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ABSTRACT

Algorithmic bias is of increasing concern, both to the research community, and
society at large. Bias in AI is more abstract and unintuitive than traditional forms
of discrimination and can be more difficult to detect and mitigate. A clear gap
exists in the current literature on evaluating the relative bias in the performance of
multi-class classifiers. In this work, we propose two simple yet effective metrics,
Combined Error Variance (CEV) and Symmetric Distance Error (SDE), to quan-
titatively evaluate the class-wise bias of two models in comparison to one another.
By evaluating the performance of these new metrics and by demonstrating their
practical application, we show that they can be used to measure fairness as well as
bias. These demonstrations show that our metrics can address specific needs for
measuring bias in multi-class classification.

1 INTRODUCTION

Broad acceptance of the large-scale deployment of AI and neural networks depends on the models’
perceived trustworthiness and fairness. However, research on evaluating and mitigating bias for neu-
ral networks in general and compressed neural networks in particular is still in its infancy. Because
deep neural networks (DNNs) are ”black box” learners, it can be difficult to understand what corre-
lations they have learned from their training data, and how that affects the downstream decisions that
are made in the real world. Two models may appear to have very similar performance when only
measured in terms of accuracy, precision, etc. but deeper analysis can show uneven performance
across many classes. Moreover, when the number of tasks grows beyond one or two, the difficulty
in reasoning and quantifying trade-offs when selecting or validating a model also grows.

(a) Deep Learning vs Logistic Regression (b) Change in Task Word Frequency

Figure 1: Google NGram Data Michel et al. (2011) showing relative usage of machine learning
related terms over time. Deep learning has quickly passed up the use of statistical terms like logistic
regression. Computer Vision tasks like Object Detection and Image Recognition are growing at
faster rates than Binary Classification which fairness metrics can address.

Widely accepted and effective metrics for measuring the bias of several neural networks against one
another are still missing. Issues of both fairness and bias, which will be discussed as distinct but
related phenomena in this paper, can seriously degrade the trustworthiness of a machine learning
model in real-world conditions. It is important to quantify the performance of models in terms both
of bias and fairness. While there exists extensive work on AI fairness regarding binary classifi-
cation tasks Borkan et al. (2019); Hinnefeld et al. (2018); Dixon et al. (2018); Maughan & Near
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(2020), there is a shortage of metrics extending these ideas to other machine learning tasks. Many
researchers have taken an interest in wanting to ensure their models are fair, currently, we simply do
not have the tools to measure for many domains.

In fact, recent trends shown in Figure 1, are exacerbating the divide with the majority of new research
in neural networks exploring topics outside of the reach of existing fairness and bias metrics. While
difficult to quantify exactly we see from Google NGram data Michel et al. (2011) since 2010 the
focus of machine learning is increasingly on multi-class classification and other difficult to quantify
tasks rather than binary classification, revealing a need for metrics that can accommodate multi-
class tasks. Worse still, we appear to be at the edge of another inflection point in AI where Large
Language Models (LLMs) and Foundational models Bommasani et al. (2021) like GPT-3 Brown
et al. (2020) are ingesting the entire corpus of human thought with limited supervision.

In this paper, we introduce two new metrics based on simple principles, whose purpose is to quan-
tify a change in per-class bias between two or more models. These metrics provide singular data
points that are easier to consider than the laborious checking of distributions of class-wise error
rates. We will discuss their intuition and their application for comparing the relative performance
of deep learning models, and classifiers in general, in terms of bias and fairness. To the best of our
knowledge, these new metrics are distinct from all existing methods in that they expose per-group,
per-class bias not neatly captured by other metrics, enabling the examination of issues of fairness
and bias in great depth. While our proposed work is not a panacea for all emerging trends in AI we
believe it represents a starting point to address the current gap.

The remaining sections are organized as follows. In Section 2 we will contextualize the field of fair-
ness metrics and their shortcomings as they relate to our considered problem domain. In Section 3
we will define the intuition for our metrics, and provide a mathematical definition. In Section 4 we
will provide specific use cases as experiments we envision the metrics will be used in, and how to
reason about their differences. Section 5 will discuss some limitations of our metrics and how we
might improve or extend them to other domains.

