight but effective,
compared to LoRA. For multi-modal adaptation, mixed modules (MMRL++ and MMRL) achieve
the strongest results over prompt-only or adapter-only methods (MaPLe, MMA, and PromptSRC).
When we compare the adaptation location (Axis C) of prompt-based approaches, deep/all-layer
parameter updates are decisively superior, especially on morphology-rich SICAPv2 where MMRL++
(76.53 Acc/92.28 AUC) outperform shallow, input, or embedding loci (MaPLe 64.93/89.50, CoCoOp
64.84/86.81, CLIPath 69.84/89.13).

For CONCH (pathology VLM), the advantage of multi-modality (Axis A) is less apparent: vision-
only methods performs best on SICAPv2 while multimodal wins on NFT tasks and NCT shows a tie.
Comparing different parameterization strategies (Axis B)) for vision-only PEFTs, adapters/linear
heads methods such as CLIPath and Linear Probe excel perform better than prompting or LoRA.
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Along Axis C, embedding/head-level linear adapters suffice for SICAPv2 and NCT, but deep updates
are needed for NFT (MMRL 94.34/98.02); shallow/input loci trail on morphology-heavy SICAPv2.
Overall, the trend highlights a key divergence in VLM and PFM: CLIP requires deep, mixed,
multimodal adaptation to counter domain shift, whereas CONCH, already domain-aligned, favors
lightweight image-only head/embedding updates on morphology-focused tasks, reserving deep
multimodal adaptation for NFT where cross-modal alignment matters most.

(ii) Few-shot settings: (Fig. 3) shows average few shot performance over 3 datasets. We observe a
domain-contingent pattern aligned with our taxonomy. CLIP (natural-image VLM): PromptSRC
(prompting, all-layers, multimodal) best exploits priors and wins with 1-shot learning. With 8–16
shots, deep/mixed multimodal modules (e.g., MMRL++) overtake, while shallow prompting (MaPLe)
and deep adapters (MMA) lag the linear adapter methods. The gains are largest from 1→8 and then
taper. CONCH (pathology VLM): across 1/8/16 shots, updating vision-only embeddings methods
such as Linear probe and ClIPath consistently lead in performance. The performance of multimodal
adaptation improves with 8-16 shots but saturates early and remains inferior to vision-only methods.
This validates our conjecture that pretrained PFM with knowledge of pathology morphology features
require only a few thousand tunable parameters. CLIP benefits from multimodal (Axis A), mixed
(Axis B) and deep (Axis C) parameter adaptation as available target labels increase. CONCH prefers
lightweight vision-only, embedding-level parameter tuning to achieve good performance with fewer
shots. Overall, pathology-pretrained encoders retain a clear edge in extreme low-label regimes
(Appendix Table A4), whereas with modest labels (16-shots), lightweight multimodal PEFT becomes
robust and scalable, delivering comparable performance by tuning only a small fraction of weights.

(iii) Task alignment: Fig. 4 illustrates these strengths and limitations by comparing model expla-
nations against pathologist annotations. In single-NFT tiles, CLIP+MMRL and CONCH+MMRL
generate focused high-activation maps that overlap with the consensus (green) boxes, showing that
the interpretation of the target task by both VLM/PFM aligns with human annotators in single-NFT
cases. In contrast, multi-NFT tiles reveal the weaknesses of the models: activations scatter across the
tissue or shift to siloed annotated regions (purple), underscoring their sensitivity to task understanding
in complex cases with annotation variability. CONCH+MMRL overlaps more often with at least one
annotation mark, suggesting that domain-specific priors help, but alignment remains inconsistent.

4 Conclusion

Our benchmarking experiments demonstrate that PEFT is a practical alternative to pretraining large
VLMs with target pathology data. With modest labeled data, mixed multimodal and deeper PEFTs
can close the domain/lexicon gap and enable generalist VLMs (e.g., CLIP) to match or exceed PFMs
(e.g.,CONCH). Under extreme few-shot conditions, CONCH retain an advantage, though multimodal
PEFTs close the performance gap with increasing number of target labels. Visualization reveals that
PEFT improves task alignment in simple, single-NFT cases (CLIP+MMRL, CONCH+MMRL) but
fails to consistently localize consensus regions in tiles with multiple or subtle aggregates, exposing
limitations under annotation variability. Our work provides a road map for future research at the
intersection of performance, data/model efficiency, and interpretability, helping to bridge the gap
between VLMs and practical deployment in real-world pathology settings.
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A Additional Results

Table A1: Zero-shot classification accuracy (%) of open-domain and pathology-specific VLMs on
SICAPv2, NFT, and NCT datasets, with averaged pathology accuracy.

Method SICAPv2 NFT NCT Avg. Pathology Acc.

Zero-shot Open VLMs
CLIP 31.57 64.71 23.21 39.83
DFN 40.19 67.56 34.82 47.52

Zero-shot Pathology VLMs
CONCH 40.81 67.56 61.49 56.62
QuiltNet 25.30 50.38 26.75 34.14
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Table A2: Classification accuracy and AUCROC of natural-image VLMs (CLIP, DFN) adapted
using PEFT methods across SICAPv2, NFT, and NCT. The table stratifies methods into text-only,
image-only, and multimodal groups. Results show that text-only methods improve accuracy but
often plateau in AUCROC, image-only methods like ProVP improve both, and multimodal adapters
(MMRL, MMRL++) achieve the highest balance of accuracy and AUCROC. This demonstrates that
accuracy and AUCROC can diverge across modalities, with AUCROC revealing robustness missed
by accuracy alone.

Method Type Location Model SICAPv2 NFT NCT Avg

Acc AUC Acc AUC Acc AUC Acc AUC

Text-only

CoOp Prompt input level CLIP 64.84 86.81 90.52 96.81 91.21 99.34 82.19 94.32
DFN 68.57 88.64 90.26 96.43 92.92 99.50 83.92 94.86

CoCoOp Prompt input level CLIP 62.39 85.36 89.44 96.27 89.57 99.25 80.47 93.63
DFN 64.80 75.80 90.46 96.71 92.26 99.37 82.51 90.63

Vision-only

CLIPath (RFC) Adapter embed. level CLIP 69.84 89.13 89.64 97.44 88.14 99.41 82.54 95.33
DFN 69.08 88.16 91.89 97.49 92.33 99.54 84.43 95.06

LoRAImg LoRA all layers CLIP 61.07 84.83 82.76 90.77 92.09 99.54 78.64 91.71
DFN 65.60 86.36 88.58 95.54 89.89 99.35 81.36 93.75

Linear Probe Adapter embed. level CLIP 63.76 86.35 90.93 96.54 88.69 98.89 81.13 93.93
DFN 67.58 87.51 91.59 97.12 87.70 98.58 82.29 94.40

ProVP Prompt all layers CLIP 73.93 91.47 93.31 97.43 92.84 96.11 86.69 95.00
DFN 74.36 92.00 93.52 97.33 92.68 99.52 86.85 96.28

