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Abstract

Mass spectrometry (MS) plays a critical role in molecular identification, signif-
icantly advancing scientific discovery. However, structure elucidation from MS
data remains challenging due to the scarcity of annotated spectra. While large-
scale pretraining has proven effective in addressing data scarcity in other domains,
applying this paradigm to mass spectrometry is hindered by the complexity and
heterogeneity of raw spectral signals. To address this, we propose MS-BART,
a unified modeling framework that maps mass spectra and molecular structures
into a shared token vocabulary, enabling cross-modal learning through large-scale
pretraining on reliably computed fingerprint–molecule datasets. Multi-task pretrain-
ing objectives further enhance MS-BART’s generalization by jointly optimizing
denoising and translation task. The pretrained model is subsequently transferred
to experimental spectra through finetuning on fingerprint predictions generated
with MIST, a pre-trained spectral inference model, thereby enhancing robustness
to real-world spectral variability. While finetuning alleviates the distributional
difference, MS-BART still suffers molecular hallucination and requires further
alignment. We therefore introduce a chemical feedback mechanism that guides the
model toward generating molecules closer to the reference structure. Extensive
evaluations demonstrate that MS-BART achieves SOTA performance across 5/12
key metrics on MassSpecGym and NPLIB1 and is faster by one order of magnitude
than competing diffusion-based methods, while comprehensive ablation studies
systematically validate the model’s effectiveness and robustness. We provide the
data and code at https://github.com/OpenDFM/MS-BART.

1 Introduction

Mass spectrometry is an analytical technique that measures the mass-to-charge ratio of ions, enabling
the identification, quantification, and structural characterization of molecules. The identification of
small molecules from mass spectrometry data represents a fundamental task in analytical chemistry,
with broad applications across multiple domains, including drug discovery [1, 32, 39], environmental
biochemistry [35], and materials science [21]. Recent advances in machine learning have enabled
structure elucidation from mass spectra. Existing approaches can be broadly categorized into (1)
retrieval-based methods and (2) de novo generative methods. Retrieval-based methods rely on
matching query spectra against large annotated spectra databases. However, annotated experimental
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Figure 1: Randomly selected mass spectra of a molecule (SMILES: C#CCNCC1=CC=CC=C1,
InChIKey: LDYBFSGEBHSTOQ) from MassSpecGym [7], acquired under varying collision energies.
The x-axis shows the mass-to-charge ratio (m/z), the y-axis indicates collision energy (in eV), and
color represents normalized relative intensity.

spectra are scarce and costly to obtain [3]. In addition, these methods are inherently limited to known
molecules and cannot identify novel structures absent from reference databases. De novo generation
methods learn to generate molecular structures directly from mass spectra, offering the potential to
discover new compounds. However, these generative models [39, 45, 13, 29] are also bottlenecked
by the limited availability of high-quality experimental spectra.

In other domains such as natural language processing (NLP) and computer vision (CV), a common
strategy to overcome data scarcity is to pretrain models on large-scale unlabeled data and then
finetune them on task-specific datasets [8, 28, 6, 20, 19]. A similar paradigm can also be observed in
nuclear magnetic resonance (NMR) structure elucidation [48], where the model is first pretrained on
3.6 million unlabeled molecules and then fine-tuned directly on simulated and experimental NMR
data. However, adapting this paradigm to mass spectrometry remains challenging due to the intrinsic
complexity and heterogeneity of mass spectra. As illustrated in Fig. 1, spectra for the same molecule
can vary substantially under different collision energies, adduct types, or instrument settings, and
may even fluctuate slightly under identical experimental conditions. To address this variability, we
propose using molecular fingerprints as an intermediate representation of mass spectra. Fingerprints
are binary vectors that encode the presence of chemical substructures. Unlike raw spectra, they are
invariant to experimental conditions and can be reliably computed from molecular structures using
cheminformatics toolkits such as RDKit. This eliminates the need to simulate mass spectra under
diverse experimental settings[34, 17], enabling scalable pretraining dataset construction.

Building on this insight, we propose MS-BART, a unified framework for molecular structure elucida-
tion from mass spectrometry data, following the pretraining–finetuning–alignment paradigm widely
used in NLP. We first construct a large-scale pretraining dataset consisting of fingerprint–molecule
pairs, where molecular fingerprints are computed for 4 million unlabeled molecules using RDKit.
Based on this dataset, we design multi-task pretraining objectives to facilitate cross-modal learning
between molecular fingerprints and molecular structures. For finetuning, we incorporate experimental
mass spectrometry data by using MIST [18] to predict fingerprints from spectra, conditioned on asso-
ciated metadata and molecular formulas. As these predicted fingerprints are subject to dataset-specific
noise and systematic biases, we finetune the pretrained model using the predicted fingerprints as
input, thereby improving its adaptability to real-world experimental conditions. Finally, the generated
structures are prone to molecular hallucinations [15], where outputs are chemically valid but deviate
from the true molecules. To address this, we introduce an alignment step that incorporates chemical
feedback by assigning higher probabilities to structures more similar to the ground truth. In summary,
our main contributions are as follows:

• To the best of our knowledge, we are the first to leverage language model for mass spectra
structure elucidation by introducing a unified vocabulary and multi-task pretraining on a
large corpus of fingerprint–molecule pairs.

• We finetune the model on experimental data and incorporate chemical feedback to align the
generative distribution with real-world structural preferences.
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• We validate our approach on two public benchmarks, achieving SOTA performance across
5/12 key metrics on MassSpecGym[7] and NPLIB1[10] and is faster by one order of
magnitude than competing diffusion-based methods.

2 Related Work

Mass Spectra Modeling. Mass spectra are variable-length, discrete, two-dimensional data, which
makes them inherently challenging to model. A basic approach involves padding the two-dimensional
matrix to a fixed length and projecting it into an embedding space via a linear layer [45]. A more
common strategy is spectral binning, which partitions spectra into fixed-width intervals (e.g., 0.1
Da) to yield fixed-size input vectors [38]. For example, ChemEmbed [14] limits molecular weights
to 700 Da, encodes spectra into a 7000-dimensional vector using a bin size of 0.01, and applies a
convolutional neural network (CNN) to predict 300-dimensional Mol2vec embeddings. Similarly,
Spec2Mol [29] and MS2DeepScore [23] convert spectra into bit vectors and train 1D CNNs or
Siamese networks [5] to learn meaningful spectral embeddings. While binning is simple, it suffers
from sparsity and sensitivity to noise, limiting its ability to capture chemically meaningful patterns.
To overcome this, some methods leverage molecular fingerprints as intermediate representations that
encode chemical substructures more robustly. CSI:FingerID [11] predicts molecular fingerprints from
tandem mass spectra using fragmentation trees and machine learning, achieving strong performance
in metabolite identification. MSNovelist [41] builds on this by integrating predicted fingerprints
into an encoder-decoder model for de novo structure generation. Inspired by these approaches,
MS-BART adopts molecular fingerprints as a spectrum representation, enabling scalable pretraining
while preserving chemical semantics.