2 BACKGROUND

Bias and fairness in machine learning have received increasing attention in recent years. The advan-
tages of algorithmic decision-making can be very attractive to large organizations, but there is a risk
that the output of these algorithms can be unfair Mehrabi et al. (2019). Unfairness can have serious
perceptual and legal consequences for organizations who choose to rely on machines to make im-
portant decisions Caton & Haas (2020). This makes it imperative that quantitative measures for bias
and fairness in machine learning be defined.

Bias, discrimination, and unfairness are terms that are often used interchangeably but we would like
to make a distinction to better dissect the problem. We will refer to bias as meaning the behavior of
a machine learning model giving preference to one characterization over another Mooney (1996).
Or put simply, having a lower error rate on one class than another. When discussing fairness in
this paper, we will be referring to group fairness, which in general is concerned with outcomes for
privileged and unprivileged groups Maughan & Near (2020), where a group is a protected feature
of an instance from the training data characterizing the instance in some way. Typically we do not
want membership in a group to affect the outcome of a prediction, e.g. considering race or gender
for ranking resumes or home loan applications.

There are other accepted definitions of fairness as well Mehrabi et al. (2019). Individual fairness,
requiring a model given similar predictions for similar individuals. Subgroup fairness, which uses
notions of both individual and group fairness by holding some constraint over large collections of a
subgroup. However, group fairness is the most commonly measured by metrics of fairness Mehrabi
et al. (2019).

Both bias and unfairness can degrade the performance of a model in ways that are not well captured
by accuracy, precision, and other measures of ML performance. Biased and unfair models can
perform very well on biased or unfair data. A nuanced metric can reveal conditions under which
a model’s performance might be degraded by the bias of the model or its training data. Many
good metrics exist for measuring the group or individual unfairness of a model, but the focus has
overwhelmingly been on tasks of supervised, binary classification Caton & Haas (2020).
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Substantial literature has emerged concerning algorithmic bias, discrimination, and fairness.
Mehrabi et al. conducted a survey on bias and fairness in machine learning Mehrabi et al. (2019).
Mitchell et al. explored how model cards can be used to provide details on model performance
across cultural, racial, and inter-sectional groups and to inform when their usage is not well-suited
Mitchell et al. (2019). Gebru el al. proposed using datasheets as a standard process for documenting
datasets Gebru et al. (2018). Amini,et al. proposed to mitigate algorithmic bias through re-sampling
datasets by learning latent features of images Amini et al. (2019). Wang et al. designed a visual
recognition benchmark for studying bias mitigation in visual recognition. Wang et al. (2020).

Other metrics of fairness have been described in recent works Borkan et al. (2019); Hinnefeld et al.
(2018); Dixon et al. (2018); Maughan & Near (2020) whose purpose is to measure unfairness in
machine learning models. Measurements of fairness based on the area under the receiver operating
characteristic curve (AUC-ROC) are described in Dixon et al. (2018) and expanded in Borkan et al.
(2019). These metrics measure group-wise accuracy using AUC. Prediction Sensitivity, described
in Maughan & Near (2020) fills the need for a reliable measure of individual fairness, as opposed
to group fairness. A common shortcoming of these metrics is that they focus exclusively on binary
classification Caton & Haas (2020) and are not meaningful in tasks of multi-class classification. Our
proposed metrics are usable with any number of classes. Additionally, few works have studied how
bias can present as unfairness and vice versa. To the best of our knowledge, our work is the first to
propose a single metric shown to express both bias and unfairness when comparing two models.

3 PROPOSED METRICS FOR CLASS-WISE BIAS

We propose two new metrics, Combined Error Variance (CEV) and Symmetric Distance Error
(SDE)s. Both measure changes in the class-wise false positive and false negative rates of two mod-
els, and each has its own advantages which will be explored in Section 4. When calculating both
CEV and SDE one model is used as the base and another model as the alternative.

3.1 COMBINED ERROR VARIANCE

The concept of the Combined Error Variance (CEV) metric is to measure the tendency of DNNs to
sacrifice one class for the benefit of another class. CEV approximates the variance of the change
in False Negative Rate (FNR) and change in False Positive Rate (FPR). It summarizes changes in
FNR/FPR away from the model’s average. Mathematically, CEV is defined as follows.

