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Abstract

Generalist vision–language models (VLMs) struggle on histopathology tasks due1

to domain gaps and scarce labels, pathology VLMs (PFMs) also fall short de-2

spite costly pretraining. Parameter-efficient fine-tuning (PEFT) offers a scalable3

lightweight alternative, while improving performance. We present the first bench-4

mark and taxonomy of PEFT for pathology VLMs, organizing methods by adapta-5

tion modality, strategy and locus. We curate a novel neuropathology dataset for6

detecting neurofibrillary tangles (NFTs), capturing annotator variability to evaluate7

reliability and alignment. Experiments across prostate cancer, colorectal cancer,8

and neuropathology tasks show that with full data, PEFT-adapted generalist VLMs9

rival adapted PFMs, while in few shot settings, a residual gap persists due to label10

scarcity, terminology mismatch, and modality-specific biases. Visualization further11

reveals that models such as CONCH+MMRL focus on NFT within annotated boxes,12

improving interpretability in single-NFT cases, though performance diminishes13

in complex multi-NFT scenarios. Together, our benchmark and dataset highlight14

PEFT as a scalable strategy, but also indicate the need for richer interpretability15

metrics and improved multimodal reasoning to handle complex cases.16

1 Introduction17

Large vision–language models (VLMs) such as CLIP [Radford et al., 2021] have shown remarkable18

zero-shot generalization across natural image domains, inspiring interest in their application to19

medical image analysis. In histopathology, pathologists rely on careful interpretation of complex20

tissue patterns to diagnose and grade disease—tasks that require fine-grained visual discrimination21

under limited annotation regimes. For example, accurate detection of neurofibrillary tangles (NFTs)22

is essential for Alzheimer’s research [Alafuzoff et al., 2008, Dugger and Dickson, 2017], yet manual23

annotation of whole-slide images (WSIs) remains time-consuming and resource-intensive [Ghandian24

et al., 2024]. Compared to natural images, WSIs present unique challenges: gigapixel resolution,25

texture-dominated morphology, and highly imbalanced disease distributions, all of which create a26

substantial domain gap that hinders direct transfer of general-purpose VLMs [Lai et al., 2024]. As27

shown in Fig. 1 and Table A1, zero-shot VLMs like CLIP and DFN [Fang et al., 2023] deteriorate in28

classification accuracy averaged across three pathology datasets (described in Section 2). To mitigate29

this gap, pathology-specific VLMs such as PLIP [Huang et al., 2023], QuiltNet [Ikezogwo et al.,30

2023], BioMedCLIP [Zhang et al., 2023], and CONCH [Lu et al., 2024] have been introduced to31

improve performance through pretraining with pathology datasets. However, their heavy compute32

and data requirements limit widespread deployment in clinical workflows. This motivates parameter-33

efficient fine-tuning (PEFT), which aligns frozen VLMs to the target task through lightweight modules34

that update only a small fraction of parameters, hence more efficient.35

PEFT Prior Work: A variety of PEFT approaches have been proposed and shown to achieve strong36

efficiency–accuracy trade-offs on natural image benchmarks. Linear probing [Radford et al., 2021], a37
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Figure 1: Zero-shot results: natural VLMs favor
CIFAR-100, pathology VLMs favor pathology
tasks; arrows show domain performance gaps.

Figure 2: Top panel: same image annotated by
two different annotators; bottom panel: the inter-
section and union of their annotations.

Table 1: Head-to-head winners across four VLMs (best method per VLM chosen by full-data AUC).
Task CLIP Best (Method, AUC) DFN Best (Method, AUC) QuiltNet Best (Method, AUC) CONCH Best (Method, AUC) Winner (AUC)

SICAPv2 (Gleason) MMRL (92.73) MaPLe (93.14) MaPLe (94.14) CLIPath (94.16) CONCH (CLIPath, 94.16; +0.02)
NFT Detection MMRL (98.89) MMRL (98.67) MMRL++ (98.97) MMRL (98.02) QuiltNet (MMRL++, 98.97; +0.08)
NCT Classification MMRL++ (99.45) CLIPath (99.54) MMRL++ (99.79) MMRL++ (99.67) QuiltNet (MMRL++, 99.79; +0.12)

simple and efficient baseline — trains only a classifier on frozen CLIP features. CoOp [Zhou et al.,38

2022b] learns continuous contextual text tokens beyond class names; CoCoOp [Zhou et al., 2022a]39

conditions those tokens on image features to aid generalization. ProVP [Xu et al., 2025] extends40

prompting to vision by inserting learnable visual tokens across transformer layers, regularized to41

align with frozen features. Adapter-based strategies like CLIP-RFC (CLIPath) [Lai et al., 2023]42

introduce residual connections on top of vision embeddings to stabilize adaptation. Multi-modal43

approaches include MaPLe[Khattak et al., 2023], which jointly learns coupled prompts for shallow44

layers of both text and vision encoders to improve alignment, while MMA [Yang et al., 2024], inserts45

adapters into deeper layers of both modalities for finetuning. Finally, representation-regularized46

approaches such as MMRL [Guo and Gu, 2025a] and its streamlined variant MMRL++ [Guo and47

Gu, 2025b] optimize adapted features with distributional and consistency constraints to maintain48

robustness and stability under limited data. However, systematic evaluations of PEFT for pathology49

tasks are lacking [Mai et al., 2025], while other benchmark studies primarily focus on pathology50

foundation models pretrained with large datasets and overlook PEFTs [Lee et al., 2025, Xiong et al.,51

2025, Bareja et al., 2025]. This leaves an open question: can PEFT enable reliable and interpretable52

adaptation of VLMs to pathology tasks without relying on expensive domain-specific pretraining?53

To fill this gap, we systematically characterize existing PEFT methods based on adapted modality,54

locus, and parameterization strategy, and apply them to both VLMs and pathology-specific VLMs.55

We compare their performance for pathology tasks along three dimensions:56

(i) Full Data Adaptation. We investigate the performance of domain adaptation of VLMs under57

full-data settings and find that PEFT substantially bridges domain gaps. PEFT consistently enable58

generalist VLMs to rival or even surpass pathology-specific models. This challenges the common59

belief that costly domain pretraining is indispensable and suggests that PEFT provides a scalable60

alternative for clinical deployment.61

(ii) Data Efficent (Few-Shot) Setting. We study few-shot regimes, which is practical as target62

labeled data set can be limited for rare diseases and due to expensive annotation costs. In this setting,63

pathology-specific models retain clear advantages, as their pretraining prior knowledge accelerate64

learning and improve stability in extremely data-scarce scenarios. However, with moderate amounts of65

data, multimodal PEFT strategies achieve robust performance, underscoring their efficiency–accuracy66

trade-off. Our results demonstrate that while pathology pretraining provides strong initialization for67

few-shot learning, PEFT ensures scalability and generalization in broader clinical applications.68

(iii) Annotator Alignment and Interpretability Assessment via Novel Dataset. We curated69

a new neuropathology dataset with neurofibrillary tangle (NFT) localization, which allows us to70

examine whether PEFT guides models to focus on clinically meaningful regions, hence improving71

interpretability beyond just classification accuracy. Our results show that PEFT-tuned models align72

better with annotator attention in single-NFT images, highlighting their potential for aiding diagnostic73

workflows. However, they still struggle in complex scenarios with multiple NFTs or subtle boundaries.74
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Our findings demonstrate that PEFT holds the key to unlocking the potential of VLMs in pathology,75

but also point to the need for richer interpretability metrics and improved multimodal reasoning.76

Table 2: Classification accuracy and AUCROC comparing CLIP vs CONCH across SICAPv2, NFT,
and NCT. The table shows results grouped by adaptation type (text-only, vision-only, multimodal)
and reports tuned parameters, compute and memory footprints for CLIP.