Multi-modal

MaPLe Prompt shallow repr. CLIP 64.93 89.50 92.19 97.24 94.15 97.85 83.76 94.86
DFN 75.58 93.14 93.52 97.79 92.30 97.88 87.13 96.27

MMA Adapter deep repr. CLIP 63.24 88.20 86.43 97.91 71.97 94.89 73.88 93.67
DFN 69.50 90.26 91.89 97.62 51.61 94.79 71.00 94.22

PromptSRC Prompt all layers CLIP 73.89 92.27 74.55 94.20 92.24 99.13 80.23 95.20
DFN 72.05 91.73 82.86 95.27 91.42 98.95 82.11 95.32

MMRL Mixed deep repr. CLIP 75.97 92.73 95.36 98.89 96.23 98.76 89.19 96.79
DFN 76.01 92.70 94.80 98.67 96.11 99.51 88.97 96.96

MMRL++ Mixed deep repr. CLIP 76.53 92.28 95.31 98.86 94.11 99.45 88.65 96.86
DFN 76.86 92.96 95.16 98.46 95.72 99.40 89.25 96.94

Table A3: Classification Accuracy and AUCROC of various Path VLMs + PEFT techniques after
training on 100% of SICAPv2, NFT, and NCT datasets, with the adaptation location. An Avg column
reports the mean Acc/AUC over the three datasets.

Method Type Location Model SICAPv2 NFT NCT Avg

Acc AUC Acc AUC Acc AUC Acc AUC

Text-only

CoOp Prompt input level QuiltNet 74.79 92.23 91.74 96.79 93.15 98.25 86.56 95.76
CONCH 59.80 82.74 90.52 96.81 88.97 98.58 79.76 92.71

CoCoOp Prompt input level QuiltNet 74.93 92.31 90.62 95.83 90.96 99.28 85.50 95.81
CONCH 63.24 85.02 90.92 96.48 93.05 99.49 82.40 93.66

Vision-only

CLIPath (RFC) Adapter embed. level QuiltNet 72.62 90.91 92.29 97.53 71.21 95.48 78.71 94.64
CONCH 79.68 94.16 92.45 97.79 93.29 99.62 88.47 97.19

LoRAImg LoRA all layers QuiltNet 71.35 90.19 83.27 92.28 93.62 99.69 82.75 94.05
CONCH 71.16 91.32 79.40 93.39 95.11 99.50 81.89 94.74

Linear Probe Adapter embed. level QuiltNet 68.19 90.92 86.28 95.98 93.05 99.44 82.51 95.45
CONCH 79.45 93.80 92.71 97.91 95.47 99.27 89.21 96.99

ProVP Prompt all layers QuiltNet 74.00 91.42 94.79 97.53 92.47 99.38 87.09 96.11
CONCH 64.37 84.51 93.37 97.68 94.43 98.01 84.06 93.40

Multi-modal

MaPLe Prompt shallow repr. QuiltNet 78.27 94.14 94.59 98.11 93.70 99.76 88.85 97.34
CONCH 66.87 90.23 92.19 97.24 93.53 99.60 84.20 95.69

MMA Adapter deep repr. QuiltNet 72.43 90.15 89.49 97.06 60.77 94.63 74.23 93.95
CONCH 43.70 71.71 49.97 65.46 23.23 68.02 38.97 68.40

PromptSRC Prompt all layers QuiltNet 75.49 93.05 76.74 93.20 94.05 99.45 82.09 95.23
CONCH 52.92 80.03 80.82 94.22 93.38 99.65 75.71 91.30

MMRL Mixed deep repr. QuiltNet 77.95 90.15 95.26 98.80 94.80 99.76 89.34 96.24
CONCH 70.88 87.06 94.34 98.02 95.50 99.17 86.91 94.75

MMRL++ Mixed deep repr. QuiltNet 77.76 89.81 95.87 98.97 95.54 99.79 89.72 96.19
CONCH 67.48 86.00 90.87 95.92 93.98 99.67 84.11 93.86
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Figure A1: NCT dataset: few-shot patch classification. Comparison of PEFT strategies—applied
to open-domain CLIP-like VLMs and pathology-pretrained VLMs across K-shot regimes (K ∈
{1, 8, 16}). Curves summarize the accuracy metric.

A.1 Taxonomy-based guidance on results

A.1.1 Full-data Adaptation

Full-data Adaptation of Natural VLMs (CLIP). CLIP’s behavior follows the taxonomy closely.
When Axis A = text-only, Axis B = prompting (CoOp/CoCoOp), and Axis C = input-level, it saturates
the coarse NCT task (CoOp: NCT AUC 99.34, Acc 91.21; CoCoOp: AUC 99.25, Acc 89.57) but
underperforms on fine-grained tissue labeling (SICAPv2: CoOp Acc 64.84 / AUC 86.81; CoCoOp
Acc 62.39 / AUC 85.36). Moving to Axis A = image-only with Axis B = adapters/prompt-like
residuals at Axis C = embedding/head or all layers (e.g., CLIPath at embedding-level; ProVP across
all layers) yields steadier gains across datasets (CLIPath: SICAPv2 Acc 69.84 / AUC 89.13; ProVP:
NFT Acc 93.31 / AUC 97.43). Finally, compact Axis A = multimodal methods with Axis B = mixed
at Axis C = deep representations (MMRL/MMRL++) deliver the best overall balance (MMRL:
SICAPv2 Acc 75.97 / AUC 92.73; NFT Acc 95.36 / AUC 98.89; MMRL++: NCT AUC 99.45 with
0.813M tuned params), indicating that cross-modal, deep-locus adaptation is especially helpful for
rare-lesion and fine-grained settings. Appendix A2 details these trends (and DFN).

Full-data Adaptation of Pathology VLMs (CONCH). CONCH’s strongest gains appear under
Axis A = image-only with Axis B = adapters/linear readout at Axis C = embedding/head-level.
Vision-focused updates (CLIPath, Linear Probe) produce the largest improvements on fine-grained
SICAPv2 and remain strong on NFT/NCT (CLIPath: SICAPv2 Acc 79.68 / AUC 94.16; NFT Acc
92.45 / AUC 97.79; NCT AUC 99.62; Linear Probe: SICAPv2 Acc 79.45 / AUC 93.80; NFT Acc
92.71 / AUC 97.91; NCT Acc 95.47 / AUC 99.27). Text-only prompting (A=text-only, B=prompting,
C=input) still achieves NCT ceilings (CoOp NCT AUC 98.58; CoCoOp AUC 99.49) but is weak on
SICAPv2 (CoOp Acc 59.80 / AUC 82.74). Multimodal mixed strategies at deep layers (MMRL: NFT
Acc 94.34 / AUC 98.02) are competitive on NFT/NCT but show variable gains versus vision-only
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Figure A2: NFT dataset: few-shot patch classification. Comparison of PEFT strategies—applied
to open-domain CLIP-like VLMs and pathology-pretrained VLMs across K-shot regimes (K ∈
{1, 8, 16}). Curves summarize the accuracy metric.

adapters—consistent with CONCH’s pathology-specific pretraining favoring lightweight vision-side
adaptation. Appendix A3 expands on these patterns alongside QuiltNet.

