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Abstract
We study model-free learning methods for the output-feedback Linear Quadratic (LQ) control prob-
lem in finite-horizon subject to subspace constraints on the control policy. Subspace constraints
naturally arise in the field of distributed control and present a significant challenge in the sense that
standard model-based optimization and learning leads to intractable numerical programs in gen-
eral. Building upon recent results in zeroth-order optimization, we establish model-free sample-
complexity bounds for the class of distributed LQ problems where a local gradient dominance con-
stant exists on any sublevel set of the cost function. We prove that a fundamental class of distributed
control problems—commonly referred to as Quadratically Invariant (QI) problems—as well as oth-
ers possess this property. To the best of our knowledge, our result is the first sample-complexity
bound guarantee on learning globally optimal distributed output-feedback control policies.

1. Introduction

Recent years have witnessed significant attention and progress in controlling unknown dynamical
systems solely based on system trajectory observations. This shift from classical control approaches
to data-driven ones is motivated by the ever increasing complexity of critical emerging dynamical
systems, whose mathematical models may be unreliable or simply not available (Hou and Wang,
2013). When it comes to learning an optimal control policy, the available approaches can be broadly
divided into two categories. The first class of methods is denoted as model-based, where the histor-
ical system data is exploited to build an approximation of the nominal system and classical optimal
robust control is then used on this system approximation. The second class of methods is denoted as
model-free, where reinforcement learning is used to directly learn an optimal control policy based
on the observed costs, without explicitly constructing a model for the system.

Model-free approaches tend to require more samples to achieve a policy of equivalent accu-
racy (Tu and Recht, 2018), but are inherently unaffected by the potential challenges of designing
an optimal controller. Indeed, in large-scale dynamical systems, the control policy is often required
to be distributed, in the sense that different controllers can only base their control policy on partial
sensor measurements due to limited sensing capabilities, geographic distance or privacy concerns.
Given such limitations, it has been known that the corresponding optimization problems are NP-
hard in general (Papadimitriou and Tsitsiklis, 1986; Blondel and Tsitsiklis, 2000; Witsenhausen,
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1968). Often, one can only derive a tractable approximation using convex relaxations (e.g. Fazelnia
et al. (2016)) or restrictions (e.g. Furieri et al. (2019b)). The difficulties in solving model-based
optimal control for large-scale systems motivate us to bypass numerical programming altogether
and study the properties of model-free methods for distributed control.

For Linear Quadratic (LQ) control problems in infinite-horizon without additional constraints,
the optimal policy can be derived with dynamic programming by solving a Riccati equation. For
distributed control tasks, the optimal policy might not be linear in general (Witsenhausen, 1968)
and even in those cases where an explicit solution can be computed (see e.g., Lamperski and Doyle
(2015) and references within), the optimal controller requires several internal states and might admit
a rather complicated formulation. Furthermore, when designing a static distributed controller in
infinite-horizon, model-free methods are unlikely to find the globally optimal controller due to the
feasible set being disconnected in general (Feng and Lavaei, 2019); for this setting, convergence to
local optima was confirmed by Hassan-Moghaddam et al. (2019).

Motivated as per above, in this paper we consider model-free learning of globally optimal dy-
namic distributed controllers. We focus on the finite-horizon setup, where the feasible set is naturally
connected because every control policy yields a finite closed-loop cost. Furthermore, in this setup
we can 1) encode general dynamic time-varying linear policies in a relatively simple way, and 2)
consider time-varying system dynamics.

Our contributions First, we provide a general framework for model-free learning of dis-
tributed dynamic linear policies in finite-horizon with uncertain initial state, process noise and
noisy output observations. Second, our key contribution is to establish a property of local gradi-
ent dominance for a class of distributed control problems, including 1) all Quadratically Invariant
(QI) problems (Rotkowitz and Lall, 2006) and 2) some non-QI problems. This local gradient domi-
nance property is crucial for establishing model-free sample-complexity bounds using zeroth-order
optimization; we base our corresponding analysis on the recent results of Malik et al. (2018), while
adapting and extending relevant aspects.