Method Type Location Tuned params GFLOPs Peak VRAM Model SICAPv2 NFT NCT Average

Acc AUC Acc AUC Acc AUC Acc AUC

Text-only

CoOp Prompt input level 0.008M 124.0 0.26 CLIP 64.84 86.81 90.52 96.81 91.21 99.34 82.19 94.32
CONCH 59.80 82.74 90.52 96.81 88.97 98.58 79.76 92.71

CoCoOp Prompt input level 0.035M 124.0 0.26 CLIP 62.39 85.36 89.44 96.27 89.57 99.25 80.47 93.63
CONCH 63.24 85.02 90.92 96.48 93.05 99.49 82.40 93.66

Vision-only

CLIPath (RFC) Adapter embed. level 0.145M 47.0 0.58 CLIP 69.84 89.13 89.64 97.44 88.14 99.41 82.54 95.33
CONCH 79.68 94.16 92.45 97.79 93.29 99.62 88.47 97.19

LoRAImg LoRA all layers 0.490M 35.0 0.57 CLIP 61.07 84.83 82.76 90.77 92.09 99.54 78.64 91.71
CONCH 71.16 91.32 79.40 93.39 95.11 99.50 81.89 94.74

Linear Probe Adapter embed. level 0.002M 35.2 0.35 CLIP 63.76 86.35 90.93 96.54 88.69 98.89 81.13 93.93
CONCH 79.45 93.80 92.71 97.91 95.47 99.27 89.21 96.99

ProVP Prompt all layers 0.460M 88.9 0.91 CLIP 73.93 91.47 93.31 97.43 92.84 96.11 86.69 95.00
CONCH 64.37 84.51 93.37 97.68 94.43 98.01 84.06 93.40

Multi-modal

MaPLe Prompt shallow repr. 3.555M 124.7 0.27 CLIP 64.93 89.50 92.19 97.24 94.15 97.85 83.76 94.86
CONCH 66.87 90.23 92.19 97.24 93.53 99.60 84.20 95.69

MMA Adapter deep repr. 0.675M 70.5 0.58 CLIP 63.24 88.20 86.43 97.91 71.97 94.89 73.88 93.67
CONCH 43.70 71.71 49.97 65.46 23.23 68.02 38.97 68.40

PromptSRC Prompt all layers 0.046M 125.0 0.43 CLIP 73.89 92.27 74.55 94.20 92.24 99.13 80.23 95.20
CONCH 52.92 80.03 80.82 94.22 93.38 99.65 75.71 91.30

MMRL Mixed deep repr. 4.992M 83.9 0.87 CLIP 75.97 92.73 95.36 98.89 96.23 98.76 89.19 96.79
CONCH 70.88 87.06 94.34 98.02 95.50 99.17 86.91 94.75

MMRL++ Mixed deep repr. 0.813M 71.0 0.80 CLIP 76.53 92.28 95.31 98.86 94.11 99.45 88.65 96.86
CONCH 67.48 86.00 90.87 95.92 93.98 99.67 84.11 93.86

2 Methods77

PEFT Taxonomy: We structure PEFT methods along three axes: Axis A: Adapted Modality78

(What). Text-only (learn prompts; freeze vision), image-only (vision-side updates; e.g., ProVP, linear79

probe, vision-LoRA), and multimodal (joint text–image adaptation; e.g., MaPLe, MMRL); Axis B:80

Parameterization Strategy (How) - Prompting (static/conditional), adapters (bottlenecks/residual81

fusion), LoRA (low-rank updates), and mixed; Axis C: Adaptation Locus (Where). Input-level,all82

layers, shallow (early layers), deep (late semantic layers), and embedding/head-level; Table A5 in83

Appendix described the method divided by axes in more details.84

Datasets: We use three datasets in our benchmark experiments. 1) NCT-CRC-HE Kather et al. [2019]85

contains 100K training and 7,180 test set patches labeled with 9 types of colorectal cancer tissues.86

The distinctive textures make it a comparatively easier multi-class benchmark. 2) SICAPv2 [Silva-87

Rodríguez et al., 2020] consists of 18,783 images of fine-grained prostate cancer Gleason grading88

dataset with subtle glandular and nuclear cues. Appendix Fig. A4 shows the finer morphological89

cues making it a relatively difficult classification task. 3) NFT: We curated a novel neuropathology90

dataset, consisting of ∼3,961 images of neurofibrillary tangles (NFTs) from datasets by [Ghandian91

et al., 2024] and [Vizcarra et al., 2023]. The Emory dataset was scanned at a resolution of 0.23/0.2592

microns per pixel, while the UC Davis dataset was scanned at 0.23/0.11 microns per pixel. The93

original datasets were point annotated for NFT and preNFTs, with image processing techniques used94

to obtain NFT object-localization bounding boxes. From these, we sampled 2002 NFT-positive and95

1959 control images. Each image was annotated by at least two annotators to quantify inter-rater96

variability, reflecting the intrinsic challenges of neuropathology where even specialists disagree97

on subtle pre-NFT and NFT boundaries as illustrated in Fig. 2. This process produced a reliability-98

and localization-aware NFT dataset, containing 1,002 images annotated with additional 1,208 NFTs99

under strict consensus and 3,614 under union consensus, spanning multiple brain regions, centers,100

scanners, and antibodies, suitable for evaluating alignment, calibration, and robustness of PEFT101

methods. See more details in Appdendix B.1.102

Evaluation: We consider two natural image VLMs (CLIP and DFN) and two PFMs (QuiltNet and103

CONCH) in our benchmark experiments. We selected a set of representative PEFT methods that104

fine-tune parameters learned over text modality (CoOp, CoCoOp), vision modality (CLIP-RFC,105

ProVP, Linear Probing) and multi modality (MaPLe, MMA, MMRL, MMRL++) settings. These106

methods are further categorized based on their parameterization strategy type (e.g., linear probing vs.107

prompt-based) and location (input level, shallow, vs. deep) in Table 1. Details about the experimental108

setups and the models/methods are included in Appendix B.2 and C. We applied these PEFT methods109
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Figure 3: Avg. few-shot accuracies ofs PEFT methods (%) on 3 pathology tasks for CLIP & CONCH.

Figure 4: Each row shows one input tile (left) followed by Grad-CAM heatmaps from four PEFT-
VLMs. Consensus NFT regions are marked in green, singly annotated regions in purple, and heatmaps
use a cold→hot colormap (blue = low, red = high) for areas most relied on for the explanation.

to each of the four VLMs/PFM models for the classification tasks using the three pathology datasets110

described above. We evaluate the efficacy of PEFT techniques under two data availability regimes.111

(1) Full data: We use PEFT to finetune the VLM/PFM on 100% of the training set of the pathology112

target datasets. Performance metrics like accuracy, AUCROC, and efficiency metrics like GFLOPs113

and VRAM utilization are recorded. For each task, we select the PEFT method scoring the highest114

AUCROC score as the best/winning method for the VLM/PFM. (2) Data efficiency: We finetune115

four models in a few shot training setup using PEFT. We randomly select 1, 8 and 16 labeled images116

of each class from the target datasets and report average accuracies (repeated experiments with three117

random seeds for each method.We visualize the explanation maps by the PEFT finetuned VLM for a118

subset of true positive predicted samples from NFT detection task. Explanation maps are generated119

by using gradcam over the last or second last attention layer of the vision transfomer block of the120

