
Under review as a conference paper at ICLR 2023

SGD AND WEIGHT DECAY PROVABLY INDUCE A
LOW-RANK BIAS IN NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We analyze deep ReLU neural networks trained with mini-batch Stochastic Gradi-
ent Descent (SGD) and weight decay. We show, both theoretically and empirically,
that when training a neural network using SGD with weight decay and small batch
size, the resulting weight matrices tend to be of small rank. Our analysis relies on
a minimal set of assumptions; the neural networks may be arbitrarily wide or deep,
and may include residual connections, as well as convolutional layers. The same
analysis implies the inherent presence of SGD “noise”, defined as the inability of
SGD to converge to a stationary point. In particular, we prove that SGD noise
must always be present, even asymptotically, as long as we incorporate weight
decay and the batch size is smaller than the total number of training samples.

1 INTRODUCTION

Stochastic gradient descent (SGD) is one of the standard workhorses for optimizing deep mod-
els (Bottou, 1991). Though initially proposed to remedy the computational bottleneck of gradient
descent (GD), recent studies suggest that SGD also induces crucial regularization, which prevents
overparameterized models from converging to minima that cannot generalize well (Zhang et al.,
2016; Jastrzebski et al., 2017; Keskar et al., 2017; Zhu et al., 2019). Empirical studies suggest that
SGD outperforms GD Zhu et al. (2019) and SGD generalizes better when used with smaller batch
sizes (Hoffer et al., 2017; Keskar et al., 2017), and (iii) gradient descent with additional noise can-
not compete with SGD Zhu et al. (2019). The full range of regularization effects induced by SGD,
however, is not yet fully understood.

In this paper we present a mathematical analysis of the bias of SGD towards rank-minimization.
To investigate this bias, we propose the SGD Near-Convergence Regime as a novel approach for
investigating inductive biases of SGD-trained neural networks. This setting considers the case where
SGD reaches a point in training where the expected update is small in comparison to the actual
weights’ norm. Our analysis is fairly generic: we consider deep ReLU networks trained with mini-
batch SGD for minimizing a differentiable loss function with L2 regularization (i.e., weight decay).
The neural networks may include fully-connected layers, residual connections and convolutions.

Our main contributions are:

• In Thm. 1, we demonstrate that training neural networks with mini-batch SGD and weight decay
results in a low-rank bias in their weight matrices. We theoretically demonstrate that when train-
ing with smaller batch sizes, the rank of the learned matrices tends to decrease. This observation
is validated as part of an extensive empirical study of the effect of certain hyperparameters on
the rank of learned matrices with various architectures.

• In Sec. 3.2, we study the inherent inability of SGD to converge to a stationary point, that we
call ‘SGD noise’. In Props. 1-2 we describe conditions in which ‘SGD noise’ is inevitable when
training convolutional neural networks. In particular, we demonstrate that when training a fully-
connected neural network, SGD noise must always be present, even asymptotically, as long as
we incorporate weight decay and the batch size is smaller than the total number of samples.
These predictions are empirically validated in Sec. 4.3.

1

Under review as a conference paper at ICLR 2023

1.1 RELATED WORK

A prominent thread in the recent literature revolves around characterizing the implicit regularization
of gradient-based optimization in the belief that this is key to generalization in deep learning. Several
papers have focused on a potential bias of gradient descent or stochastic gradient descent towards
rank minimization. The initial interest was motivated by the matrix factorization problem, which
corresponds to training a depth-2 linear neural network with multiple outputs w.r.t. the square loss.
Gunasekar et al. (2017) initially conjectured that the implicit regularization in matrix factorization
can be characterized in terms of the nuclear norm of the corresponding linear predictor. This con-
jecture, however, was formally refuted by Li et al. (2020). Later, Razin & Cohen (2020) conjectured
that the implicit regularization in matrix factorization can be explained by rank minimization, and
also hypothesized that some notion of rank minimization may be key to explaining generalization in
deep learning. Li et al. (2020) established evidence that the implicit regularization in matrix factor-
ization is a heuristic for rank minimization. Beyond factorization problems, Ji & Telgarsky (2020)
showed that gradient flow (GF) training of univariate linear networks w.r.t. exponentially-tailed
classification losses learns weight matrices of rank 1.

With nonlinear neural networks, however, things are less clear. Empirically, a series of papers (Den-
ton et al., 2014; Alvarez & Salzmann, 2017; Tukan et al., 2021; Yu et al., 2017; Arora et al., 2018)
showed that replacing the weight matrices by low-rank approximations results in only a small drop
in accuracy. This suggests that the weight matrices at convergence may be close to low-rank matri-
ces. However, whether they provably behave this way remains unclear. Timor et al. (2022) showed
that for ReLU networks, GF generally does not minimize rank. They also argued that sufficiently
deep ReLU networks can have low-rank solutions under L2 norm minimization. This interesting
result, however, applies to layers added to a network that already solves the problem and may not
have any low-rank bias. It is not directly related to the mechanism described in this paper, which
applies to all layers in the network but only in the presence of regularization and SGD unlike (Timor
et al., 2022). A recent paper (Le & Jegelka, 2022) analyzes low-rank bias in neural networks trained
with GF (without regularization). While this paper makes significant strides in extending the anal-
ysis in (Ji & Telgarsky, 2020), it makes several limiting assumptions. As a result, their analysis is
only applicable under very specific conditions, such as when the data is linearly separable, and their
low-rank analysis is limited to a set of linear layers aggregated at the top of the trained network.

2 PROBLEM SETUP

In this work we consider a standard supervised learning setting (classification or regression), and
study the inductive biases induced by training a neural network with mini-batch SGD along with
weight decay. Formally, the task is defined by a distribution P over samples (x, y) ∈ X ×Y , where
X ⊂ Rc1×h1×w1 is the instance space (e.g., images), and Y ⊂ Rk is a label space.

We consider a parametric model F ⊂ {f ′ : X → Rk}, where each function fW ∈ F is specified by
a vector of parameters W ∈ RN . A function fW ∈ F assigns a prediction to any input point x ∈ X ,
and its performance is measured by the Expected Risk, LP (fW) := E(x,y)∼P [ℓ(fW (x), y)], where
ℓ : Rk × Y → [0,∞) is a non-negative, differentiable, loss function (e.g., MSE or cross-entropy
losses). For simplicity, in the analysis we focus on the case where k = 1.

Since we do not have direct access to the full population distribution P , the goal is to learn a pre-
dictor, fW , from some training dataset S = {(xi, yi)}mi=1 of independent and identically distributed
(i.i.d.) samples drawn from P . Traditionally, in order to avoid overfitting the training data, we typ-
ically employ weight decay in order to control the complexity of the learned model. Namely, we
intend to minimize the Regularized Empirical Risk, Lλ

S(fW) := 1
m

∑m
i=1 ℓ(fW (xi), yi)+λ∥W∥22,

where λ > 0 is predefined hyperparameter. In order to minimize this objective, we typically use
mini-batch SGD, as detailed below.

Optimization. In this work, we minimize the regularized empirical risk Lλ
S(fW) by applying

stochastic gradient descent (SGD) for a certain number of iterations T . Formally, we initialize W0

using a standard initialization procedure, iteratively update Wt for T iterations and return WT . At
each iteration, we sample a subset S̃ = {(xij , yij)}Bj=1 ⊂ S uniformly at random and update
Wt+1 ←Wt − µ∇WLλ

S̃
(fWt), where µ > 0 is a predefined learning rate.

2

Under review as a conference paper at ICLR 2023

Notation. Throughout the paper, we use the following notations. For an integer k ≥ 1, [k] =
{1, . . . , k}. ∥z∥ denotes the Euclidean norm. For two given vectors x ∈ Rn, y ∈ Rm we define
their concatenation as follows (x∥y) := (x1, . . . , xn, y1, . . . , ym) ∈ Rn+m. For a given matrix
x ∈ Rn×m, we denote xi,: its i’th row and by vec(x) := (x1∥ . . . ∥xn) its vectorization. For a given
tensor x ∈ Rc×h×w, we denote by vec(x) := (vec(x1)∥ . . . ∥vec(xc)) the vectorized form of x. We
define tensor slicing as follows, xa:b := (xa, . . . , xb).

2.1 ARCHITECTURES

In this work, the function fW represents a neural network, consisting of a set of layers of weights
interlaced with ReLU activation units. We employ a fairly generic definition of a neural network,
that includes convolutional layers, pooling layers, residual connections and fully-connected layers.

Network architecture. Formally, fW is as a directed acyclic graph (DAG) G = (V,E), where
V = {v1, . . . , vL} consists of the various layers of the network and each edge eij = (vi, vj) ∈ E
specifies a connection between two layers. Each layer is a function vi : Rc1×h1×w1 → Rci×hi×wi

and each connection (vi, vj) holds a transformation Cij : Rcj×hj×wj → Rci×hi×wi . The layers
are divided into three categories: (i) the input layer v1, (ii) the output layer vL and (iii) intermediate
layers. In this setting, we do not have connections directed towards the input layer nor connections
coming out of the output layer (i.e., ∀ i ∈ [L] : (vL, vi), (v0, vi) /∈ E). Given an input x ∈
Rci×hi×wi , the output of a given layer vi is evaluated as follows vi(x) := σ(

∑
j∈pred(i) C

ij(vj(x))),
except for the output layer vL that computes fW (x) := vL(x) :=

∑
j∈pred(L) C

Lj(vj(x)). Here,
pred(i) := {j ∈ [L] | (vi, vj) ∈ E}, succ(i) := {j ∈ [L] | (vj , vi) ∈ E} and σ is the ReLU
activation function. Each transformation Cij is either trainable (e.g., a convolutional layer) or a
constant affine transformation (e.g., a residual connection). We denote by ET the set of trainable
connections. In this paper, we consider the following transformations.