δXie =
Xie − X̂ie

X̂ie

(1) δXµe =
1

n

n∑
i=0

(δXie) (2)

cev =
1

n

n∑
i=1

(dist((δXµpos, δXµneg), (δXipos, δXineg)))
2 (3)

Let Xie be a pair of values for the FPR and FNR for class i of the comparison model and X̂ie be the
original models FPR/FNR pair, with e indicating either the false-positive or false-negative rate. We
first find the normalized change in FPR/FNR δXie by subtracting the error rates for the two models
from each other and dividing by the original. The mean change δXµe is found by averaging the
values of δXie, keeping in mind that every δXie is the change in two values FPR and FNR. The
CEV is calculated by treating each δXie as a point in a 2-dimensional space of FNR and FPR. The
square of the euclidean distances between each δXie and the mean change represented by δXµe are
summed and divided by the total number of classes n.

3.2 SYMMETRIC DISTANCE ERROR

The principle of the Symmetric Distance Error (SDE) metric is to measure another undesirable bias
behavior that presents in simple models. That is, a class with more training examples or that has
similar features to another class is more frequently to be chosen by the model with limited capacity.
To reflect this biased behavior, SDE calculates how ”far away” from balanced is the change in
FPR/FNR for each single class error. Intuitively, if we make a scatter plot with changes in FPR
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and FNR as X and Y values, the diagonal line in that plot would be a perfectly balanced change in
FPR/FNR. Therefore, the SDE can be calculated as the symmetric distance of each change to that
balance line.

d =
|a(x0) + b(y0)|√

a2 + b2
(4) d =

|(1)(x0) + (−1)(y0)|√
(1)2 + (−1)2

=
|x0 − y0|√

2
(5)

For a line in the Cartesian plane described by the equation ax + by + c = 0, the distance d from
any point (x0, y0) can be derived from the equation in 4. In our specific context, the diagonal of the
Cartesian plane (i.e. the balance line) is x = y or x − y = 0 will represent an equal difference in
FNR and FPR between two models. Given any change of FNR and FPR the symmetric distance of
that change to the balance line can be calculated as:

sde =
1

n

n∑
i=0

|δFNRi − δFPRi| (6)

Once the symmetric distance of each change is calculated, the SDE of a model can be calculated as
the mean absolute change of normalized FP/FN rate, with the change being calculated as described
in Equation 1. The

√
2 has been omitted from the final equation as a constant that has no effect

on the meaning of the metric. This metric will therefore reveal that one model or the other is more
biased toward false positives or false negatives in a class-wise fashion.

3.3 NORMALIZATION

It is frequently true that a metric is meaningless without some numerical context. Both CEV and
SDE may produce a large range of values depending on the specific dataset, number of classes, and
performance of the models trained on that data. While not strictly necessary, in order to make the
outputs of our metrics more interpretable, we follow a procedure for normalizing their values based
on a hypothetical ”worst performing” model to give us a reference. To do this a set of predictions
for all test instances is produced at random with all classes being equally likely, and the FPR/FNR
of these random predictions is calculated. The CEV and SDE of the random predictions is generated
relative to the original model. These are then used as a divisor to normalize the other CEV and
SDE values of a group of models. Following this process, our metrics now indicate a change in
algorithmic bias relative to a random predictor. Thus, a CEV value of 0.5 shows that the class-wise
bias of model 2 relative to model 1 has increased by 50% of the change between model 1 and a
random predictor.

4 EXAMPLE APPLICATIONS

We have explored several applications of CEV and SDE for comparing the performance of two
models. While we don’t believe this list is exhaustive, in this section we illustrate several ways our
proposed metrics can be used. We group these applications into two categories:

1. Comparing models w.r.t each other for the purpose of evaluating change in bias. We demon-
strate using CEV/SDE in the context of model compression to detect compression-induced
bias. We then further generalize this concept by informing and selecting from any number
of trained low resource models to replace a higher capacity model.

2. Evaluating group fairness. We demonstrate how CEV/SDE can be used to measure relative
bias w.r.t protected groups. We also compare our results to existing binary classification
fairness metrics and demonstrate the use of our metrics on multi-class data.

4.1 MODEL SELECTION

4.1.1 MODEL COMPRESSION

Compressed neural networks can offer significant reductions in the computing power required for
model inference. However, it has been shown that compressed models are often more biased than the
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original when the per-class error rates are examined Hooker et al. (2019; 2020). CEV and SDE allow
one to reason about two values instead of auditing all FP/FN rates of the classes. They can quickly
expose compressed models that cannibalize a subset of their target classes to preserve top-1/top5
accuracy.

