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Abstract

This paper addresses intra-client and inter-client covariate shifts in federated learning
(FL) with a focus on the overall generalization performance. To handle covariate shifts,
we formulate a new global model training paradigm and propose Federated Importance-
Weighted Empirical Risk Minimization (FTW-ERM) along with improving density ratio
matching methods without requiring perfect knowledge of the supremum over true ratios.
We also propose the communication-efficient variant FITW-ERM with the same level of
privacy guarantees as those of classical ERM in FL. We theoretically show that FTW-ERM
achieves smaller generalization error than classical ERM under certain settings. Experimental
results demonstrate the superiority of FTW-ERM over existing FL baselines in challenging
imbalanced federated settings in terms of data distribution shifts across clients.

1 Introduction

Federated learning (FL) (Li et al., 2020; Kairouz et al., 2021; Wang et al., 2021) is an efficient and powerful
paradigm to collaboratively train a shared machine learning model among multiple clients, such as hospitals
and cellphones, without sharing local data.

Existing FL literature mainly focuses on training a model under the classical empirical risk minimization
(ERM) paradigm in learning theory, with implicitly assuming that the training and test data distributions
of each client are the same. However, this stylized setup overlooks the specific requirements of each client.
Statistical heterogeneity is a major challenge for FL, which has been mainly studied in terms of non-identical
data distributions across clients, i.e., inter-client distribution shifts (Li et al., 2020; Kairouz et al., 2021; Wang
et al., 2021). Even for a single client, the distribution shift between training and test data, i.e., intra-client
distribution shift, has been a major challenge for decades (Wang & Deng 2018; Kouw & Loog 2019, and
references therein). For instance, scarce disease data for training and test in a local hospital can be different.
To adequately address the statistical heterogeneity challenge in FL, we need to handle both intra-client and
inter-client distribution shifts under stringent requirements in terms of privacy and communication costs.

∗These authors contributed equally to this work. This work was partially done while the first author was at LIONS, EPFL.
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We focus on the overall generalization performance on multiple clients by considering both intra-client and
inter-client distribution shifts. There exist three major challenges to tackle this problem: 1) how to modify
the classical ERM to obtain an unbiased estimate of an overall true risk minimizer under intra-client and
inter-client distribution shifts; 2) how to develop an efficient density ratio estimation method under stringent
privacy requirements of FL; 3) are there theoretical guarantees for the modified ERM under the improved
density ratio method in FL?
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1- Estimate importance ratios
2- Compute gradients in (FTW-ERM)
3- Receive aggregated parameters 
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Figure 1: An overview of FTW-ERM. Marginal train and
test distributions of clients are arbitrarily different leading
to intra-client and inter-client covariate shifts. To control
privacy leakage, the server randomly shuffles unlabelled
test samples and broadcasts to the clients.

We aim to address the above challenges in our new
paradigm for FL. For description simplicity, in our
problem setting, we focus on covariate shift, which
is the most commonly used and studied in theory
and practice in distribution shifts (Sugiyama et al.,
2007; Kanamori et al., 2009; Kato & Teshima, 2021;
Uehara et al., 2020; Tripuraneni et al., 2021; Zhou
& Levine, 2021).1 To be specific, for any client k,
covariate shift assumes marginal train distributions
ptr

k (x) and marginal test distributions pte
k (x) can be

arbitrarily different; while the conditional distribu-
tion ptr

k (y|x) = pte
k (y|x) := p(y|x) remains the same,

which gives rise to intra-client and inter-client covari-
ate shifts. Handling covariate shift is a challenging
issue, especially in federated settings (Kairouz et al.,
2021).

To this end, motivated by Sugiyama et al. (2007)
under the classical covariate shift setting, we propose
Federated Importance-Weighted Empirical Risk Minimization (FTW-ERM), that considers covariate shifts
across multiple clients in FL. We show that the learned global model under intra/inter-client covariate shifts
is still unbiased in terms of minimizing the overall true risk, i.e., FTW-ERM is consistent in FL. To handle
covariate shifts accurately, we propose a histogram-based density ratio matching method (DRM) under both
intra/inter-client distribution shifts. Our method unifies well-known DRMs in FL, which has its own interest
in the distribution shift community for ratio estimation (Zadrozny, 2004; Huang et al., 2006; Sugiyama et al.,
2007; Kanamori et al., 2009; Sugiyama et al., 2012; Zhang et al., 2020; Kato & Teshima, 2021). To fully
eliminate any privacy risks, we introduce another variant of FTW-ERM, termed as Federated Independent
Importance-Weighted Empirical Risk Minimization (FITW-ERM). It does not require any form of data
sharing among clients and preserves the same level of privacy and same communication costs as those of
baseline federated averaging (FedAvg) (McMahan et al., 2017). An overview of FTW-ERM is shown in Fig. 1.

1.1 Technical challenges and contributions

Learning on multiple clients in FL under covariate shifts via importance-weighted ERM is challenging due
to multiple data owners with own learning objectives, multiple potential but unpredictable train/test shift
scenarios, privacy, and communication costs (Kairouz et al., 2021). To be specific,
1) It is non-trivial to control privacy leakage to other clients while estimating ratios and relax the requirement
to have perfect estimates of the supremum over true ratios, which is a key step for non-negative Bregman
divergence (nnBD) DRM. Our work handles inter/inter-client distribution shifts in FL;
2) It is challenging to obtain per-client bounds on ratio estimation error for a general nnBD DRM with multiple
clients and imperfect estimates of the supremum due to intra/inter-client couplings in ratios. Note that, even
if we have access to perfect estimates of density ratios, it is still unclear whether importance-weighted ERM
results in smaller excess risk compared to classical ERM. Our work gives an initial attempt by providing an
affirmative answer for ridge regression;
3) While well-established benchmarks for multi-client FL have been used, they are usually designed in a way

1Our results can be extended to other typical distribution shifts, e.g., target shift (Azizzadenesheli, 2022). We provide
experimental results on target shift in Section 5.
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that each client’s test samples are drawn uniformly from a set of classes. However, we believe this might not
be the case in real-world applications and then design realistic experimental settings in our work.

To address those technical challenges, we

• Algorithmically propose an intuitive framework to minimize average test error in FL, design efficient
mechanisms to control privacy leakage while estimating ratios (FTW-ERM) along with a privacy-
preserving and communication-efficient variant (FITW-ERM), and improve nnBD DRM under FL
without requiring perfect knowledge of the supremum over true ratios.

• Theoretically establish high-probability guarantees on ratio estimation error for general nnBD DRM
with multiple clients under imperfect estimates of the supremum, which unifies a number of DRMs,
and show benefits of importance weighting in terms of excess risk decoupled from density ratio
estimation through bias-variance decomposition.

• Experimentally demonstrate more than 16% overall test accuracy improvement over existing FL
baselines when training ResNet-18 (He et al., 2016) on CIFAR10 (Krizhevsky) in challenging
imbalanced federated settings in terms of data distribution shifts across clients.

In conclusion, we expand the concept and application scope of FL to a general setting under intra/inter-client
covariate shifts, provide an in-depth theoretical understanding of learning with FTW-ERM via a general
DRM, and experimentally validate the utility of the proposed framework. We hope that our work opens the
door to a new FL paradigm.

1.2 Related work

In this section, we overview a summary of related work. See Appendix B for complete discussion.