Structure Elucidation from Mass Spectra. Two major paradigms dominate structure elucidation
from mass spectra: library matching and de novo generation. Library matching formulates the task as
an information retrieval problem [40], comparing query spectra against databases of experimental or
simulated spectra. Methods such as Spec2Vec [22] and MSBERT [49] learn spectrum embeddings
and perform retrieval over databases like GNPS [44]. Due to the scarcity of experimental spectra,
some methods (e.g., CFM-ID [43], GRAFF-MS [34]) simulate spectra from known molecular
databases (e.g., PubChem). However, the effectiveness of library matching is constrained by database
coverage, spectrum quality, and experimental variation, limiting its utility for novel compounds. In
contrast, de novo approaches generate molecular structures directly from spectra, bypassing the need
for reference databases. Spec2Mol [29] draws inspiration from speech-to-text models, employing
an encoder-decoder network to translate spectra into SMILES sequences. MADGEN [45] uses a
two-stage framework: scaffold retrieval and scaffold-conditioned molecule generation. Spectra and
scaffolds are embedded into a shared latent space using MLPs and GNNs, and RetroBridge [24]
generates the final structure conditioned on both inputs. Other models, including MSNovelist [41]
and MS2SMILES [30], use fingerprints predicted by SIRIUS [9] as inputs to sequence models for
SMILES generation. MS2SMILES further improves atom-level resolution by jointly predicting
heavy atoms and their associated hydrogens. DiffMS [4] adopts an implicit fingerprint representation
by extracting the final embedding from the precursor peak in MIST [18] and then generates the
target structure by discrete diffusion conditioned on the spectrum embedding and node features
(derived from the given formula). Despite promising results, most existing methods treat spectra and
molecular structures as separate modalities, which often leads to semantic mismatches and molecular
hallucinations [15]. In contrast, MS-BART unifies their modeling through a shared vocabulary. By
pretraining on large-scale spectral fingerprint–molecule pairs, MS-BART learns rich representations
for both chemical structures and their spectral abstractions. Subsequent finetuning and alignment
on experimental spectra further enhance the model’s ability to generate accurate and chemically
consistent predictions on real-world data.

3 Methodology

Our framework is illustrated in Fig. 2. Section 3.1 introduces a unified vocabulary for representing
both mass spectra and molecules. Section 3.2 describes multi-task pretraining with reliably com-
puted fingerprints. Section 3.3 finetunes the model on experimental spectra to adapt to real-world
distributions, while Section 3.4 further aligns molecular generation through chemical feedback.
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Figure 2: Overview of the MS-BART framework. Square symbols represent unified tokens, where ■
denotes SELFIES tokens, ■ indicates fingerprint tokens, and ■ represents a special separator token
between SELFIES and fingerprint tokens. The □ symbol signifies padding tokens. Masked tokens
are represented by striped patterns ( ). The top row illustrates pretraining tasks utilizing reliably
computed fingerprints (Computed by RDKit), designed to enable MS-BART to capture fundamental
patterns in both fingerprint and SELFIES representations. Transfer learning is subsequently applied to
experimental spectra through finetuning and alignment to enhance structure elucidation performance.

3.1 Mass Spectra and Molecular Representation

Mass Spectra Representation. Raw mass spectra consist of variable-length sets of peaks
{P1, P2, . . . , Pk}, where each peak Pi = (Mi, Ii) represents a mass-to-charge ratio (m/z) and
a corresponding intensity. Due to noise and variability in experimental spectra, learning from raw
spectra directly is challenging. In tandem mass spectrometry, precursor ions undergo collision-
induced dissociation (CID), producing charged product ions and uncharged neutral loss fragments.
These fragmentation patterns reflect structural information and correspond to chemical fragment
encoded in molecular fingerprint bits. Prior work [11, 18, 2] has explored on predicting molecular
fingerprints from spectra by leveraging fragmentation information. Following this, we represent
each spectrum as a 4096-bit circular Morgan fingerprint FP ∈ {0, 1}4096, where each bit indicates
the presence of a specific substructure. For experimental data, we employ the pretrained MIST
model [18] to predict molecular fingerprints FP from mass spectra, conditioned on the chemical
formula. The output of MIST is a probability vector {p0, . . . , p4095}, where each pi indicates the
predicted likelihood of the i-th fingerprint bit being active. To convert these probabilities into a binary
fingerprint representation, we apply a threshold ϵ:

FPi =

{
1, if pi ≥ ϵ,

0, otherwise,
∀i ∈ {0, 1, . . . , 4095}. (1)

Each activated bit (FPi = 1) is converted into a fingerprint token of the form <fp{i:04d}>
(e.g., <fp0123>), producing a token sequence suitable for language modeling. We also compute
the fingerprints from unlabeled molecules using RDKit [27] and apply the same tokenization for
subsequent pretraining.

Molecular Representation. SMILES [46] and SELFIES [25] are two widely used string-based
molecular representations. While SMILES is compact and human-readable, it does not guarantee
chemical validity. In contrast, SELFIES is designed to ensure that every valid string maps to a
chemically feasible molecule. We adopt SELFIES in MS-BART for its robustness and validity
guarantees. To ensure consistency and uniqueness, we use the canonical form of each SELFIES string.
Following [15], we employ a vocabulary of 185 SELFIES tokens. Although this is significantly
smaller than typical language model vocabularies, prior work [37] shows that compact chemical
vocabularies are sufficient for effective molecular representation learning.
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3.2 Unified Multi-Task Pretraining on Reliably Computed Fingerprints

Given the tokenization approach described above, we tokenize mass spectra and molecular sequences
by MIST [18] and the aforementioned vocabulary, respectively. As illustrated in Fig. 2, we design
three self-supervised denoising tasks for pretraining to recover masked spans, along with one cross-
modal translation task to strengthen modality alignment. We pretrain MS-BART on a simulated
dataset of 4 million fingerprint–molecule pairs. The molecules are provided by MassSpecGym
[7] and are preprocessed by excluding those with an MCES distance of less than two from any
molecule in the test fold. The pretraining framework comprises four tasks detailed as follows: (1)
SELFIES Denoising (①). Randomly mask 30% of tokens in SELFIES sequence S = {s1, . . . , sl}
with [MASK] token and recover original tokens. (2) Fingerprint-to-Molecule Translation (②).
Generate SELFIES sequences conditioned on fingerprint tokens FP . (3) Hybrid Denoising (③ and
④). Combine fingerprint tokens and masked SELFIES using separator <fps_sep>, with input order
variants, [FP,<fps_sep>, Smasked] and [Smasked,<fps_sep>, FP ], predicting full SELFIES
sequences from both modalities. All tasks follow a conditional generation paradigm optimized via
cross-entropy loss:

Lce = −
l∑

i=1

logP (yi | y<i, X; θ), (2)

where θ denotes the model parameters, X is the input sequence (e.g., masked SELFIES or finger-
prints), yi is the i-th target token, and l is the target SELFIES length.