VLM. Explanation maps generated by the zero shot VLM for the same samples are provided as a121

baseline to illustrate the human-AI task alignment capabilities of the best PEFT methods.122

3 Results123

Fig. 1 shows CONCH achieves much higher zero shot classification accuracy for pathology datasets124

than CIFAR10 because its pretraining corpora is more aligned with the pathology domain than natural125

images. The reverse is true for CLIP and DFN. QuiltNet’s performance is subpar. Nevertheless, under126

zero-shot setting, all four VLMs (including CLIP and DFN) achieve comparable best performances127

with PEFT, as shown in Table 1 that lists the specific PEFT methods that achieve the best classification128

accuracy when applied to the four VLMs of each of the three target pathology datasets and tasks. This129

demonstrates that PEFT techniques can successfully bridge domain gap between pretrained130

datasets (natural images) and target pathology domain. Due to space limitation, we will focus on131

comparing CLIP and CONCH for subsequent analysis. Details in Appendix Table A2 and Table A3.132
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(i) Full-data adaptation: For CLIP (a natural image VLM), along Axis A-Modality, multimodal133

methods dominate, with MMRL/MMRL++ achieving the best performance across SICAPv2, NFT,134

and NCT datasets, and MaPLe (94.15/97.85) beating all image- or text-only methods on NCT.135

Comparing different parameterization strategies (Axis B)) for vision-only PEFTs reveal that136

prompt based approach (ProVP 0.46M) and adapters (CLIPath 0.145M) are lightweight but effective,137

compared to LoRA. For multi-modal adaptation, mixed modules (MMRL++ and MMRL) achieve138

the strongest results over prompt-only or adapter-only methods (MaPLe, MMA, and PromptSRC).139

When we compare the adaptation location (Axis C) of prompt-based approaches, deep/all-layer140

parameter updates are decisively superior, especially on morphology-rich SICAPv2 where MMRL++141

(76.53 Acc/92.28 AUC) outperform shallow, input, or embedding loci (MaPLe 64.93/89.50, CoCoOp142

64.84/86.81, CLIPath 69.84/89.13).143

For CONCH (pathology VLM), the advantage of multi-modality (Axis A) is less apparent: vision-144

only methods performs best on SICAPv2 while multimodal wins on NFT tasks and NCT shows a tie.145

Comparing different parameterization strategies (Axis B)) for vision-only PEFTs, adapters/linear146

heads methods such as CLIPath and Linear Probe excel perform better than prompting or LoRA.147

Along Axis C, embedding/head-level linear adapters suffice for SICAPv2 and NCT, but deep updates148

are needed for NFT (MMRL 94.34/98.02); shallow/input loci trail on morphology-heavy SICAPv2.149

Overall, the trend highlights a key divergence in VLM and PFM: CLIP requires deep, mixed,150

multimodal adaptation to counter domain shift, whereas CONCH, already domain-aligned, favors151

lightweight image-only head/embedding updates on morphology-focused tasks, reserving deep152

multimodal adaptation for NFT where cross-modal alignment matters most.153

(ii) Few-shot settings: (Fig. 3) shows average few shot performance over 3 datasets. We observe a154

domain-contingent pattern aligned with our taxonomy. CLIP (natural-image VLM): PromptSRC155

(prompting, all-layers, multimodal) best exploits priors and wins with 1-shot learning. With 8–16156

shots, deep/mixed multimodal modules (e.g., MMRL++) overtake, while shallow prompting (MaPLe)157

and deep adapters (MMA) lag the linear adapter methods. The gains are largest from 1→8 and then158

taper. CONCH (pathology VLM): across 1/8/16 shots, updating vision-only embeddings methods159

such as Linear probe and ClIPath consistently lead in performance. The performance of multimodal160

adaptation improves with 8-16 shots but saturates early and remains inferior to vision-only methods.161

This validates our conjecture that pretrained PFM with knowledge of pathology morphology features162

require only a few thousand tunable parameters. CLIP benefits from multimodal (Axis A), mixed163

(Axis B) and deep (Axis C) parameter adaptation as available target labels increase. CONCH prefers164

lightweight vision-only, embedding-level parameter tuning to achieve good performance with fewer165

shots. Overall, pathology-pretrained encoders retain a clear edge in extreme low-label regimes166

(Appendix Table A4), whereas with modest labels (16-shots), lightweight multimodal PEFT becomes167

robust and scalable, delivering comparable performance by tuning only a small fraction of weights.168

(iii) Task alignment: Fig. 4 illustrates these strengths and limitations by comparing model expla-169

nations against pathologist annotations. In single-NFT tiles, CLIP+MMRL and CONCH+MMRL170

generate focused high-activation maps that overlap with the consensus (green) boxes, showing that171

the interpretation of the target task by both VLM/PFM aligns with human annotators in single-NFT172

cases. In contrast, multi-NFT tiles reveal the weaknesses of the models: activations scatter across the173

tissue or shift to siloed annotated regions (purple), underscoring their sensitivity to task understanding174

in complex cases with annotation variability. CONCH+MMRL overlaps more often with at least one175

annotation mark, suggesting that domain-specific priors help, but alignment remains inconsistent.176

4 Conclusion177

Our benchmarking experiments demonstrate that PEFT is a practical alternative to pretraining large178

VLMs with target pathology data. With modest labeled data, mixed multimodal and deeper PEFTs179

can close the domain/lexicon gap and enable generalist VLMs (e.g., CLIP) to match or exceed PFMs180

(e.g.,CONCH). Under extreme few-shot conditions, CONCH retain an advantage, though multimodal181

PEFTs close the performance gap with increasing number of target labels. Visualization reveals that182

PEFT improves task alignment in simple, single-NFT cases (CLIP+MMRL, CONCH+MMRL) but183

fails to consistently localize consensus regions in tiles with multiple or subtle aggregates, exposing184

limitations under annotation variability. Our work provides a road map for future research at the185

intersection of performance, data/model efficiency, and interpretability, helping to bridge the gap186

between VLMs and practical deployment in real-world pathology settings.187
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A Additional Results272

Table A1: Zero-shot classification accuracy (%) of open-domain and pathology-specific VLMs on
SICAPv2, NFT, and NCT datasets, with averaged pathology accuracy.

Method SICAPv2 NFT NCT Avg. Pathology Acc.

Zero-shot Open VLMs
CLIP 31.57 64.71 23.21 39.83
DFN 40.19 67.56 34.82 47.52

Zero-shot Pathology VLMs
CONCH 40.81 67.56 61.49 56.62
QuiltNet 25.30 50.38 26.75 34.14
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Table A2: Classification accuracy and AUCROC of natural-image VLMs (CLIP, DFN) adapted
using PEFT methods across SICAPv2, NFT, and NCT. The table stratifies methods into text-only,
image-only, and multimodal groups. Results show that text-only methods improve accuracy but
often plateau in AUCROC, image-only methods like ProVP improve both, and multimodal adapters
(MMRL, MMRL++) achieve the highest balance of accuracy and AUCROC. This demonstrates that
accuracy and AUCROC can diverge across modalities, with AUCROC revealing robustness missed
by accuracy alone.