Federated learning. The current FL literature largely focuses on minimizing the empirical risk, under
the same training/test data distribution assumption over each client (Li et al., 2020; Kairouz et al., 2021;
Wang et al., 2021). Statistical heterogeneity across clients in training-time is handled using heuristics-based
personalization methods that typically do not have a statistical learning theoretical support (Smith et al.,
2017; Khodak et al., 2019; Li et al., 2021b). In contrast, we focus on learning under both intra-client and
inter-client covariate shifts. Communication-efficient, robust, and secure aggregations can be viewed as
complementary technologies, which can be used along with FTW-ERM to improve FTW-ERM’s scalability
and security while addressing overall generalization. Our theory focuses on cross-silo FL where a number of
trustworthy and available clients under intra/inter-client covariate shifts learn a global model collaboratively,
and our experiments extend to scenarios with 100 clients and client partial participation.

Wang et al. (2020) tackle update drifts considering variations in the number of local updates performed by each
client in each communication round and focuses on minimizing the empirical risk under the same training/test
data distribution assumption over each client. Li et al. (2021c) propose FedBD to tackle inter-client feature
shift by updating Batch Normalization (BN) layers locally and updating non-BN layers using FedAvg. They
consider both inter-client covariate shift and concept shift but under the same training/test data distribution
assumption over each client. de Luca et al. (2022) consider Federated Domain Generalization and propose
data augmentation to learn a model that generalizes to in-domain datasets of the participating clients and
an out-of-domain dataset of a non-participating client. They propose to use FedAvg after proper data
augmentation, which is orthogonal to the algorithmic design, e.g., our work. Gupta et al. (2022) propose FL
Games, a game-theoretic framework for learning causal features that are invariant across clients by using
ensembles over clients’ historical actions and increasing the local computation under the same training/test
data distribution assumption over each client. Different from these work, we focus on learning and overall
generalization performance, i.e., minimizing the average test error over all clients, under both intra/inter-client
covariate shifts.

Importance-weighted ERM and density ratio matching. Shimodaira (2000) introduce covariate shift
where the input train and test distributions are different while the conditional distribution of the output
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variable given the input variable remains unchanged. Importance-weighted ERM is widely used to improve
generalization performance under covariate shift (Zadrozny, 2004; Sugiyama & Müller, 2005; Huang et al.,
2006; Sugiyama et al., 2007; Kanamori et al., 2009; Sugiyama et al., 2012; Fang et al., 2020; Zhang et al.,
2020; Kato & Teshima, 2021). Sugiyama et al. (2012) propose a BD-based DRM, which unifies various DRMs.
Kato & Teshima (2021) propose an nnBD-based DRM when using deep neural networks for density ratio
estimation. Our work largely differs from Kato & Teshima (2021) in our problem setting that allows multiple
clients, algorithm design to estimate different ratios across clients and relax the requirement to have perfect
estimates of the supremum over true ratios while controlling privacy leakage, and theoretical analyses to show
the benefit of importance weighting in generalization.

Domain adaptation. Distribution shifts between a source and a target domain have been a prominent
problem in machine learning for several decades (Wang & Deng, 2018; Kouw & Loog, 2019). The premise
behind such shifts is that data is frequently biased, and this results in distribution shifts that can be estimated
by assuming some (unlabelled) knowledge of the target distribution. The following two categories of domain
adaptation methods are most closely related to our work: a) sample-based, and b) feature-based methods.
In feature-based methods, the goal is to find a transformation that maps the source samples to target
samples (Ganin et al., 2016; Bousmalis et al., 2017; Das & Lee, 2018; Damodaran et al., 2018). Sample-based
methods aim at minimizing the target risk through data in the source domain. Importance weighting is
often used in sample-based methods (Shimodaira, 2000; Jiang & Zhai, 2007; Baktashmotlagh et al., 2014).
However, the focus on domain adaptation has been mainly to adapt to a single target distribution, not the
overall generalization performance on multiple clients, which is addressed in this paper.

Statistical generalization and excess risk bounds. Understanding generalization performance of
learning algorithms is one essential topic in modern machine learning. Typical techniques to establish
generalization guarantees include uniform convergence by Rademacher complexity (Bartlett, 1998), and its
variants (Bartlett et al., 2005), bias-variance decomposition (Geman et al., 1992; Adlam & Pennington, 2020),
PAC-Bayes (McAllester, 1999), and stability-based analysis (Bousquet & Elisseeff, 2002; Shalev-Shwartz
et al., 2010). Our work employs the first two techniques to analyze our density ratio estimation method
in a federated setting and establish generalization guarantees for FTW-ERM, respectively. Rademacher
complexity has been used in FL to obtain theoretical guarantees on the centralized model (Mohri et al., 2019)
and personalized model (Mansour et al., 2020). These work are different from our setting where we consider
multiple test distributions under different training/test data distributions for clients and focus on the overall
test error. Bias-variance decomposition is typically studied in two settings, i.e., the fixed and random design
setting, which is categorized by whether the (training) data are fixed or random. This technique has been
extensively applied in least squares (Hsu et al., 2012; Dieuleveut et al., 2017), analysis of SGD (Jain et al.,
2018; Zou et al., 2021), and double descent (Adlam & Pennington, 2020).

Notation: We use E[·] to denote the expectation and ∥ · ∥ to represent the Euclidean norm of a vector. We
use lower-case bold font to denote vectors. Sets and scalars are represented by calligraphic and standard fonts,
respectively. We use [n] to denote {1, . . . , n} for an integer n. We use ≲ to ignore terms up to constants and
logarithmic factors.

2 Covariate shift and FTW-ERM for FL

We first provide the problem setting under intra/inter client covariate shifts, and then describe the proposed
FTW-ERM as an unbiased estimate in terms of minimizing the overall true risk2.

2.1 Problem setting

Let X ⊆ Rdx be a compact metric space, Y ⊆ Rdy , and K be the number of clients in an FL setting. Let
Sk = {(xtr

k,i, ytr
k,i)}

ntr
k

i=1 denote the training set of client k with ntr
k samples drawn i.i.d. from an unknown

probability distribution ptr
k on X × Y .3 The test data of client k, is drawn from another unknown probability

2Notations are provided in Appendix A.
3For notational simplicity, we use the same notation for probability distributions and density functions.
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distribution pte
k on X × Y. Under the covariate shift setting (Sugiyama et al., 2007; Kanamori et al., 2009;

Kato & Teshima, 2021; Uehara et al., 2020; Tripuraneni et al., 2021; Zhou & Levine, 2021), the conditional
distribution ptr

k (y|x) = pte
k (y|x) := p(y|x) is assumed to be the same for all k, while ptr

k (x) and pte
k (x) can be

arbitrarily different, which gives rise to intra-client and inter-client covariate shifts. We consider supervised
learning where the goal is to find a hypothesis hw : X → Y, parameterized by w ∈ Rd e.g., weights and
biases of a neural network, such that hw(x) (for short h(x)) is a good approximation of the label y ∈ Y
corresponding to a new sample x ∈ X . Let ℓ : X × Y → R+ denote a loss function. In our FL setting, the
true (expected) risk of client k is given by Rk(hw) = E(x,y)∼pte

k
(x,y)[ℓ(hw(x), y)].

2.2 FTW-ERM for FL under covariate shift

We assume that ptr
k (xtr) > 0 for k ∈ [K] and all xtr ∈ X tr ⊆ X with X te ⊆ X tr, i.e., we need a common

data domain with strictly positive train density, which is a common assumption (Kanamori et al., 2009;
Kato & Teshima, 2021). For a scenario with K clients, we first focus on minimizing Rl (l ∈ [K]) under
intra/inter-client covariate shifts, i.e., ptr

k (x) ̸= pte
l (x) for all k. We then formulate FTW-ERM to minimize

the average test error over K clients under covariate shifts by optimizing a global model under our FL setting.