Convolutional layers. A convolutional layer (Lecun et al., 1998) (see also Goodfellow et al.
(2016)) Cij : Rcj×hj×wj → Rci×hi×wi with kernel sizes (k1, k2), padding p and stride s is param-
eterized by a tensor Zij ∈ Rci×cj×k1×k2 and computes the following tensor as output

∀ (c, t, l) ∈ [ci]×[hi]×[wi] : yc,t,l =

cj∑
c′=1

vec(Zc,c′, :)
⊤ ·vec(Padp(x)c′,ts : (t+1)s+k1,ls : (l+1)s+k2

). (1)

Here, Padp takes a tensor x ∈ Rc×h×w and returns a new tensor x′ ∈ Rc×(h+2p)×(w+2p), where the
first and last p rows and columns of each channel x′

c, : , : are zeros and the middle 1× h×w tensor
is equal to xc, : , : . The formulas for the output dimensions are h2 = (⌊(h1 − k1 + 2p)⌋/s+ 1) and
w2 = (⌊(w1 − k2 + 2p)⌋/s+ 1). For a given convolutional layer Cij with weights Zij , we define
a matrix V ij ∈ Rcihiwi×cjhjwj that computes ∀ x ∈ Rcj×hj×wj : V ijvec(x) = vec(Cij(x)).
This matrix exists since both the padding and convolution operations can be represented as linear
operations of the input. We also consider W ij ∈ Rci×cjk1k2 which is a matrix whose c’th row is the
vectorized filter W ij

c := vec(Zij
c, : , :).

Fully-connected layers. As a special case of convolutional layers, the network may also include
fully-connected layers. Namely, a fully-connected layer F : Rc1 → Rc2 associated with a matrix
W ∈ Rc2×c1 can be represented as a 1 × 1 convolutional layer C : Rc1×1×1 → Rc2×1×1 with
k1 = k2 = 1, p = 0 and s = 1. Namely, the parameters tensor Z ∈ Rc2×c1×1×1 satisfies
Za,b,1,1 = Wa,b for all (a, b) ∈ [c2]× [c1] and the layer satisfies vec(C(x)) = Wvec(x).

Pooling layers. A pooling layer (Zhou & Chellappa, 1988) (see also (Goodfellow et al., 2016)) C
with kernel dimensions (k1, k2) stride s and padding p takes an input x ∈ Rc1×h1×w1 and computes
an output y ∈ Rc2×h2×w2 with c2 = c1 channels, and dimensions h2 = (⌊(h1 − k1 + 2p)⌋/s+ 1)
and w2 = (⌊(w1 − k2 + 2p)⌋/s+ 1). Each pooling layer computes the following tensor as output

∀ (c, t, l) ∈ [ci]× [hi]× [wi] : yc,t,l = op(Padp(x)c,ts : (t+1)s+k1,ls : (l+1)s+k2
), (2)

where op is either the maximum or average operator.

Rearrangement layers. To conveniently switch between convolutional and fully-connected layers,
we should be able to represent tensor layers as vectors and vice versa. To reshape the representation
of a certain layer, we allow the networks to include rearrangement layers. A rearrangement layer

3

Under review as a conference paper at ICLR 2023

Cij : Rcj×hj×wj → Rci×hi×wi takes an input vector x ∈ Rcj×hj×wj and ‘rearranges’ its coor-
dinates in a different shape and permutation. Formally, it returns a vector (xπ(k))k∈[cj]×[hj]×[wj],
where π : [cj]× [hj]× [wj]→ [ci]× [hi]× [wi] is invertible (in particular, cihiwi = cjhjwj).

3 THEORETICAL RESULTS

In this section we describe our main theoretical results. We investigate the inductive biases that
emerge near convergence when training with SGD. For this purpose, we begin by introducing our
definitions of SGD convergence (and near convergence) points.

To formally study convergence, we employ the notion of convergence in mean of random variables.
Namely, we say that a sequence of random variables {Wt}∞t=1 ⊂ RN starting from a certain vector
W0 ∈ RN (constant) converges in mean if the following holds

∃W ∗ ∈ RN : lim
t→∞

E[∥Wt −W ∗∥] = 0.

As a consequence of this definition, we have
lim
t→∞

E[∥Wt+1 −Wt∥] ≤ lim
t→∞

E[∥Wt+1 −W ∗∥] + lim
t→∞

E[∥Wt −W ∗∥] = 0,

where the expectations are taken over the selections of the mini-batches. In particular, convergence
is possible only when the expected size of each step tends to zero. In particular, when training the
network using mini-batch SGD along with weight decay, we have

lim
t→∞

ES̃ [∥∇L
λ
S̃
(fWt

)∥] = lim
t→∞

1
µE[∥Wt+1 −Wt∥] = 0. (3)

In this work we study the implicit biases of SGD by investigating the “SGD Near Convergence
Regime”, where SGD arrives at a point in training where each subsequent step is small compared
to the actual weights, i.e., ES̃ [∥∇W ijLλ

S̃
(fWT

)∥/∥W ij
T ∥] is small. In Sec. 3.1 we show that near-

convergence, mini-batch SGD learns neural networks with low-rank matrices and in Sec. 3.2 we
prove that perfect SGD convergence is impossible in the presence of weight decay.

We acknowledge that our definition differs from the traditional notions of convergence. Several
papers study the convergence of SGD to a point where the performance is near-optimal when
the learning rate µt decays with the number of iterations. In these cases, convergence is guaran-
teed since µt tends to zero. These papers, however, do not analyze whether the expected gradi-
ents ES̃ [∥∇W ij

t
Lλ
S̃
(fWt

)∥] also decays at each step. Other papers (e.g., (Soudry & Carmon, 2016;
Cooper, 2021)) study the critical points of the objective function to better understand the solutions
of gradient-based optimization methods. While understanding the critical points of the objective
function is necessary for characterizing the convergence points of GD and GF, SGD does not neces-
sarily converge at these points. For instance, suppose Wt is a stationary point of Lλ

S(fW) and there
exists a batch S̃ for which ∇WLλ

S̃
(fWt

) ̸= 0. With probability
(
m
B

)−1
> 0 SGD selects the batch

S̃ and updates Wt+1 = Wt − µ∇Lλ
S̃
(fWt

) ̸= Wt. Therefore, p = P[Wt+1 ̸= Wt | Wt] > 0 and
P[∃ l ∈ [T ′] : Wt+l ̸= Wt | Wt] ≥ 1 − (1 − p)T

′ −−−−→
T ′→∞

1. As a result, the probability of the

optimization becoming stuck at Wt indefinitely is zero.

3.1 LOW-RANK BIAS IN NEURAL NETWORKS

We begin our theoretical analysis with the simple observation (proved in Appendix A) that the
number of input patches N ij of a certain convolutional layer Cij upper bounds the rank of the
gradient of the network w.r.t. W ij .
Lemma 1. Let fW be a neural network and let Cij be a convolutional layer within fW with param-
eters matrix W ij . Then, rank (∇W ijfW (x)) ≤ N ij .

Interestingly, we obtain particularly degenerate gradients for fully-connected layers. As discussed
in Sec. 2.1 for a fully-connected layer Cij : Rcj×1×1 → Rci×1×1 we have N ij = 1, and therefore,
rank (∇W ijfW (x)) ≤ 1.

The following theorem provides an upper bound on the minimal distance between the network’s
weight matrices and low-rank matrices.

4

Under review as a conference paper at ICLR 2023

Theorem 1. Let ∥ · ∥ be any matrix norm and ℓ any differentiable loss function. Let fW (x) be a
ReLU neural network and Cij be a convolutional layer within fW and let B ∈ [m]. Then,

min
W∈Rdi×dj :

rank(W)≤NijB

∥ W ij

∥W ij∥ −W∥ ≤ 1
2λ min

S̃⊂S:
|S̃|=B

∥∇W ijLλ
S̃
(fW)∥/∥W ij∥

Proof. Let S̃ ⊂ S be a batch of size B. By the chain rule, we can write the gradient of the loss
function as follows

∇W ijLλ
S̃
(fW) = 1

B

∑
(x,y)∈S̃

∂ℓ(fW (x),y)
∂fW (x) · ∇W ijfW (x) + 2λW ij =: −ES̃ + 2λW ij .

According to Lem. 1, we have rank(1
2λES̃) ≤ BN ij . Therefore, we obtain that

min
W : rank(W)≤BNij

∥W ij −W∥ ≤ min
S̃⊂S: |S̃|=B

∥W ij − 1
2λ

ES̃∥ = 1
2λ

min
S̃⊂S: |S̃|=B

∥∥∥∇W ijL
λ
S̃(fW)

∥∥∥ .
Finally, by dividing both sides by ∥W ij∥ we obtain the desired inequality.

The theorem above provides an upper bound on the minimal distance between the param-
eters matrix W ij and a matrix of rank ≤ BN ij . The upper bound is proportional to,
minS̃ ∥∇W ijLλ

S̃
(fW)∥/∥W ij∥, which is the minimal norm of the gradient of the regularized em-

pirical risk evaluated on batches of size B, normalized by the norm of the weight matrix. As shown
in equation 3, near convergence we expect ES̃ [∥∇W ijLλ

S̃
(fW)∥/∥W ij∥] to be small, and therefore,

minS̃ ∥∇W ijLλ
S̃
(fW)∥/∥W ij∥ should also be small (S̃ is distributed uniformly as a batch of sam-

ples size B). In particular, by the theorem above, we expect minW : rank(W)≤BNij ∥ W ij

∥W ij∥ −W∥ to
also be small. As a result, we predict that the rank of the learned parameter matrices W ij decreases
with the batch size. In Sec. 4 we validate this idea with an extensive set of experiments – and also
study the relationship between the rank and other hyperparameters.