Natural vs. Pathology VLMs. Task winners align more with taxonomy choices than pretraining
domain alone. For SICAPv2 (fine-grained), the winning recipe is Axis A = image-only + Axis
C = embedding/head (shallow) with Axis B = adapters/linear: CONCH+CLIPath (Acc 79.68 /
AUC 94.16) and CONCH+Linear Probe (Acc 79.45 / AUC 93.80) outperform CLIP’s best text-only
prompts. For NFT, higher-capacity Axis A = multimodal with Axis B = mixed at Axis C = deep repr.
slightly favors CLIP at the top end (CLIP+MMRL: Acc 95.36 / AUC 98.89; CLIP+MMRL++: Acc
95.31 / AUC 98.86), while CONCH remains competitive under vision-centered adapters (CLIPath:
Acc 92.45 / AUC 97.79). For NCT (coarse), Axis A = text-only, Axis B = prompting, Axis C = input
attains ∼99% AUC for both families (CLIP CoOp/CoCoOp: 99.34/99.25; CONCH CoOp/CoCoOp:
98.58/99.49), so the edge depends on minor PEFT choices and whether one optimizes Acc vs. AUC.

B Experiment Setup

B.1 Datasets

In our benchmark experiments, we evaluate three histopathology datasets spanning colorectal cancer,
prostate cancer, and neuropathology.

NCT-CRC-HE is a large-scale colorectal cancer dataset derived from hematoxylin & eosin
(H&E)–stained whole slide images collected from the National Center for Tumor Diseases (NCT,
Heidelberg) and the University Medical Center Mannheim (UMM), Germany Kather et al. [2019].
It contains 100,000 training and 7,180 independent test patches, the latter commonly referred to as
CRC-VAL-HE-7K. Each patch is 224× 224 pixels at 0.5 µm per pixel (∼20× magnification), and all
images were color normalized to mitigate staining variability Kather et al. [2019]. Patches are anno-
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Figure A3: Sicapv2 dataset: few-shot patch classification. Comparison of PEFT strategies—applied
to open-domain CLIP-like VLMs and pathology-pretrained VLMs across K-shot regimes (K ∈
{1, 8, 16}). Curves summarize the accuracy metric.

tated across nine histologic classes, including normal mucosa, tumor epithelium, cancer-associated
stroma, smooth muscle, lymphocytes, debris, mucus, adipose tissue, and background. Owing to its
size and standardized train/test split, it has become a widely used benchmark for tissue classification;
however, the dataset is comparatively easier, as models can sometimes exploit low-level color or
compression artifacts rather than robust morphological cues Ignatov and Malivenko [2024].

SICAPv2 is a prostate cancer dataset designed for Gleason grading and fine-grained morphological
analysis. It consists of 18,783 image patches of size 512× 512 pixels at 10× magnification, sampled
from 155 annotated whole slide images of biopsies and prostatectomy specimens Silva-Rodríguez et al.
[2020]. Unlike texture-driven datasets such as NCT-CRC-HE, prostate grading requires recognition
of subtle glandular architecture and nuclear morphology, which is intrinsically more challenging.

NFT is a dataset designed for detecting neurofibrillary tangles, a hallmark for Alzheimer’s disease.
We sampled 3961 images randomly from these two datasets. To ensure reliability, we re-annotated the
NFT dataset with two independent annotators. The test set of the dataset contained 1,961 images, each
with a single NFT annotation from a previous annotator. Our QC process revealed that many images
contained additional NFTs and that annotators frequently disagreed on NFT boundaries. Annotator
group G1 marked 2,571 NFT boxes (mean ∼1.10 per image, max 8), while Annotator group G2
marked 2,320 NFT boxes (mean ∼1.04 per image, max 9). From these, an intersection consensus
(NFTs agreed upon by both annotators) produced 1,208 NFTs across 1,173 images (mean ∼1.03
per image, max 5). In contrast, a union consensus (NFTs marked by either annotator) expanded to
3,614 NFTs across 2,340 images (mean ∼1.54 per image, max 13). This QC process transformed the
original single-annotation dataset into a reliability- and localization-aware NFT resource, explicitly
capturing inter-rater variability and the true multiplicity of tangles per image, as illustrated in
Figure 2. Together, this yields a reliability- and localization-aware NFT corpus with explicit rater
variability, heterogeneous antibodies (PHF-1, pan-tau, AT8, CP13), multiple centers and scanners
(Aperio AT2, ZEISS AxioScan), sub-micron pixel resolutions (0.11, 0.23–0.25 µm/pixel), and varied
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Table A4: Few-shot classification accuracy (%) of PEFT techniques on SICAPv2, NFT, and NCT
grouped by method with subrows for the underlying VLM (CLIP, DFN, QuiltNet, CONCH). Each
dataset shows 1-shot (1S), 8-shot (8S), and 16-shot (16S) accuracy; Avg columns are per-shot means
across datasets (SICAPv2, NFT, NCT). We dont showcase results from LoRAImg because of failures
in full data adaptation

Method Adaptation Type Adaptation Location Model SICAPv2 NFT NCT Avg

1S 8S 16S 1S 8S 16S 1S 8S 16S 1S 8S 16S

Adapted modality: Text
CoOp Prompt Input-level CLIP 34.69 36.54 36.77 48.02 63.06 63.84 55.13 75.38 73.67 45.95 58.33 58.09

DFN 27.95 36.00 45.00 56.57 60.65 61.02 53.03 72.66 77.44 45.85 56.44 61.15
QuiltNet 41.67 57.01 58.00 59.60 64.13 63.76 67.49 81.97 85.35 56.25 67.70 69.04
CONCH 19.54 27.62 26.47 62.91 65.54 66.12 49.04 67.95 73.92 43.83 53.70 55.50

CoCoOp Prompt Input-level CLIP 25.04 38.28 34.45 42.34 63.75 63.50 36.79 55.04 64.94 34.72 52.36 54.30
DFN 28.84 24.05 36.04 70.41 62.23 62.22 50.15 68.65 72.61 49.80 51.64 56.96
QuiltNet 30.99 54.54 52.94 64.06 63.98 65.00 60.59 72.25 81.46 51.88 63.59 66.47
CONCH 27.41 35.42 32.96 66.26 62.65 65.36 32.54 52.99 61.17 42.07 50.35 53.16

Adapted modality: Image
Linear Probe Adapter Embed. / head-level CLIP 40.18 19.81 39.51 33.72 63.76 64.32 32.72 68.69 72.08 35.54 50.75 58.64