FTW-ERM for one client. Under ptr
k (x) ̸= pte

l (x) ∀k, FTW-ERM focusing on minimizing Rl is given by:

min
w∈Rd

K∑
k=1

1
ntr

k

ntr
k∑

i=1

pte
l (xtr

k,i)
ptr

k (xtr
k,i)

ℓ(hw(xtr
k,i), ytr

k,i) . (2.1)

In Appendix C, we elaborate on four special cases of the above scenario, i.e., ptr
k (x) ̸= pte

l (x) ∀k, focusing on
one client under various covariate shifts and formulate their FTW-ERM’s.
Proposition 1. Let l ∈ [K]. FTW-ERM in Eq. (2.1) is consistent. i.e., the learned function converges in
probability to the optimal function in terms of minimizing Rl.

See Appendix C for the proof. Proposition 1 implies that, under intra/inter-client covariate shifts, FTW-ERM
outputs an unbiased estimate of a true risk minimizer of client l. In Appendix C.1, we show usefulness of
importance weighting under no intra-client covariate shifts but inter-client covariate shifts, which is a special
and important case of our setting.

Building on Eq. (2.1) that aims to minimize Rl, we now formulate FTW-ERM to minimize the average test
error over all clients and explain its costs and benefits for federated settings.

FTW-ERM for K clients. Let w be the global model. For K clients under intra/inter-clinet covariate
shifts, FTW-ERM minimizes the average test error over all clients and is formulated as:

min
w∈Rd

F (w) :=
K∑

k=1
Fk(w) (FTW-ERM)

where

Fk(w) = 1
ntr

k

ntr
k∑

i=1

∑K
l=1 pte

l (xtr
k,i)

ptr
k (xtr

k,i)
ℓ(hw(xtr

k,i), ytr
k,i) . (2.2)

Each client requires an estimate of a ratio in the form of sum of test densities over own train density, e.g.,∑K
l=1 pte

l /ptr
k for client k. We emphasize that Fk(w) should not be viewed as the local loss function of client k.

Our formulation FTW-ERM is meant to minimize the overall test error over all clients given intra/inter-client
covariate shifts. To solve FTW-ERM, we employ the stochastic gradient descent (SGD) algorithm for T

iterations starting from an initial parameter w0: wt+1 = wt − ηt

∑K
k=1 gk(wt) where ηt > 0 is the step size,

gk(wt) is an unbiased estimate of ∇wFk(wt), and wT is the output.

Under no covariate shift, both FTW-ERM with true ratios and classical ERM result in the same solution,
which is a minimizer of the overall empirical risk. The main difference happens under intra-client and
inter-client covariate shifts. In those challenging settings, FTW-ERM’s solution is an unbiased estimate of a
minimizer of the overall true risk, while the solution of ERM minimizes the overall empirical risk.
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2.3 Privacy, communication, and computation in FL

Privacy and communication efficiency are major concerns in FL (Kairouz et al., 2021). We elaborate on them
and introduce another variant of FTW-ERM with the same guarantees and costs as FedAvg.

Communication/computational costs and security benefits. Compared to classical ERM, the
communication/computational overhead of FTW-ERM is negligible.4 To solve FTW-ERM, client k should
compute an unbiased estimate of the weighted gradient ∇wFk(wt), which requires a single backward pass
at a single parameter w = wt. Hence, given the ratios, there is no extra computational/communication
overhead compared to classical ERM. Clients compute the ratios in parallel. In Appendix E, we provide a
concrete example and show that the number of communication bits needed during training in standard FL is
usually many orders of magnitudes larger than the size of samples shared for estimating the ratios. To further
reduce communication costs of density ratio estimation and gradient aggregation, compression methods such
as quantization, sparsification, and local updating rules, can be used along with FTW-ERM on the fly. More
importantly, due to importance weighting, gk(w) can be arbitrarily different from an unbiased stochastic
gradient of classical ERM for client k, i.e., 1

ntr
k

∑ntr
k

i=1 ∇wℓ(hw(xtr
k,i), ytr

k,i). The formulation FTW-ERM makes it
impossible for an adversary to apply gradient inversion attack and obtain private training data of clients (Zhu
et al., 2019). In particular, the attacker cannot formulate the correct optimization problem and reconstruct
client k’s data unless the attacker has a perfect knowledge of the ratio rk(x) =

∑K
l=1 pte

l (x)/ptr
k (x) that client

k applies when computing (stochastic) gradients in Eq. (2.2).

Privacy. Given {rk(x)}K
k=1, FTW-ERM efficiently minimizes the overall test error over all clients in a

privacy-preserving manner. To estimate those ratios, if clients can tolerate some level of privacy leakage,
clients send unlabelled samples xte

l,j for l ∈ [K] and j ∈ [nte] from their test distributions. To control
privacy leakage to other clients, we propose that the server randomly shuffles these unlabelled samples
before broadcasting to clients. In Appendix Q, we discuss an alternative method instead of sending original
unlabelled samples and discuss its limitations.

To fully eliminate any privacy risks compared to classical ERM, clients may opt to minimize the following
surrogate objective, which we name Federated Independent Importance-Weighted Empirical Risk Minimization
(FITW-ERM):

min
w∈Rd

F̃ (w) :=
K∑

k=1

1
ntr

k

ntr
k∑

i=1

pte
k (xtr

k,i)
ptr

k (xtr
k,i)

ℓ(hw(xtr
k,i), ytr

k,i) . (FITW-ERM)

The formulation FITW-ERM preserves the same level of privacy and same communication costs as those
of classical ERM, e.g., FedAvg.5 Ratios for FITW-ERM are obtained using local data and clients share
only gradient information without sharing any data. Clients estimate and apply ratios using their own local
data, which essentially modifies their local loss function. This modified local loss for FITW-ERM can be
directly substituted in any formal differential privacy results for ERM such as those in (Kairouz et al., 2021).
However, to exploit the entire data distributed among all clients and achieve the optimal global model in
terms of overall test error, clients need to compromise some level of privacy and share unlabelled test samples
with the server. Hence, in this paper, we focus on the original objective in FTW-ERM.

3 Ratio estimation for FL under covariate shift

To solve FTW-ERM, client k should have access to an accurate estimate of this ratio

rk(x) =
∑K

l=1 pte
l (x)

ptr
k (x) . (3.1)

4The analyses of computational/communication overheads are provided in Appendices P and E, respectively.
5By estimating the ratios locally and absorbing into local losses, FITW-ERM can be viewed as a variant of classical ERM.
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Ratio estimation is a key step for importance weighting (Sugiyama et al., 2007; 2012). The discrepancy
between the true ratio r∗

k for client k in Eq. (3.1) and the estimated one rk using our ratio model can be
measured by Eptr

k
[BDf (r∗

k(x) ∥ rk(x))] where the Bregman divergence (BD) associated with a strictly convex
f leads to BD-based DRMs (Kato & Teshima, 2021; Kiryo et al., 2017):
Definition 1 (Bregman 1967). Let Bf ⊂ [0, ∞) be bounded and f : Bf → R be a strictly convex function with
bounded gradient. The BD associated with f from z̃ to z is given by BDf (z̃ ∥ z) = f(z̃) − f(z) − ∇f(z)(z̃ − z).

Note that BDf (z̃ ∥ z) is a convex function w.r.t. z̃; however, it is not necessarily convex w.r.t. z. The bounded
Bf is a standard assumption (Kato & Teshima, 2021), which holds in our problem since the density ratios
that are inputs of BD are bounded following the assumption in Section 2.2. We estimate the supremum
over true ratios in Section 3.2 and provide examples of f commonly used for BD-based methods in Table 4
of Appendix A. Motivated by Kato & Teshima (2021); Kiryo et al. (2017), we propose a new histogram-based
DRM (HDRM) for FL with multiple clients. HDRM overcomes the over-fitting issue (Kiryo et al., 2017; Kato
& Teshima, 2021) while providing an estimate for the upper bound rk = supx∈X tr r∗

k(x), which is a key step
for non-negative BD (nnBD) DRM. We now extend nnBD DRM to FL settings.