3.2 DEGENERACY AND THE ORIGIN OF “SGD NOISE”

As we mentioned, it is impossible for SGD to converge to a stationary point of the gradient dynam-
ical system, resulting in inherent “SGD noise”. In this section, we study the (non-)convergence of
mini-batch SGD. Our results are essentially impossibility results: the assumption of SGD conver-
gence to a critical point of the gradient implies that the network represents the zero function. As
a result, asymptotic noise is inherently unavoidable (when training properly). For simplicity, we
assume that ∀ i ∈ [m] : xi ̸= 0.

As shown in equation 3, any convergence point W of SGD satisfies ES̃ [∥∇Lλ
S̃
(fW)∥] = 0. Since

the distribution over mini-batches S̃ of size B is discrete and ∥∇Lλ
S̃
(fW)∥ ≥ 0, we obtain that at

convergence we have ∥∇W ijLλ
S̃
(fW)∥ = 0, for all mini-batches S̃ of size B. In particular,

∀S̃ : 0 = ∇W ijLλ
S̃
(fW) =

1

B

∑
(x,y)∈S̃

∂ℓ(fW (x),y)
∂fW (x) · ∇W ijfW (x) + 2λW ij . (4)

Suppose we have two batches S̃1, S̃2 ⊂ S of size B that differ by only one sample. We denote the
unique sample of each batch by (xj1 , yj1) and (xj2 , yj2) respectively. We notice that,

0 = ∇W ijLλ
S̃1
(fW)−∇W ijLλ

S̃2
(fW)

=
∂ℓ(fW (xj1

),yj1
)

∂fW (xj1)
· ∇W ijfW (xj1)−

∂ℓ(fW (xj2
),yj2

)

∂fW (xj2)
· ∇W ijfW (xj2).

Therefore, we conclude that for all j1, j2 ∈ [m],

M ij =
∂ℓ(fW (xj1

),yj1
)

∂fW (xj1)
· ∇W ijfW (xj1) =

∂ℓ(fW (xj2
),yj2

)

∂fW (xj2)
· ∇W ijfW (xj2). (5)

Hence, for all (vi, vj) ∈ ET and k ∈ [m],
∂ℓ(fW (xk),yk)

∂fW (xk)
· ∇W ijf(xk) + 2λW ij = M ij + 2λW ij = 0. (6)

5

Under review as a conference paper at ICLR 2023

Therefore, unless λ = 0 or ∀ (vi, vj) ∈ ET : W ij = 0, we conclude that ∂ℓ(fW (xk),yk)
∂fW (xk)

̸= 0 for all

k ∈ [m]. In this case, we also obtain that { ∂fW (xk)
∂vec(W ij)}

m
k=1 are collinear vectors by equation 5.

Therefore, any convergence point of training a neural network using mini-batch SGD along with
weight decay is highly degenerate and does not fit any one of the training labels. To better understand
the essence of this degeneracy, we provide the following proposition (proved in Appendix A), which
is specialized for ReLU networks.

Proposition 1 (λ > 0). Let ℓ(a, b) be a differentiable loss function, λ > 0, and let fW (x) be a
ReLU neural network, where succ(1) = {p} and (vp, v1) ∈ ET . Let {xk

i }N
p1

k=1 be the Np1 patches of
xi used by the layer Cp1. Let W be a convergence point of mini-batch SGD for minimizing Lλ

S(fW)

(see equation 4). Then, either fW ≡ 0 or ∀ i, j ∈ [m] : {xk
i , x

k
j }N

p1

k=1 are linearly dependent tensors.

The preceding proposition shows that unless the patches of any two training samples are linearly
dependent, any convergence point of SGD corresponds to the zero function. When Np1 is small, the
linear dependence criterion is unrealistic. For example, if Cp1 is a fully-connected layer, Np1 = 1,
and the condition asserts that any two training samples xi, xj are collinear. Since this is unrealistic,
we conclude that convergence is impossible unless fW ≡ 0.

As a next step, we consider convergence of SGD when training without weight decay.

Proposition 2 (λ = 0). Let λ = 0 and let ℓ be a differentiable loss function. Let fW (x) be a
ReLU neural network, where succ(1) = {p} and (vp, v1) ∈ ET is fully-connected. Let {xk

i }N
p1

k=1

be the Np1 patches of xi used by the layer Cp1. Let W be a convergence point of mini-batch SGD
for minimizing Lλ

S(fW). Then, ∀ i ∈ [m] : ∂ℓ(fW (xi),yi)
∂fW (xi)

= 0 or fW (xj) = 0 or ∀ j ∈ [m] :

{xk
i , x

k
j }N

p1

k=1 are linearly dependent tensors.

The preceding proposition (proved in Appendix A) provides conditions for SGD convergence of
training a convolutional network without weight decay. It shows that at convergence, for every
sample the network either perfectly fits the label (i.e., ∂ℓ(fW (xi),yi)

∂fW (xi)
= 0) or outputs zero unless the

patches of that sample are linearly dependent with the patches of any other sample. As mentioned,
the linear dependence criteria is generally unrealistic when (vp, v1) is fully-connected. Therefore,
convergence with fully-connected networks is possible only when fW perfectly fits the training set
labels.

We note that if ℓ(a, b) is convex and has no minima a for any b ∈ R (e.g., binary cross-entropy, lo-
gistic loss or exponential loss), then ∀ i ∈ [m] : ∂ℓ(fW (xi),yi)

∂fW (xi)
̸= 0. Therefore, the only possible con-

vergence points of fully-connected networks are ones for which ∀ i ∈ [m] : fW (xi) = 0. Since this
is in general absurd, we argue that perfect convergence of training a network with exponential-type
loss functions is generally impossible. While convergence to a non-zero function is not guaranteed,
in practice training without weight decay may still fall into the regime of ‘almost convergence’, in
which maxi∈[m]

∣∣∂ℓ(fW (xi),yi)
∂fW (xi)

∣∣ is tiny and as a result the training steps −µ · ∂ℓ(fW (xi),yi)
∂fW (xi)

· ∂fW (xi)
∂W ij

are very small. This is usually the case when an overparameterized network has been properly
trained. For the squared loss, convergence may occur when the network perfectly fits the training
labels, i.e., ∀ i ∈ [m] : fW (xi) = yi.

It is worth noting that training with mini-batches during optimization and weight decay are critical
to our analysis. While many papers examine the training dynamics and critical points of GD, as we
show, SGD convergence points are highly degenerate and, in general, behave differently than GD
solutions. Surprisingly, this analysis is unaffected by batch size, and therefore, the presence of SGD
noise occurs regardless of batch size, as long as it is strictly smaller than the full dataset’s size.

4 EXPERIMENTS

In this section we empirically study the implicit bias towards rank minimization in deep ReLU net-
works. Throughout the experiments we extensively vary different hyperparameters (e.g., the learning
rate, weight decay, and the batch size) and study their effect on the rank of the various matrices in the

6

Under review as a conference paper at ICLR 2023

100 200 300 400 500
Epoch

20

40

60

80

100

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

20

40

60

80

100

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

20

40

60

80

100

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

20

40

60

80

100

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

µ = 0.03 µ = 0.05 µ = 0.1 µ = 0.3

Figure 1: Average ranks and accuracy rates of MLP-BN-10-100 trained on CIFAR10 with
various batch sizes. The top row shows the average rank across layers, while the bottom row shows
the train and test accuracy rates for each setting. Weight decay λ = 5e−4 was used to train each
model. To calculate the rank, we used an ϵ = 0.001 threshold.

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e

Ra
nk

rank; weight decay 0
rank; weight decay 0.0001
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.006

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e

Ra
nk

rank; weight decay 0
rank; weight decay 0.0001
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.006

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e

Ra
nk

rank; weight decay 0
rank; weight decay 0.0001
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.006

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e

Ra
nk

rank; weight decay 0
rank; weight decay 0.0001
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0001
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0001
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0001
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0001
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0001
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0001
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0001
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0001
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.006

B = 4 B = 8 B = 16 B = 32

Figure 2: Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 with varying
weight decay. In this experiment: µ = 1.5 and ϵ = 0.001.

network. In addition, we experimentally analyze the convergence (and non-convergence) of training
neural networks with SGD1.

4.1 SETUP

Evaluation process. We consider k-class classification problems and train a multilayered neural
network fW : Rn → Rk on some balanced training dataset S. The model is trained using CE/ MSE
loss minimization between its logits and the one-hot encodings of the labels. After each epoch,
we compute the averaged rank across the network’s weight matrices and its train and test accuracy
rates. For a convolutional layer Cij , we use W ij as its weight matrix. To estimate the rank of a
given matrix M , we count how many of the singular values of M/∥M∥2 are /∈ [−ϵ, ϵ], where ϵ is a
small tolerance value. In these experiments we consider the MNIST and CIFAR10 datasets.

Architectures. We consider several network architectures. (i) The first architecture is an MLP,
denoted by MLP-BN-L-H , which consists of L hidden layers, where each layer contains a fully-
connected layer of width H , followed by batch normalization and ReLU activations. On top of
that, we compose a fully-connected output layer. (ii) The second architecture, denoted by RES-
BN-L-H , consists of a linear layer of width H , followed by L residual blocks, ending with a fully-
connected layer. Each block computes a function of the form z + σ(n2(W2σ(n1(W1z)))), where

1The plots are best viewed when zooming into the pictures.