DFN 24.11 34.78 45.99 49.50 59.97 65.58 43.11 65.17 74.74 38.91 53.31 62.10
QuiltNet 29.26 52.32 47.06 44.74 66.89 68.01 40.66 81.43 84.26 38.22 66.88 66.44
CONCH 39.68 61.77 64.70 69.61 72.26 71.19 76.34 90.97 93.72 61.88 75.00 76.54

CLIPath (RFC) Adapter Embed. / head-level CLIP 25.04 26.25 28.13 36.05 64.52 63.86 34.10 39.46 59.10 31.73 43.41 50.36
DFN 21.85 35.60 39.92 49.45 62.96 63.35 26.40 42.63 63.72 32.57 47.06 55.66
QuiltNet 35.74 43.76 41.30 46.46 63.32 65.12 28.71 36.87 70.99 36.97 47.98 59.14
CONCH 35.34 61.92 70.14 62.06 70.20 67.70 52.11 88.28 90.57 49.84 73.47 76.14

ProVP Prompt All layers CLIP 24.03 32.90 34.50 46.25 64.51 64.29 56.47 76.11 78.56 42.25 57.84 59.12
DFN 27.43 29.89 36.58 49.26 62.62 63.54 57.21 79.97 87.29 44.63 57.49 62.47
QuiltNet 38.00 47.73 55.20 43.48 64.34 65.07 64.57 83.70 91.88 48.68 65.26 70.72
CONCH 31.97 41.86 40.07 75.71 62.64 65.10 38.78 49.60 50.21 48.82 51.37 51.79

Adapted modality: Multi-modal
PromptSRC Prompt all-layers CLIP 38.06 45.92 53.76 49.23 58.67 63.42 56.17 69.44 74.12 47.82 58.01 63.77

DFN 35.88 44.62 51.73 46.27 57.16 63.04 54.32 68.28 74.95 45.49 56.69 63.24
QuiltNet 39.82 47.16 53.48 48.54 57.29 62.73 55.12 70.65 76.31 47.83 58.37 64.17
CONCH 33.11 41.27 47.59 42.83 55.46 61.37 49.05 61.92 70.36 41.66 52.88 59.77

MaPLe Prompt Shallow repr CLIP 29.74 39.85 47.63 35.88 47.92 56.34 39.07 55.75 65.65 34.90 47.84 56.54
DFN 13.38 21.60 23.58 27.44 36.79 48.61 48.02 58.54 69.27 29.61 38.98 47.15
QuiltNet 41.95 30.79 49.08 44.72 55.86 62.98 49.95 75.56 78.70 45.54 54.07 63.59
CONCH 28.28 34.13 31.79 31.04 41.85 52.67 18.96 44.52 54.46 26.09 40.17 46.31

MMA Adapter Deep repr CLIP 22.54 33.27 41.92 27.48 41.85 52.06 23.93 32.87 47.27 24.65 36.00 47.08
DFN 38.80 38.80 37.80 25.46 34.64 42.73 30.53 34.23 39.43 31.60 35.89 39.99
QuiltNet 23.80 23.87 44.53 32.26 44.37 55.01 32.90 52.63 76.43 29.65 40.29 58.66
CONCH 25.74 33.69 41.12 36.55 44.80 55.03 28.64 36.47 47.82 30.31 38.32 47.99

MMRL Adapter Deep (late semantic) CLIP 31.59 43.97 53.22 34.77 57.64 62.88 56.42 71.55 82.49 40.93 57.72 66.20
DFN 30.92 43.92 50.38 44.33 53.47 59.62 58.24 82.22 87.47 44.50 59.87 65.82
QuiltNet 43.89 55.42 61.78 52.77 63.92 70.46 73.68 89.42 91.64 56.78 69.59 74.63
CONCH 31.05 35.25 42.03 43.67 54.88 61.91 57.60 76.78 84.82 44.11 55.64 62.92

MMRL++ Adapter Deep repr CLIP 28.95 45.59 49.31 33.07 63.89 64.72 62.73 84.25 88.44 41.58 64.58 67.49
DFN 26.46 45.95 51.57 47.75 61.95 62.95 60.96 82.38 87.10 45.06 63.43 67.21
QuiltNet 44.85 61.26 58.13 50.44 60.37 67.21 72.10 88.06 90.49 55.80 69.90 71.94
CONCH 29.03 31.26 33.87 41.77 51.32 58.84 52.64 57.07 63.52 41.15 46.55 52.08

case demographics — key for evaluating detection, calibration, and cross-site generalization in
NFT-pathology modeling.

B.2 Experimental Evaluation

B.2.1 Zero Shot

Prompts such as, "a pathology tissue showing", "a photo of" and "a histopathological image of" is
appended before the class labels of the respective pathology and natural image datasets, as a prompt
tuning method. No training data is provided, and the prompt tuning experiment reporting highest
accuracy is recorded for the VLM in Table A1. Figure 1 also illustrates performance on CIFAR-100
dataset to show affinity to natural image vs pathology domain respectively.

B.2.2 PEFT

We implemented a diverse set of parameter-efficient fine-tuning (PEFT) methods spanning prompt-
based, adapter-based, and low-rank approaches in order to evaluate their adaptability across both
vision–language models (CLIP, DFN) and pathology foundation models (QuiltNet, CONCH). All
experiments were initialized from official pretrained checkpoints, with all parameters frozen except
for the lightweight modules introduced by each PEFT method. To ensure rigor and fairness, we
closely followed the training protocols recommended in the original works, while conducting narrow
hyperparameter tuning grids to address instability or outlier behaviors.

Text-modality adaptation. CoOp was trained for 50 epochs with 16 learnable tokens (fp16),
initialized with either natural language prompts (“a pathology tissue showing,” “a photo of,” “a
histopathological image of”) or pure tokens. CoCoOp used four tokens initialized with three prompts
and converged within 10 epochs.
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Image-modality adaptation. Linear probing trained only a shallow classifier. CLIP-RFC fine-tuned
a residual feature connection on ViT-B/16 for 10 epochs with cross-entropy loss, AdamW, learning
rate 1 × 10−4, and α = 0.8. ProVP trained 16 learnable prompts on CLIP ViT-B/16 with SGD,
cosine LR scheduler, batch size 64, weight decay 0.0005, and max 50 epochs.

Multi-modality adaptation. PromptSRC added both text and vision prompts (4 tokens each, depth
9), with losses weighted following the original paper. MaPLe, MMA, MMRL, and MMRL++ jointly
tuned text and vision modules with default bottleneck or prompt dimensions, applying light tuning for
CONCH. LoRA inserted rank-16, α = 32 low-rank adapters into ViT-B/16 attention layers, trained
for 10 epochs with batch size 16, learning rate 1× 10−4, and weight decay 0.005.