3.3 Finetuning on Experimental Spectra

After pretraining on the simulated fingerprint-molecule dataset, MS-BART is fine-tuned on experi-
mental spectra to bridge the domain gap between computational and real-world data distributions. As
shown in Fig. 2, the original mass spectra are tokenized into fingerprint tokens, and the model is also
optimized through cross-entropy loss (Eq. 2) calculated between the target and predicted SELFIES
tokens. This crucial step aims to learn the systematic bias introduced by the MIST [18] model and
improve prediction performance.

3.4 Contrastive Alignment via Chemical Feedback

Following pretraining and dataset-specific fine-tuning, MS-BART acquires the capability to interpret
molecular fingerprints and generate chemically plausible molecular structures. However, it remains
susceptible to molecular hallucination [15], where generated molecules maintain chemical validity
but exhibit limited consistency with original mass spectra or corresponding fingerprints. Specifically,
the model may yield structures deviating substantially from true underlying molecular structures. To
alleviate this hallucination and enhance performance, we propose aligning the model’s probabilistic
rankings of generated molecules with preference rankings derived from chemical contexts. In this
paper, we define molecular preference through Tanimoto similarity, denoted as Ps(·). Given a
fingerprint FP , MS-BART generates n candidate molecules C = {S1, S2, · · ·, Sn}. The preference
score for each candidate Si is calculated as Ps(Si) = Tan(Si, S), where S represents the ground-
truth molecular structure. Simultaneously, the model (parameterized by θ) assigns a conditional
log-probability estimate Pθ(Si) to each candidate Si, given the input FP . Our objective is to
establish consistency between the model’s generative probabilities and Tanimoto similarity metrics.
Specifically, for any candidate pair (Si, Sj), we expect:

Pθ(Si) > Pθ(Sj), if Ps(Si) > Ps(Sj). (3)

To encourage MS-BART to assign higher probabilities to candidate molecules that are more struc-
turally similar to the target molecule, we employ a contrastive rank loss [31, 15], defined as:

Lrank(C) =
∑
i

∑
j>i

max (0, Pθ(Sj)− Pθ(Si) + γij) , ∀i < j, Ps(Si) > Ps(Sj), (4)

where γij = (j − i) ∗ γ denotes a margin scaled by the rank difference between candidates, γ is a
hyperparameter. Additionally, we retain the token-level cross-entropy loss (Eq. 2) to preserve the
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model’s generative capability and the overall loss is defined as:
L = Lce + αLrank, (5)

where α controls the weight of the rank loss. By jointly optimizing the token-level cross-entropy
loss and the sequence-level contrastive rank loss on the same finetuning dataset, MS-BART can
assign a balanced probability mass across the whole sequence. This optimization strategy elevates
the probability of generating molecular structures that not only exhibit higher similarity to the target
molecule but may also achieve exact matches.

4 Experiments

4.1 Datasets

We evaluate our MS-BART model on two widely used open-source benchmarks: NPLIB1 [10]
and MassSpecGym [7], following prior works [4, 45]. NPLIB1 is a subset of the GNPS library,
originally curated for training the CANOPUS model. Its name serves to distinguish the dataset
from the associated tool. MassSpecGym is the largest publicly available dataset containing 231k
high-quality mass spectra spanning 29k unique molecular structures. The dataset is partitioned into
training, validation, and test sets based on the edit distance between molecular structures, facilitating
robust evaluation. Although MADGEN [45] also reports performance on the NIST23 dataset, access
to this resource is restricted due to its commercial licensing requirements.

4.2 Evaluation Metrics and Baselines

To evaluate the performance of our model, we employ the following metrics:

• Top-k accuracy: We measure the exact match between the predicted structure and the
ground truth molecule by converting the generated molecule into a full InChIKey and
comparing it with the gold InChIKey. Since MS fragmentation is largely insensitive to 3D
stereochemistry, results based on 2D InChIKey are also reported in Appendix C.

• Top-k maximum Tanimoto similarity: This metric quantifies the structural similarity
between molecules using molecular fingerprints. We compute fingerprints based on the
Morgan algorithm [33] with a radius of 2 and a bit length of 2048 using RDKit.

• Top-k minimum MCES (maximum common edge subgraph): This metric measures the
graph edit distance between molecules, reflecting the largest common substructure shared
between the generated and ground-truth molecules [26].

We report the k = 1, 10 metrics following previous works [4, 7, 45]. Meanwhile, DIFFMS samples
100 molecules for each spectrum and identifies the top-k molecules based on frequency. To ensure a
fair comparison, we sample 100 molecules and subsequently rank the generated molecules according
to their distance from the given formula. Given two formula F1 = {(a1, n1), (a2, n2), ..., (am, nm)}
and F2 = {(a1,m1), (a2,m2), ..., (am,mk)}, the distance is defined as:

D(F1, F2) =
∑

a∈All Atoms

|na −ma|, (6)

na,ma are the counts of atom a in F1 and F2. If multiple molecules have the same distance, we
sort them according to their estimated log-probability. After this re-ranking, we select the first k
molecules as the top-k predictions.

Baselines. MassSpecGym [7] establishes three baselines for molecular generation: random genera-
tion, a SMILES-based Transformer, and a SELFIES-based Transformer. Spec2Mol [29] is retrained
on both the NPLIB1 and MassSpecGym datasets to enable fair comparison. MIST+MSNovelist
modifies the original MSNovelist framework [41] by replacing CSI:FingerID [11] with MIST. In
MIST+Neuraldecipher, molecules are encoded into CDDD representations [47], followed by recon-
struction of the SMILES strings using a pretrained LSTM decoder. MADGEN [45] and DIFFMS
[4] represent recent state-of-the-art approaches. MADGEN first retrieves molecular scaffolds, then
generates complete structures using the RetroBridge model [24], conditioned on both spectra and
scaffolds. DIFFMS also adopts MIST as the spectrum encoder and employs a Graph Transformer
[12] as the diffusion decoder, with separate pretraining of encoder and decoder components.
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Table 1: Performance comparison of MS-BART and baseline methods on the NPLIB1 [10] and
MassSpecGym [7]. Results marked with ∗ are reproduced from MassSpecGym and DIFFMS. Bold
denotes the best performance, underlined indicates the second-best.