COMPRESSION IDENTIFIED EXEMPLARS

To the best of our knowledge, only one other work proposes a method for measuring desperate
impact and bias for multi-class classification. Compression Identified Exemplars (CIEs) Hooker
et al. (2019; 2020) are proposed specifically to categorize changes in model behavior and attribute
the extent to which model compression techniques are responsible. While CIEs have many advan-
tages beyond measuring bias (i.e. human-in-the-loop data auditing) the means by which they are
found make counting CIEs impractical for many problems and impossible for many others. CIEs
are defined as the following equation, which represents images in a data set for which compression
explicitly changes the behavior of the answer. In Hooker et al. (2019), a population of 30 models
were trained for each compression method and sparsity level. They then defined an image i as an ex-
emplar if modal label YMi,t , or class most predicted by the t-compressed model population disagrees
with the label produced from the original networks.

CIEi,t =

{
1, if yMi,0 6= yMi,t
0, otherwise

While CIEs help reveal the bias issues in pruned models, not every image reported as a CIE rep-
resents a problem. A good portion of CIEs represent images that are equally hard for a human to
classify and may simply be a case where the uncompressed networks overfit to learn the example.
Our proposed metrics, CEV SDE, address some of the weaknesses of CIEs and give us true metrics.
Pruning and quantization have been observed to sacrifice accuracy on a subset of classes in classifi-
cation tasks in order to retain overall top-k accuracy Hooker et al. (2019). To catch and reflect this
bias, our metrics are designed to quantify both the spread of the change in classification error as well
as changes in how the model is making mistakes. As a result, both of our proposed metrics consider
the distribution of change in false positive and false negative rates (FPR, FNR) for all classes.

To demonstrate the efficacy of CEV and SDE for evaluating bias in compressed models, we evaluate
the following well-known compression algorithms and compare CEV and SDE metrics with the
CIEs counts. The following example is conducted to illustrate the intuitive application of CEV/SDE.
In this experiment, we measure the change that structured pruning has on a convolutional neural
network as well as how various distillation methods mitigate bias. We train a CNN ResNet He et al.
(2016) (ResNet32x4) model on CIFAR100 Krizhevsky (2009) and prune it to various sparsities
using Filter-wise Structured Pruning.

Hooker et al. reported that the negative effects of compression are most observed on underrepre-
sented groups Hooker et al. (2020). Therefore, we resample the CIFAR100 dataset to purposely
underrepresent certain classes in the training set. We select 15 classes and reduce the remaining
training samples to 50%, 20%, and 10% of their original numbers. Our hypothesis is that these bi-
ased classes with fewer data samples will more likely be picked as ”victims” by the pruned models.

We use pruning as the baseline model and the rest of the models are pruned jointly with one of the
state-of-the-art KD methods shown in Table 1. We also test whether combining our feature map
based distillation methods with KD (e.g. AT + KD or PKT + KD) can achieve additional benefits.
We utilize Tian et al’s Tian et al. (2019) implementation for all distillation methods tested. For all
experiments, the models are pruned initially to 10% sparsity then gradually pruned every 5 epochs
until the desired sparsity is reached according to the AGP Zhu & Gupta (2017) schedule until they
reach 45% sparsity. All pruning is completed at the halfway point of training and allowed to continue
to fine-tune for another 120 epochs. We do not perform any layer sensitivity analysis or prune layers
at different ratios. Although that may have resulted in higher accuracy, our goal is not to reach
state-of-the-art compression ratios but to demonstrate how CEV/SDE capture the effect of pruning
on bias and any methods that might mitigate it.

Two observations can be made from the results presented in Table 1 and Figure 2a: (1) CEV and
SDE generally agree with the CIE count. They achieve this while being easier to calculate and not
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(a) Pruning vs Distillation (b) AT/PKT + KD

Figure 2: Normalized FP/FN Rate Change for distillation methods on biased CIFAR100 dataset.
Ellipses represent 95% confidence intervals for data

Table 1: CIE count, CEV, SDE, and Accuracy for pruning with and without KD on biased CIFAR100