7

Under review as a conference paper at ICLR 2023

25 50 75 100 125 150 175 200
Epoch

0

50

100

150

200

250

300

350

Av
er

ag
e

Ra
nk

batch size 2
batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

25 50 75 100 125 150 175 200
Epoch

0

50

100

150

200

250

300

350

Av
er

ag
e

Ra
nk

batch size 2
batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

25 50 75 100 125 150 175 200
Epoch

0

50

100

150

200

250

300

350

Av
er

ag
e

Ra
nk

batch size 2
batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

25 50 75 100 125 150 175 200
Epoch

0

50

100

150

200

250

300

350

Av
er

ag
e

Ra
nk

batch size 2
batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; batch size 2

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 2
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; batch size 2

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 2
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; batch size 2

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 2
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; batch size 2

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 2
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

µ = 0.004 µ = 0.008 µ = 0.02 µ = 0.04

Figure 3: Average ranks and accuracy rates of ViT trained on CIFAR10 with various batch
sizes. In this experiment: λ = 5e−4 and ϵ = 0.01.

C
IF

A
R

10
,C

E

0 250 500 750 1000 1250 1500 1750 2000
Epoch

10 4

10 3

10 2

10 1

100

101

102

Av
g (

p,
q)

E T
[||

W
pq t+

1
W

pq t
||] weight decay = 0

weight decay = 1e-6
weight decay = 1e-5
weight decay = 1e-4
weight decay = 1e-3

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

weight decay = 0
weight decay = 1e-6
weight decay = 1e-5
weight decay = 1e-4
weight decay = 1e-3

0 250 500 750 1000 1250 1500 1750 2000
Epoch

10 9

10 7

10 5

10 3

10 1

101

Tr
ai

n
Lo

ss

weight decay = 0
weight decay = 1e-6
weight decay = 1e-5
weight decay = 1e-4
weight decay = 1e-3

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0

250

500

750

1000

1250

1500

1750

2000

Av
er

ag
e

Ra
nk

weight decay = 0
weight decay = 1e-6
weight decay = 1e-5
weight decay = 1e-4
weight decay = 1e-3

C
IF

A
R

10
,M

SE

0 250 500 750 1000 1250 1500 1750 2000
Epoch

10 3

10 2

10 1

100

101

102

Av
g (

p,
q)

E T
[||

W
pq t+

1
W

pq t
||]

weight decay = 0
weight decay = 1e-6
weight decay = 1e-5
weight decay = 1e-4
weight decay = 1e-3

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

weight decay = 0
weight decay = 1e-6
weight decay = 1e-5
weight decay = 1e-4
weight decay = 1e-3

0 250 500 750 1000 1250 1500 1750 2000
Epoch

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Tr
ai

n
Lo

ss

weight decay = 0
weight decay = 1e-6
weight decay = 1e-5
weight decay = 1e-4
weight decay = 1e-3

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0

250

500

750

1000

1250

1500

1750

2000

Av
er

ag
e

Ra
nk

weight decay = 0
weight decay = 1e-6
weight decay = 1e-5
weight decay = 1e-4
weight decay = 1e-3

(a) (b) (c) (d)

Figure 4: Convergence of MLP-5-2000 trained on CIFAR10. In (a) we plot the averaged distance
between the weight matrices at epoch t and epoch t + 1, captured by, d(Wt+1,Wt). In (b) we plot
the train accuracy rates, in (c) we plot the averaged train loss and in (d) we plot the average rank
across the trainable matrices.

W1,W2 ∈ RH×H , n1, n2 are batch normalization layers and σ is the ReLU function. We denote
by MLP-L-H and RES-L-H the same architectures without applying batch normalization. (iii) The
third, denoted VGG-16, is the convolutional network proposed by Simonyan & Zisserman (2014),
but with dropout replaced by batch normalization layers and with only one fully-connected layer at
the end. (iv) The fourth architecture is the residual network proposed in (He et al., 2016), denoted
ResNet-18. (v) The fifth layer is a small visual transformer (Dosovitskiy et al., 2020), denoted by
ViT. Our ViT splits the input images into patches of size 4×4 includes 8 self-attention heads, where
each one of them consists of 6 self-attention layers. The self-attention layers are followed by two
fully-connected layers with dropout probability 0.1 and a GELU activation in between them.

4.2 EXPERIMENTS ON RANK MINIMIZATION

In each experiment we trained various models while varying one hyperparameter (e.g., batch size)
and leaving the other hyperparameters constant. The models were trained with SGD for cross-
entropy loss minimization along with weight decay. For MLP-BN-10-100, ResNet-18 and VGG-16,
we decayed the learning rate three times by a factor of 0.1 at epochs 60, 100, and 200 and training is
stopped after 500 epochs. We train instances of ViT using SGD and the the learning rate is decayed
by a factor of 0.2 three times at epochs 60, 100 and training is stopped after 200 epochs. By default,
we trained the models with weight decay λ = 5e−4.

As can be seen in Figs. 1 and 3 by decreasing the batch size, we essentially strengthen the low-
rank constraint over the network’s matrices, which eventually leads to matrices of lower ranks. This

8

Under review as a conference paper at ICLR 2023

is consistent with the prediction made in Sec. 3.1 that we learn matrices with lower ranks when
training the network with smaller batch sizes. Interestingly, we also notice a regularizing effect for
the learning rate; the average rank tends to decrease when increasing the learning rate.

As can be seen in Fig. 2, by increasing λ we typically impose stronger rank minimization constraints.
Interestingly, it appears that the batch size have little effect on the ranks of the weight matrices when
training with λ = 0 which is exactly the case when our bound is infinite. This empirically validates
that weight decay is a necessary to obtain a significant low-rank bias.

4.3 EXPERIMENTS ON SGD NOISE

In Sec. 3.2 we showed that convergence to a non-zero function is impossible when training a fully-
connected neural network with SGD and weight decay. To validate this prediction, we trained
MLP-5-2000 instances examined their convergence as a function of λ. Each model was trained
for CIFAR10 classification using SGD with batch size 128 and learning rate 0.1 for 2000 epochs.

To investigate the convergence of the networks, we measure the averaged distance between the
network’s matrices between consecutive epochs: d(Wt+1,Wt) :=

1
|ET |

∑
(p,q)∈ET

∥W ij
t+1 −W ij

t ∥,
where {W ij

t }(p,q)∈ET
are the various trainable matrices in the network at epoch t. As mentioned in

Sec. 3, convergence is possible only when lim
t→∞

d(Wt+1,Wt) = 0.

In Fig. 4 we monitor (a) d(Wt+1,Wt), (b) the train accuracy rates, (c) the train losses and (d) the
averaged rank of the trainable matrices. As predicted in Prop. 1, when training with λ > 0, Wt

either converges to zero and fWt to the zero function (e.g., see the results with λ = 1e−4, 1e−3) or
Wt does not converge (i.e., d(Wt+1,Wt) does not tend to zero). Furthermore, we observe that for
λ = 0, d(Wt+1,Wt) is smaller by orders of magnitude compared to using λ > 0 (except for cases
when the selection of λ > 0 leads to W ij

t → 0). Interestingly, even though for certain values of
λ > 0, the training loss and accuracy converged, the network’s parameters do not converge.

Finally, when training for cross-entropy loss minimization without weight decay we encounter the
‘almost convergence’ regime discussed in Sec. 3.2. Namely, even though perfect convergence is
impossible, the term d(Wt+1,Wt) may become as small as we wish by increasing the size of the
neural network. Therefore, since the MLP-5-2000 is relatively large (compared to the dataset’s size),
we may inaccurately get the impression that d(Wt+1,Wt) tends to zero.

5 CONCLUSIONS

A mathematical characterization of the biases associated with SGD-trained neural networks is re-
garded as a significant open problem in the theory of deep learning (Neyshabur et al., 2017). In
addition to its independent interest, a low-rank bias – though probably not necessary for general-
ization – may be a key ingredient in an eventual characterization of the generalization properties
of deep networks. In fact, recent results (Huh et al., 2022) and our preliminary experiments (see
Figs. 19-20 in the appendix) suggest that low-rank bias in neural networks improves generalization.

By investigating the “SGD Near-Convergence Regime”, we proved that SGD together with weight
decay induces a low-rank bias in a variety of network architectures. Our result also shows that the
batch size used by SGD influences the rank of the learned matrices. This means that the batch size
plays an active role in regularizing the learned function.We also prove that when training a fully-
connected neural network, SGD noise must always be present, even asymptotically, regardless of
batch size, as long as weight decay is used. Weight decay may not be strictly necessary for SGD
noise and low-rank bias to appear. This is the case, for example, when training with exponential-type
loss functions and Weight Normalization (Salimans & Kingma, 2016).

We hope that our work will spark further research into the near-convergence regime. For instance,
it may provide an interesting algorithmic approach to the long-standing problem of developing
low-rank regularizers during optimization. It would also be interesting to study whether additional
structures (e.g., neural collapse (Papyan et al., 2020), sparsity) emerge during the near-convergence
regime and to extend our analysis to more sophisticated learning algorithms (e.g., Adam (Kingma
& Ba, 2015)) and learning settings (e.g., unsupervised learning, self-supervised learning, etc).

9

Under review as a conference paper at ICLR 2023

REFERENCES

Jose M. Alvarez and Mathieu Salzmann. Compression-aware training of deep networks. In Proceed-
ings of the 31st International Conference on Neural Information Processing Systems, NIPS’17,
pp. 856–867, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 254–263. PMLR, 10–15 Jul 2018.