Model TOP-1 TOP-10

ACCURACY ↑ MCES ↓ TANIMOTO ↑ ACCURACY ↑ MCES ↓ TANIMOTO ↑
NPLIB1

SPEC2MOL∗ 0.00% 27.82 0.12 0.00% 23.13 0.16
MIST + NEURALDECIPHER∗ 2.32% 12.11 0.35 6.11% 9.91 0.43
MIST + MSNOVELIST∗ 5.40% 14.52 0.34 11.04% 10.23 0.44
MADGEN 2.10% 20.56 0.22 2.39% 12.69 0.27
DIFFMS 8.34% 11.95 0.35 15.44% 9.23 0.47
MS-BART 7.45% 9.66 0.44 10.99% 8.31 0.51
MS-BART(Gold Fingerprint) 73.50% 2.14 0.90 79.12% 1.60 0.94

MASSSPECGYM

SMILES TRANSFORMER∗ 0.00% 79.39 0.03 0.00% 52.13 0.10
SELFIES TRANSFORMER∗ 0.00% 38.88 0.08 0.00% 26.87 0.13
RANDOM GENERATION∗ 0.00% 21.11 0.08 0.00% 18.26 0.11
SPEC2MOL∗ 0.00% 37.76 0.12 0.00% 29.40 0.16
MIST + NEURALDECIPHER∗ 0.00% 33.19 0.14 0.00% 31.89 0.16
MIST + MSNOVELIST∗ 0.00% 45.55 0.06 0.00% 30.13 0.15
MADGEN 1.31% 27.47 0.20 1.54% 16.84 0.26
DIFFMS 2.30% 18.45 0.28 4.25% 14.73 0.39
MS-BART 1.07% 16.47 0.23 1.11% 15.12 0.28
MS-BART(Gold Fingerprint) 47.56% 3.26 0.85 64.62% 2.02 0.93

4.3 Implementation

We adopt BART-BASE [28] as the backbone of MS-BART, initializing all parameters from scratch
using a normal distribution. To convert MIST probabilities into binary fingerprints, we apply a
threshold of ϵ = 0.2 for NPLIB1 and ϵ = 0.11 for MassSpecGym. Further details regarding this
selection are provided in Appendix A. During pretraining, we set the maximum sequence length to
512 to accommodate simultaneous learning from both fingerprints and SELFIES. For finetuning and
alignment, we fix the input and output token lengths to 256, as the fingerprint inputs and SELFIES
outputs rarely exceed this length in practice. When aligning MS-BART with chemical feedback,
we freeze the encoder following practices from prior work [16, 36], and update only the decoder.
Additional training details are provided in Appendix B.

4.4 Main Results

Table 1 presents a comparison of overall performance, demonstrating that MS-BART outperforms
most baseline methods and achieves SOTA performance across 5/12 key metrics on NPLIB1 and
MassSpecGym. Notably, on NPLIB1, MS-BART performs the best across all similarity metrics,
surpassing the second-best method by 19.16% (MCES) and 25.71% (Tanimoto similarity) in the
Top-1 setting. Significant improvements are also observed in the Top-10 setting, further validating
the effectiveness of MS-BART. The high absolute Tanimoto similarity values (close to or exceeding
0.5) suggest that MS-BART generates structurally similar molecules, which are particularly valuable
to domain experts. However, the Top-1 and Top-10 accuracy do not surpass DiffMS [4], primarily
because we have filtered out similar molecules in the pretraining data (Appendix B), whereas DiffMS
only removes all NPLIB1 and MassSpecGym test and validation molecules from their pretraining
dataset. Another recently proposed open-source dataset, MassSpecGym, presents a more challenging
benchmark than NPLIB1, as NPLIB1 lacks a scaffold-based split, resulting in a test set containing
molecules with high structural similarity (Tanimoto similarity > 0.85) to those in the training set
[4, 7]. Meanwhile, MassSpecGym exhibits a more complex data composition due to the presence
of [M+Na]+ adducts. The Na+ atom have a higher mass than H+ atom, leading to more complex
fragmentation patterns and consequently a data distribution that differs significantly from that of
[M+H]+. Furthermore, the [M+Na]+ data in the MassSpecGym training set is relatively scarce,
constituting only 15.52% of the total samples. This class imbalance, combined with the distinct
fragmentation behavior of [M+Na]+ compared to [M+H]+, introduces additional noise and potential
bias during model training. To avoid fragmentation pattern conflicts and preserve data consistency, we
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Table 2: Performance comparison of MS-BART on the NPLIB1 dataset using different pretraining
strategies. "NONE" indicates no pretraining, "SD" and "TRANS" denote pretraining with SELFIES
Denoising and Fingerprint-to-Molecule Translation, respectively, and "HYBRID" refers to pretraining
with the Hybrid Denoising method described in Section 3.2.

PRETRAIN
STRATEGY

TOP-1 TOP-10

ACCURACY ↑ MCES ↓ TANIMOTO ↑ ACCURACY ↑ MCES ↓ TANIMOTO ↑
NONE 1.71% 12.93 0.27 3.05% 11.36 0.34

SD 0.37% 14.41 0.24 0.98% 12.42 0.32
TRANS 6.23% 9.37 0.42 10.26% 7.98 0.50

HYBRID 5.13% 9.96 0.41 7.81% 8.87 0.48
MS-BART 7.45% 9.66 0.44 10.99% 8.31 0.51
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Figure 3: Progressive improvement of MS-BART for molecular hallucination mitigation on MassSpec-
Gym. Subfigures show: a) Tanimoto similarity, b) Accuracy, and c) MCES scores across three training
stages under Top-1 and Top-10 settings. Stage 1: Pretrain, the base model pretrained on 4M simulated
unlabeld molecules. Stage 2: Pretrain-FT, fine-tuned on MassSpecGym. Stage 3: Pretrain-FT-Rank,
fully optimized MS-BART with chemical feedback.

filter out [M+Na]+ adducts before fine-tuning and alignment, retaining only the dominant [M+H]+
data. However, to ensure a fair and comprehensive evaluation, we retain the [M+Na]+ adducts in the
test set. The results show that MS-BART does not surpass DiffMS on most metrics, and the main
reason is same as for NPLIB1. Excluding DiffMS, MS-BART also shows SOTA performance across
all similarity metrics and demonstrates the robustness and effectiveness of MS-BART in handling
diverse spectral patterns. Finally, we report the best possible performance of MS-BART if we use
the gold fingerprint calculated from the true structure rather than predicting it with the pretrained
MIST model. It is noteworthy that MS-BART can almost find the exact match or extremely similar
candidates, proving the great potential of MS-BART and indicating that further work can be devoted
to improving the performance of MIST model.