All experiments were capped at 10–50 epochs or early-stopped by non-decreasing training loss with
a patience of 5 epochs. Few-shot experiments used 1, 8, and 16 samples per class across three seeds;
no extra labeled data was provided. FLOPs, trainable parameters, and VRAM usage were recorded
on Tesla T4 GPUs (16 GB). Most runs were performed on Tesla T4 GPUs (16 GB), with large-scale
LoRA and adapters configuration design also tested on NVIDIA L40S GPUs (48 GB).

Table A5: Classification accuracy and AUCROC for CLIP across SICAPv2, NFT, and NCT. Results
are grouped by adaptation type.

Method Type Location Model SICAPv2 NFT NCT Average

Acc AUC Acc AUC Acc AUC Acc AUC

Text-only
CoOp Prompt input level CLIP 64.84 86.81 90.52 96.81 91.21 99.34 82.19 94.32
CoCoOp Prompt input level CLIP 62.39 85.36 89.44 96.27 89.57 99.25 80.47 93.63

Vision-only
CLIPath (RFC) Adapter embed. level CLIP 69.84 89.13 89.64 97.44 88.14 99.41 82.54 95.33
LoRAImg LoRA all layers CLIP 61.07 84.83 82.76 90.77 92.09 99.54 78.64 91.71
Linear Probe Adapter embed. level CLIP 63.76 86.35 90.93 96.54 88.69 98.89 81.13 93.93
ProVP Prompt all layers CLIP 73.93 91.47 93.31 97.43 92.84 96.11 86.69 95.00

Multi-modal
MaPLe Prompt shallow repr. CLIP 64.93 89.50 92.19 97.24 94.15 97.85 83.76 94.86
MMA Adapter deep repr. CLIP 63.24 88.20 86.43 97.91 71.97 94.89 73.88 93.67
PromptSRC Prompt all layers CLIP 73.89 92.27 74.55 94.20 92.24 99.13 80.23 95.20
MMRL Mixed deep repr. CLIP 75.97 92.73 95.36 98.89 96.23 98.76 89.19 96.79
MMRL++ Mixed deep repr. CLIP 76.53 92.28 95.31 98.86 94.11 99.45 88.65 96.86

Table A6: Few-shot classification accuracy (%) of PEFT techniques on SICAPv2, NFT, and NCT
using CLIP. Each dataset shows 1-shot (1S), 8-shot (8S), and 16-shot (16S) accuracy; Avg columns
are per-shot means across datasets.

Method Adaptation Type Adaptation Location SICAPv2 NFT NCT Avg

1S 8S 16S 1S 8S 16S 1S 8S 16S 1S 8S 16S

Adapted modality: Text
CoOp Prompt Input-level 34.69 36.54 36.77 48.02 63.06 63.84 55.13 75.38 73.67 45.95 58.33 58.09
CoCoOp Prompt Input-level 25.04 38.28 34.45 42.34 63.75 63.50 36.79 55.04 64.94 34.72 52.36 54.30

Adapted modality: Image
Linear Probe Adapter Embed./head-level 40.18 19.81 39.51 33.72 63.76 64.32 32.72 68.69 72.08 35.54 50.75 58.64
CLIPath (RFC) Adapter Embed./head-level 25.04 26.25 28.13 36.05 64.52 63.86 34.10 39.46 59.10 31.73 43.41 50.36
ProVP Prompt All layers 24.03 32.90 34.50 46.25 64.51 64.29 56.47 76.11 78.56 42.25 57.84 59.12

Adapted modality: Multi-modal
PromptSRC Prompt All layers 38.06 45.92 53.76 49.23 58.67 63.42 56.17 69.44 74.12 47.82 58.01 63.77
MaPLe Prompt Shallow repr 29.74 39.85 47.63 35.88 47.92 56.34 39.07 55.75 65.65 34.90 47.84 56.54
MMA Adapter Deep repr 22.54 33.27 41.92 27.48 41.85 52.06 23.93 32.87 47.27 24.65 36.00 47.08
MMRL Adapter Deep (late sem.) 31.59 43.97 53.22 34.77 57.64 62.88 56.42 71.55 82.49 40.93 57.72 66.20
MMRL++ Adapter Deep repr 28.95 45.59 49.31 33.07 63.89 64.72 62.73 84.25 88.44 41.58 64.58 67.49

C Related Background Literature

C.1 Vision–Language Models (VLMs)

Contrastive pretraining. CLIP-style VLMs comprise an image encoder fθ : RH×W×3 → Rd,
and a text encoder gϕ : T →Rd, trained on paired image–text data {(xi, ti)}Bi=1, with a symmetric
InfoNCE objective and temperature τ . With L2-normalized embeddings and dot-product similarity,
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Table A7: Classification accuracy and AUCROC for CONCH across SICAPv2, NFT, and NCT.
Results are grouped by adaptation type.

Method Type Location Model SICAPv2 NFT NCT Average

Acc AUC Acc AUC Acc AUC Acc AUC

Text-only
CoOp Prompt input level CONCH 59.80 82.74 90.52 96.81 88.97 98.58 79.76 92.71
CoCoOp Prompt input level CONCH 63.24 85.02 90.92 96.48 93.05 99.49 82.40 93.66

Vision-only
CLIPath (RFC) Adapter embed. level CONCH 79.68 94.16 92.45 97.79 93.29 99.62 88.47 97.19
LoRAImg LoRA all layers CONCH 71.16 91.32 79.40 93.39 95.11 99.50 81.89 94.74
Linear Probe Adapter embed. level CONCH 79.45 93.80 92.71 97.91 95.47 99.27 89.21 96.99
ProVP Prompt all layers CONCH 64.37 84.51 93.37 97.68 94.43 98.01 84.06 93.40

Multi-modal
MaPLe Prompt shallow repr. CONCH 66.87 90.23 92.19 97.24 93.53 99.60 84.20 95.69
MMA Adapter deep repr. CONCH 43.70 71.71 49.97 65.46 23.23 68.02 38.97 68.40
PromptSRC Prompt all layers CONCH 52.92 80.03 80.82 94.22 93.38 99.65 75.71 91.30
MMRL Mixed deep repr. CONCH 70.88 87.06 94.34 98.02 95.50 99.17 86.91 94.75
MMRL++ Mixed deep repr. CONCH 67.48 86.00 90.87 95.92 93.98 99.67 84.11 93.86

Table A8: Few-shot classification accuracy (%) of PEFT techniques on SICAPv2, NFT, and NCT
using CONCH. Each dataset shows 1-shot (1S), 8-shot (8S), and 16-shot (16S) accuracy; Avg
columns are per-shot means across datasets.