Related work Thanks to its well-understood solution structure and its properties, the LQ
problem has enjoyed significant attention in the line of work on model-based learning, originat-
ing from classical system identification (see Ljung (2010) for a nice overview). A non-asymptotic
analysis was provided by Fiechter (1997) and significantly refined by Dean et al. (2017), and sub-
linear regret results for online model-based methods were recently obtained by Dean et al. (2018);
Abbasi-Yadkori and Szepesvári (2011); Abeille and Lazaric (2018). Still assuming full sensor in-
formation, Mania et al. (2019) exploited Riccati perturbation theory to analyse the output-feedback
case and Dean et al. (2019) included safety constraints on states and inputs. The literature on
model-free learning has recently been attracting significant research interest starting from the works
of Fazel et al. (2018) and Abbasi-Yadkori et al. (2018). Related to our work is Fazel et al. (2018),
which showed that for the state-feedback LQ problem without an information structure, a standard
policy-gradient method is guaranteed to converge to the global optimum and established sample-
complexity bounds that scaled with Õ(ε−4), where ε is the suboptimality gap. This bound was
improved to Õ(ε−2) in Malik et al. (2018), at the expense of a constant probability of success, for
a discounted LQ cost function. Furthermore, similar convergence properties were shown for robust
control tasks without an information structure; we refer the reader to Gravell et al. (2019) for the
case of multiplicative noise and to Zhang et al. (2019) forH∞ robustness guarantees.

To the best of our knowledge, global convergence for distributed control problems, where a
subspace constraint is imposed on the control policy, has not been studied from a model-free per-
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spective. A related problem has been addressed with a model-based approach in Fattahi et al. (2019),
where the authors extended the method of Dean et al. (2017) by adding subspace constraints on the
closed-loop responses. In general, a sparse closed-loop response does not lead to a sparse controller
implementation that is exclusively based on measuring the outputs, and vice-versa (see Zheng et al.
(2020) for details on this aspect). The resulting framework is thus not directly comparable with the
one considered in this paper. We also note that the work of Fattahi et al. (2019) restricts the analysis
to state-feedback, whereas we consider noisy output-feedback.

2. Background and Problem Statement

Notation: We use R and N to denote the set of real numbers and integers, respectively. We write
M = blkdg(M1, . . . ,Mn) to denote a block-diagonal matrix with M1, . . . ,Mn on its diagonal
block entries. The Kronecker product between M ∈ Rm×n and P ∈ Rp×q is denoted as M ⊗ P ∈
Rmp×nq. Given K ∈ Rm×n, vec(K) ∈ Rmn is a column vector that stacks the columns of K.
We define the inverse operator vec−1 : Rmn → Rm×n that maps a vector into a matrix (the matrix
dimension shall be clear in the context). The Euclidean norm of a vector v ∈ Rn is denoted by
‖v‖22 = vTv and the Frobenius norm of a matrixM ∈ Rm×n is denoted by ‖M‖2F = Trace(MTM).
For a symmetric matrixM , we writeM � 0 (resp. M � 0) if and only if it is positive definite (resp.
positive semidefinite). We say that x ∼ D if the random variable x ∈ Rn is distributed according to
D. Given a binary matrix X ∈ {0, 1}m×n, we define the associated sparsity subspace as

Sparse(X):= {Y ∈ Rm×n| Yi,j= 0 if Xi,j = 0, i = 1, . . . ,m, j = 1, . . . , n } .

The set Sr ⊆ Rd denotes the shell of radius r > 0 in Rd, that is Sr = {z ∈ Rd| ‖z‖2 = r}. A zero
block of dimension m× n is denoted as 0m×n.

2.1. The LQ Optimal Control Problem Subject To Subspace Constraints

We consider time-varying linear systems in discrete-time

xt+1 = Atxt +Btut + wt , yt = Ctxt + vt , (1)

where xt ∈ Rn is the system state at time t affected by process noise wt ∼ Dw with x0 = µ0 + δ0,
δ0 ∼ Dδ0 , yt ∈ Rp is the observed output at time t affected by measurement noise vt ∼ Dv, and
ut ∈ Rm is the control input at time t to be designed. We assume that the distributions Dw,Dδ0
Dv are bounded, have zero mean and variances of Σw,Σδ0 ,Σv � 0 respectively. Boundedness of
the disturbances is a reasonable assumption in physical applications and it is commonly exploited
to simplify the analysis of model-free methods (Fazel et al., 2018; Malik et al., 2018)1. We consider
the evolution of (1) in finite-horizon for t = 0, . . . N , where N ∈ N. By defining the matrices