4.5 Unified Multi-Task Pretraining Enhances Cross-Modal Learning

Pretraining serves as the foundational phase and a critical step in training language models, enabling a
broad understanding of linguistic features such as syntax, semantics, and context, which are essential
for effective transfer learning. To investigate the role of multi-task pretraining in enhancing MS-
BART’s comprehension of molecular fingerprints and SELFIES, we conduct ablation experiments,
with results presented in Table 2. It is obvious that the model trained without pretraining exhibits
relatively poor performance compared to its pretrained counterpart. Nevertheless, its accuracy remains
above chance level and surpasses baseline methods that encode mass spectra directly, demonstrating
the advantage of representing raw mass spectra as fingerprints and training with a unified vocabulary
in an end-to-end style. Furthermore, we compare multi-task pretraining with single-task pretraining.
Pretraining solely with the denoising task leads to performance degradation rather than improvement,
primarily because the denoising task is not well aligned with structure elucidation. The substantial
improvement observed in the fingerprint-to-molecule translation task further supports this finding.
Moreover, the performance gain of MS-BART over single-task pretraining indicates that the denoising
task remains beneficial, as it helps MS-BART develop a fundamental understanding of molecular
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structures and contributes to the final performance. These results suggest that unified multi-task
pretraining on unlabeled data promotes cross-modal interaction and alignment by enabling MS-
BART to learn a shared representation space across modalities.

4.6 MS-BART Mitigates Molecular Hallucination

The training paradigm of MS-BART consists of three steps. Fig. 3 illustrates the impact of these steps
on the final performance in MassSpecGym, revealing two key findings. First, continued fine-tuning
on the MassSpecGym training fold improves performance and mitigates molecular hallucination,
particularly in terms of accuracy. For example, the "Pretrain" model achieves near-zero Top-1 and
Top-10 accuracy scores of 0.00% and 0.01%, respectively, while the "Pretrain-FT" model improves
these values to 1.07% and 1.12%. Moreover, aligning the model with chemical feedback based on
Tanimoto similarity further reduces molecular hallucination. This alignment enables the generation
of structurally more similar molecules, as evidenced by the improved Tanimoto similarity and the
degraded MCES metric. Fig. 4 shows a randomly selected case from MassSpecGym where MS-BART
effectively mitigates molecular hallucination.

Figure 4: Predictions of the Pretrain (top row), Pretrain-FT (middle row), and Pretrain-FT-Rank
(bottom row) models on a representative MassSpecGym sample, with the ground-truth structure shown
in the first column and the Top-4 generated outputs in the subsequent columns. Results demonstrate
that MS-BART can effectively mitigate molecular hallucination and predict more chemically plausible
and structurally consistent predictions.

4.7 Sensitivity Analysis of Model Hyperparameters

MS-BART employs two key hyperparameters, the fingerprint generation threshold ϵ and the rank
loss weight α. The fingerprint threshold determines how the MIST probability is converted into
an active fingerprint, where different thresholds lead to distinct representations. The rank loss
weight controls the influence of the token-level rank loss in guiding the alignment training. To
comprehensively evaluate the impact of these two parameters, we experiment with different values
of ϵ on MassSpecGym and α on NPLIB1 and present the results in Table 3. The results show no
significant differences among the tested ϵ values, indicating that MS-BART is not sensitive to this
parameter. Although ϵ = 0.11 achieves the best performance on the MassSpecGym validation set
and is reported in Table 1 as the final result, the ablation results suggest that ϵ = 0.11 is not the
best overall. This discrepancy is mainly due to the high difficulty of the MassSpecGym dataset and
the distribution mismatch between its validation and test sets. A similar observation holds for α on
NPLIB1. The model with α = 5 performs best in terms of Top-1 Tanimoto score on the validation
set and is also reported as the final result. However, models with α = 1 and α = 3 also achieve
competitive results on specific metrics. The variations across different configurations are minor,
indicating that MS-BART is not highly sensitive to the rank loss weight.

4.8 Analysis of Decoding Hyperparameters
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Table 3: Performance comparison of MS-BART under two key model hyperparameters, where the
ablation of the fingerprint generation threshold and the rank loss weight are evaluated on MassSpec-
Gym and NPLIB1, respectively.

TOP-1 TOP-10

ACCURACY ↑ MCES ↓ TANIMOTO ↑ ACCURACY ↑ MCES ↓ TANIMOTO ↑
Fingerprint Generation Threshhold ϵ (MassSpecGym)

ϵ = 0.11 1.07% 16.47 0.23 1.11% 15.12 0.28
ϵ = 0.15 1.20% 16.88 0.23 1.20% 15.45 0.28
ϵ = 0.20 1.19% 17.27 0.23 1.20% 15.75 0.28

Rank Loss Weight α (NPLIB1)

α = 1 7.08% 10.56 0.44 12.45% 9.10 0.52
α = 3 7.20% 9.53 0.44 10.50% 8.21 0.51
α = 5 7.45% 9.66 0.44 10.99% 8.31 0.51
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Figure 5: Performance of MS-BART
with beam-search multinomial sampling
decoding under different beam widths:
Top-1 accuracy, Top-10 accuracy, and
average inference time per spectrum.

MS-BART employs beam-search multinomial sampling
for structure prediction, governed by two key decoding hy-
perparameters while maintaining default values for other
parameters. First, the temperature parameter [50, 42] regu-
lates output randomness during inference, a factor known
to substantially influence generation quality in typical lan-
guage models. Interestingly, MS-BART’s outputs demon-
strate remarkable stability across temperature variations,
which is likely attributable to the model’s high confidence
in next-token prediction gained through multi-task pre-
training and its relatively small vocabulary size of 185.
Detailed temperature analysis is provided in Appendix
D. The second critical parameter, beam width, governs
the search space breadth during decoding. We systemati-
cally evaluated MS-BART’s performance on the complete
MassSpecGym test fold using an NVIDIA A800-SXM4-
80GB GPU, exploring beam widths from 10 to 100. As
shown in Fig. 5, both Top-1 and Top-10 accuracies demon-
strate consistent improvement with increasing beam width,
while inference latency exhibits linear scaling. Notably,
when tested on a common consumer-grade GPU like the
RTX 4090 with a beam width of 100, the average inference
time per spectrum is about 3 seconds, which is 53x times faster than DiffMS’s approximately 160
seconds and remains practically acceptable.

5 Conclusion

In this work, we propose MS-BART, a novel language model for mass spectra structure elucidation
within a unified modeling framework. Specifically, we first represent mass spectra as fingerprints
and tokenize both the fingerprints and molecular representations (SELFIES) using a unified vocabu-
lary. Subsequently, MS-BART undergoes the standard pretraining-finetuning-alignment paradigm
commonly employed in NLP, enabling the model to interpret spectral fingerprints and generate
plausible molecular structures. Extensive experiments demonstrate that MS-BART achieves SOTA
performance on two widely adopted benchmarks across 5/12 key metrics on MassSpecGym and
NPLIB1 and is faster by one order of magnitude than competing diffusion-based method, while
ablation studies further validate its effectiveness and robustness.