Method Type Location Model SICAPv2 NFT NCT Avg

Acc AUC Acc AUC Acc AUC Acc AUC

Text-only

CoOp Prompt input level CLIP 64.84 86.81 90.52 96.81 91.21 99.34 82.19 94.32
DFN 68.57 88.64 90.26 96.43 92.92 99.50 83.92 94.86

CoCoOp Prompt input level CLIP 62.39 85.36 89.44 96.27 89.57 99.25 80.47 93.63
DFN 64.80 75.80 90.46 96.71 92.26 99.37 82.51 90.63

Vision-only

CLIPath (RFC) Adapter embed. level CLIP 69.84 89.13 89.64 97.44 88.14 99.41 82.54 95.33
DFN 69.08 88.16 91.89 97.49 92.33 99.54 84.43 95.06

LoRAImg LoRA all layers CLIP 61.07 84.83 82.76 90.77 92.09 99.54 78.64 91.71
DFN 65.60 86.36 88.58 95.54 89.89 99.35 81.36 93.75

Linear Probe Adapter embed. level CLIP 63.76 86.35 90.93 96.54 88.69 98.89 81.13 93.93
DFN 67.58 87.51 91.59 97.12 87.70 98.58 82.29 94.40

ProVP Prompt all layers CLIP 73.93 91.47 93.31 97.43 92.84 96.11 86.69 95.00
DFN 74.36 92.00 93.52 97.33 92.68 99.52 86.85 96.28

Multi-modal

MaPLe Prompt shallow repr. CLIP 64.93 89.50 92.19 97.24 94.15 97.85 83.76 94.86
DFN 75.58 93.14 93.52 97.79 92.30 97.88 87.13 96.27

MMA Adapter deep repr. CLIP 63.24 88.20 86.43 97.91 71.97 94.89 73.88 93.67
DFN 69.50 90.26 91.89 97.62 51.61 94.79 71.00 94.22

PromptSRC Prompt all layers CLIP 73.89 92.27 74.55 94.20 92.24 99.13 80.23 95.20
DFN 72.05 91.73 82.86 95.27 91.42 98.95 82.11 95.32

MMRL Mixed deep repr. CLIP 75.97 92.73 95.36 98.89 96.23 98.76 89.19 96.79
DFN 76.01 92.70 94.80 98.67 96.11 99.51 88.97 96.96

MMRL++ Mixed deep repr. CLIP 76.53 92.28 95.31 98.86 94.11 99.45 88.65 96.86
DFN 76.86 92.96 95.16 98.46 95.72 99.40 89.25 96.94

Table A3: Classification Accuracy and AUCROC of various Path VLMs + PEFT techniques after
training on 100% of SICAPv2, NFT, and NCT datasets, with the adaptation location. An Avg column
reports the mean Acc/AUC over the three datasets.

Method Type Location Model SICAPv2 NFT NCT Avg

Acc AUC Acc AUC Acc AUC Acc AUC

Text-only

CoOp Prompt input level QuiltNet 74.79 92.23 91.74 96.79 93.15 98.25 86.56 95.76
CONCH 59.80 82.74 90.52 96.81 88.97 98.58 79.76 92.71

CoCoOp Prompt input level QuiltNet 74.93 92.31 90.62 95.83 90.96 99.28 85.50 95.81
CONCH 63.24 85.02 90.92 96.48 93.05 99.49 82.40 93.66

Vision-only

CLIPath (RFC) Adapter embed. level QuiltNet 72.62 90.91 92.29 97.53 71.21 95.48 78.71 94.64
CONCH 79.68 94.16 92.45 97.79 93.29 99.62 88.47 97.19

LoRAImg LoRA all layers QuiltNet 71.35 90.19 83.27 92.28 93.62 99.69 82.75 94.05
CONCH 71.16 91.32 79.40 93.39 95.11 99.50 81.89 94.74

Linear Probe Adapter embed. level QuiltNet 68.19 90.92 86.28 95.98 93.05 99.44 82.51 95.45
CONCH 79.45 93.80 92.71 97.91 95.47 99.27 89.21 96.99

ProVP Prompt all layers QuiltNet 74.00 91.42 94.79 97.53 92.47 99.38 87.09 96.11
CONCH 64.37 84.51 93.37 97.68 94.43 98.01 84.06 93.40

Multi-modal

MaPLe Prompt shallow repr. QuiltNet 78.27 94.14 94.59 98.11 93.70 99.76 88.85 97.34
CONCH 66.87 90.23 92.19 97.24 93.53 99.60 84.20 95.69

MMA Adapter deep repr. QuiltNet 72.43 90.15 89.49 97.06 60.77 94.63 74.23 93.95
CONCH 43.70 71.71 49.97 65.46 23.23 68.02 38.97 68.40

PromptSRC Prompt all layers QuiltNet 75.49 93.05 76.74 93.20 94.05 99.45 82.09 95.23
CONCH 52.92 80.03 80.82 94.22 93.38 99.65 75.71 91.30

MMRL Mixed deep repr. QuiltNet 77.95 90.15 95.26 98.80 94.80 99.76 89.34 96.24
CONCH 70.88 87.06 94.34 98.02 95.50 99.17 86.91 94.75

MMRL++ Mixed deep repr. QuiltNet 77.76 89.81 95.87 98.97 95.54 99.79 89.72 96.19
CONCH 67.48 86.00 90.87 95.92 93.98 99.67 84.11 93.86
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Figure A1: NCT dataset: few-shot patch classification. Comparison of PEFT strategies—applied
to open-domain CLIP-like VLMs and pathology-pretrained VLMs across K-shot regimes (K ∈
{1, 8, 16}). Curves summarize the accuracy metric.

A.1 Taxonomy-based guidance on results273

A.1.1 Full-data Adaptation274

Full-data Adaptation of Natural VLMs (CLIP). CLIP’s behavior follows the taxonomy closely.275

When Axis A = text-only, Axis B = prompting (CoOp/CoCoOp), and Axis C = input-level, it saturates276

the coarse NCT task (CoOp: NCT AUC 99.34, Acc 91.21; CoCoOp: AUC 99.25, Acc 89.57) but277

underperforms on fine-grained tissue labeling (SICAPv2: CoOp Acc 64.84 / AUC 86.81; CoCoOp278

Acc 62.39 / AUC 85.36). Moving to Axis A = image-only with Axis B = adapters/prompt-like279

residuals at Axis C = embedding/head or all layers (e.g., CLIPath at embedding-level; ProVP across280

all layers) yields steadier gains across datasets (CLIPath: SICAPv2 Acc 69.84 / AUC 89.13; ProVP:281

NFT Acc 93.31 / AUC 97.43). Finally, compact Axis A = multimodal methods with Axis B = mixed282

at Axis C = deep representations (MMRL/MMRL++) deliver the best overall balance (MMRL:283

SICAPv2 Acc 75.97 / AUC 92.73; NFT Acc 95.36 / AUC 98.89; MMRL++: NCT AUC 99.45 with284

0.813M tuned params), indicating that cross-modal, deep-locus adaptation is especially helpful for285

rare-lesion and fine-grained settings. Appendix A2 details these trends (and DFN).286

Full-data Adaptation of Pathology VLMs (CONCH). CONCH’s strongest gains appear under287

Axis A = image-only with Axis B = adapters/linear readout at Axis C = embedding/head-level.288

Vision-focused updates (CLIPath, Linear Probe) produce the largest improvements on fine-grained289

SICAPv2 and remain strong on NFT/NCT (CLIPath: SICAPv2 Acc 79.68 / AUC 94.16; NFT Acc290

92.45 / AUC 97.79; NCT AUC 99.62; Linear Probe: SICAPv2 Acc 79.45 / AUC 93.80; NFT Acc291

92.71 / AUC 97.91; NCT Acc 95.47 / AUC 99.27). Text-only prompting (A=text-only, B=prompting,292

C=input) still achieves NCT ceilings (CoOp NCT AUC 98.58; CoCoOp AUC 99.49) but is weak on293

SICAPv2 (CoOp Acc 59.80 / AUC 82.74). Multimodal mixed strategies at deep layers (MMRL: NFT294