A = blkdg(A0, . . . , AN ), B=
[
blkdg(B0, . . . , BN−1)

0n×mN

]
, C = blkdg(C0, . . . , CN ) ,

and the vectors x =
[
xT0 . . . xTN

]T, y =
[
yT0 . . . yTN

]T, u =
[
uT0 . . . uTN−1

]T, w =[
xT0 wT

0 . . . wT
N−1

]T and v =
[
vT0 . . . vTN

]T, and the block-down shift matrix

Z =
[
01×N 0
IN 0N×1

]
⊗ In ,

1. Malik et al. (2018) noted that extension to sub-Gaussian disturbances is possible; we leave this case to future work.
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we can write the system (1) compactly as x = ZAx + ZBu + w, y = Cx + v, leading to

x = P11w + P12u , y = Cx + v, (2)

where P11 = (I − ZA)−1 and P12 = (I − ZA)−1ZB. In this paper, we consider linear output-
feedback policies ut = Kt,0y0 +Kt,1y1,+ . . . ,Kt,tyt, t = 0, 1, . . . , N − 1. More compactly

u = Ky, K ∈ K , (3)

where K is a subspace in RmN×p(N+1) that 1) ensures causality of K by setting to 0 those en-
tries that correspond to future outputs, 2) can enforce a time-varying spatio-temporal information
structure for distributed control. The presence of these information constraints presents a significant
challenge for optimal distributed control; we refer to Furieri and Kamgarpour (2019b) for details.

The distributed Linear Quadratic (LQ) optimal control problem in finite-horizon is:

Problem LQK: min
K∈K

J(K) ,

where the cost J(K) is defined as

J(K) :=Ew,v

[
N−1∑
t=0

(
yTt Mtyt+u

T
t Rtut

)
+ yTNMNyN

]
, (4)

and Mt � 0 and Rt � 0 for every t. We denote the optimal value of problem LQK as J?. By rear-
ranging (2)-(3), it can be observed that J(K) is in general a non-convex multivariate polynomial in
the entries of K; see Appendix A of our Arxiv report Furieri et al. (2019a) for an explicit expression
of J(K) and some useful properties. Note that LQK is a constrained problem over the subspace K;
it is convenient to observe that LQK is actually equivalent to an unconstrained problem.

Lemma 1 Let d ∈ N be the dimension of K, and the columns of P ∈ RmpN(N+1)×d be a basis
of the subspace {vec(K)| ∀K ∈ K}. Define the function f : Rd → R as f(z) := J(vec−1(Pz)).
Then, LQK is equivalent to the unconstrained problem2

min
z∈Rd

f(z) . (5)

Proof Since the columns of P are a basis of K, we have 1) ∀K ∈ K, ∃z ∈ Rd such that vec(K) =
Pz and 2) ∀z ∈ Rd, vec−1(Pz) ∈ K. Hence, (5) is equivalent to LQK.

The function f(z) is generally a non-convex multivariate polynomial in z ∈ Rd which may pos-
sess multiple local-minima, thus preventing global convergence of model-free algorithms. Further-
more, as opposed to the standard LQ problem without subspace constraints, one cannot in general
exploit a tractable reformulation or Riccati-based solutions and apply model-based learning as per
e.g. Dean et al. (2017); Mania et al. (2019). Fortunately, f(z) admits a unique global minimum if
it is gradient dominated i.e., µ(f(z)− J?) ≤ ‖∇f(z)‖22 , ∀z ∈ Rd for some µ > 0 (Karimi et al.,
2016). Gradient dominance has been proved for the standard LQ problem in infinite horizon with-
out subspace constraints (Fazel et al., 2018; Gravell et al., 2019). Inspired by these recent results,
we explore conditions under which LQK admits a gradient dominance constant, to be exploited for
model-free learning of globally optimal distributed controllers.