3.1 Extension of nnBD DRM to FL

Let Hr ⊂ {r : X → Bf } denote a hypothesis class for our ratios rk, e.g., neural networks with a given
architecture. Our goal is to estimate rk by minimizing the discrepancy Eptr

k
[BDf (r∗

k(x) ∥ rk(x))], which leads
to BD-based DRM for FL and is formulated in Appendix D.2. Let {xtr

k,i}
ntr

k
i=1 and {xte

l,j}nte

j=1 denote unlabelled
samples drawn i.i.d. from distributions ptr

k and pte
l , respectively, for l ∈ [K]. Standard BD-based DRM is

shown to suffer from an over-fitting issue where − 1
nte

∑nte

j=1 ∇f(rk(xte
l,j)) diverges if there is no lower bound

on this term (Kiryo et al., 2017; Kato & Teshima, 2021). To resolve this issue in FL, we consider non-negative
BD (nnBD) DRM for client k, i.e., minrk∈Hr

Ê+
f (rk) where

Ê+
f (rk) = ReLU

( 1
ntr

k

ntr
k∑

i=1

ℓ1(rk(xtr
k,i)) − Ck

nte

nte∑
j=1

K∑
l=1

ℓ1(rk(xte
l,j))
)

+ 1
nte

nte∑
j=1

K∑
l=1

ℓ2(rk(xte
l,j)) , (3.2)

ReLU(z) = max{0, z}, 0 < Ck < 1
rk

, rk = supx∈X tr r∗
k(x), ℓ1(z) = ∇f(z)z − f(z), and ℓ2(z) = C(∇f(z)z −

f(z)) − ∇f(z). Intuitively, ReLU is used for non-negativity and 0 < Ck < 1
rk

acts as a regularization
parameter. Substituting different f ’s into Eq. (3.2) leads to different variants of nnBD, which covers previous
work (Basu et al., 1998; Hastie et al., 2001; Gretton et al., 2009; Nguyen et al., 2010; Kato et al., 2019).
We provide explicit expressions of those variants for client k in Appendix H. In this work, we focus on
f(z) = (z−1)2

2 leading to the well-known least-squares importance fitting (LSIF) variant of nnBD for client k.

3.2 Estimation of the upper bound rk

Estimating rk = supx∈X tr r∗
k(x) is a key step for nnBD DRM. For a single train and test distribution, it is

shown that overestimating r leads to significant performance degradation (Kato & Teshima, 2021, Section
5). Kato & Teshima (2021) considered 0 < C < 1

r as a hyper-parameter, which can be tuned. However,
obtaining an efficient estimate of rk is desirable, in particular when training a deep model. Here we propose
a histogram-based method for estimation of rk.

Let B ⊂ X tr, and assume ptr
k and pte

l are continuous for l ∈ [K]. Since B is connected and Lebesgue-measurable
with finite measure, by applying intermediate value theorem (Russ, 1980), there exist x̃tr and x̂te such that
Pr{Xtr

k ∈ B} = ptr
k (x̃tr)Vol(B) and

∑K
l=1 Pr{Xte

l ∈ B} =
∑K

l=1 pte
l (x̂te)Vol(B) where Vol(B) =

∫
x∈B dx.

We note that supx∈B r∗
k(x) ≤

supx∈B

∑K

l=1
pte

l (x)
infx∈B ptr

k
(x) and

∑K

l=1
pte

l (x̂te)
ptr

k
(x̃tr) ≤

supx∈B

∑K

l=1
pte

l (x)
infx∈B ptr

k
(x) . To estimate rk , we

first partition X tr into M bins where for each bin Bm, if there exists some xtr
k,i ∈ Bm, then we define

r̃k,m :=
∑K

l=1
Pr{Xte

l ∈Bm}
Pr{Xtr

k
∈Bm} ≃

1
nte

∑nte

j=1

∑K

l=1
1(xte

l,j∈Bm)

1
ntr

k

∑ntr
k

i=1 1(xtr
k,i

∈Bm)
for m ∈ [M ]. Otherwise, r̃k,m = 0. Finally, we propose
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Input: Samples {{xtr
k,i}

ntr
k

i=1}K
k=1, {{xte

l,j}nte

j=1}K
l=1, learning rate α, regularization Λ(r) and regularization

coefficient λ.
Output: Ratio model parameters {θrk

}K
k=1.

1 for k = 1 to K (in parallel) do
2 Send nte samples to the server ;
3 Server randomly shuffles and broadcasts samples {{xte

l,j}nte

j=1}K
l=1 to clients ;

4 for k = 1 to K (in parallel) do

5 Create M bins and compute r̃k,m =
1/nte

∑nte

j=1

∑K

l=1
1(xte

l,j∈Bm)

1/ntr
k

∑ntr
k

i=1 1(xtr
k,i

∈Bm)
;

6 Estimate Ck = 1
max{r̃k,1,...,r̃k,M } ;

7 for t = 1 to T do
8 for k = 1 to K (in parallel) do
9 for n = 1 to Nk do

10 if 1
Btr

k

∑Btr
k

i=1 ℓ1(rk(xtr
k,n,i)) − KCk

Bte
k

∑Bte
k

j=1 ℓ1(rk(xte
k,n,j)) ≥ 0 then

11 gk = −∇θr

(
1

Btr
k

∑Btr
k

i=1 ℓ1(rk(xtr
k,n,i)) − KCk

Bte
k

∑Bte
k

j=1 ℓ1(rk(xte
k,n,j)) + K

Bte
k

∑Bte
k

j=1 ℓ2(rk(xte
k,n,j)) +

λ
2 Λ(rk)

)
;

12 else
13 gk = ∇θr

(
1

Btr
k

∑Btr
k

i=1 ℓ1(rk(xtr
k,n,i)) − KCk

Bte
k

∑Bte
k

j=1 ℓ1(rk(xte
k,n,j)) + λ

2 Λ(rk)
)

;
14 Update ratio model parameters θrk

= θrk
+ αgk;

Algorithm 1: Histogram-based density ratio matching. Loops are executed in parallel on each client.

to use Ck = 1
r̃k

where r̃k = max{r̃k,1, . . . , r̃k,M }. Convergence of r̃k to rk is established in Appendix G.
Furthermore, for high-dimensional data, an efficient implementation of HDRM using k-means clustering is
provided in Appendix G. We note that the number of elementary operations for computing (3.2) and its
gradients per step dominates that of running the efficient k-means clustering to estimate Ck.

In HDRM, K clients estimate their ratios in parallel. To be specific, clients first share unlabelled test samples
with the server. The server returns the randomly shuffled pool of samples to all clients. Then clients find Ck’s
in parallel. Given Ck’s, clients estimate their corresponding ratios in parallel. To handle high-dimensional
data samples and deep ratio estimation models, we adopt a variant of SGD. For client k, we divide unlabelled
samples {xtr

k,i}
ntr

k
i=1 and {xte

l,j}nte

j=1 for l ∈ [K] into Nk batches {xtr
k,n,i}

Btr
k

i=1 and {xte
k,n,j}Bte

k
j=1 for n ∈ [Nk]. Client

k first computes 1
Btr

k

∑Btr
k

i=1 ℓ1(rk(xtr
k,n,i)) − KCk

Bte
k

∑Bte
k

j=1 ℓ1(rk(xte
k,n,j)). If it becomes negative, then we apply a

gradient ascent step to increase this term. We may also opt to apply 1-norm or 2-norm regularizations. The
details of the HDRM algorithm are shown in Algorithm 1.