Acc 94.34 / AUC 98.02) are competitive on NFT/NCT but show variable gains versus vision-only295
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Figure A2: NFT dataset: few-shot patch classification. Comparison of PEFT strategies—applied
to open-domain CLIP-like VLMs and pathology-pretrained VLMs across K-shot regimes (K ∈
{1, 8, 16}). Curves summarize the accuracy metric.

adapters—consistent with CONCH’s pathology-specific pretraining favoring lightweight vision-side296

adaptation. Appendix A3 expands on these patterns alongside QuiltNet.297

Natural vs. Pathology VLMs. Task winners align more with taxonomy choices than pretraining298

domain alone. For SICAPv2 (fine-grained), the winning recipe is Axis A = image-only + Axis299

C = embedding/head (shallow) with Axis B = adapters/linear: CONCH+CLIPath (Acc 79.68 /300

AUC 94.16) and CONCH+Linear Probe (Acc 79.45 / AUC 93.80) outperform CLIP’s best text-only301

prompts. For NFT, higher-capacity Axis A = multimodal with Axis B = mixed at Axis C = deep repr.302

slightly favors CLIP at the top end (CLIP+MMRL: Acc 95.36 / AUC 98.89; CLIP+MMRL++: Acc303

95.31 / AUC 98.86), while CONCH remains competitive under vision-centered adapters (CLIPath:304

Acc 92.45 / AUC 97.79). For NCT (coarse), Axis A = text-only, Axis B = prompting, Axis C = input305

attains ∼99% AUC for both families (CLIP CoOp/CoCoOp: 99.34/99.25; CONCH CoOp/CoCoOp:306

98.58/99.49), so the edge depends on minor PEFT choices and whether one optimizes Acc vs. AUC.307

B Experiment Setup308

B.1 Datasets309

In our benchmark experiments, we evaluate three histopathology datasets spanning colorectal cancer,310

prostate cancer, and neuropathology.311

NCT-CRC-HE is a large-scale colorectal cancer dataset derived from hematoxylin & eosin312

(H&E)–stained whole slide images collected from the National Center for Tumor Diseases (NCT,313

Heidelberg) and the University Medical Center Mannheim (UMM), Germany Kather et al. [2019].314

It contains 100,000 training and 7,180 independent test patches, the latter commonly referred to as315

CRC-VAL-HE-7K. Each patch is 224× 224 pixels at 0.5 µm per pixel (∼20× magnification), and all316

images were color normalized to mitigate staining variability Kather et al. [2019]. Patches are anno-317
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Figure A3: NCT dataset: few-shot patch classification. Comparison of PEFT strategies—applied
to open-domain CLIP-like VLMs and pathology-pretrained VLMs across K-shot regimes (K ∈
{1, 8, 16}). Curves summarize the accuracy metric.

tated across nine histologic classes, including normal mucosa, tumor epithelium, cancer-associated318

stroma, smooth muscle, lymphocytes, debris, mucus, adipose tissue, and background. Owing to its319

size and standardized train/test split, it has become a widely used benchmark for tissue classification;320

however, the dataset is comparatively easier, as models can sometimes exploit low-level color or321

compression artifacts rather than robust morphological cues Ignatov and Malivenko [2024].322

SICAPv2 is a prostate cancer dataset designed for Gleason grading and fine-grained morphological323

analysis. It consists of 18,783 image patches of size 512× 512 pixels at 10× magnification, sampled324

from 155 annotated whole slide images of biopsies and prostatectomy specimens Silva-Rodríguez et al.325

[2020]. Unlike texture-driven datasets such as NCT-CRC-HE, prostate grading requires recognition326

of subtle glandular architecture and nuclear morphology, which is intrinsically more challenging.327

We sampled 3961 images randomly from these two datasets. To ensure reliability, we re-annotated the328

NFT dataset with two independent annotators. The test set of the dataset contained 1,961 images, each329

with a single NFT annotation from a previous annotator. Our QC process revealed that many images330

contained additional NFTs and that annotators frequently disagreed on NFT boundaries. Annotator331

group G1 marked 2,571 NFT boxes (mean ∼1.10 per image, max 8), while Annotator group G2332

marked 2,320 NFT boxes (mean ∼1.04 per image, max 9). From these, an intersection consensus333

(NFTs agreed upon by both annotators) produced 1,208 NFTs across 1,173 images (mean ∼1.03334

per image, max 5). In contrast, a union consensus (NFTs marked by either annotator) expanded to335

3,614 NFTs across 2,340 images (mean ∼1.54 per image, max 13). This QC process transformed the336

original single-annotation dataset into a reliability- and localization-aware NFT resource, explicitly337

capturing inter-rater variability and the true multiplicity of tangles per image, as illustrated in338

Figure 2. Together, this yields a reliability- and localization-aware NFT corpus with explicit rater339

variability, heterogeneous antibodies (PHF-1, pan-tau, AT8, CP13), multiple centers and scanners340

(Aperio AT2, ZEISS AxioScan), sub-micron pixel resolutions (0.11, 0.23–0.25 µm/pixel), and varied341
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Table A4: Few-shot classification accuracy (%) of PEFT techniques on SICAPv2, NFT, and NCT
grouped by method with subrows for the underlying VLM (CLIP, DFN, QuiltNet, CONCH). Each
dataset shows 1-shot (1S), 8-shot (8S), and 16-shot (16S) accuracy; Avg columns are per-shot means
across datasets (SICAPv2, NFT, NCT). We dont showcase results from LoRAImg because of failures
in full data adaptation

Method Adaptation Type Adaptation Location Model SICAPv2 NFT NCT Avg

1S 8S 16S 1S 8S 16S 1S 8S 16S 1S 8S 16S

Adapted modality: Text
CoOp Prompt Input-level CLIP 34.69 36.54 36.77 48.02 63.06 63.84 55.13 75.38 73.67 45.95 58.33 58.09

DFN 27.95 36.00 45.00 56.57 60.65 61.02 53.03 72.66 77.44 45.85 56.44 61.15
QuiltNet 41.67 57.01 58.00 59.60 64.13 63.76 67.49 81.97 85.35 56.25 67.70 69.04
CONCH 19.54 27.62 26.47 62.91 65.54 66.12 49.04 67.95 73.92 43.83 53.70 55.50

CoCoOp Prompt Input-level CLIP 25.04 38.28 34.45 42.34 63.75 63.50 36.79 55.04 64.94 34.72 52.36 54.30
DFN 28.84 24.05 36.04 70.41 62.23 62.22 50.15 68.65 72.61 49.80 51.64 56.96
QuiltNet 30.99 54.54 52.94 64.06 63.98 65.00 60.59 72.25 81.46 51.88 63.59 66.47
CONCH 27.41 35.42 32.96 66.26 62.65 65.36 32.54 52.99 61.17 42.07 50.35 53.16

Adapted modality: Image
Linear Probe Adapter Embed. / head-level CLIP 40.18 19.81 39.51 33.72 63.76 64.32 32.72 68.69 72.08 35.54 50.75 58.64

DFN 24.11 34.78 45.99 49.50 59.97 65.58 43.11 65.17 74.74 38.91 53.31 62.10
QuiltNet 29.26 52.32 47.06 44.74 66.89 68.01 40.66 81.43 84.26 38.22 66.88 66.44
CONCH 39.68 61.77 64.70 69.61 72.26 71.19 76.34 90.97 93.72 61.88 75.00 76.54