Method Adaptation Type Adaptation Location SICAPv2 NFT NCT Avg

1S 8S 16S 1S 8S 16S 1S 8S 16S 1S 8S 16S

Adapted modality: Text
CoOp Prompt Input-level 19.54 27.62 26.47 62.91 65.54 66.12 49.04 67.95 73.92 43.83 53.70 55.50
CoCoOp Prompt Input-level 27.41 35.42 32.96 66.26 62.65 65.36 32.54 52.99 61.17 42.07 50.35 53.16

Adapted modality: Image
Linear Probe Adapter Embed./head-level 39.68 61.77 64.70 69.61 72.26 71.19 76.34 90.97 93.72 61.88 75.00 76.54
CLIPath (RFC) Adapter Embed./head-level 35.34 61.92 70.14 62.06 70.20 67.70 52.11 88.28 90.57 49.84 73.47 76.14
ProVP Prompt All layers 31.97 41.86 40.07 75.71 62.64 65.10 38.78 49.60 50.21 48.82 51.37 51.79

Adapted modality: Multi-modal
PromptSRC Prompt All layers 33.11 41.27 47.59 42.83 55.46 61.37 49.05 61.92 70.36 41.66 52.88 59.77
MaPLe Prompt Shallow repr 28.28 34.13 31.79 31.04 41.85 52.67 18.96 44.52 54.46 26.09 40.17 46.31
MMA Adapter Deep repr 25.74 33.69 41.12 36.55 44.80 55.03 28.64 36.47 47.82 30.31 38.32 47.99
MMRL Adapter Deep (late sem.) 31.05 35.25 42.03 43.67 54.88 61.91 57.60 76.78 84.82 44.11 55.64 62.92
MMRL++ Adapter Deep repr 29.03 31.26 33.87 41.77 51.32 58.84 52.64 57.07 63.52 41.15 46.55 52.08

Table A9: Classification accuracy and AUCROC of DFN adapted using PEFT methods across
SICAPv2, NFT, and NCT. Methods are stratified into text-only, image-only, and multimodal groups.

Method Type Location Model SICAPv2 NFT NCT Avg

Acc AUC Acc AUC Acc AUC Acc AUC

Text-only
CoOp Prompt input level DFN 68.57 88.64 90.26 96.43 92.92 99.50 83.92 94.86
CoCoOp Prompt input level DFN 64.80 75.80 90.46 96.71 92.26 99.37 82.51 90.63

Vision-only
CLIPath (RFC) Adapter embed. level DFN 69.08 88.16 91.89 97.49 92.33 99.54 84.43 95.06
LoRAImg LoRA all layers DFN 65.60 86.36 88.58 95.54 89.89 99.35 81.36 93.75
Linear Probe Adapter embed. level DFN 67.58 87.51 91.59 97.12 87.70 98.58 82.29 94.40
ProVP Prompt all layers DFN 74.36 92.00 93.52 97.33 92.68 99.52 86.85 96.28

Multi-modal
MaPLe Prompt shallow repr. DFN 75.58 93.14 93.52 97.79 92.30 97.88 87.13 96.27
MMA Adapter deep repr. DFN 69.50 90.26 91.89 97.62 51.61 94.79 71.00 94.22
PromptSRC Prompt all layers DFN 72.05 91.73 82.86 95.27 91.42 98.95 82.11 95.32
MMRL Mixed deep repr. DFN 76.01 92.70 94.80 98.67 96.11 99.51 88.97 96.96
MMRL++ Mixed deep repr. DFN 76.86 92.96 95.16 98.46 95.72 99.40 89.25 96.94
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Table A10: Few-shot classification accuracy (%) of PEFT techniques on SICAPv2, NFT, and NCT
using DFN. Each dataset shows 1-shot (1S), 8-shot (8S), and 16-shot (16S) accuracy; Avg columns
are per-shot means across datasets.

Method Adaptation Type Adaptation Location SICAPv2 NFT NCT Avg

1S 8S 16S 1S 8S 16S 1S 8S 16S 1S 8S 16S

Adapted modality: Text
CoOp Prompt Input-level 27.95 36.00 45.00 56.57 60.65 61.02 53.03 72.66 77.44 45.85 56.44 61.15
CoCoOp Prompt Input-level 28.84 24.05 36.04 70.41 62.23 62.22 50.15 68.65 72.61 49.80 51.64 56.96

Adapted modality: Image
Linear Probe Adapter Embed./head-level 24.11 34.78 45.99 49.50 59.97 65.58 43.11 65.17 74.74 38.91 53.31 62.10
CLIPath (RFC) Adapter Embed./head-level 21.85 35.60 39.92 49.45 62.96 63.35 26.40 42.63 63.72 32.57 47.06 55.66
ProVP Prompt All layers 27.43 29.89 36.58 49.26 62.62 63.54 57.21 79.97 87.29 44.63 57.49 62.47

Adapted modality: Multi-modal
PromptSRC Prompt All layers 35.88 44.62 51.73 46.27 57.16 63.04 54.32 68.28 74.95 45.49 56.69 63.24
MaPLe Prompt Shallow repr 13.38 21.60 23.58 27.44 36.79 48.61 48.02 58.54 69.27 29.61 38.98 47.15
MMA Adapter Deep repr 38.80 38.80 37.80 25.46 34.64 42.73 30.53 34.23 39.43 31.60 35.89 39.99
MMRL Adapter Deep (late sem.) 30.92 43.92 50.38 44.33 53.47 59.62 58.24 82.22 87.47 44.50 59.87 65.82
MMRL++ Adapter Deep repr 26.46 45.95 51.57 47.75 61.95 62.95 60.96 82.38 87.10 45.06 63.43 67.21

Table A11: Classification Accuracy and AUCROC of QuiltNet + PEFT techniques after training on
100% of SICAPv2, NFT, and NCT datasets, with the adaptation location. An Avg column reports the
mean Acc/AUC over the three datasets.

Method Type Location Model SICAPv2 NFT NCT Avg

Acc AUC Acc AUC Acc AUC Acc AUC

Text-only
CoOp Prompt input level QuiltNet 74.79 92.23 91.74 96.79 93.15 98.25 86.56 95.76
CoCoOp Prompt input level QuiltNet 74.93 92.31 90.62 95.83 90.96 99.28 85.50 95.81

Vision-only
CLIPath (RFC) Adapter embed. level QuiltNet 72.62 90.91 92.29 97.53 71.21 95.48 78.71 94.64
LoRAImg LoRA all layers QuiltNet 71.35 90.19 83.27 92.28 93.62 99.69 82.75 94.05
Linear Probe Adapter embed. level QuiltNet 68.19 90.92 86.28 95.98 93.05 99.44 82.51 95.45
ProVP Prompt all layers QuiltNet 74.00 91.42 94.79 97.53 92.47 99.38 87.09 96.11

Multi-modal
MaPLe Prompt shallow repr. QuiltNet 78.27 94.14 94.59 98.11 93.70 99.76 88.85 97.34
MMA Adapter deep repr. QuiltNet 72.43 90.15 89.49 97.06 60.77 94.63 74.23 93.95
PromptSRC Prompt all layers QuiltNet 75.49 93.05 76.74 93.20 94.05 99.45 82.09 95.23
MMRL Mixed deep repr. QuiltNet 77.95 90.15 95.26 98.80 94.80 99.76 89.34 96.24
MMRL++ Mixed deep repr. QuiltNet 77.76 89.81 95.87 98.97 95.54 99.79 89.72 96.19

Table A12: Few-shot classification accuracy (%) of PEFT techniques on SICAPv2, NFT, and NCT
using QuiltNet. Each dataset shows 1-shot (1S), 8-shot (8S), and 16-shot (16S) accuracy; Avg
columns are per-shot means across datasets.