4 Theoretical guarantees

To address learning on multiple clients in FL, it is essential to obtain per-client generalization bounds for
a general nnBD DRM with imperfect estimates of rk’s. Even if we have access to perfect estimates of
density ratios, it is still unclear the usefulness of importance weighting. In this section, we firstly study
the high-probability guarantees on ratio estimation error of nnBD DRM under imperfect estimate of rk in
terms of BD risk. We then show the benefit of importance weighting in term of excess risk through a refined
bias-variance decomposition on a ridge regression problem. Theorem 1, Lemma 1, Theorem 2 are proved
in Appendix I, Appendix L, and Appendix M, respectively.
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4.1 Ratio estimation error in terms of BD risk

We establish a high-probability bound on the ratio estimation error of nnBD DRM with an arbitrary f for
client k in terms of BD risk given by

Ef (rk) = Ẽk(x)[ℓ1(rk(x))] +
K∑

l=1
Epte

l
[ℓ2(rk(x))] (4.1)

where Ẽk := Eptr
k

−Ck

∑K
l=1 Epte

l
. Our bound for client k depends on the Rademacher complexity (Koltchinskii,

2001) of the hypothesis class for our density ratio model Hr ⊂ {r : X → Bf } w.r.t. client k train distribution
ptr

k and all client’s test distributions pte
l for l ∈ [K]. Let Rp

n(H) denotes the Rademacher complexity of
function class H w.r.t. distribution p, formally defined as follows:
Definition 2. Let n ∈ Z+ and p be a distribution, S = {x1, . . . , xn} be i.i.d. random variables drawn from p,
and H be a function class. The Rademacher complexity of H w.r.t. p is given by:

Rp
n(H) = ESEσ

[
sup
r∈H

∣∣∣ 1
n

n∑
i=1

σir(xi)
∣∣∣]

where {σi}n
i=1 are Rademacher variables uniformly chosen from {−1, 1}.

We first make the following assumptions on ℓ1(z) = ∇f(z)z − f(z) and ℓ2(z) = C(∇f(z)z − f(z)) − ∇f(z).
Assumption 1 (Basic assumptions on ℓ1 and ℓ2). We assume 1) supz∈Bf

maxi∈{1,2} |ℓi(z)| < ∞; 2) ℓ1 is
L1-Lipschitz and ℓ2 is L2-Lipschitz on X ; 3) infr∈Hr Ẽk[ℓ1(rk(x))] > 0 for k ∈ [K].

The first two assumptions are satisfied if inf{z|z ∈ Bf } > 0 for commonly used loss functions, e.g., unnor-
malized Kullback– Leibler and logistic regression. The third assumption is mild, commonly used in DRM
literature (Kiryo et al., 2017; Lu et al., 2020; Kato & Teshima, 2021).
Theorem 1 (High-probability ratio estimation error bound for client k). Let f be a strictly convex
function with bounded gradient. Denote ∆ℓ := supz∈Bf

maxi∈{1,2} |ℓi(z)|, r̂k := arg minrk∈Hr Ê+
f (rk) and

r∗
k := arg minrk∈Hr

Ef (rk) where Ê+
f and Ef are defined in Eqs. (3.2) and (4.1), respectively. Suppose that ℓ1

and ℓ2 satisfy Assumption 1, then for any 0 < δ < 1, with probability at least 1 − δ:

Ef (r̂k) − Ef (r∗
k) ≲ R

ptr
k

ntr
k

(Hr) + Ck

K∑
l=1

R
pte

l

nte(Hr) +
√

Υ log 1
δ

+ KCk∆ℓ exp
(−1

Υ
)

(4.2)

where Υ = ∆2
ℓ(1/ntr

k + C2
kK/nte).

Remark 1. Theorem 1 provides generalization guarantees for a general nnBD DRM in a federated setting
under a strictly convex f with bounded gradient. We make the following remarks.
1) Typically, the required number of samples to accurately estimate density ratios scales exponentially with
the dimensionality of data due to the curse of dimensionality. Theorem 1 bounds estimation error without
considering approximation error. The curse of dimensionality is avoided when e.g., the ratio model Hr is rich
enough and contains the true ratio that is smooth enough.
2) Our results are general to cover various ratio models. For example, in Corollary 1 of Appendix J, we consider
neural networks with depth L and bounded Frobenius norm ∥Wi∥F ≤ ∆Wi

and establish explicit ratio
estimation error bounds for client k in O

(√
L
∏L

i=1 ∆Wi
(1/
√

ntr
k + K/

√
nte) +

√
Υ log 1

δ + KCk∆ℓ exp
(−1

Υ
))

.
3) If the additional error due to estimation of rk with HDRM in Section 3 using M bins is considered, it
leads to O(K∆ℓ

( 1
M +

√
M
ntr

k

)
) under mild assumptions. Refer to Appendix K for details.

4) Our error bound increases with K due to the structure of BD risk. Note that K is in a constant order.
Our goal is to show that nnBD DRM is guaranteed to generalize in a general federated setting.
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4.2 Excess risk and benefit of FTW-ERM

In this section, we aim to demonstrate the benefit of importance weighting in term of excess risk through
bias-variance decomposition. We consider the classical least squares problem, a good starting point to
understand the superiority of FTW-ERM over ERM with generalization guarantees. We consider the single
client setting K = 1 for the ease of description, and our results can be extended to the multiple clients setting.

Let (x, y) denote the (test) data sampled from an unknown probability measure ρ. The least squares problem
is to estimate the true parameter θ∗, which is assumed to be the unique solution that minimizes the population
risk in a Hilbert space H: L(θ∗) = minθ∈H L(θ) where L(θ) := 1

2E(x,y)∼ρ[(y − θ⊤x)]2. Moreover, we have
L(θ∗) = σ2

ϵ corresponding to the noise level. For an estimate θ found by a learning algorithm such as ridge
regression, its performance is measured by the expected excess risk, R(θ) := E[L(θ)] − L(θ∗), where the
expectation is over the random noise, randomness of the algorithm, and training data. In the following, we
consider two settings: random-design setting and fixed-design settings where the training data matrix is
random and given, respectively.

Bias variance decomposition. We need the following noise assumption for our proof.
Assumption 2 (Dhillon et al. 2013; Zou et al. 2021, bounded variance). Let ϵ := y − θ⊤

∗ x. We assume that
E[ϵ] = 0 and E[ϵ2] = σ2

ϵ .

We have the following lemma on the bias-variance decomposition of the ridge regression FTW-ERM estimate
in the random-design setting.
Lemma 1. Let X ∈ Rn×d be the training data matrix. Let W = diag(w1, . . . , wn) with wi = pte(xi)/ptr(xi)
for i ∈ [n], θ̂ be the regularized least square estimate with importance weighting: θ̂ = arg minθ

∑n
i=1 wi(θ⊤xi −

yi)2 + λ∥θ∥2
2 where λ is the regularization parameter. Denote θ∗ be the true estimate, then the excess risk

can be decomposed as the bias B and the variance V: E[L(θ̂)] − L(θ∗) = B + V , with

B := λ2E
[
θ⊤

∗ Σ−1
W,λΣteΣ−1

W,λθ∗

]
, V :=σ2

ϵE
[
tr
(
Σ−1

W,λX⊤W2XΣ−1
W,λΣte

)]
where ΣW,λ := X⊤WX+λI and Σte = Ex[xx⊤]. Note that the expectation is taken over the randomness of
the training data matrix X and label noise.
Remark 2. Our results in Lemma 1 hold under the fixed-design setting where the training data are
given (Dhillon et al., 2013; Hsu et al., 2012), by omitting the expectations from B and V.