Method # of CIEs CEV SDE Accuracy

AT + KD 742 0.00187 0.13173 77.100
PKT + KD 748 0.00199 0.13098 77.335
SP + KD 768 0.00331 0.16162 76.927
FSP + KD 742 0.00333 0.16002 75.285
KD (Hinton et al., 2015) 770 0.00338 0.16065 78.142
AT (Zagoruyko & Komodakis, 2017) 909 0.00430 0.19306 78.097
PKT (Passalis & Tefas, 2018) 881 0.00481 0.19891 78.963
SP (Tung & Mori, 2019) 838 0.00583 0.21591 78.520
FSP (Yim et al., 2017) 877 0.00638 0.22525 78.413
Struct Pruning 887 0.00931 0.26687 77.242

requiring multiple models to be trained. (2) Accuracy alone is a poor indicator of model quality. In
Table 1 Structured pruning has accuracy comparable to AT + KD and PKT + KD but in Figure 2
we see that the change in accuracy in structured pruning is not distributed equitably with some
classes having a 300% change in FNR. SDE also neatly captures that the skew in FP/FN resulting
for most models. These experiments show the great potential of our proposed CEV/SDE metrics in
distinguishing desirable models from biased models that appear to be equal at a surface level.

4.1.2 PRETRAINED MODEL SELECTION

Figure 3: Change-in-Top1, normalized CEV, and normalized SDE adjacency matrices of models
listed in Table 2. Each entry displays the given metric calculated for the columns model w.r.t the
rows model. Reading the table row-wise you see trade offs going from the row model to another.
Reading the column you see the trade offs for other models going to the column model. Higher
values CEV/SDE (shown by darker cells) indicate moving towards a more biased model.

There are many algorithms and model architectures for low resource inference in image recognition
alone. We have discussed examples of using CEV/SDE to analyze compression effects. Now we
consider this problem more broadly. Bias is an important consideration when selecting a pre-trained
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Table 2: Low resource ImageNet models from TIMM github Wightman (2021). Top1/Top5, input
image sizes, and parameter count listed. Index corresponds to axis labels in Figure 3

index model top1 top5 img size params x106

0 efficientnet b2 Tan & Le (2019) 80.608 95.310 288 9.11
1 efficientnet b1 Tan & Le (2019) 78.792 94.342 256 7.79
2 efficientnet b1 pruned Aflalo et al. (2020) 78.242 93.832 240 6.33
3 mobilenetv3 large 100 miil Howard et al. (2019) 77.914 92.914 224 5.48
4 mobilenetv2 120d Sandler et al. (2018) 77.294 93.502 224 5.83
5 mobilenetv3 large 100 Howard et al. (2019) 75.768 92.540 224 5.48
6 mobilenetv3 rw 75.628 92.708 224 5.48
7 mobilenetv2 110d Sandler et al. (2018) 75.052 92.180 224 4.52
8 pit ti distilled 224 Heo et al. (2021) 74.536 92.096 224 5.10
9 deit tiny distilled patch16 224 Touvron et al. (2021) 74.504 91.890 224 5.91

10 mobilenetv2 100 72.978 91.016 224 3.50
11 resnet18 He et al. (2016) 69.758 89.078 224 11.69

model from one of the dozens which are available in many problem spaces. Unfortunately, CIE count
is not applicable in the case where you have models already trained and simply want to understand
the trade-offs you will be making. Here we see how one might use CEV/SDE to detect and avoid
a model more biased than models of similar accuracy. For this example, we have selected a set
of models from the TIMM model repository (Wightman, 2021) that have between 3.5 × 106 and
11.7 × 106 parameters. Each model has been pre-trained on the Imagenet dataset (Russakovsky
et al., 2015). Table 2 lists the specific models, their top1/top5 accuracy, image input size, and
number of parameters. We have constructed heat maps of the CEV/SDE values by calculating the
interaction between each model and building an adjacency matrix. In both Table 2 and Figure 3
we sort the models by Top-1 accuracy. With our constructed matrices we can quickly glance and
observe that mobilenetv3 large100 on row 5 column 5 stands out clearly in the CEV/SDE matrices.
We see that although the model has comparable accuracy and parameters to mobilenetv3 rw and
mobilenetv2 110d, it is actually measured to have worse trade-offs of FPR/FNR w.r.t to the tables
best model in terms of accuracy efficientnet b2, and is no better or worse than several of the next
several models on our accuracy sorted list. CEV and SDE have prevented us from making a poor
selection with relative ease. Again, we find accuracy alone is a poor indicator of model quality.

4.2 FAIRNESS

Fairness has rightly been enjoying increased attention over the last several years when measured
by the total number of papers addressing it Caton & Haas (2020). Fairness is often defined as the
ability of a model to classify all groups within the testing data equally well. For example, a model
trained to recognize human faces should be equally good at recognizing the faces regardless of
demographic traits (e.g race, gender, age). Unfortunately, unintentionally biased data collected in
real-world datasets and even train methodologies can cause undesired performance in models. Our
metrics were developed specifically to measure the bias of classifiers, but we will demonstrate they
may also be used for measuring fairness as well. Importantly, this methodology allows the metrics
to measure fairness in multi-class examples.