2. Throughout this paper, J(K) is reserved for the LQ cost function in (4) and f(z) is reserved for the equivalent cost
function f(z) := J(vec−1(Pz)).
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3. Local Gradient Dominance for QI Problems and Beyond

It is well-known since the work of Rotkowitz and Lall (2006) that problem LQK can be equivalently
transformed into a strongly convex program if and only if QI holds, that is

KCP12K ∈ K, ∀K ∈ K . (6)

We refer to Appendix B of our Arxiv report Furieri et al. (2019a) for a detailed discussion of the
QI property. In model-free learning, one directly investigates whether LQK possesses favourable
properties for convergence (such as gradient dominance) rather than convexifying through a system-
dependent change of variables. Our main contribution is to prove a local gradient dominance prop-
erty for 1) the class of all QI instances of LQK 2) other non-QI instances of LQK.

Theorem 2 Let K be QI with respect to CP12, i.e., (6) holds. For any δ > 0 and initial value z0 ∈
Rd, define the sublevel set G10δ−1 = {z ∈ Rd | f(z)− J? ≤ 10δ−1∆0}, where ∆0 := f(z0)− J?
is the initial optimality gap. Then, the following statements hold.

1. G10δ−1 is compact.

2. f(z) has a unique stationary point.

3. f(z) admits a local gradient dominance constant µδ > 0 over G10δ−1 , that is

µδ(f(z)− J?) ≤ ‖∇f(z)‖22 , ∀z ∈ G10δ−1 . (7)

The proof of Theorem 2 is reported in Appendix B of our Arxiv report Furieri et al. (2019a). In other
words, QI guarantees existence of a gradient dominance constant µδ which is “global” on G10δ−1 ,
for any δ > 0. By inspection of (7), for every δ > 0, the only stationary point contained in G10δ−1

is the global optimum, since whenever∇f(z) = 0, we have f(z) = J?.
We remark that the property (7) is weaker than the more common global gradient dominance;

we present a simple instance of LQK satisfying (7) in Appendix B of our Arxiv report Furieri et al.
(2019a). We will show in Section 4 that (7) is sufficient for global convergence of model-free
algorithms. Furthermore, diverse classes of non-QI LQK that yet are convex in K have been found
in Lessard and Lall (2010); Shin and Lall (2011), and more recently in Furieri and Kamgarpour
(2019a). For completeness, we report an explicit example in Appendix B of our Arxiv report.
Finally, notice that K typically enforces a sparsity pattern for K. Therefore, the QI property (6)
can be checked without knowing the specific system dynamics, but only using the knowledge of
the sparsity pattern of CP12 (see Furieri and Kamgarpour (2019b) for example). This is a realistic
assumption for dynamical systems that are distributed by nature.

4. Learning the Globally Optimal Constrained Control Policy

Here, we derive sample-complexity bounds for model-free learning of globally optimal distributed
controllers for the problems identified in Section 3. Our analysis technique is founded on recent
zeroth-order optimization results (Malik et al., 2018; Fazel et al., 2018); we extend the derived
bounds on the gradient estimates to include noise on the initial state, process noise and measure-
ment noise. Furthermore, our analysis hinges on the observation that local gradient dominance
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is sufficient to guarantee the sample-complexity bounds in our framework, whereas Malik et al.
(2018); Fazel et al. (2018) used a global one.

The zeroth-order optimization literature is quite rich, see for instance the works of Balasubrama-
nian and Ghadimi (2018); Nesterov and Spokoiny (2017); Ghadimi and Lan (2013) and references
therein. The key idea of such algorithms is to sample noisy function values of f generated by an
oracle, based on which an approximated gradient ∇̂f is estimated and standard gradient descent is
applied to optimize over z. While Malik et al. (2018) proposed an analysis for two-point evaluation
oracles that allow for tighter sample-complexity bounds, we notice that in many control applications
one cannot control or predict the noise affecting each separate measurement. We will thus focus on
the one-point evaluation oracle setup according to the Algorithm 1 below.

Algorithm 1 Model-free learning of distributed controllers
1: Input: z0, number of iterations T , stepsize η > 0 and smoothing radius r > 0.
2: for i = 0, . . . , T − 1 do
3: Sample u ∼ Unif(Sr), let nature “choose” disturbances δ0 ∼ Dδ0 , wt ∼ Dw for all t =

0, . . . , N − 1, vt ∼ Dv for all t = 0, . . . , N .
4: Apply û = vec−1[P (zi + u)]ŷ iteratively using (1) and store the resulting trajectories ŷ, û.
5: Compute f̂ = ŷTblkdg(M0, . . . ,MN )ŷ + ûTblkdg(R0, . . . RN−1)û and ∇̂f = f̂ d

r2
u.