One-hot case. To theoretically prove that FTW-ERM outperforms ERM in non-trivial settings, we start
from the one-hot case, along the lines of Zou et al. (2021), and strictly show that, under which level of
covariate shift, the excess risk of FTW-ERM is always smaller than the classical ERM.

To be specific, in the one-hot case, every training data x is sampled from the set of natural basis {e1, e2, . . . , ed}
according to the data distribution given by Pr{x = ei} = λi where 0 < λi ≤ 1 and

∑
i λi = 1. The class of one-

hot least square instances is characterized by the following problem set:
{

(θ∗; λ1, . . . , λd) : θ∗ ∈ H,
∑

iλi =
1
}

. It is not difficult to show that the population second momentum matrix is Σtr = E[xix⊤
i ] = diag(λ1, . . . , λd)

for i ∈ [n]. Similarly, we assume that each test data follows the same scheme but with different probabilities
Pr{x = ei} = λ′

i, and hence, we have Σte = diag(λ′
1, . . . , λ′

d). This is a relatively simple setting, which admits
covariate shift.Take {µ1, µ2, . . . , µd} as the eigenvalues of X⊤X. Since xi can only take on natural basis, the
eigenvalue µi can be understood as the number of training data that equals ei. For notational simplicity, we
rearrange the order of the training data following the decreasing order of the ratio, such that the i-th sample
xi corresponds to the ratio wi as the exact i-th largest value.
Theorem 2. Let θ̂ be the estimate of FTW-ERM, θv be the classical ERM, and ξi := λ

λ+µi
. Under the

fixed-design setting in the one-hot case, label noise assumption, and data correlation assumption, if the ratio
wi := pte(xi)/ptr(xi) satisfies √

λ′
i

λi
− 1 ≤ wi ≤ ξi

√
λi

λ′
i

, (4.3)

then we have R(θ̂) ⩽ R(θv) .
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Table 1: Fashion MNIST with label shift across five clients, where each client receives different fractions of examples
from each class. In this case, FTW-ERM achieves a better average accuracy than the baselines.

FTW-ERM FITW-ERM FedAvg
Average accuracy 0.8245 ± 0.0111 0.7942 ± 0.0096 0.5475 ± 0.0093
Client 1 accuracy 0.8627 ± 0.0175 0.8336 ± 0.0066 0.3978 ± 0.0215
Client 2 accuracy 0.9308 ± 0.0057 0.8896 ± 0.0124 0.9143 ± 0.0048
Client 3 accuracy 0.7742 ± 0.0618 0.7275 ± 0.0261 0.3677 ± 0.0297
Client 4 accuracy 0.7933 ± 0.0598 0.8204 ± 0.0152 0.6566 ± 0.0447
Client 5 accuracy 0.7616 ± 0.0593 0.6998 ± 0.0649 0.4009 ± 0.0642

Table 2: Average, worst-case, and best-case client accuracies of CIFAR10 target shift experiment across 100 clients
where 5 randomly sampled clients participate in every round of training.

FTW-ERM FedAvg FedBN
Average client accuracy 0.7658 0.7237 0.4934
Worst client accuracy 0.6163 0.5403 0.1678
Best client accuracy 0.9016 0.8904 0.8233

Remark 3. We have the following remarks:
1) The condition (4.3) is equivalent to

√
λ′

i

λi
∈
(

0,
1+

√
1+4ξi

2

)
, which requires the training and test data

to behave similarly in terms of eigenvalues, avoiding significant differences under distribution shifts for
learnability. Other metrics, e.g., similarity on eigenvectors (Tripuraneni et al., 2021) also coincide with the
spirit of our assumption.
2) The ratio matrix is W ∈ Rn×n. However, we only need its top d eigenvalue, i.e., the top-d ratios. In
particular, the last n − d ratios have no effect on the final excess risk. This makes our algorithm robust to
noise and domain shift.
3) For the special case by taking the ratio as wi :=

√
λ′

i

λi
, we have

B(θ̂) = λ2
d∑

i=1

[(θ∗)i]2λ′
i

[µiwi + λ]2
= λ2

d∑
i=1

[(θ∗)i]2λi[
µi +

√
λi

λ′
i
λ
]2 ,

which implies that the ratio can be regarded as an implicit regularization (Zou et al., 2021).

5 Experimental evaluation

In this section, we illustrate conditions under which FTW-ERM is favored over both Federated Averaging
(FedAvg) (McMahan et al., 2017), FedBN (Li et al., 2021c), and FITW-ERM. For MNIST-based experiments
we use a LeNet (LeCun et al., 1989) with cross entropy loss and compute standard deviations over 5
independent executions. For CIFAR10-based experiments we use the larger ResNet-18 network (He et al.,
2016). Further implementation details can be found in Appendix O.

Target shift. We consider the case of target shift where the label distribution p(y) changes but the
conditional distribution p(x|y) remains invariant. We split the 10-class Fashion MNIST dataset between 5
clients and simulate a target shift by including different fractions of examples from each class across the
training data and test data. We further consider the separable case in order to compute the exact ratio for
FTW-ERM and FITW-ERM in closed form. The specific distribution and the construction of the ratio can be
found in Appendix O.1. The results in Table 1 illustrate that FITW-ERM can outperform FedAvg on average
while preserving the same level of privacy. By relaxing the privacy slightly the proposed FTW-ERM improves
on FedAvg uniformly across all clients. Even though the proportions of the classes have been artificially
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Table 3: A challenging binary classification task on Colored MNIST with covariate shift across two clients. FTW-ERM
is close to the idealised baseline that ignores the spurious correlation (Grayscale).

Upper Bound (Grayscale) FTW-ERM FITW-ERM FedAvg
Average accuracy 0.68 ± 0.01 0.66 ± 0.01 0.63 ± 0.00 0.58 ± 0.01

Figure 2: The squared ratio of eigenvalues ordered in descending order are all below 1 thus satisfying
√

λ′
i

λi
∈(

0,
1+

√
1+4ξi

2

)
in Theorem 2. The sudden increase in the ratio for the lowest eigenvalues are most likely due to

numerical error occuring when the eigenvalues are close to zero (cf. Figure 3).

created, we believe that this demonstrates a realistic scenario where clients have a different fraction of samples
per class. Additional experiments using larger models on the CIFAR10 dataset under a challenging target
shift setting can be found in Appendix O.1 where FTW-ERM is observed to improve uniformly over FedAvg.

To model a scenario closer to real-world FL, we consider a setting with 100 clients on CIFAR10 under
challenging distribution shifts and partial participation of clients, which is a requirement for cross-device
FL (Kairouz et al., 2021; Wang et al., 2021). We sub-sample 5 clients uniformly at random at every round
for 200, 000 iterations. The target distribution is described in Table 6 and experimental results can be
found in Table 2. We observe that FTW-ERM uniformly improves the test accuracy when compared with
FedAvg and FedBN Li et al. (2021c) and that the gap is especially large between the worst-performing
clients. The difficulty of FedBN under partial participation is most likely due how the method performs
batch normalization. The batch normalization parameters are only maintained locally on each client and are
consequently only updated when the given client is sampled. For experiments under full participation see
Table 7.