10



Acknowledgments and Disclosure of Funding

This work was supported by the National Science and Technology Major Project (2023ZD0120703),
the China NSFC Projects (U23B2057, 62120106006, and 92370206), and Shanghai Municipal
Science and Technology Projects (2021SHZDZX0102 and 25X010202846).

References
[1] Ruedi Aebersold and Matthias Mann. Mass spectrometry-based proteomics. Nature,

422(6928):198–207, 2003.

[2] Sadjad Fakouri Baygi and Dinesh Kumar Barupal. Idsl_mint: a deep learning framework to
predict molecular fingerprints from mass spectra. Journal of Cheminformatics, 16(1):8, 2024.

[3] Wout Bittremieux, Mingxun Wang, and Pieter C Dorrestein. The critical role that spectral
libraries play in capturing the metabolomics community knowledge. Metabolomics, 18(12):94,
2022.

[4] Montgomery Bohde, Mrunali Manjrekar, Runzhong Wang, Shuiwang Ji, and Connor W Co-
ley. Diffms: Diffusion generation of molecules conditioned on mass spectra. arXiv preprint
arXiv:2502.09571, 2025.

[5] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Signature
verification using a" siamese" time delay neural network. Advances in neural information
processing systems, 6, 1993.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[7] Roman Bushuiev, Anton Bushuiev, Niek de Jonge, Adamo Young, Fleming Kretschmer, Raman
Samusevich, Janne Heirman, Fei Wang, Luke Zhang, Kai Dührkop, et al. Massspecgym: A
benchmark for the discovery and identification of molecules. Advances in Neural Information
Processing Systems, 37:110010–110027, 2024.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pages 4171–4186, 2019.

[9] Kai Dührkop, Markus Fleischauer, Marcus Ludwig, Alexander A Aksenov, Alexey V Melnik,
Marvin Meusel, Pieter C Dorrestein, Juho Rousu, and Sebastian Böcker. Sirius 4: a rapid
tool for turning tandem mass spectra into metabolite structure information. Nature methods,
16(4):299–302, 2019.

[10] Kai Dührkop, Louis-Félix Nothias, Markus Fleischauer, Raphael Reher, Marcus Ludwig,
Martin A Hoffmann, Daniel Petras, William H Gerwick, Juho Rousu, Pieter C Dorrestein, et al.
Systematic classification of unknown metabolites using high-resolution fragmentation mass
spectra. Nature biotechnology, 39(4):462–471, 2021.

[11] Kai Dührkop, Huibin Shen, Marvin Meusel, Juho Rousu, and Sebastian Böcker. Searching
molecular structure databases with tandem mass spectra using csi: Fingerid. Proceedings of the
National Academy of Sciences, 112(41):12580–12585, 2015.

[12] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

[13] David Elser, Florian Huber, and Emmanuel Gaquerel. Mass2smiles: deep learning based fast
prediction of structures and functional groups directly from high-resolution ms/ms spectra.
bioRxiv, pages 2023–07, 2023.

11



[14] Muhammad Faizan-Khan, Roger Giné, Josep M Badia, Maribel Pérez-Ribera, Alexandra
Junza, Maria Vinaixa, Marta Sales-Pardo, Roger Guimerà, and Oscar Yanes. Chemembed:
A deep learning framework for metabolite identification using enhanced ms/ms data and
multidimensional molecular embeddings. bioRxiv, pages 2025–02, 2025.

[15] Yin Fang, Ningyu Zhang, Zhuo Chen, Lingbing Guo, Xiaohui Fan, and Huajun Chen. Domain-
agnostic molecular generation with chemical feedback. In The Twelfth International Conference
on Learning Representations.

[16] Giacomo Frisoni, Paolo Italiani, Stefano Salvatori, and Gianluca Moro. Cogito ergo summ:
abstractive summarization of biomedical papers via semantic parsing graphs and consistency
rewards. In Proceedings of the AAAI conference on artificial intelligence, volume 37, pages
12781–12789, 2023.

[17] Samuel Goldman, John Bradshaw, Jiayi Xin, and Connor Coley. Prefix-tree decoding for
predicting mass spectra from molecules. Advances in neural information processing systems,
36:48548–48572, 2023.

[18] Samuel Goldman, Jeremy Wohlwend, Martin Stražar, Guy Haroush, Ramnik J Xavier, and
Connor W Coley. Annotating metabolite mass spectra with domain-inspired chemical formula
transformers. Nature Machine Intelligence, 5(9):965–979, 2023.

[19] Yang Han, Yiming Wang, Rui Wang, Lu Chen, and Kai Yu. Alignsum: Data pyramid hierarchical
fine-tuning for aligning with human summarization preference. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages 8506–8522, 2024.

[20] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 16000–16009, 2022.

[21] Xiu Huang, Huihui Liu, Dawei Lu, Yue Lin, Jingfu Liu, Qian Liu, Zongxiu Nie, and Guibin
Jiang. Mass spectrometry for multi-dimensional characterization of natural and synthetic
materials at the nanoscale. Chemical Society Reviews, 50(8):5243–5280, 2021.

[22] Florian Huber, Lars Ridder, Stefan Verhoeven, Jurriaan H. Spaaks, Faruk Diblen, Simon Rogers,
and Justin J. J. van der Hooft. Spec2vec: Improved mass spectral similarity scoring through
learning of structural relationships. PLoS Comput. Biol., 17(2), 2021.

[23] Florian Huber, Sven van der Burg, Justin JJ van der Hooft, and Lars Ridder. Ms2deepscore: a
novel deep learning similarity measure to compare tandem mass spectra. Journal of cheminfor-
matics, 13(1):84, 2021.

[24] Ilia Igashov, Arne Schneuing, Marwin Segler, Michael M Bronstein, and Bruno Correia. Retro-
bridge: Modeling retrosynthesis with markov bridges. In The Twelfth International Conference
on Learning Representations.

[25] Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik.
Self-referencing embedded strings (selfies): A 100% robust molecular string representation.
Machine Learning: Science and Technology, 1(4):045024, 2020.

[26] Fleming Kretschmer, Jan Seipp, Marcus Ludwig, Gunnar W Klau, and Sebastian Böcker. Small
molecule machine learning: All models are wrong, some may not even be useful. bioRxiv,
pages 2023–03, 2023.

[27] Greg Landrum. Rdkit documentation. Release, 1(1-79):4, 2013.

[28] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, page 7871. Association
for Computational Linguistics, 2020.

12



[29] Eleni E Litsa, Vijil Chenthamarakshan, Payel Das, and Lydia E Kavraki. An end-to-end
deep learning framework for translating mass spectra to de-novo molecules. Communications
Chemistry, 6(1):132, 2023.

[30] Yanmin Liu, Xuan Zhang, Wei Zhao, Daming Zhu, and Xuefeng Cui. De novo molecular struc-
ture generation from mass spectra. In 2023 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pages 373–378. IEEE, 2023.