CLIPath (RFC) Adapter Embed. / head-level CLIP 25.04 26.25 28.13 36.05 64.52 63.86 34.10 39.46 59.10 31.73 43.41 50.36
DFN 21.85 35.60 39.92 49.45 62.96 63.35 26.40 42.63 63.72 32.57 47.06 55.66
QuiltNet 35.74 43.76 41.30 46.46 63.32 65.12 28.71 36.87 70.99 36.97 47.98 59.14
CONCH 35.34 61.92 70.14 62.06 70.20 67.70 52.11 88.28 90.57 49.84 73.47 76.14

ProVP Prompt All layers CLIP 24.03 32.90 34.50 46.25 64.51 64.29 56.47 76.11 78.56 42.25 57.84 59.12
DFN 27.43 29.89 36.58 49.26 62.62 63.54 57.21 79.97 87.29 44.63 57.49 62.47
QuiltNet 38.00 47.73 55.20 43.48 64.34 65.07 64.57 83.70 91.88 48.68 65.26 70.72
CONCH 31.97 41.86 40.07 75.71 62.64 65.10 38.78 49.60 50.21 48.82 51.37 51.79

Adapted modality: Multi-modal
PromptSRC Prompt all-layers CLIP 38.06 45.92 53.76 49.23 58.67 63.42 56.17 69.44 74.12 47.82 58.01 63.77

DFN 35.88 44.62 51.73 46.27 57.16 63.04 54.32 68.28 74.95 45.49 56.69 63.24
QuiltNet 39.82 47.16 53.48 48.54 57.29 62.73 55.12 70.65 76.31 47.83 58.37 64.17
CONCH 33.11 41.27 47.59 42.83 55.46 61.37 49.05 61.92 70.36 41.66 52.88 59.77

MaPLe Prompt Shallow repr CLIP 29.74 39.85 47.63 35.88 47.92 56.34 39.07 55.75 65.65 34.90 47.84 56.54
DFN 13.38 21.60 23.58 27.44 36.79 48.61 48.02 58.54 69.27 29.61 38.98 47.15
QuiltNet 41.95 30.79 49.08 44.72 55.86 62.98 49.95 75.56 78.70 45.54 54.07 63.59
CONCH 28.28 34.13 31.79 31.04 41.85 52.67 18.96 44.52 54.46 26.09 40.17 46.31

MMA Adapter Deep repr CLIP 22.54 33.27 41.92 27.48 41.85 52.06 23.93 32.87 47.27 24.65 36.00 47.08
DFN 38.80 38.80 37.80 25.46 34.64 42.73 30.53 34.23 39.43 31.60 35.89 39.99
QuiltNet 23.80 23.87 44.53 32.26 44.37 55.01 32.90 52.63 76.43 29.65 40.29 58.66
CONCH 25.74 33.69 41.12 36.55 44.80 55.03 28.64 36.47 47.82 30.31 38.32 47.99

MMRL Adapter Deep (late semantic) CLIP 31.59 43.97 53.22 34.77 57.64 62.88 56.42 71.55 82.49 40.93 57.72 66.20
DFN 30.92 43.92 50.38 44.33 53.47 59.62 58.24 82.22 87.47 44.50 59.87 65.82
QuiltNet 43.89 55.42 61.78 52.77 63.92 70.46 73.68 89.42 91.64 56.78 69.59 74.63
CONCH 31.05 35.25 42.03 43.67 54.88 61.91 57.60 76.78 84.82 44.11 55.64 62.92

MMRL++ Adapter Deep repr CLIP 28.95 45.59 49.31 33.07 63.89 64.72 62.73 84.25 88.44 41.58 64.58 67.49
DFN 26.46 45.95 51.57 47.75 61.95 62.95 60.96 82.38 87.10 45.06 63.43 67.21
QuiltNet 44.85 61.26 58.13 50.44 60.37 67.21 72.10 88.06 90.49 55.80 69.90 71.94
CONCH 29.03 31.26 33.87 41.77 51.32 58.84 52.64 57.07 63.52 41.15 46.55 52.08

case demographics — key for evaluating detection, calibration, and cross-site generalization in342

NFT-pathology modeling.343

B.2 Experimental Evaluation344

B.2.1 Zero Shot345

Prompts such as, "a pathology tissue showing", "a photo of" and "a histopathological image of" is346

appended before the class labels of the respective pathology and natural image datasets, as a prompt347

tuning method. No training data is provided, and the prompt tuning experiment reporting highest348

accuracy is recorded for the VLM in Table A1. Figure 1 also illustrates performance on CIFAR-100349

dataset to show affinity to natural image vs pathology domain respectively.350

B.2.2 PEFT351

We implemented a diverse set of parameter-efficient fine-tuning (PEFT) methods spanning prompt-352

based, adapter-based, and low-rank approaches in order to evaluate their adaptability across both353

vision–language models (CLIP, DFN) and pathology foundation models (QuiltNet, CONCH). All354

experiments were initialized from official pretrained checkpoints, with all parameters frozen except355

for the lightweight modules introduced by each PEFT method. To ensure rigor and fairness, we356

closely followed the training protocols recommended in the original works, while conducting narrow357

hyperparameter tuning grids to address instability or outlier behaviors.358

Text-modality adaptation. CoOp was trained for 50 epochs with 16 learnable tokens (fp16),359

initialized with either natural language prompts (“a pathology tissue showing,” “a photo of,” “a360

histopathological image of”) or pure tokens. CoCoOp used four tokens initialized with three prompts361

and converged within 10 epochs.362
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Figure A4: Randomly sampled images from three representative tasks and datasets.

Image-modality adaptation. Linear probing trained only a shallow classifier. CLIP-RFC fine-tuned363

a residual feature connection on ViT-B/16 for 10 epochs with cross-entropy loss, AdamW, learning364

rate 1 × 10−4, and α = 0.8. ProVP trained 16 learnable prompts on CLIP ViT-B/16 with SGD,365

cosine LR scheduler, batch size 64, weight decay 0.0005, and max 50 epochs.366

Multi-modality adaptation. PromptSRC added both text and vision prompts (4 tokens each, depth367

9), with losses weighted following the original paper. MaPLe, MMA, MMRL, and MMRL++ jointly368

tuned text and vision modules with default bottleneck or prompt dimensions, applying light tuning for369

CONCH. LoRA inserted rank-16, α = 32 low-rank adapters into ViT-B/16 attention layers, trained370

for 10 epochs with batch size 16, learning rate 1× 10−4, and weight decay 0.005.371

All experiments were capped at 10–50 epochs or early-stopped by non-decreasing training loss with372

a patience of 5 epochs. Few-shot experiments used 1, 8, and 16 samples per class across three seeds;373

no extra labeled data was provided. FLOPs, trainable parameters, and VRAM usage were recorded374

on Tesla T4 GPUs (16 GB). Most runs were performed on Tesla T4 GPUs (16 GB), with large-scale375

LoRA and adapters configuration design also tested on NVIDIA L40S GPUs (48 GB).376

C Related Background Literature377

C.1 Vision–Language Models (VLMs)378

Contrastive pretraining. CLIP-style VLMs comprise an image encoder fθ : RH×W×3 → Rd,379

and a text encoder gϕ : T →Rd, trained on paired image–text data {(xi, ti)}Bi=1, with a symmetric380

InfoNCE objective and temperature τ . With L2-normalized embeddings and dot-product similarity,381

the batch loss is,382

L = 1
2

[
1

B

B∑
i=1

(
− log

exp
(
⟨fθ(xi), gϕ(ti)⟩/τ

)∑B
j=1 exp

(
⟨fθ(xi), gϕ(tj)⟩/τ

))

+
1

B

B∑
i=1

(
− log

exp
(
⟨gϕ(ti), fθ(xi)⟩/τ

)∑B
j=1 exp

(
⟨gϕ(ti), fθ(xj)⟩/τ

))].
(1)