Léon Bottou. Stochastic gradient learning in neural networks. In Proceedings of Neuro-Nı̂mes 91,
Nimes, France, 1991. EC2. URL http://leon.bottou.org/papers/bottou-91c.

Yaim Cooper. Global minima of overparameterized neural networks. SIAM Journal on Mathematics
of Data Science, 3(2):676–691, 2021. doi: 10.1137/19M1308943. URL https://doi.org/
10.1137/19M1308943.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Ex-
ploiting linear structure within convolutional networks for efficient evaluation. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.),
Advances in Neural Information Processing Systems, volume 27. Curran Associates,
Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/
2afe4567e1bf64d32a5527244d104cea-Paper.pdf.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Suriya Gunasekar, Blake Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nathan Sre-
bro. Implicit regularization in matrix factorization, 2017. URL https://arxiv.org/abs/
1705.09280.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: clos-
ing the generalization gap in large batch training of neural networks. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf.

Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola.
The low-rank simplicity bias in deep networks, 2022. URL https://openreview.net/
forum?id=dn4B7Mes2z.

Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Ben-
gio, and Amos Storkey. Three factors influencing minima in sgd, 2017. URL https:
//arxiv.org/abs/1711.04623.

Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. CoRR,
abs/2006.06657, 2020. URL https://arxiv.org/abs/2006.06657.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations (ICLR), 2017.

10

http://leon.bottou.org/papers/bottou-91c
https://doi.org/10.1137/19M1308943
https://doi.org/10.1137/19M1308943
https://proceedings.neurips.cc/paper/2014/file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1705.09280
https://arxiv.org/abs/1705.09280
https://proceedings.neurips.cc/paper/2017/file/a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf
https://openreview.net/forum?id=dn4B7Mes2z
https://openreview.net/forum?id=dn4B7Mes2z
https://arxiv.org/abs/1711.04623
https://arxiv.org/abs/1711.04623
https://arxiv.org/abs/2006.06657

Under review as a conference paper at ICLR 2023

Diederick P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Thien Le and Stefanie Jegelka. Training invariances and the low-rank phenomenon: beyond linear
networks. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=XEW8CQgArno.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent
for matrix factorization: Greedy low-rank learning. CoRR, abs/2012.09839, 2020. URL https:
//arxiv.org/abs/2012.09839.

Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, and Nati Srebro. Exploring gener-
alization in deep learning. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/
paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf.

Vardan Papyan, X. Y. Han, and David L. Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020.

Noam Razin and Nadav Cohen. Implicit regularization in deep learning may not be explainable by
norms. CoRR, abs/2005.06398, 2020. URL https://arxiv.org/abs/2005.06398.

Tim Salimans and Diederik P. Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. Advances in Neural Information Processing Systems,
2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error guarantees
for multilayer neural networks, 2016. URL https://arxiv.org/abs/1605.08361.

Nadav Timor, Gal Vardi, and Ohad Shamir. Implicit regularization towards rank minimization in relu
networks. CoRR, abs/2201.12760, 2022. URL https://arxiv.org/abs/2201.12760.

Murad Tukan, Alaa Maalouf, Matan Weksler, and Dan Feldman. No fine-tuning, no cry: Robust
svd for compressing deep networks. Sensors, 21(16), 2021. ISSN 1424-8220. doi: 10.3390/
s21165599. URL https://www.mdpi.com/1424-8220/21/16/5599.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low
rank and sparse decomposition. In 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 67–76, 2017. doi: 10.1109/CVPR.2017.15.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. CoRR, abs/1611.03530, 2016. URL http:
//arxiv.org/abs/1611.03530.

Yi-Tong Zhou and Rama Chellappa. Computation of optical flow using a neural network. IEEE
1988 International Conference on Neural Networks, pp. 71–78 vol.2, 1988.

Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The anisotropic noise in stochastic
gradient descent: Its behavior of escaping from sharp minima and regularization effects. In Pro-
ceedings of the 36th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research. PMLR, 2019.

11

https://openreview.net/forum?id=XEW8CQgArno
https://openreview.net/forum?id=XEW8CQgArno
https://arxiv.org/abs/2012.09839
https://arxiv.org/abs/2012.09839
https://proceedings.neurips.cc/paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf
https://arxiv.org/abs/2005.06398
https://arxiv.org/abs/1605.08361
https://arxiv.org/abs/2201.12760
https://www.mdpi.com/1424-8220/21/16/5599
http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1611.03530

Under review as a conference paper at ICLR 2023

A PROOFS

Lemma 1. Let fW be a neural network and let Cij be a convolutional layer within fW with param-
eters matrix W ij . Then, rank (∇W ijfW (x)) ≤ N ij .

Proof. Let x ∈ Rc1×h1×w1 be an input tensor and Cij be a certain convolutional layer with kernel
size (k1, k2), stride s and padding p. We would like to show that rank (∇W ijfW (x)) ≤ N ij . We
begin by writing the output of fW as a sum over paths that pass through Cij and paths that do not.
We note that the output can be written as follows,

fW (x) =
∑

l1∈pred(l0)

Cl0l1 ◦ vl1(x),

where l0 = L and Cl0l1 ◦ z := Cl0l1(z). In addition, each layer vl can also be written as

vl1(x) = Dl1 ⊙
∑

l2∈pred(l1)

Cl1l2 ◦ vl2(x),

where Dl := Dl(x) := σ′(vl(x))) ∈ Rcl×hl×wl .

A path π within the network’s graph G is a sequence π = (π0, . . . , πT), where π0 = 1, πT = L
and for all i = 0, . . . , T − 1 : (vπi

, vπi+1
) ∈ E. We can write fW (x) as the sum of matrix

multiplications along paths π from v1 to vl0 . Specifically, we can write fW (x) as a follows

fW (x) =
∑

π from i to l0

CπTπT−1 ◦DπT−1
· · ·Dπ2

⊙ Cπ2π1 ◦Dπ1
⊙ Cij ◦ vj(x)

+
∑

π from 1 to l0
(i,j)/∈π

CπTπT−1 ◦DπT−1
⊙ CπT−1πT−2 · · ·Dπ2 ⊙ Cπ2π1 ◦ x,

=: AW (x) +BW (x)

where T = T (π) denotes the length of the path π. Since σ is a piece-wise linear function with a
finite number of pieces, for any x ∈ Rc1×h1×w1 , with measure 1 over W , the matrices {Dl(x)}L−1

l=1

are constant in the neighborhood of W . Furthermore, W ij does not appear in the multiplications
along the paths π from 1 to l0 that exclude (i, j). Therefore, we conclude that ∂BW (x)

∂W ij = 0.

As a next step we would like to analyze the rank of ∂AW (x)
∂W ij . For this purpose, we rewrite the

convolutional layers and the multiplications by the matrices Dl(x) as matrix multiplications.

Representing Cij . We begin by representing the layer Cij as a linear transformation of its input
with N ij blocks of W ij . For this purpose, we define a representation of a given 3-dimensional
tensor input z ∈ Rcj×hj×wj as a vector vecij(z) ∈ RNijcjk1k2 . First, we pad z with p rows and
columns of zeros and obtain Padp(z). We then vectorize each one of its patches (of dimensions
cj × k1 × k2) that the convolutional layer is acting upon (potentially overlapping) and concatenate
them. We can write the vectorized output of the convolutional layer as U ijvecij(z), where

U ij :=



0 0 0 0
W ij

0 0 0 0

0 0 0 0

0 0

. . .
0 0

0 0 0 0

0 0 0 0
W ij


(7)

is a (N ijci) × (N ijcjk1k2) matrix with N ij copies of V ij . We note that this is a non-standard
representation of the convolutional layer’s operation as a linear transformation. Typically, we write
the convolutional layer as a linear transformation W ij acting on the vectorized version vec(z) ∈
Rcjk1k2 of its input z. Since vecij(z) consists of the same variables as in vec(z) with potentially
duplicate items, there is a linear transformation that translates vec(z) into vecij(z). Therefore, we
can simply write V ijvec(z) = U ijvecij(z).

12

Under review as a conference paper at ICLR 2023

Representing convolutional layers. Except of Cij , we represent each one of the network’s
convolutional layers Cld in fW as linear transformations. As mentioned earlier, we can write
vec(Cld(z)) = V ldvec(z), for any input z ∈ Rcd×hd×wd .

Representing pooling and rearrangement layers. An average pooling layer or a rearrangement
layer Cld can be easily represented as a (non-trainable) linear transformation of its input. Namely,
we can write vec(Cld(z)) = V ldvec(z) for some constant matrix V ld. A max-pooling layer can be
written as a composition of ReLU activations and multiple (non-trainable) linear transformations,
since max(x, y) = σ(x − y) + y. Therefore, without loss of generality we can replace the pooling
layers with non-trainable linear transformations and ReLU activations.