[31] Yixin Liu, Pengfei Liu, Dragomir Radev, and Graham Neubig. BRIO: Bringing order to
abstractive summarization. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio,
editors, Proceedings of the 60th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 2890–2903, Dublin, Ireland, May 2022. Association for
Computational Linguistics.

[32] Felix Meissner, Jennifer Geddes-McAlister, Matthias Mann, and Marcus Bantscheff. The
emerging role of mass spectrometry-based proteomics in drug discovery. Nature Reviews Drug
Discovery, 21(9):637–654, 2022.

[33] Harry L Morgan. The generation of a unique machine description for chemical structures-
a technique developed at chemical abstracts service. Journal of chemical documentation,
5(2):107–113, 1965.

[34] Michael Murphy, Stefanie Jegelka, Ernest Fraenkel, Tobias Kind, David Healey, and Thomas
Butler. Efficiently predicting high resolution mass spectra with graph neural networks. In
International Conference on Machine Learning, pages 25549–25562. PMLR, 2023.

[35] Yolanda Picó and Damià Barceló. Pyrolysis gas chromatography-mass spectrometry in envi-
ronmental analysis: Focus on organic matter and microplastics. TrAC Trends in Analytical
Chemistry, 130:115964, 2020.

[36] Alessandro Raganato and Jörg Tiedemann. An analysis of encoder representations in
transformer-based machine translation. In Proceedings of the 2018 EMNLP workshop Black-
boxNLP: analyzing and interpreting neural networks for NLP, pages 287–297, 2018.

[37] Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
Myle Ott, C Lawrence Zitnick, Jerry Ma, et al. Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences. Proceedings of the National
Academy of Sciences, 118(15):e2016239118, 2021.

[38] Khawla Seddiki, Philippe Saudemont, Frédéric Precioso, Nina Ogrinc, Maxence Wisztorski,
Michel Salzet, Isabelle Fournier, and Arnaud Droit. Cumulative learning enables convolu-
tional neural network representations for small mass spectrometry data classification. Nature
communications, 11(1):5595, 2020.

[39] Michael A Skinnider, Fei Wang, Daniel Pasin, Russell Greiner, Leonard J Foster, Petur W Dals-
gaard, and David S Wishart. A deep generative model enables automated structure elucidation
of novel psychoactive substances. Nature Machine Intelligence, 3(11):973–984, 2021.

[40] Stephen Stein. Mass spectral reference libraries: an ever-expanding resource for chemical
identification, 2012.

[41] Michael A Stravs, Kai Dührkop, Sebastian Böcker, and Nicola Zamboni. Msnovelist: de novo
structure generation from mass spectra. Nature Methods, 19(7):865–870, 2022.

[42] Chi Wang, Xueqing Liu, and Ahmed Hassan Awadallah. Cost-effective hyperparameter opti-
mization for large language model generation inference. In Aleksandra Faust, Roman Garnett,
Colin White, Frank Hutter, and Jacob R. Gardner, editors, Proceedings of the Second Interna-
tional Conference on Automated Machine Learning, volume 224 of Proceedings of Machine
Learning Research, pages 21/1–17. PMLR, 12–15 Nov 2023.

[43] Fei Wang, Jaanus Liigand, Siyang Tian, David Arndt, Russell Greiner, and David S Wishart.
Cfm-id 4.0: more accurate esi-ms/ms spectral prediction and compound identification. Analyti-
cal chemistry, 93(34):11692–11700, 2021.

13



[44] Mingxun Wang, Jeremy J Carver, Vanessa V Phelan, Laura M Sanchez, Neha Garg, Yao Peng,
Don Duy Nguyen, Jeramie Watrous, Clifford A Kapono, Tal Luzzatto-Knaan, et al. Sharing and
community curation of mass spectrometry data with global natural products social molecular
networking. Nature biotechnology, 34(8):828–837, 2016.

[45] Yinkai Wang, Xiaohui Chen, Liping Liu, and Soha Hassoun. MADGEN: Mass-spec attends
to de novo molecular generation. In The Thirteenth International Conference on Learning
Representations, 2025.

[46] David Weininger. Smiles, a chemical language and information system. 1. introduction to
methodology and encoding rules. Journal of chemical information and computer sciences,
28(1):31–36, 1988.

[47] Robin Winter, Floriane Montanari, Frank Noé, and Djork-Arné Clevert. Learning continuous and
data-driven molecular descriptors by translating equivalent chemical representations. Chemical
science, 10(6):1692–1701, 2019.

[48] Lin Yao, Minjian Yang, Jianfei Song, Zhuo Yang, Hanyu Sun, Hui Shi, Xue Liu, Xiangyang Ji,
Yafeng Deng, and Xiaojian Wang. Conditional molecular generation net enables automated
structure elucidation based on 13c nmr spectra and prior knowledge. Analytical chemistry,
95(12):5393–5401, 2023.

[49] Hailiang Zhang, Qiong Yang, Ting Xie, Yue Wang, Zhimin Zhang, and Hongmei Lu. Msbert:
Embedding tandem mass spectra into chemically rational space by mask learning and contrastive
learning. Analytical Chemistry, 96(42):16599–16608, 2024.

[50] Yuqi Zhu, Jia Li, Ge Li, YunFei Zhao, Zhi Jin, and Hong Mei. Hot or cold? adaptive
temperature sampling for code generation with large language models. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pages 437–445, 2024.

A Selection of the Probability Threshold ϵ

We selected the threshold value ϵ for NPLIB1 and MassSpecGym using different methods. Since
NPLIB1 is known to be a much easier dataset, we chose its threshold empirically. After examining the
probability distribution, we observed that most probabilities were smaller than 0.3. A large threshold
could cause information loss, whereas a small threshold might introduce noise. Therefore, we selected
ϵ = 0.2 to balance these factors, which resulted in excellent performance. For MassSpecGym, we
trained MS-BARTusing ϵ values ranging from 0.1 to 0.2 in increments of 0.01. We then validated
these on the validation set and selected the best threshold based on the highest Top-1 Tanimoto
similarity. As shown in Table 4, the Top-1 Tanimoto similarity values for different thresholds were
very close. We ultimately chose ϵ = 0.11 as the final threshold, although performance did not vary
significantly across the different threshold values.

Table 4: Top-1 Tanimoto Similarity under different ϵ values.

ϵ 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20

Tanimoto Similarity 0.1666 0.1678 0.1640 0.1651 0.1660 0.1660 0.1654 0.1643 0.1651 0.1649 0.1636

B MS-BART Training Details

Pretraining. We pretrain MS-BART from scratch on a simulated dataset of 4M fingerprint-molecule
pairs. This dataset was generated from a refined subset of the 4M unlabeled molecules provided by
MassSpecGym [7]. The refinement process involved excluding any molecule with an MCES distance
of less than two from any molecule in the MassSpecGym test fold. For the NPLIB1 dataset, we first
evaluated the structural similarity between its test set and our pretraining data. As shown in Table 5,
approximately 3% of the pretraining molecules were structurally similar to those in the NPLIB1 test
set. To prevent data leakage, we further filtered the pretraining set to remove any molecules that
were structurally similar or identical to those in the NPLIB1 test set. Specifically, we refined the
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pretraining dataset by removing molecules with a maximum Tanimoto similarity greater than 0.5 to
any molecule in the NPLIB1 test set.