Method Adaptation Type Adaptation Location SICAPv2 NFT NCT Avg

1S 8S 16S 1S 8S 16S 1S 8S 16S 1S 8S 16S

Adapted modality: Text
CoOp Prompt Input-level 41.67 57.01 58.00 59.60 64.13 63.76 67.49 81.97 85.35 56.25 67.70 69.04
CoCoOp Prompt Input-level 30.99 54.54 52.94 64.06 63.98 65.00 60.59 72.25 81.46 51.88 63.59 66.47

Adapted modality: Image
Linear Probe Adapter Embed./head-level 29.26 52.32 47.06 44.74 66.89 68.01 40.66 81.43 84.26 38.22 66.88 66.44
CLIPath (RFC) Adapter Embed./head-level 35.74 43.76 41.30 46.46 63.32 65.12 28.71 36.87 70.99 36.97 47.98 59.14
ProVP Prompt All layers 38.00 47.73 55.20 43.48 64.34 65.07 64.57 83.70 91.88 48.68 65.26 70.72

Adapted modality: Multi-modal
PromptSRC Prompt All layers 39.82 47.16 53.48 48.54 57.29 62.73 55.12 70.65 76.31 47.83 58.37 64.17
MaPLe Prompt Shallow repr 41.95 30.79 49.08 44.72 55.86 62.98 49.95 75.56 78.70 45.54 54.07 63.59
MMA Adapter Deep repr 23.80 23.87 44.53 32.26 44.37 55.01 32.90 52.63 76.43 29.65 40.29 58.66
MMRL Adapter Deep (late sem.) 43.89 55.42 61.78 52.77 63.92 70.46 73.68 89.42 91.64 56.78 69.59 74.63
MMRL++ Adapter Deep repr 44.85 61.26 58.13 50.44 60.37 67.21 72.10 88.06 90.49 55.80 69.90 71.94
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Figure A4: Randomly sampled images from three representative tasks and datasets.
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Zero-shot classification forms class prototypes zc = gϕ(tc) from prompts tc and predicts ŷ =
argmaxc⟨fθ(x), zc⟩.

From web-scale pretraining to pathology. Generic CLIP models learn from noisy web corpora.
The domain gap to histopathology stems from ultra-high resolution, stain and scanner variability,
texture-dominant cues, and specialized terminology Lai et al. [2024]. CLIP (and stronger Open-
CLIP/DFN variants) provides the open-domain baseline; Domain-adapted VLMs aim to reduce
this gap via curated image–text corpora: QuiltNet leverages the large curated Quilt-1M pathology
corpus with template captions Ikezogwo et al. [2023]; CONCH mines pathology-specific captions
for contrastive pretraining Lu et al. [2024]; and PLIP/BioMedCLIP are broader biomedical-tilted
VLMs Huang et al. [2023], Zhang et al. [2023].

Vision-only pathology foundational models : Although there have been multiple foundational
vision-only pathology models such as UNI [?] and Virchow [?]. They are beyond the scope for this
work as we focus only on VLMs.

C.2 Parameter-Efficient Fine-Tuning (PEFT)

Having already mentioned the PEFT strategies by their modalities (Axis A) in 2, we now classify
PEFT strategies by their parameterization strategy: (i) prompt learning, (ii) adapter modules, (iii)
low-rank updates (LoRA), and (iv) mixed methods. Each strategy modifies a frozen VLM differently,
trading off efficiency, expressivity, and alignment.

C.2.1 Prompt-based PEFT

Prompt-based methods learn additional tokens that steer the frozen text or vision encoder. The
prototypical formulation comes from CoOp. Let p ∈ Rm×d denote m learnable context vectors
prepended to the textual embedding of class y. The logit for class c is:

zc(x) = ⟨fθ(x), gϕ([p; “class c”])⟩, (2)

and the cross-entropy loss is:

LCoOp(x, y) = − log
exp(zy(x)/τ)∑
c exp(zc(x)/τ)

. (3)
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Table A13: Taxonomy placement of PEFT methods arranged by Axis A (What) and ordered within
each block by Axis B (How) and Axis C (Where).

Method Axis A: Modality (What) Axis B: Parameterization (How) Axis C: Locus (Where)

Text-only
CoOp Text-only Prompting Input-level
CoCoOp Text-only Prompting Input-level

Image-only
ProVP Image-only Prompting All layers
CLIPath (RFC) Image-only Adapters Embed. / head-level
Linear Probe Image-only Adapters Embed. / head-level
LoRAImg Image-only LoRA Deep repr

Multimodal
MaPLe Multimodal Prompting Shallow repr
PromptSRC Multimodal Prompting All layers
MMA Multimodal Adapters Deep repr
MMRL Multimodal Mixed Deep repr
MMRL++ Multimodal Mixed Deep repr

CoCoOp generalizes this by generating p(x) conditioned on image features, improving base-to-novel
generalization. ProVP extends prompting into the vision encoder by inserting learnable tokens
progressively across transformer blocks. PromptSRC introduces self-regularization to stabilize
learned prompts under scarce labels for both text and vision encoders. MaPLe couples image and text
prompts hierarchically to improve multimodal alignment.

C.2.2 Adapter-based PEFT

Adapter methods insert light trainable layers into frozen encoders. A general formulation is given
by CLIPath (RFC) [Lai et al., 2024], which fuses frozen CLIP features fθ(x) with residual adapters
rψ(x):

f∗ = αL(f) + (1− α) f, (4)

We then replace f with f∗ in the CLIP contrastive objective (Eq. 1) and optimize the trainable layers
using the symmetric InfoNCE loss. This residual fusion connection (RFC) stabilizes learning in
pathology with limited data.

CLIP-Adapter [Gao et al., 2024] implements a shallow MLP on visual features, while Tip-
Adapter [Zhang et al., 2022] builds from cached training features for training-free adaptation.
MMA [Yang et al., 2024] extends adapters to both image and text encoders, jointly fine-tuning
lightweight modules across modalities.

C.2.3 Low-Rank Update (LoRA)

LoRA [?] injects trainable low-rank decompositions into weight matrices. Given a frozen weight
W ∈ Rd×k, LoRA reparameterizes it as:

W ′ = W + ∆W, ∆W =
αlora

r
AB, A∈Rd×r, B∈Rr×k, r ≪ min(d, k), (5)

while r ≪ min(d, k). Only A and B are trainable; αlora is a scaling hyperparameter. This significantly
reduces parameters, and has been applied to both text and vision transformer blocks in VLMs. Variants
include LoRA-Text, LoRA-Image, and multimodal LoRA, depending on placement.