Computing the rank. Finally, we note that vec(Cij ◦ z) = U ijvecij(z) = V ijvec(z), vec(Dl ⊙
z) = Pl · vec(z) for Pl := diag(vec(Dl)). Therefore, we can write

AW (x) =
∑

π from i to l0

WπTπT−1 · PπT−1
· · ·Pπ2

·Wπ2π1 · Pπ1
· U ij · vecij(vj(x))

=: a(x)⊤ · U ij · b(x),

where a(x)⊤ :=
∑

π from i to l0
WπTπT−1 ·PπT−1

· · ·Pπ2
·Wπ2π1 ·Pπ1

and b(x) := vecij(vj(x)). We
note that with measure 1, the matrices {Pl}L−1

l=1 are constant in the neighborhood of W . In addition,
a(x) and b(x) are computed as multiplications of matrices W ld and Pl excluding (i, j) = (p, q).
Therefore, with measure 1 over the selection of W , the Jacobians of a(x) and b(x) with respect to
V ij are 0. Furthermore, due to equation 7 and the definition of U ij , we can write

a(x)⊤ · U ij · b(x) =

Nij∑
t=1

at(x)
⊤ · V ij · bt(x),

where at(x) and bt(x) are the slices of a(x) and b(x) that are multiplied by the t’th V ij block in U ij .
Since the Jacobians of ai(x) and bi(x) with respect to V ij are 0 with measure 1 over the selection
of W , we have,

∂a(x)⊤ · U ij · b(x)
∂V ij

=

Nij∑
t=1

at(x) · bt(x)⊤. (8)

Therefore, we conclude that, with measure 1 over the selection of W , we have ∂fW (x)
∂V ij =∑Nij

t=1 at(x) · bt(x)⊤ which is a matrix of rank ≤ N ij .

Proposition 1 (λ > 0). Let ℓ(a, b) be a differentiable loss function, λ > 0, and let fW (x) be a
ReLU neural network, where succ(1) = {p} and (vp, v1) ∈ ET . Let {xk

i }N
p1

k=1 be the Np1 patches of
xi used by the layer Cp1. Let W be a convergence point of mini-batch SGD for minimizing Lλ

S(fW)

(see equation 4). Then, either fW ≡ 0 or ∀ i, j ∈ [m] : {xk
i , x

k
j }N

p1

k=1 are linearly dependent tensors.

Proof. Since {(vp, v1) ∈ E | vp ∈ V } ⊂ ET is of size 1, we denote this single layer by (vp, v1).
Following the proof of Lem. 1, we define a representation of a given 3-dimensional tensor input
x ∈ Rcj×hj×wj as a vector vecij(x) = (x1∥ . . . ∥xNij

) ∈ RNijcjk1k2 , where xk is the vectorization
of the k’th cj × k1 × k2 patch of x. Similar to the proof of Lem. 1, we can write

fW (x) =
∑

π from 1 to L

CπTπT−1 ◦DπT−1
⊙ CπT−1πT−2 · · ·Dπ2 ⊙ Cπ2π1 ◦ x

= H(x) · Up1 · vecp1(x)
(9)

where H(x) :=
∑

π from p to L V πTπT−1 · PπT−1
(xi) · · ·V π2π1 · Pπ1

(xi) and denote Hi := H(xi)

and Hi = (H1
i , . . . ,H

Np1

i), where Hk
i is of dimension c1k1k2. Hence, we can write,

∂fW (xi)

∂W p1
=

Np1∑
k=1

Hk
i · (xk

i)
⊤.

13

Under review as a conference paper at ICLR 2023

We would like to show that {xk
i , x

k
j }N

p1

k=1 are linearly dependent vectors or fW ≡ 0. Assume the
opposite by contradiction, i.e., that {xk

i , x
k
j }N

p1

k=1 are not linearly dependent and that fW ̸≡ 0. In
particular, by equation 9, we have, W p1 ̸= 0.

According to the analysis in Sec. 3.2, { ∂fW (xi)
∂vec(Wp1)}

m
i=1 are collinear vectors. Therefore, for any pair

i, j ∈ [m], there is a scalar αp
ij ∈ R, such that,

∑Np1

k=1 H
k
i · (xk

i)
⊤ = αij

∑Np1

k=1 H
k
j · (xk

j)
⊤.

Consider a given index i ∈ [m]. We would like to show that either Hi = 0 or {xk
i , x

k
j }N

p1

k=1 is a set of

linearly dependent vectors. Assume that Hi = 0. Then, ∂fW (xi)
∂Wp1 = 0 and Mp1 = 0 and W p1 = 0

according to equation 6, which implies that fW ≡ 0 (since (vp, v1) is the only connection starting
from v1). Assume that Hi ̸= 0. Then, there exist k ∈ [Np1] and r ∈ [dim(Hi)/N

p1], for which the
r’th coordinate of Hk

i is non-zero. Therefore, the r’th row of
∑Np1

k=1 H
k
i · (xk

i)
⊤ − αij

∑Np1

k=1 H
k
j ·

(xk
j)

⊤ = 0 is a non-trivial linear combination of the vectors {xk
i , x

k
j }N

p1

k=1.

Proposition 2 (λ = 0). Let λ = 0 and let ℓ be a differentiable loss function. Let fW (x) be a
ReLU neural network, where succ(1) = {p} and (vp, v1) ∈ ET is fully-connected. Let {xk

i }N
p1

k=1

be the Np1 patches of xi used by the layer Cp1. Let W be a convergence point of mini-batch SGD
for minimizing Lλ

S(fW). Then, ∀ i ∈ [m] : ∂ℓ(fW (xi),yi)
∂fW (xi)

= 0 or fW (xj) = 0 or ∀ j ∈ [m] :

{xk
i , x

k
j }N

p1

k=1 are linearly dependent tensors.

Proof. Let i ∈ [m] be an index for which ∂ℓ(fW (xi),yi)
∂fW (xi)

̸= 0. Then, by equation 5, for all j ∈ [m],
we have

∂fW (xi)

∂W p1
=

[
∂ℓ(fW (xj), yj)

∂fW (xj)

]
/

[
∂ℓ(fW (xi), yi)

∂fW (xi)

]−1

· ∂fW (xj)

∂W p1
. (10)

In particular, ∂fW (xi)
∂vec(Wp1) and ∂fW (xj)

∂vec(Wp1) are collinear vectors (for all j ∈ [m]). Hence, by the proof of
Prop. 1, either fW (xi) = 0 or {xk

i , x
k
j }mi=1 is a set of linearly dependent vectors.

14

Under review as a conference paper at ICLR 2023

B ADDITIONAL EXPERIMENTS

Experiments on rank minimization. To further demonstrate the bias towards rank minimization
of SGD with weight decay, we conducted a series of experiments with different learning settings. We
follow the same training and evaluation protocol described in Sec. 4.2. The results are summarized
in Figs. 6-18.

Experiments on SGD noise. We repeated the experiment in Fig. 4 for training the models on
MNIST. As can be seen in Fig. 5, similar to the previous experiment, when the models were trained
with λ > 0, the weights Wt were not able to converge (i.e., d(Wt+1,Wt) does not tend to zero),
even though for certain values of λ > 0 the training accuracy and loss converged. On the other hand,
when λ = 0, the distance d(Wt+1,Wt) tends to zero.

Low-rank bias and generalization. We looked into the connection between low-rank bias and
generalization. In Figs. 19-20 we trained ResNet-18 and VGG-16 instances on CIFAR10 while
varying the batch size and keeping λ and µ constant. To provide a fair comparison, we chose λ and µ
in each setting to ensure that all models fit the training data perfectly. As can be seen, models trained
with smaller batch sizes, i.e. models with lower rank in their weights, tend to generalize better.
Based on these findings, we hypothesize that when two neural networks of the same architecture
are trained with SGD with different hyperparameters and perfectly fit the data, the one with a lower
average rank will outperform the other at test time.

M
N

IS
T,

C
E

0 250 500 750 1000 1250 1500 1750 2000
Epoch

10 4

10 3

10 2

10 1

100

101

102

Av
g (

p,
q)

E T
[||

W
pq t+

1
W

pq t
||] weight decay = 0

weight decay = 1e-6
weight decay = 1e-5
weight decay = 1e-4
weight decay = 1e-3

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

weight decay = 0
weight decay = 1e-6
weight decay = 1e-5
weight decay = 1e-4
weight decay = 1e-3

0 250 500 750 1000 1250 1500 1750 2000
Epoch

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Tr
ai

n
Lo

ss

weight decay = 0
weight decay = 1e-6
weight decay = 1e-5
weight decay = 1e-4
weight decay = 1e-3

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0

250

500

750

1000

1250

1500

1750

2000

Av
er

ag
e

Ra
nk

weight decay = 0
weight decay = 1e-6
weight decay = 1e-5
weight decay = 1e-4
weight decay = 1e-3

M
N

IS
T,

M
SE

0 250 500 750 1000 1250 1500 1750 2000
Epoch

10 4

10 3

10 2

10 1

100

101

102

Av
g (

p,
q)

E T
[||

W
pq t+

1
W

pq t
||] weight decay = 0

weight decay = 1e-6
weight decay = 1e-5
weight decay = 1e-4
weight decay = 1e-3

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

weight decay = 0
weight decay = 1e-6
weight decay = 1e-5
weight decay = 1e-4
weight decay = 1e-3

0 250 500 750 1000 1250 1500 1750 2000
Epoch

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Tr
ai

n
Lo

ss

weight decay = 0
weight decay = 1e-6
weight decay = 1e-5
weight decay = 1e-4
weight decay = 1e-3

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0

250

500

750

1000

1250

1500

1750

2000

Av
er

ag
e

Ra
nk

weight decay = 0
weight decay = 1e-6
weight decay = 1e-5
weight decay = 1e-4
weight decay = 1e-3

(a) (b) (c) (d)

Figure 5: Convergence of MLP-5-2000 trained on MNIST with CE/ MSE loss. In (a) we
plot the averaged distance between the weight matrices at epoch t and epoch t + 1, captured by,

1
|ET |

∑
(p,q)∈ET

∥W ij
t+1 −W ij

t ∥. In (b) we plot the train accuracy rates, in (c) we plot the averaged
train loss and in (d) we plot the average rank across the trainable matrices.