The training was conducted on four NVIDIA A800-SXM4-80GB GPUs using bfloat16 precision.
A per-device batch size of 96 and two gradient accumulation steps were employed, resulting in an
effective total batch size of 768 across three training epochs. The optimization process adopted a
cosine learning rate scheduler with a warm-up phase of 10,000 steps. The learning rate increased
linearly from zero to a peak value of 6e-4 during warm-up and subsequently decayed following a
cosine schedule to a minimum value of 1e-5. The entire multi-task pretraining process required
approximately 34 hours to complete.

Table 5: Distribution of max Tanimoto Similarity between pretraining set and NPLIB1 test set.

Similarity Interval 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

Proportion 0.09% 8.40% 55.85% 21.58% 6.79% 3.79% 1.84% 1.20% 0.40% 0.06%

Finetuning. Fine-tuning is performed on a single NVIDIA A800-SXM4-80GB GPU using bfloat16
precision, with consistent parameter settings across both MassSpecGym and NPLIB1 datasets. We
adopt a learning rate of 5e-5 combined with a warm-up phase covering 10% of total training steps.
Each training iteration processes 128 samples per batch. For validation monitoring, we implement an
early stopping criterion that evaluates model performance every 400 steps on MassSpecGym and
every 200 steps on NPLIB1. Training terminates when the validation set’s Top-1 Tanimoto similarity
fails to improve for three consecutive evaluations.

Alignment Training. The alignment phase is more complex than pretraining and fine-tuning,
requiring careful hyperparameter optimization. As specified in Table 6, we explore multiple config-
urations during this stage while maintaining a fixed batch size of 128 and bfloat16 precision on a
single NVIDIA A800 GPU. The learning schedule includes a 10% warm-up ratio of total training
steps. Validation frequency is set to 400-step intervals for MassSpecGym and 50-step intervals for
NPLIB1. We extend the patience to five consecutive evaluations without improvement in Top-1
Tanimoto similarity before triggering early stopping. Final hyperparameter selection is determined
by maximizing the validation set’s Top-1 Tanimoto similarity.

Table 6: Hyper-parameter settings.

Hyper-parameters Values

Learning Rate {1e-5, 5e-5}
Candidate Margin γ {0.05, 0.1, 0.2}
Rank Loss Weight α {1, 3, 5}
Number of Candidates {3, 5}
Length Penalty Coefficient {1.4, 1.6}

C 2D InChIKey Based Accuracy

We evaluate the Top-1 and Top-10 accuracy based on 2D InChIKey matching and present the results in
Table 7. On NPLIB1, the two calculation methods yield the same results. However, for MassSpecGym,
the 2D InChIKey-based accuracy of MS-BART shows a slight improvement compared to evaluation
with the full InChIKey because the 2D InChIKey uses only the first 14 characters, which do not
include 3D stereochemistry. To maintain consistency with the DiffMS [4], we use the full InChIKey
results as the final results.

D The Impact of Sampling Temperature on Model Performance

Table 8 presents the performance evaluation of MS-BART during decoding with varying temperature
values on MassSpecGym. The results demonstrate that MS-BART’s performance remains largely
consistent across different temperature settings. This stability can be attributed to the model’s high
confidence in next-token predictions, which likely stems from its multi-task pretraining framework.
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Table 7: 2D InChIKey based Top-1 and Top-10 accuracy on NPLIB1 and MassSpecGym.

Calculation Method Top-1 Accuracy Top-10 Accuracy

NPLIB1

MS-BART (InChIKey) 7.45% 10.99%
MS-BART (2D InChIKey) 7.45% 10.99%

MASSSPECGYM

MS-BART (InChIKey) 1.07% 1.11%
MS-BART (2D InChIKey) 1.26% 1.28%

Table 8: The performance of MS-BART when decoding with different temperature on MassSpecGym.

TEMPERATURE
TOP-1 TOP-10

ACCURACY ↑ MCES ↓ TANIMOTO ↑ ACCURACY ↑ MCES ↓ TANIMOTO ↑
Prtrain-FT

0.2 1.07% 17.16 0.22 1.12% 15.51 0.27
0.4 1.07% 17.17 0.22 1.12% 15.51 0.27
0.8 1.07% 17.16 0.22 1.12% 15.50 0.27

MS-BART

0.2 1.07% 16.47 0.23 1.11% 15.12 0.28
0.4 1.07% 16.47 0.23 1.11% 15.12 0.28
0.8 1.07% 16.47 0.23 1.11% 15.11 0.28

E Limitations

Our primary limitation lies in the reliance on the external MIST model [18] for predicting fingerprints
from experimental spectra. The accuracy of these fingerprint predictions significantly impacts the
overall performance. Future work may focus on fine-tuning the MIST model using task-specific
datasets to improve prediction accuracy, or it could explore directly modeling the fragments from
raw mass spectra. Another limitation is that the formula information is used only for re-ranking
and not for training the model. However, these additional formulas definitely include important
information and are very likely to boost the model’s performance. We plan to explore effective ways
to incorporate these informational hints into MS-BART in future work.

F Ethics Statement

All data used in this work are obtained from publicly available sources, including molecular structure
datasets and mass spectrometry benchmarks such as NPLIB1 and MassSpecGym. We strictly follow
the corresponding licenses and usage protocols. No modifications have been made to the original
datasets beyond necessary preprocessing using standard cheminformatics tools (e.g., RDKit) to
compute molecular fingerprints. No personal, private, or sensitive data are involved. The proposed
model, MS-BART, is trained and evaluated solely for the task of molecular structure elucidation from
mass spectrometry data. Our work does not involve human subjects, biometric data, or decision-
making in socially sensitive applications. We do not foresee any immediate negative societal impact.
On the contrary, improving molecular identification from mass spectrometry may benefit fields such
as drug discovery, environmental chemistry, and materials science.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [Abstract, Section 1]

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: [Appendix E]

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: [The paper does not include theoretical results]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: [Section 4.14.3, Appendix B]
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: [Section 4.1, Anonymous code]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: [Section 4.14.3, Appendix B]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: [Appendix D]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: [Section 4.8, Appendix B]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [Appendix F]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: [Appendix F]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: [Appendix F]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: [Section 4.1]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]

Justification: [We provide the model parameters.]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [Our paper does not involve crowdsourcing experiments and research.]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: [We use LLM for writing.]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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