Zero-shot classification forms class prototypes zc = gϕ(tc) from prompts tc and predicts ŷ =383

argmaxc⟨fθ(x), zc⟩.384

From web-scale pretraining to pathology. Generic CLIP models learn from noisy web corpora.385

The domain gap to histopathology stems from ultra-high resolution, stain and scanner variability,386

texture-dominant cues, and specialized terminology Lai et al. [2024]. CLIP (and stronger Open-387

CLIP/DFN variants) provides the open-domain baseline; Domain-adapted VLMs aim to reduce388

this gap via curated image–text corpora: QuiltNet leverages the large curated Quilt-1M pathology389

corpus with template captions Ikezogwo et al. [2023]; CONCH mines pathology-specific captions390
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for contrastive pretraining Lu et al. [2024]; and PLIP/BioMedCLIP are broader biomedical-tilted391

VLMs Huang et al. [2023], Zhang et al. [2023].392

Vision-only pathology foundational models : Although there have been multiple foundational393

vision-only pathology models such as UNI [?] and Virchow [?]. They are beyond the scope for this394

work as we focus only on VLMs.395

C.2 Parameter-Efficient Fine-Tuning (PEFT)396

Having already mentioned the PEFT strategies by their modalities (Axis A) in 2, we now classify397

PEFT strategies by their parameterization strategy: (i) prompt learning, (ii) adapter modules, (iii)398

low-rank updates (LoRA), and (iv) mixed methods. Each strategy modifies a frozen VLM differently,399

trading off efficiency, expressivity, and alignment.

Table A5: Taxonomy placement of PEFT methods arranged by Axis A (What) and ordered within
each block by Axis B (How) and Axis C (Where).

Method Axis A: Modality (What) Axis B: Parameterization (How) Axis C: Locus (Where)

Text-only
CoOp Text-only Prompting Input-level
CoCoOp Text-only Prompting Input-level

Image-only
ProVP Image-only Prompting All layers
CLIPath (RFC) Image-only Adapters (residual fusion) Embed. / head-level
Linear Probe Image-only Adapters (head) Embed. / head-level
LoRAImg Image-only LoRA (low-rank updates) Deep repr

Multimodal
MaPLe Multimodal Prompting Shallow repr
PromptSRC Multimodal Prompting All layers
MMA Multimodal Adapters Deep repr
MMRL Multimodal Mixed Deep repr
MMRL++ Multimodal Mixed (prompts + Deep repr

400

C.2.1 Prompt-based PEFT401

Prompt-based methods learn additional tokens that steer the frozen text or vision encoder. The402

prototypical formulation comes from CoOp. Let p ∈ Rm×d denote m learnable context vectors403

prepended to the textual embedding of class y. The logit for class c is:404

zc(x) = ⟨fθ(x), gϕ([p; “class c”])⟩, (2)
and the cross-entropy loss is:405

LCoOp(x, y) = − log
exp(zy(x)/τ)∑
c exp(zc(x)/τ)

. (3)

CoCoOp generalizes this by generating p(x) conditioned on image features, improving base-to-novel406

generalization. ProVP extends prompting into the vision encoder by inserting learnable tokens407

progressively across transformer blocks. PromptSRC introduces self-regularization to stabilize408

learned prompts under scarce labels for both text and vision encoders. MaPLe couples image and text409

prompts hierarchically to improve multimodal alignment.410

C.2.2 Adapter-based PEFT411

Adapter methods insert light trainable layers into frozen encoders. A general formulation is given412

by CLIPath (RFC) [Lai et al., 2024], which fuses frozen CLIP features fθ(x) with residual adapters413

rψ(x):414

f∗ = αL(f) + (1− α) f, (4)

We then replace f with f∗ in the CLIP contrastive objective (Eq. 1) and optimize the trainable layers415

using the symmetric InfoNCE loss. This residual fusion connection (RFC) stabilizes learning in416

pathology with limited data.417

CLIP-Adapter [Gao et al., 2024] implements a shallow MLP on visual features, while Tip-418

Adapter [Zhang et al., 2022] builds from cached training features for training-free adaptation.419

MMA [Yang et al., 2024] extends adapters to both image and text encoders, jointly fine-tuning420

lightweight modules across modalities.421
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C.2.3 Low-Rank Update (LoRA)422

LoRA [?] injects trainable low-rank decompositions into weight matrices. Given a frozen weight423

W ∈ Rd×k, LoRA reparameterizes it as:424

W ′ = W + ∆W, ∆W =
αlora

r
AB, A∈Rd×r, B∈Rr×k, r ≪ min(d, k), (5)

while r ≪ min(d, k). Only A and B are trainable; αlora is a scaling hyperparameter. This significantly425

reduces parameters, and has been applied to both text and vision transformer blocks in VLMs. Variants426

include LoRA-Text, LoRA-Image, and multimodal LoRA, depending on placement.427

C.2.4 Mixed PEFT428

Mixed methods like Representation-learning methods add regularizers that directly constrain multi-429

modal embeddings, using a combination of multiple strategies like prompt-based and LoRA. MMRL430

introduces multimodal robust learning by aligning image and text adapters with consistency and431

distributional regularizers. Let fθ(x) and gϕ(t) be frozen features, and f̃ψ(x), g̃ψ(t) their adapted432

representations. MMRL minimizes:433

LMMRL = Lcls
(
f̃ψ(x), g̃ψ(t); y

)
+ λimg

∥∥f̃ψ(x) − fθ(x)
∥∥2
2
+ λtxt

∥∥g̃ψ(t) − gϕ(t)
∥∥2
2

+ λalign D
(
f̃ψ(x), g̃ψ(t)

)
,

(6)

where Lcls is the classification cross-entropy and D(·, ·) enforces multimodal agreement (e.g., cosine434

distance, MMD, or InfoNCE-style alignment).435

MMRL++ simplifies these regularizers with fewer parameters and faster convergence, while preserv-436

ing cross-modal robustness.437

C.3 Related Work: Benchmarks of PEFT+VLMs in Pathology438

Recent surveys and benchmarks have begun to evaluate parameter-efficient finetuning (PEFT) in439

vision-language models (VLMs), but none provide a systematic, pathology-focused treatment. [Mai440

et al., 2025] unify PEFT strategies such as LoRA, adapters, and prompts across vision backbones,441

yet only include a single small pathology dataset (Camelyon) and one VLM configuration, without442

analyzing patch-based pathology, few-shot regimes, or alignment/localization under PEFT choices.443

[Lee et al., 2025] benchmark pathology FMs across 14–20 datasets and note that PEFT can be effective,444

but their scope is finetuning strategies for pathology-specific FMs, not systematic taxonomies of445

PEFT across CLIP-like VLMs or neuropathology tasks> They also do not provide evaluations for446

different types of PEFT methods. Related surveys catalog computational pathology (CPath) FMs and447

applications but similarly lack PEFT-structured comparisons or patch-level interpretability analyses448

Ochi et al. [2025], Chanda et al. [2024]. In contrast, our work is the first benchmark of PEFT+VLMs449

specifically for pathology, spanning cancer (SICAPv2, NCT) and neurodegeneration (NFT), across450

both open-domain and pathology-pretrained VLMs. We contribute a modality-aware taxonomy and451

a multi-dataset benchmark under both full-data and few-shot settings, explicitly linking accuracy452

vs. AUCROC trade-offs to efficiency (compute/storage), and uniquely incorporating alignment and453

localization insights for task alignment.454

C.4 Broader Impact455

Parameter-efficient fine-tuning (PEFT) lowers the cost, memory, and expertise required to adapt vision–456

language models for histopathology. Our benchmark suggests that lightweight adapters/prompts/low-457

rank updates allow generalist models to approach—and sometimes exceed—pathology-pretrained458

models under full-data settings, while using a small fraction of trainable parameters and VRAM. This459

can broaden access for resource-constrained labs and modestly reduce environmental footprint. Our460

re-annotated NFT localization set also encourages evaluation beyond topline accuracy by testing461

whether models attend to pathologically meaningful regions. Our dataset is also already de-identified.462