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

Av
er

ag
e

Ra
nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

Av
er

ag
e

Ra
nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

Av
er

ag
e

Ra
nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

Av
er

ag
e

Ra
nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

µ = 0.001 µ = 0.01 µ = 0.1 µ = 0.5

Figure 6: Average rank of MLP-BN-10-100 trained on CIFAR10 with various batch sizes. Each
model was trained with a λ = 5e−4 weight decay. To estimate the rank, we used an ϵ = 0.001
threshold.

15

Under review as a conference paper at ICLR 2023

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

Av
er

ag
e

Ra
nk

weight decay 0
weight decay 0.0001
weight decay 0.0002
weight decay 0.0004
weight decay 0.0008
weight decay 0.006

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

Av
er

ag
e

Ra
nk

weight decay 0
weight decay 0.0001
weight decay 0.0002
weight decay 0.0004
weight decay 0.0008
weight decay 0.006

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

Av
er

ag
e

Ra
nk

weight decay 0
weight decay 0.0001
weight decay 0.0002
weight decay 0.0004
weight decay 0.0008
weight decay 0.006

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

Av
er

ag
e

Ra
nk

weight decay 0
weight decay 0.0001
weight decay 0.0002
weight decay 0.0004
weight decay 0.0008
weight decay 0.006

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; wd 0
train; wd 0.0001
train; wd 0.0002
train; wd 0.0004
train; wd 0.0008
train; wd 0.006
test; wd 0
test; wd 0.0001
test; wd 0.0002
test; wd 0.0004
test; wd 0.0008
test; wd 0.006

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; wd 0
train; wd 0.0001
train; wd 0.0002
train; wd 0.0004
train; wd 0.0008
train; wd 0.006
test; wd 0
test; wd 0.0001
test; wd 0.0002
test; wd 0.0004
test; wd 0.0008
test; wd 0.006

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; wd 0
train; wd 0.0001
train; wd 0.0002
train; wd 0.0004
train; wd 0.0008
train; wd 0.006
test; wd 0
test; wd 0.0001
test; wd 0.0002
test; wd 0.0004
test; wd 0.0008
test; wd 0.006

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; wd 0
train; wd 0.0001
train; wd 0.0002
train; wd 0.0004
train; wd 0.0008
train; wd 0.006
test; wd 0
test; wd 0.0001
test; wd 0.0002
test; wd 0.0004
test; wd 0.0008
test; wd 0.006

B = 16 B = 32 B = 64 B = 128

Figure 7: Average rank of MLP-BN-10-100 trained on CIFAR10 with varying λ. Each model
was trained with a µ = 0.1 initial learning rate and 0.9 momentum. To estimate the rank, we used
an ϵ = 0.001 threshold.

0 100 200 300 400 500
Epoch

0

100

200

300

400

500

Av
er

ag
e

Ra
nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0

100

200

300

400

500

Av
er

ag
e

Ra
nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0

100

200

300

400

500
Av

er
ag

e
Ra

nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0

100

200

300

400

500

Av
er

ag
e

Ra
nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

µ = 0.0125 µ = 0.025 µ = 0.05 µ = 0.1

Figure 8: Average rank of RES-BN-5-500 trained on CIFAR10 with various batch sizes. Each
model was trained with a λ = 5e−4 weight decay. To estimate the rank, we used an ϵ = 0.001
threshold.

0 100 200 300 400 500
Epoch

0

100

200

300

400

500

Av
er

ag
e

Ra
nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0

100

200

300

400

500

Av
er

ag
e

Ra
nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0

100

200

300

400

500

Av
er

ag
e

Ra
nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0

100

200

300

400

500

Av
er

ag
e

Ra
nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

µ = 0.0125 µ = 0.025 µ = 0.05 µ = 0.1

Figure 9: Average ranks and accuracy rates of MLP-5-500 trained on CIFAR10 with various
batch sizes. Each model was trained with a λ = 5e−4 weight decay. To estimate the rank, we used
an ϵ = 0.001 threshold.

16

Under review as a conference paper at ICLR 2023

100 200 300 400 500
Epoch

20

40

60

80

100

Av
er

ag
e

Ra
nk

rank; weight decay 0
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.003
rank; weight decay 0.006

100 200 300 400 500
Epoch

20

40

60

80

100

Av
er

ag
e

Ra
nk

rank; weight decay 0
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.003
rank; weight decay 0.006

100 200 300 400 500
Epoch

20

40

60

80

100

Av
er

ag
e

Ra
nk

rank; weight decay 0
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.003
rank; weight decay 0.006

100 200 300 400 500
Epoch

20

40

60

80

100

Av
er

ag
e

Ra
nk

rank; weight decay 0
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.003
rank; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.003
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.003
test; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.003
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.003
test; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.003
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.003
test; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.003
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.003
test; weight decay 0.006

B = 4 B = 8 B = 16 B = 32

Figure 10: Average ranks and accuracy rates of MLP-BN-10-100 trained on CIFAR10 with
varying λ. Each model was trained with a µ = 0.1 initial learning rate. To estimate the rank, we
used an ϵ = 0.001 threshold.

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

100

200

300

400

500
Av

er
ag

e
Ra

nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

µ = 0.05 µ = 0.1 µ = 0.2 µ = 0.3

Figure 11: Average ranks and accuracy rates of MLP-5-500 trained on CIFAR10 with various
batch sizes. The models were trained with a λ = 5e−4 weight decay. To estimate the rank, we used
an ϵ = 0.001 threshold.

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e

Ra
nk

rank; weight decay 0
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.003
rank; weight decay 0.006
rank; weight decay 0.01
rank; weight decay 0.02

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e

Ra
nk

rank; weight decay 0
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.003
rank; weight decay 0.006
rank; weight decay 0.01
rank; weight decay 0.02

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e

Ra
nk

rank; weight decay 0
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.003
rank; weight decay 0.006
rank; weight decay 0.01
rank; weight decay 0.02

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e

Ra
nk

rank; weight decay 0
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.003
rank; weight decay 0.006
rank; weight decay 0.01
rank; weight decay 0.02

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.003
train; weight decay 0.006
train; weight decay 0.01
train; weight decay 0.02
test; weight decay 0
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.003
test; weight decay 0.006
test; weight decay 0.01
test; weight decay 0.02

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.003
train; weight decay 0.006
train; weight decay 0.01
train; weight decay 0.02
test; weight decay 0
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.003
test; weight decay 0.006
test; weight decay 0.01
test; weight decay 0.02

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.003
train; weight decay 0.006
train; weight decay 0.01
train; weight decay 0.02
test; weight decay 0
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.003
test; weight decay 0.006
test; weight decay 0.01
test; weight decay 0.02

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.003
train; weight decay 0.006
train; weight decay 0.01
train; weight decay 0.02
test; weight decay 0
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.003
test; weight decay 0.006
test; weight decay 0.01
test; weight decay 0.02

B = 4 B = 8 B = 16 B = 32

Figure 12: Average ranks and accuracy rates of MLP-5-500 trained on CIFAR10 with varying
λ. The models were trained with a µ = 0.025 initial learning rate. To estimate the rank, we used an
ϵ = 0.001 threshold.

17

Under review as a conference paper at ICLR 2023

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

µ = 0.5 µ = 0.8 µ = 1.0 µ = 2.0

Figure 13: Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 with various
batch sizes. The models were trained with a λ = 5e−4 weight decay. To estimate the rank, we used
an ϵ = 0.001 threshold.

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e

Ra
nk

rank; learning rate 0.001
rank; learning rate 0.01
rank; learning rate 0.1
rank; learning rate 0.5
rank; learning rate 0.8
rank; learning rate 1
rank; learning rate 1.5
rank; learning rate 2.0

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e

Ra
nk

rank; learning rate 0.001
rank; learning rate 0.01
rank; learning rate 0.1
rank; learning rate 0.5
rank; learning rate 0.8
rank; learning rate 1
rank; learning rate 1.5
rank; learning rate 2.0

100 200 300 400 500
Epoch

50

100

150

200

250

300
Av

er
ag

e
Ra

nk

rank; learning rate 0.001
rank; learning rate 0.01
rank; learning rate 0.1
rank; learning rate 0.5
rank; learning rate 0.8
rank; learning rate 1
rank; learning rate 1.5
rank; learning rate 2.0

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e

Ra
nk

rank; learning rate 0.001
rank; learning rate 0.01
rank; learning rate 0.1
rank; learning rate 0.5
rank; learning rate 0.8
rank; learning rate 1
rank; learning rate 1.5
rank; learning rate 2.0

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; learning rate 0.001
train; learning rate 0.01
train; learning rate 0.1
train; learning rate 0.5
train; learning rate 0.8
train; learning rate 1
train; learning rate 1.5
train; learning rate 2.0
test; learning rate 0.001
test; learning rate 0.01
test; learning rate 0.1
test; learning rate 0.5
test; learning rate 0.8
test; learning rate 1
test; learning rate 1.5
test; learning rate 2.0

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; learning rate 0.001
train; learning rate 0.01
train; learning rate 0.1
train; learning rate 0.5
train; learning rate 0.8
train; learning rate 1
train; learning rate 1.5
train; learning rate 2.0
test; learning rate 0.001
test; learning rate 0.01
test; learning rate 0.1
test; learning rate 0.5
test; learning rate 0.8
test; learning rate 1
test; learning rate 1.5
test; learning rate 2.0

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; learning rate 0.001
train; learning rate 0.01
train; learning rate 0.1
train; learning rate 0.5
train; learning rate 0.8
train; learning rate 1
train; learning rate 1.5
train; learning rate 2.0
test; learning rate 0.001
test; learning rate 0.01
test; learning rate 0.1
test; learning rate 0.5
test; learning rate 0.8
test; learning rate 1
test; learning rate 1.5
test; learning rate 2.0

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; learning rate 0.001
train; learning rate 0.01
train; learning rate 0.1
train; learning rate 0.5
train; learning rate 0.8
train; learning rate 1
train; learning rate 1.5
train; learning rate 2.0
test; learning rate 0.001
test; learning rate 0.01
test; learning rate 0.1
test; learning rate 0.5
test; learning rate 0.8
test; learning rate 1
test; learning rate 1.5
test; learning rate 2.0

B = 4 B = 8 B = 16 B = 32

Figure 14: Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 with varying
µ. The models were trained with a µ = 5e−4 initial learning rate. To estimate the rank, we used an
ϵ = 0.001 threshold.