C.2.4 Mixed PEFT

Mixed methods like Representation-learning methods add regularizers that directly constrain multi-
modal embeddings, using a combination of multiple strategies like prompt-based and LoRA. MMRL
introduces multimodal robust learning by aligning image and text adapters with consistency and
distributional regularizers. Let fθ(x) and gϕ(t) be frozen features, and f̃ψ(x), g̃ψ(t) their adapted
representations. MMRL minimizes:

LMMRL = Lcls
(
f̃ψ(x), g̃ψ(t); y

)
+ λimg

∥∥f̃ψ(x) − fθ(x)
∥∥2
2
+ λtxt

∥∥g̃ψ(t) − gϕ(t)
∥∥2
2

+ λalign D
(
f̃ψ(x), g̃ψ(t)

)
,

(6)
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where Lcls is the classification cross-entropy and D(·, ·) enforces multimodal agreement (e.g., cosine
distance, MMD, or InfoNCE-style alignment).

MMRL++ simplifies these regularizers with fewer parameters and faster convergence, while preserv-
ing cross-modal robustness.

C.3 Related Work: Benchmarks of PEFT+VLMs in Pathology

Recent surveys and benchmarks have begun to evaluate parameter-efficient finetuning (PEFT) in
vision-language models (VLMs), but none provide a systematic, pathology-focused treatment. [Mai
et al., 2025] unify PEFT strategies such as LoRA, adapters, and prompts across vision backbones,
yet only include a single small pathology dataset (Camelyon) and one VLM configuration, without
analyzing patch-based pathology, few-shot regimes, or alignment/localization under PEFT choices.
[Lee et al., 2025] benchmark pathology FMs across 14–20 datasets and note that PEFT can be effective,
but their scope is finetuning strategies for pathology-specific FMs, not systematic taxonomies of
PEFT across CLIP-like VLMs or neuropathology tasks> They also do not provide evaluations for
different types of PEFT methods. Related surveys catalog computational pathology (CPath) FMs and
applications but similarly lack PEFT-structured comparisons or patch-level interpretability analyses
Ochi et al. [2025], Chanda et al. [2024]. In contrast, our work is the first benchmark of PEFT+VLMs
specifically for pathology, spanning cancer (SICAPv2, NCT) and neurodegeneration (NFT), across
both open-domain and pathology-pretrained VLMs. We contribute a modality-aware taxonomy and
a multi-dataset benchmark under both full-data and few-shot settings, explicitly linking accuracy
vs. AUCROC trade-offs to efficiency (compute/storage), and uniquely incorporating alignment and
localization insights for task alignment.

C.4 Broader Impact

Parameter-efficient fine-tuning (PEFT) lowers the cost, memory, and expertise required to adapt vision–
language models for histopathology. Our benchmark suggests that lightweight adapters/prompts/low-
rank updates allow generalist models to approach—and sometimes exceed—pathology-pretrained
models under full-data settings, while using a small fraction of trainable parameters and VRAM. This
can broaden access for resource-constrained labs and modestly reduce environmental footprint. Our
re-annotated NFT localization set also encourages evaluation beyond topline accuracy by testing
whether models attend to pathologically meaningful regions. Our dataset is also already de-identified.

Risks remain: inconsistent localization on complex cases, a residual few-shot gap favoring pathology-
pretrained models, domain shift across scanners/stains/sites, and annotation variability. We recom-
mend (i) conservative, domain-bounded claims and research-only use; (ii) pairing accuracy with
localization/uncertainty metrics; (iii) We report hardware and compute footprints to aid replication
and impact estimation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract/intro state the key claims—a pathology-focused PEFT taxon-
omy/benchmark across VLMs+PFMs, and that PEFT can let generalist VLMs rival or
exceed PFMs under full-data, while PFMs keep a few-shot edge; these are borne out in the
results. See Intro Sec 1 and Sec 3 Results.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper notes inconsistent localization in complex multi-NFT tiles and
that pathology VLMs retain an advantage in extreme few-shot; it recommends align-
ment/localization evaluation beyond topline accuracy. See Conclusion, Sec 4.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] e
Justification: Theoretical or formal proofs are not a contribution of this work.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:We specify models, datasets, data regimes (full vs. 1/8/16-shot), training recipes
(epochs, early stopping, optimizers, etc ), and PEFT-specific hyperparameters; few-shot runs
are repeated over three seeds. B.2 Further, we will make our code repository and dataset
avaialble for public use and reproducibility.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: At submission, no code/data URL is included. The paper relies on public
images and introduces NFT localization annotations described in the text; code and novel
annotation releases are planned post-review. Code will be made available at a GitHub
repository. The author can not share the dataset and code at present, without violating
confidentiality or annonymity. The dataset currently includes the annotators’ personal
information, code also includes substantial information about the authors. This information
will be scrubbed from the dataset and will be provided for public use.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Data preparation/splits, prompts, training schedules, and method-specific
settings (e.g., token counts, ranks, adapter depths) are documented; evaluation metrics
(Acc/AUC) are defined. See Appendix B.2 and Section 2

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We report averages over three seeds for few-shot but do not include error
bars/confidence intervals for brevity sake; adding stdev/CIs is feasible in the camera-ready.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report GPU types (T4 16 GB; L40S 48 GB) and efficiency metrics
(GFLOPs, trainable params, peak VRAM by method; 2), but not wall-clock time or total
compute for each run. We can provide that in the camera-ready version, it was omitted for
brevity sake as it did not affect the messaging of the paper. The full research project did not
require more compute than mentioned, and we do report compute workers, relevant memory
and storage.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Work uses de-identified pathology datasets and expert re-annotation; no
personal data or interventions with human subjects; anonymity preserved for review.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss positive impacts (lowering compute/memory barriers, alignment-
aware evaluation) and risks (domain shift, miscalibration, reduced reliability in complex
cases, inconsistent localization) with mitigations; see Broader Impact Appendix section C.4
and Conclusion section4.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No high-risk generative models or scraped web corpora are released with this
submission; any planned assets will follow controlled and de-identified release practices.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: No licence provided by [Vizcarra et al., 2023] - https://github.
com/Gutman-Lab/yolo-braak-stage, [Ghandian et al., 2024] make their data avail-
able at https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD1165 un-
der https://creativecommons.org/publicdomain/zero/1.0/legalcode CCO li-
cence. We credit and cite them, as well as properly respect the terms of their licence. The
authors of both the studies were reached out to, for the purposes of this study and duly
informed about the usage of their datasets.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: The NFT annotation resource is introduced and documented (consensus/union
labels, inter-rater variability), but no packaged release/docs accompany the submission; a
dataset card will be provided upon release.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or human-subject experiments were conducted; annotations
were made by domain experts on de-identified images.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The study analyzes existing de-identified images with expert re-annotation
only; no recruitment or intervention with human participants.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The research methods and results do not rely on LLMs for experiments; any
editing assistance is unrelated to methodology.
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