Risks remain: inconsistent localization on complex cases, a residual few-shot gap favoring pathology-463

pretrained models, domain shift across scanners/stains/sites, and annotation variability. We recom-464

mend (i) conservative, domain-bounded claims and research-only use; (ii) pairing accuracy with465
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localization/uncertainty metrics; (iii) We report hardware and compute footprints to aid replication466

and impact estimation.467
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NeurIPS Paper Checklist468

1. Claims469

Question: Do the main claims made in the abstract and introduction accurately reflect the470

paper’s contributions and scope?471

Answer: [Yes]472

Justification: The abstract/intro state the key claims—a pathology-focused PEFT taxon-473

omy/benchmark across VLMs+PFMs, and that PEFT can let generalist VLMs rival or474

exceed PFMs under full-data, while PFMs keep a few-shot edge; these are borne out in the475

results. See Intro Sec 1 and Sec 3 Results.476

2. Limitations477

Question: Does the paper discuss the limitations of the work performed by the authors?478

Answer: [Yes]479

Justification: The paper notes inconsistent localization in complex multi-NFT tiles and480

that pathology VLMs retain an advantage in extreme few-shot; it recommends align-481

ment/localization evaluation beyond topline accuracy. See Conclusion, Sec 4.482

3. Theory assumptions and proofs483

Question: For each theoretical result, does the paper provide the full set of assumptions and484

a complete (and correct) proof?485

Answer: [NA] e486

Justification: Theoretical or formal proofs are not a contribution of this work.487

4. Experimental result reproducibility488

Question: Does the paper fully disclose all the information needed to reproduce the main ex-489

perimental results of the paper to the extent that it affects the main claims and/or conclusions490

of the paper (regardless of whether the code and data are provided or not)?491

Answer: [Yes]492

Justification:We specify models, datasets, data regimes (full vs. 1/8/16-shot), training recipes493

(epochs, early stopping, optimizers, etc ), and PEFT-specific hyperparameters; few-shot runs494

are repeated over three seeds. B.2 Further, we will make our code repository and dataset495

avaialble for public use and reproducibility.496

5. Open access to data and code497

Question: Does the paper provide open access to the data and code, with sufficient instruc-498

tions to faithfully reproduce the main experimental results, as described in supplemental499

material?500

Answer: [No]501

Justification: At submission, no code/data URL is included. The paper relies on public502

images and introduces NFT localization annotations described in the text; code and novel503

annotation releases are planned post-review. Code will be made available at a GitHub504

repository. The author can not share the dataset and code at present, without violating505

confidentiality or annonymity. The dataset currently includes the annotators’ personal506

information, code also includes substantial information about the authors. This information507

will be scrubbed from the dataset and will be provided for public use.508

6. Experimental setting/details509

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-510

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the511

results?512

Answer: [Yes]513

Justification: Data preparation/splits, prompts, training schedules, and method-specific514

settings (e.g., token counts, ranks, adapter depths) are documented; evaluation metrics515

(Acc/AUC) are defined. See Appendix B.2 and Section 2516

7. Experiment statistical significance517
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Question: Does the paper report error bars suitably and correctly defined or other appropriate518

information about the statistical significance of the experiments?519

Answer: [No]520

Justification: We report averages over three seeds for few-shot but do not include error521

bars/confidence intervals for brevity sake; adding stdev/CIs is feasible in the camera-ready.522

8. Experiments compute resources523

Question: For each experiment, does the paper provide sufficient information on the com-524

puter resources (type of compute workers, memory, time of execution) needed to reproduce525

the experiments?526

Answer: [Yes]527

Justification: We report GPU types (T4 16 GB; L40S 48 GB) and efficiency metrics528

(GFLOPs, trainable params, peak VRAM by method; 2), but not wall-clock time or total529

compute for each run. We can provide that in the camera-ready version, it was omitted for530

brevity sake as it did not affect the messaging of the paper. The full research project did not531

require more compute than mentioned, and we do report compute workers, relevant memory532

and storage.533

9. Code of ethics534

Question: Does the research conducted in the paper conform, in every respect, with the535

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?536

Answer: [Yes]537

Justification: Work uses de-identified pathology datasets and expert re-annotation; no538

personal data or interventions with human subjects; anonymity preserved for review.539

10. Broader impacts540

Question: Does the paper discuss both potential positive societal impacts and negative541

societal impacts of the work performed?542

Answer: [Yes]543

Justification: We discuss positive impacts (lowering compute/memory barriers, alignment-544

aware evaluation) and risks (domain shift, miscalibration, reduced reliability in complex545

cases, inconsistent localization) with mitigations; see Broader Impact Appendix section C.4546

and Conclusion section4.547

11. Safeguards548

Question: Does the paper describe safeguards that have been put in place for responsible549

release of data or models that have a high risk for misuse (e.g., pretrained language models,550

image generators, or scraped datasets)?551

Answer: [NA]552

Justification: No high-risk generative models or scraped web corpora are released with this553

submission; any planned assets will follow controlled and de-identified release practices.554

12. Licenses for existing assets555

Question: Are the creators or original owners of assets (e.g., code, data, models), used in556

the paper, properly credited and are the license and terms of use explicitly mentioned and557

properly respected?558

Answer: [Yes]559

Justification: No licence provided by [Vizcarra et al., 2023] - https://github.560

com/Gutman-Lab/yolo-braak-stage, [Ghandian et al., 2024] make their data avail-561

able at https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD1165 un-562

der https://creativecommons.org/publicdomain/zero/1.0/legalcode CCO li-563

cence. We credit and cite them, as well as properly respect the terms of their licence. The564

authors of both the studies were reached out to, for the purposes of this study and duly565

informed about the usage of their datasets.566

13. New assets567
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Question: Are new assets introduced in the paper well documented and is the documentation568

provided alongside the assets?569

Answer: [No]570

Justification: The NFT annotation resource is introduced and documented (consensus/union571

labels, inter-rater variability), but no packaged release/docs accompany the submission; a572

dataset card will be provided upon release.573

14. Crowdsourcing and research with human subjects574

Question: For crowdsourcing experiments and research with human subjects, does the paper575

include the full text of instructions given to participants and screenshots, if applicable, as576

well as details about compensation (if any)?577

Answer: [NA]578

Justification: No crowdsourcing or human-subject experiments were conducted; annotations579

were made by domain experts on de-identified images.580

15. Institutional review board (IRB) approvals or equivalent for research with human581

subjects582

Question: Does the paper describe potential risks incurred by study participants, whether583

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)584

approvals (or an equivalent approval/review based on the requirements of your country or585

institution) were obtained?586

Answer: [NA]587

Justification: The study analyzes existing de-identified images with expert re-annotation588

only; no recruitment or intervention with human participants.589

16. Declaration of LLM usage590

Question: Does the paper describe the usage of LLMs if it is an important, original, or591

non-standard component of the core methods in this research? Note that if the LLM is used592

only for writing, editing, or formatting purposes and does not impact the core methodology,593

scientific rigorousness, or originality of the research, declaration is not required.594

Answer: [NA]595

Justification: The research methods and results do not rely on LLMs for experiments; any596

editing assistance is unrelated to methodology.597
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