Covariate shift. We now focus on covariate shift, where p(x) undergoes a shift while p(y|x) remains
unchanged. For this setting, we extend the Colored MNIST dataset in Arjovsky et al. (2019) to the multi-client
setting. The dataset is constructed by first assigning a binary label 0 to digits from 0-4 and label 1 for digits
between 5-9. The label is then flipped with probability 0.25 to make the dataset non-separable. A spurious
correlation is introduced by coloring the digits according to their assigned labels and then flipping the colors
according to a different probability for each distribution (see Appendix O.2). For this experimental setup,
we introduce an idealized scheme, which ignores the color and thus the spurious correlation, i.e., provides
an upper bound, and is referred to as Grayscale. FTW-ERM outperforms both baselines in terms of the
average accuracy even in a two-client setting. FTW-ERM is also close to Grayscale upper bound that by
construction ignores the spurious correlations.
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Verifying assumptions. Consider the two datasets used for the main experiments in Table 1 and Table 3.
We verify in Figure 2 that the eigenvalues of the training distribution and test distribution for each client
satisfy

√
λ′

i

λi
∈
(

0,
1+

√
1+4ξi

2

)
in Theorem 2.

6 Conclusions and future work

In this work, we focus on FL under both intra-client and inter-client distribution shifts and propose FTW-ERM
to improve the overall generalization performance. We establish high-probability ratio estimation guarantees
for a general DRM method in a federated setting. We further show the benefit of importance weighting in term
of excess risk through bias-variance decomposition in a ridge regression problem. Our theoretical guarantees
indicate how FTW-ERM can provably solve a learning task under distribution shifts. We experimentally
evaluate FTW-ERM under both label shift and covariate shift cases. Our experimental results validate that
under certain covariate and target shifts, the proposed method can learn the task, while baselines such as
vanilla federated averaging fails to do so. We anticipate that our methods to be applicable in learning from
e.g., medical data, where there might be arbitrary skews on the distribution. In addition, we believe our
study can further encourage the investigation of distribution shifts in FL, as this is a critical subject for
learning across clients.
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A Appendix

The appendix is organized as follows:

• Examples of f for BD-based DRM are provided in Appendix A.

• Complete related work is provided in Appendix B.

• FTW-ERM with a focus on minmizing R1 are provided in Appendix C.

• Details of density ratio estimation are provided in Appendix D.

• Communication costs of FTW-ERM and FITW-ERM are analyzed in in Appendix E.

• UKL, LR, and PU variants of nnBD are provided in Appendix F.

• Convergence of r̃ and k-means clustering for HDRM are provided in Appendix G.

• UKL, LR, and PU variants of nnBD for multiple clients are provided in Appendix H.

• The proof of the core Theorem 1 exists in Appendix I.

• High-probability ratio estimation error bounds for multi-layer perceptron and multiple clients are
established in Appendix J.

• Additional error due to estimation of rk with HDRM is analyzed in Appendix K.

• Lemma 1 is proved in Appendix L.

• Theorem 2 is proved in Appendix M.

• A counterexample under which FTW-ERM cannot outperform ERM is provided in Appendix N.

• Additional experimental details are included in Appendix O.

• Computational complexity of Algorithm 1 is analyzed in Appendix P.

• The limitations of our work are described in Appendix Q.
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Table 4: Examples of f for BD-based methods (Sugiyama et al., 2012; Kato & Teshima, 2021), LSIF = least-squares
importance fitting, LR = logistic regression, BKL = binary Kullback–Leibler, UKL = unnormalized Kullback– Leibler,
KLIEP = Kullback– Leibler importance estimation procedure, KMM = kernel mean matching , PULogLoss = positive
and unlabeled learning with log Loss.

Reference Algorithm f(z)
Basu et al. (1998) Robust zα+1−z

α , α > 0
Hastie et al. (2001) LR (BKL) z log(z) − (z + 1) log(z + 1)

Kanamori et al. (2009) LSIF (z−1)2

2

Gretton et al. (2009) KMM (z−1)2

2

Nguyen et al. (2010) KLIEP z log(z) − z

Nguyen et al. (2010) UKL z log(z) − z

Kato et al. (2019) PULogLoss C log(1 − z) + Cz(log(z) − log(1 − z)), z ∈ (0, 1), C ≤ r

B Complete related work

Federated learning. One well-known method in FL is FedAvg (McMahan et al., 2017). FedAvg and
its variants are extensively studied in optimization with a focus on communication efficiency and partial
participation of clients while preserving privacy.

Indeed, a host of techniques, such as gradient quantization, sparsification, and local updating rules, have been
proposed to improve communication efficiency in FL (Alistarh et al., 2017; Faghri et al., 2020; Ramezani-
Kebrya et al., 2021; Kairouz et al., 2021; Ramezani-Kebrya et al., 2023). Furthermore, robust and secure
aggregation schemes have been also proposed to provide robustness against training-time attacks launched by
an adversary, and to compute aggregated values without being able to inspect the clients’ local models and
data, respectively (Li et al., 2020; Kairouz et al., 2021; Wang et al., 2021).

Taken together, these work largely focus on minimizing the empirical risk in the optimization objective, under
the same training/test data distribution assumption over each client. Differences across clients are handled
using personalization methods based on heuristics and currently do not have a statistical learning theoretical
support (Smith et al., 2017; Khodak et al., 2019; Li et al., 2021b).

In contrast, we focus on learning and overall generalization performance under both intra-client and inter-client
distribution shifts. Communication-efficient, robust, and secure aggregations can be viewed as complementary
technologies, which can be used along with our proposed FTW-ERM method to improve the generalization
performance. In our setting, clients can also all participate in every training iteration, such as cross-silo FL.

We note that (Hanzely et al., 2020; Gasanov et al., 2022) focus on minimizing the empirical risk, under
the same training/test data distribution assumption over each client. Our formulation in FTW-ERM does
not require specific assumptions on function Fk’s for k ∈ [K] to provide an unbiased estimate of true risk
minimizer. Under strong convexity and smoothness assumptions w.r.t. model parameters, similar optimal
algorithms to those proposed in (Hanzely et al., 2020; Gasanov et al., 2022) will be optimal for FTW-ERM.

Different from recent FL work by Duan et al. (2021) and Li et al. (2021c), our work introduces new FTW-ERM
formulation and shows statistical consistency.

Importance-weighted ERM and density ratio matching. Density ratio estimation is an important
step in various machine learning problems such as learning under covariate shift, learning under noisy
labels, anomaly detection, two-sample testing, causal inference, change-pint detection, and classification from
positive and unlabelled data (Qin, 1998; Shimodaira, 2000; Cheng & Chu, 2004; Keziou & Leoni-Aubin, 2005;
Sugiyama et al., 2007; Kawahara & Sugiyama, 2009; Smola et al., 2009; Hido et al., 2011; Kanamori et al.,
2011; Sugiyama et al., 2011; Yamada et al., 2011; Reddi et al., 2015; Liu & Tao, 2015; Kato et al., 2019;
Fang et al., 2020; Uehara et al., 2020; Zhang et al., 2020; Kato & Teshima, 2021). In particular, covariate
shift has been observed in real-world applications including brain-computer interfacing, emotion recognition,
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human activity recognition, spam filtering, and speaker identification (Bickel & Scheffer, 2007; Li et al., 2010;
Yamada et al., 2010; Hachiya et al., 2012; Jirayucharoensak et al., 2014). Shimodaira (2000) introduced
covariate shift where the input train and test distributions are different while the conditional distribution
of the output variable given the input variable remains unchanged. Importance-weighted ERM is widely
used to improve generalization performance under covariate shift (Zadrozny, 2004; Sugiyama & Müller, 2005;
Huang et al., 2006; Sugiyama et al., 2007; Kanamori et al., 2009; Sugiyama et al., 2012; Fang et al., 2020;
Zhang et al., 2020; Kato & Teshima, 2021). Zhang et al. (2020) proposed a one-step approach that jointly
learns the predictive model and the corresponding weights in one optimization problem. Sugiyama et al.
(2012) proposed a Bregman divergence-based DRM, which unifies various DRMs. Kato & Teshima (2021)
proposed a non-negative Bregman divergence-based DRM to resolve the overfitting issue when using deep
neural networks for density ratio estimation. While this line of work focuses on DRM with a single train and
test distributions, we consider a federated setting with multiple clients in this paper.