To measure bias with CEV or SDE, one model is compared to another. This process can be adapted
to measure fairness by comparing a models performance on its test data to its performance on a
subset of its test instances. For this purpose, we will select from specific protected attributes and
calculate bias with respect to the groups. A large value in CEV or SDE will indicate that per-class
bias is increased for one group in the data, and that the model’s performance is lower for that group.

4.2.1 BINARY CLASSIFICATION

To demonstrate measuring fairness in binary classification, we trained several common machine
learning models on the Titanic dataset Frank E. Harrell Jr. (2017): a shallow neural network(NN),
a support vector machined(SVM), and a gradient tree boosting classifier(GTB) . This dataset offers
information about Titanic passengers with the labels Survived and Did Not Survived. The sex of
each passenger is included as a feature of each instance. Sex was excluded in the model training
and used later for group-wise fairness testing. These metrics are presented along with the False
Positive Equality Difference(FPED), False Negative Equality Difference(FNED)Dixon et al. (2018),
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Table 3: Comparison of Error Rate Equality Difference(ERED) Dixon et al. (2018) metrics, and
Difference in Expected Value(DEV) Hinnefeld et al. (2018) Metrics with our proposed CEV and
SDE on measuring bias. We make our comparison to measure fairness traits of models classifying
the Titanic dataset Frank E. Harrell Jr. (2017). CEV/SDE are calculated w.r.t the whole dataset
errors, and given protected group. All values are averaged over 5 runs of train/test.

Model Our Metrics Existing Metrics

- CEV SDE ERED DEV
- All→Men All→Women All→Men All→Women FPED FNED DIMS DIAMR

NN 0.013557 0.012737 0.115002 0.093218 0.548443 0.458016 -0.269742 0.288790
SVM 0.012089 0.000736 0.109744 0.027081 0.412500 0.593508 -0.067460 0.491071
GTB 0.000107 0.000941 0.010341 0.030619 0.458462 0.513932 -0.193700 0.364831

Difference in Mean Scores(DIMS), and Difference in Average Model ResidualsHinnefeld et al.
(2018) in Table 3.

The four metrics presented for comparison are all zero for perfectly fair predictions. The relatively
small value generated for each of the eight metrics is an effect of the small size of the dataset. The
fact the FPED, FNED, DIMS, and DIAMR are not 0, shows that some unfairness has been learned
by our neural network. The differences in the CEV and SDE scores moving from all data to men
only, and all data to women only also indicates biased and unfair performance by the classifier. So
we can confirm that in tasks of binary classification, our new metrics conform to the established
work in the field of fairness. But as will be shown in Section 4.2.2, CEV and SDE are not limited to
the analysis of binary labels.

4.2.2 MULTI-CLASS CLASSIFICATION

Figure 4: Change in FP/FN rate for protected subgroups of ResNet model trained on CelebA dataset.
Change is calculated w.r.t the to complete validation set

We have asserted that CEV and SDE can be used to measure fairness in multi-class classification.
We will now demonstrate that process using the CelebA dataset Liu et al. (2015). This dataset
contains several thousand images of celebrates and public figures with 40 binary attributes. We have
selected from the provided attributes a subset representing hair color to serve as training labels. We
then trained a ResNet34 image recognition model to identify the hair color of the image subjects.
From the remaining provided attributes, we have identified several to serve as protected groups
(“Attractive”, “Male”, “Pale Skin”, “Young”). As these labels come from what might be described
as “privileged”, we also consider subsets formed from the conjugate of these labels. We should note
that the conjugate does not imply the opposite. The absence of a Pale Skin label for example does
not explicitly mean dark skin but would contain all of those examples.