6: zi+1 ← zi − η∇̂f .
7: end for
8: return KT = vec−1(PzT ).

In Algorithm 1, the observed cost f̂ can be regarded as the output of a one-point evaluation
oracle. Indeed, we have Ew,v[f̂ ] = f(zi + u) by definition, and each observation f̂ is affected by
a different noise sequence. The value ∇̂f can be interpreted as a noisy estimate3 of the gradient
∇f(zi). We now turn to the convergence analysis.

4.1. Sample-complexity bounds

Our sample-complexity analysis holds under two main assumptions on the function f .
Assumption 1. For any δ > 0 and initial value z0 ∈ Rd, the sublevel set G10δ−1 of f is compact.
Assumption 2. For any δ > 0, the function f admits a local gradient dominance constant µδ

over G10δ−1 as per (7).
In Section 3 we have provided our main result about verifying that both assumptions hold for 1)

all QI control problems and 2) some instances of non-QI problems, therefore establishing a novel
fundamental connection between distributed control and zeroth-order optimization. As is common
in zeroth-order analysis, we also verify Lipschitzness and smoothness of f on its sublevel sets.

Lemma 3 Let δ > 0 and Assumption 1 hold. Then, there exist ρ0 > 0, and Lδ,Mδ > 0, such that

|f(z′)− f(z)| ≤ Lδ
∥∥z′ − z∥∥

2
,
∥∥∇f(z′)−∇f(z)

∥∥
2
≤Mδ

∥∥z′ − z∥∥
2
, (8)

for every z′, z ∈ G10δ−1 such that ‖z′ − z‖2 ≤ ρ0.

3. Technically, E[∇̂f ] = ∇fr(zi), where fr(zi) = Eu[f(zi + u)], with u is taken uniformly at random over Sr; see,
e.g., (Malik et al., 2018, Lemma 6) for details.
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Proof We know that f is a multivariate polynomial. Since G10δ−1 is compact, it suffices to note that
∇f is a vector of polynomials and that polynomials are bounded on any compact set.

We are now ready to present the sample-complexity result. Its proof is reported in Appendix C of
our Arxiv report Furieri et al. (2019a).

Theorem 4 Let Assumptions 1 and 2 hold, and consider Algorithm 1. Let η > 0 and r > 0 be
selected according to

η ≤ min

{
εµδδ

3r2

16000Mδd2D2f(z0)2
,

1

2Mδ
,

ρ0rδ

20dDf(z0)

}
,

r ≤min

min
(

1
2Mδ

, ρ0Lδ

)
µδ

2Mδ

√
δε

40
,

1

2Mδ

√
εµδδ

5
, ρ0,

10δ−1f(z0)

Lδ

 ,

where ρ0 > 0, µδ is the local gradient dominance constant of f(z) associated with G10δ−1 , Lδ, Mδ

are the local Lipschitzness and smoothness constants described in Lemma 3, andD = max
(
W 2

λw
, V

2

λv

)
,

with W the value such that ‖w‖2 ≤ W for all δ0 ∼ Dδ0 , w0, . . . , wN−1 ∼ Dw, V the value such
that ‖v‖2 ≤ V for all v0, . . . , vN ∼ Dv, and λw and λv are the minimum eigenvalues of E[wwT]
and E[vvT] respectively. Then for any ε > 0 and 0 < δ < 1 such that ε log(4∆0

δε ) ≤ 16
δ ∆0, running

Algorithm 1 with T = 4
ηµδ

log(4∆0
δε ) iterations yields a distributed control policy KT ∈ K such that

J(KT )− J? ≤ ε ,

with probability greater than 1− δ.