100 200 300 400 500
Epoch

50

100

150

200

250

300

350

400

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

50

100

150

200

250

300

350

400

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

50

100

150

200

250

300

350

400

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

50

100

150

200

250

300

350

400

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.5

Figure 15: Average ranks and accuracy rates of VGG-16 trained on CIFAR10 with various
batch sizes. The models were trained with a µ = 5e−4 initial learning rate. To estimate the rank,
we used an ϵ = 0.001 threshold.

18

Under review as a conference paper at ICLR 2023

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e

Ra
nk

rank; weight decay 0
rank; weight decay 0.0001
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.006

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e

Ra
nk

rank; weight decay 0
rank; weight decay 0.0001
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.006

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e

Ra
nk

rank; weight decay 0
rank; weight decay 0.0001
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.006

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e

Ra
nk

rank; weight decay 0
rank; weight decay 0.0001
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0001
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0001
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0001
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0001
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0001
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0001
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0001
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0001
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.006

B = 4 B = 8 B = 16 B = 32

Figure 16: Average ranks and accuracy rates of VGG-16 trained on CIFAR10 with varying
λ. The models were trained with a µ = 0.1 initial learning rate. To estimate the rank, we used an
ϵ = 0.01 threshold.

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e

Ra
nk

rank; learning rate 0.001
rank; learning rate 0.01
rank; learning rate 0.05
rank; learning rate 0.1
rank; learning rate 0.2
rank; learning rate 0.3
rank; learning rate 0.4
rank; learning rate 0.5
rank; learning rate 1.0

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e

Ra
nk

rank; learning rate 0.001
rank; learning rate 0.01
rank; learning rate 0.05
rank; learning rate 0.1
rank; learning rate 0.2
rank; learning rate 0.3
rank; learning rate 0.4
rank; learning rate 0.5
rank; learning rate 1.0

100 200 300 400 500
Epoch

100

200

300

400

500
Av

er
ag

e
Ra

nk

rank; learning rate 0.001
rank; learning rate 0.01
rank; learning rate 0.05
rank; learning rate 0.1
rank; learning rate 0.2
rank; learning rate 0.3
rank; learning rate 0.4
rank; learning rate 0.5
rank; learning rate 1.0

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e

Ra
nk

rank; learning rate 0.001
rank; learning rate 0.01
rank; learning rate 0.05
rank; learning rate 0.1
rank; learning rate 0.2
rank; learning rate 0.3
rank; learning rate 0.4
rank; learning rate 0.5
rank; learning rate 1.0

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; learning rate 0.001
train; learning rate 0.01
train; learning rate 0.05
train; learning rate 0.1
train; learning rate 0.2
train; learning rate 0.3
train; learning rate 0.4
train; learning rate 0.5
train; learning rate 1.0
test; learning rate 0.001
test; learning rate 0.01
test; learning rate 0.05
test; learning rate 0.1
test; learning rate 0.2
test; learning rate 0.3
test; learning rate 0.4
test; learning rate 0.5
test; learning rate 1.0

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; learning rate 0.001
train; learning rate 0.01
train; learning rate 0.05
train; learning rate 0.1
train; learning rate 0.2
train; learning rate 0.3
train; learning rate 0.4
train; learning rate 0.5
train; learning rate 1.0
test; learning rate 0.001
test; learning rate 0.01
test; learning rate 0.05
test; learning rate 0.1
test; learning rate 0.2
test; learning rate 0.3
test; learning rate 0.4
test; learning rate 0.5
test; learning rate 1.0

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; learning rate 0.001
train; learning rate 0.01
train; learning rate 0.05
train; learning rate 0.1
train; learning rate 0.2
train; learning rate 0.3
train; learning rate 0.4
train; learning rate 0.5
train; learning rate 1.0
test; learning rate 0.001
test; learning rate 0.01
test; learning rate 0.05
test; learning rate 0.1
test; learning rate 0.2
test; learning rate 0.3
test; learning rate 0.4
test; learning rate 0.5
test; learning rate 1.0

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; learning rate 0.001
train; learning rate 0.01
train; learning rate 0.05
train; learning rate 0.1
train; learning rate 0.2
train; learning rate 0.3
train; learning rate 0.4
train; learning rate 0.5
train; learning rate 1.0
test; learning rate 0.001
test; learning rate 0.01
test; learning rate 0.05
test; learning rate 0.1
test; learning rate 0.2
test; learning rate 0.3
test; learning rate 0.4
test; learning rate 0.5
test; learning rate 1.0

B = 4 B = 8 B = 16 B = 32

Figure 17: Average ranks and accuracy rates of VGG-16 trained on CIFAR10 with varying µ.
The models were trained with a µ = 5e−4 weight decay. To estimate the rank, we used an ϵ = 0.001
threshold.

25 50 75 100 125 150 175 200
Epoch

0

100

200

300

400

500

Av
er

ag
e

Ra
nk

weight decay 0.0
weight decay 1e-5
weight decay 5e-5
weight decay 1e-4
weight decay 5e-4
weight decay 1e-3
weight decay 5e-3

25 50 75 100 125 150 175 200
Epoch

0

100

200

300

400

500

Av
er

ag
e

Ra
nk

weight decay 0.0
weight decay 1e-5
weight decay 5e-5
weight decay 1e-4
weight decay 5e-4
weight decay 1e-3
weight decay 5e-3

25 50 75 100 125 150 175 200
Epoch

0

100

200

300

400

500

Av
er

ag
e

Ra
nk

weight decay 0.0
weight decay 1e-5
weight decay 5e-5
weight decay 1e-4
weight decay 5e-4
weight decay 1e-3
weight decay 5e-3

25 50 75 100 125 150 175 200
Epoch

0

100

200

300

400

500

Av
er

ag
e

Ra
nk

weight decay 0.0
weight decay 1e-5
weight decay 5e-5
weight decay 1e-4
weight decay 5e-4
weight decay 1e-3
weight decay 5e-3

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; wd 0.0

train; wd 1e-5
train; wd 5e-5
train; wd 1e-4
train; wd 5e-4
train; wd 1e-3
train; wd 5e-3
test; wd 0.0
test; wd 1e-5
test; wd 5e-5
test; wd 1e-4
test; wd 5e-4
test; wd 1e-3
test; wd 5e-3

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; wd 0.0

train; wd 1e-5
train; wd 5e-5
train; wd 1e-4
train; wd 5e-4
train; wd 1e-3
train; wd 5e-3
test; wd 0.0
test; wd 1e-5
test; wd 5e-5
test; wd 1e-4
test; wd 5e-4
test; wd 1e-3
test; wd 5e-3

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; wd 0.0

train; wd 1e-5
train; wd 5e-5
train; wd 1e-4
train; wd 5e-4
train; wd 1e-3
train; wd 5e-3
test; wd 0.0
test; wd 1e-5
test; wd 5e-5
test; wd 1e-4
test; wd 5e-4
test; wd 1e-3
test; wd 5e-3

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; wd 0.0

train; wd 1e-5
train; wd 5e-5
train; wd 1e-4
train; wd 5e-4
train; wd 1e-3
train; wd 5e-3
test; wd 0.0
test; wd 1e-5
test; wd 5e-5
test; wd 1e-4
test; wd 5e-4
test; wd 1e-3
test; wd 5e-3

B = 16 B = 32 B = 64 B = 128

Figure 18: Average ranks and accuracy rates of ViT trained on CIFAR10 with varying λ. The
models were trained with a µ = 4e−2 initial learning rate. To estimate the rank, we used an ϵ = 0.01
threshold.

19

Under review as a conference paper at ICLR 2023

100 200 300 400 500
Epoch

20

40

60

80

100

120

140

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

20

40

60

80

100

120

140

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

20

40

60

80

100

120

140

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

(a) (b) (c)

Figure 19: Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 with different
batch sizes. We show the relationship between average rank and test performance. (a) was trained
with µ = 0.001, λ = 6e−3, (b) was trained with µ = 0.005, λ = 6e−3, and (c) was trained with
µ = 0.01, λ = 4e− 4. To estimate the rank, we used an ϵ = 0.05 threshold.

100 200 300 400 500
Epoch

50

100

150

200

250

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

50

100

150

200

250

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

50

100

150

200

250

Av
er

ag
e

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

(a) (b) (c)

Figure 20: Average ranks and accuracy rates of VGG-16 trained on CIFAR10 with different
batch sizes. We show the relationship between average rank and test performance. (a) was trained
with µ = 0.001, λ = 6e− 3, (b) was trained with µ = 0.005, λ = 5e− 4, and (c) was trained with
µ = 0.01, λ = 4e− 4. To estimate the rank, we used an ϵ = 0.04 threshold.

20

	Introduction
	Related Work

	Problem Setup
	Architectures

	Theoretical Results
	Low-Rank Bias in Neural Networks
	Degeneracy and the Origin of ``SGD Noise''

	Experiments
	Setup
	Experiments on Rank Minimization
	Experiments on SGD Noise

	Conclusions
	Proofs
	Additional Experiments