The results are contained in Figure 4 and Table 4. We find that groups “Male” and “Pale Skin”
have the highest Top-1 Accuracy. However, we also find they have high levels of class unfairness.
Specifically for Male, our model is far less likely to correctly identify Male as having Blond Hair,
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Table 4: Top-1, CEV, SDE, and change in FPR/FNR for selected protected class from ResNet model
trained on CelebA dataset

Protected Attribute Top-1 CEV SDE Change in FPR Change in FNR

Full Test Set 0.9212
Attractive 0.9222 0.0015 0.0331 -31.0809 80.4380
Male 0.9225 0.1413 0.2205 12.8440 77.8003
Pale Skin 0.9224 0.0035 0.0465 -43.8572 -33.9335
Young 0.9215 0.0002 0.0082 -27.6765 150.5065
Not Attractive 0.9208 0.0034 0.0493 45.6423 6.8297
Not Male 0.9207 0.0053 0.0562 1.2762 47.2981
Not Pale Skin 0.9207 0.0000 0.0021 1.9565 1.4648
Not Young 0.9213 0.0035 0.0313 146.3057 0.2381

and more likely to incorrectly guess they have Gray Hair. Meanwhile, “Not Pale Skin” has lower
accuracy, but the accuracy and FPR/FNRs are much closer to the average of the model as a whole.
This is easily visible in Figure 4. This unevenness is neatly captured by the corresponding CEV and
SDE values or the groups in our data.

5 DISCUSSION AND LIMITATIONS

As with any metric, it is also important to remember that CEV and SDE are only meaningful in
context. A higher value for CEV indicates that the second model has a higher class-wise bias. A
higher value for SDE indicates that the second model is skewing towards false positives or false
negatives. Either behavior represents a degraded real-world performance for a model in a way that
may not be captured by accuracy or precision as demonstrated in Section 4.

The importance of measuring fairness and bias in multi-class data should not be underestimated.
Data that meaningfully describes the real world is often multi-class. While it is true to that multi-
class classification can be re-framed as many binary classification problems, re-framing a problem as
100 or 1,000 one-vs-each problems would only serve to make reasoning about the implications much
more difficult. We believe CEV and SDE are applicable to many real-world problems completely
ignored by their binary cousins.

CEV and SDE can be used to measure the fairness of a machine learning model, but only group
fairness. Individual fairness, which is defined as the degree to which similar individuals are classified
similarly, is not measured in any of the use cases presented in Section 4.

We have not found any consistent threshold that indicates by itself that a model is or is not biased.
It may be that such a threshold exists. Also important to remember that biased performance may be
the result of algorithmic bias, or it may be a reflection of biased data and CEV/SDE alone cannot
determine its source. But with these limitations in mind, CEV and SDE reliably indicate that one
model is more or less biased than another. As concluded in Hinnefeld et al. (2018), ”...fairness
metrics in machine learning must be interpreted with a healthy dose of human judgment.”

CEV and SDE are calculated w.r.t to some other classifier and only classifiers. As such they are
not suitable for every situation. However, we believe they provide a good starting point for the
community to begin to address measuring more sophisticated machine learning tasks. Additionally,
we endeavor to extend the concepts of CEV/SDE to other tasks like image segmentation which are
harder still to quantify. We also believe our insights from CEV/SDE can be used to create stand-
alone metrics to measure bias and fairness without making direct model comparisons.

6 CONCLUSION

Unfairness is a persistent and difficult problem in machine learning. Bias is more quantifiable but
just as dangerous to the reliable performance of machine learning models in the real world. In this
paper, we have introduced two new metrics: CEV and SDE. These metrics can reliably reveal that a
model is more or less biased compared to another model. We have also demonstrated that these new
metrics can be used to measure the fairness of a model used for classification. Importantly, these
metrics are meaningful when used with multi-class data, even with a very large number of classes.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Yonathan Aflalo, Asaf Noy, Ming Lin, Itamar Friedman, and Lihi Zelnik. Knapsack pruning with
inner distillation, 2020.

Alexander Amini, Ava P Soleimany, Wilko Schwarting, Sangeeta N Bhatia, and Daniela Rus. Un-
covering and mitigating algorithmic bias through learned latent structure. In Proceedings of the
2019 AAAI/ACM Conference on AI, Ethics, and Society, pp. 289–295, 2019.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Nuanced
metrics for measuring unintended bias with real data for text classification. In Companion pro-
ceedings of the 2019 world wide web conference, pp. 491–500, 2019.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Simon Caton and Christian Haas. Fairness in machine learning: A survey. arXiv preprint
arXiv:2010.04053, 2020.

Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Measuring and miti-
gating unintended bias in text classification. In Proceedings of the 2018 AAAI/ACM Conference
on AI, Ethics, and Society, pp. 67–73, 2018.

Thomas Cason Frank E. Harrell Jr. Titanic dataset, oct 2017. URL https://www.openml.
org/d/40945.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach,
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