Theorem 4 yields a constant probability suboptimality guarantee based on the analysis technique
of Malik et al. (2018); there, the infinite-horizon LQR problem with exact state measurements and
no information structure was addressed. Our result extends this analysis as follows. First, we
consider distributed control problems, given noisy output information and allow for inclusion of
both noise on the initial state, process noise and measurement noise. We achieve this by bounding
the variance of the gradient estimate in our Lemma 13, which is reported in Appendix C of our
Arxiv report Furieri et al. (2019a). Second, we allow for a success probability 1 − δ for any δ > 0
and show how δ affects the sample-complexity. Last, we observe that a local gradient dominance
constant valid on G10δ−1 is sufficient for the analysis, whereas Malik et al. (2018) considered a global
one. Nonetheless, we note that the finite-horizon framework enjoys a significant simplification
because any control policy leads to a finite cost and the feasible region of control policies is always
connected. Extension to infinite-horizon requires further work.

Based on Theorem 4, the model-free sample-complexity scales as O
(

d2

ε2δ4
log 1

εδ

)
. For the

standard centralized LQR problem, model-based methods (e.g. Dean et al. (2017)) can enjoy a
better scaling of O

(
d
ε2

log 1
δ

)
, but extension of these methods to the general LQK is non-trivial due

to non-existence of a convex reformulation in general. Interestingly, the scaling with respect to the
suboptimality gap ε is practically unaffected despite using a model-free method.
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Figure 1: In Figure 1(a) we plotted 1) the average number of steps over 10 runs of Algorithm 1 needed to achieve 7 increasingly tight
precision levels from ε = 0.2 to ε = 0.02 and 2) the sample-complexity T predicted by Theorem 4, when η is scaled as η = O

(
εr2

)
and r is scaled as r = O(

√
ε). In Figure 1(b), we plotted the convergence behaviour, highlighting the maximum and minimum cost

achieved at each iteration among the 10 runs.

4.2. Experiments for distributed control

To validate our results, we considered problem LQK for At = A, Bt = [1 −1 0]T, Ct = I for
t = 0, 1, 2, µ0 = 10−1 × [1 −1 1]T, with K ∈ K = Sparse(S), where

A =

[
1 0 −10
−1 1 0
0 0 1

]
, S =

[
1 0 0
1 1 0

]
⊗ [1 0 0] .

Furthermore, we consider additive initial state uncertainty uniformly distributed in the interval
[−10−2, 10−2], process noise and measurements noise wt, vt uniformly distributed in the inter-
val [−10−3, 10−3] for every t. The cost function weights are chosen as Mt = 1

4I and Rt = 1
4I at

each t. It is easy to verify that KCP12K ∈ Sparse(S) for any K ∈ Sparse(S); hence, K is QI
with respect to CP12 and Theorem 4 holds. Figure 1(a)-1(b) shows that the sample-complexity
scales significantly better than the one predicted by Theorem 4 with respect to ε, thus validating the
corresponding bounds for this example. Additional details and considerations on selecting η and r
are reported in Appendix D of our Arxiv report Furieri et al. (2019a).

5. Conclusions

Motivated by the challenges of solving model-based distributed optimal control problems, we stud-
ied model-free policy learning subject to subspace constraints. By drawing a novel connection be-
tween gradient dominance and QI, we derived sample-complexity bounds on learning the globally
optimal distributed controller for a class of problems including QI problems and other instances; for
these, the available model-based learning techniques might not converge to a global optimum. One
exciting future direction is to extend these results to infinite-horizon, by bridging the gap between
dynamical controller synthesis and a gradient-descent landscape. We also envision including safety
constraints. Furthermore, significantly sharpening our sample-complexity bounds might be possible
with potentially more refined analysis.
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Kaiqing Zhang, Bin Hu, and Tamer Başar. Policy optimization for H2 linear control with
H∞ robustness guarantee: Implicit regularization and global convergence. arXiv preprint
arXiv:1910.09496, 2019.

Yang Zheng, Luca Furieri, Antonis Papachristodoulou, Na Li, and Maryam Kamgarpour. On the
equivalence of youla, system-level and input-output parameterizations. IEEE Transactions on
Automatic Control, pages 1–8, 2020.

11


	Introduction
	Background and Problem Statement
	The LQ Optimal Control Problem Subject To Subspace Constraints

	Local Gradient Dominance for QI Problems and Beyond
	Learning the Globally Optimal Constrained Control Policy
	Sample-complexity bounds
	Experiments for distributed control

	Conclusions