Domain adaptation. Distribution shifts between a source and a target domain have been a prominent
problem in machine learning for several decades (Wang & Deng, 2018; Kouw & Loog, 2019). The premise
behind such shifts is that data is frequently biased, and this results in distribution shifts that can be estimated
by assuming some (unlabelled) knowledge of the target distribution. The following categories of domain
adaptation methods are most closely related to our work: a) sample-based, and b) feature-based methods.
In feature-based methods, the goal is to find a transformation that maps the source samples to target
samples (Ganin et al., 2016; Bousmalis et al., 2017; Das & Lee, 2018; Damodaran et al., 2018). Sample-based
methods aim at minimizing the target risk through data in the source domain. Importance weighting is
often used in sample-based methods (Shimodaira, 2000; Jiang & Zhai, 2007; Baktashmotlagh et al., 2014).
However, the focus on domain adaptation has been mainly to adapt to a single target distribution, not the
overall generalization performance on multiple clients, which is addressed in this paper.

Statistical generalization and excess risk bounds. Understanding generalization performance of
learning algorithms is one essential topic in modern machine learning. Typical techniques to establish
generalization guarantees include uniform convergence by Rademacher complexity (Bartlett, 1998), and its
variants (Bartlett et al., 2005), bias-variance decomposition (Geman et al., 1992; Adlam & Pennington, 2020),
PAC-Bayes (McAllester, 1999), and stability-based analysis (Bousquet & Elisseeff, 2002; Shalev-Shwartz
et al., 2010). Our work employs the first two techniques to analyze our density ratio estimation method
in a federated setting and establish generalization guarantees for FTW-ERM, respectively. Rademacher
complexity has been used in FL to obtain theoretical guarantees on the centralized model (Mohri et al., 2019)
and personalized model (Mansour et al., 2020). Mohri et al. (2019) considered a scenario where a single
target distribution is modeled as an unknown mixture of multiple domain distributions and obtained a global
modal by minimizing the worst-case loss. This is different from our setting where we consider multiple test
distributions for clients and focus on the overall test error. Mansour et al. (2020) studied personalization
under the same training/test data distribution assumption over each client, which is different from our setting.
Bias-variance decomposition provides a relatively refined characterization of generalization error (or excess
risk), where a large bias indicates that a model is not flexible enough to learn from the data and a high
variance indicates that the model performs unstably. Bias-variance decomposition is typically studied in two
settings, i.e., the fixed and random design setting, which is categorized by whether the (training) data are
fixed or random. This technique has been extensively applied in least squares (Hsu et al., 2012; Dieuleveut
et al., 2017), analysis of SGD (Jain et al., 2018; Zou et al., 2021), and double descent (Adlam & Pennington,
2020).

Information-theoretic bounds on the generalization error and privacy leakage in federated settings were
established in (Yagli et al., 2020). Under partial participation of clients, Yuan et al. (2022) proposed a
framework, which distinguishes performance gaps due to unseen client data from performance gap due
to unseen client distributions. Still, these work study FL under the same training/test data distribution
assumption over each client.
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Table 5: Details of scenarios described in Section 2.

Scenario #Clients Assumptions on Distributions What client 1 Knows
No-CS in (C.1) 2 ptr

1 (x) = pte
1 (x), ptr

1 (x) ̸= ptr
2 (x) ptr

1 (x)/ptr
2 (x)

CS on one in (C.2) 2 ptr
1 (x) ̸= pte

1 (x), ptr
2 (x) = pte

2 (x) pte
1 (x)/ptr

1 (x), pte
1 (x)/ptr

2 (x)
CS on both in (C.2) 2 ptr

1 (x) ̸= pte
1 (x), ptr

2 (x) ̸= pte
2 (x) pte

1 (x)/ptr
1 (x), pte

1 (x)/ptr
2 (x)

CS on multi. in (C.3) K ptr
k (x) ̸= pte

1 (x) for all k pte
1 (x)/ptr

k (x) for all k

C FTW-ERM with a focus on minmizing R1

Without loss of generality and for simplicity of notation, in this section, we set l = 1. We consider four typical
scenarios under various distribution shifts and formulate their FTW-ERM with a focus on minmizing R1.
The details of these scenarios are summarized in Table 5.
Remark 4. Covariance shift (as well as its assumption) is the most commonly used and studied in theory and
practice in distribution shifts (Sugiyama et al., 2007; Kanamori et al., 2009; Kato & Teshima, 2021; Uehara
et al., 2020; Tripuraneni et al., 2021; Zhou & Levine, 2021). Handling covariate shift is a challenging issue,
especially in federated settings (Kairouz et al., 2021).

No intra-client covariate shift: (No-CS) For description simplicity, we assume that there are only 2
clients but our results can be directly extended to multiple clients. This scenario assumes ptr

k (x) = pte
k (x) for

k = 1, 2. Client 1 aims to learn hw assuming ptr
1 (x)

ptr
2 (x) is given. We consider the following FTW-ERM that is

proved to be consistent in terms of minimizing minimizing R1:

min
w∈Rd

1
ntr

1

ntr
1∑

i=1

ℓ(hw(xtr
1,i), ytr

1,i) + 1
ntr

2

ntr
2∑

i=1

ptr
1 (xtr

2,i)
ptr

2 (xtr
2,i)

ℓ(hw(xtr
2,i), ytr

2,i). (C.1)

Covariate shift only for client 1: (CS on one) We now consider covariate shift only for client 1, i.e.,
ptr

1 (x) ̸= pte
1 (x) and ptr

2 (x) = pte
2 (x). We consider the following FTW-ERM

min
w∈Rd

1
ntr

1

ntr
1∑

i=1

pte
1 (xtr

1,i)
ptr

1 (xtr
1,i)

ℓ(hw(xtr
1,i), ytr

1,i) + 1
ntr

2

ntr
2∑

i=1

pte
1 (xtr

2,i)
ptr

2 (xtr
2,i)

ℓ(hw(xtr
2,i), ytr

2,i). (C.2)

Covariate shift for both clients: (CS on both) We assume ptr
1 (x) ̸= pte

1 (x) and ptr
2 (x) ̸= pte

2 (x), i.e.,
covariate shift for both clients. The corresponding FTW-ERM is the same as Eq. (C.2).

Multiple clients: (CS on multi.) Finally, we consider a general scenario with K clients. We assume both
intra-client and inter-client covariate shifts by the following FTW-ERM:

min
w∈Rd

K∑
k=1

λk

ntr
k

ntr
k∑

i=1

pte
1 (xtr

k,i)
ptr

k (xtr
k,i)

ℓ(hw(xtr
k,i), ytr

k,i) (C.3)

where
∑K

k=1 λk = 1 and λk ≥ 0.

Proposition 2. Let l ∈ [K]. In above settings, FTW-ERM defined in Eqs. (C.1), (C.2), and (C.3) is
consistent. i.e., the learned function converges in probability to the optimal function in terms of minimizing
R1.

Proposition 2 implies that, under various settings, FTW-ERM outputs an unbiased estimate of a minimizer
of the true risk.
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Proof. For the scenario without intra-client covariate shift, FTW-ERM in Eq. (C.1) can be expressed as

1
ntr

2

ntr
2∑

i=1

ptr
1 (xtr

2,i)
ptr

2 (xtr
2,i)

ℓ(hw(xtr
2,i), ytr

2,i)
ntr

2 →∞−−−−−→ Eptr
2 (x,y)

[
ptr

1 (x)
ptr

2 (x)ℓ(hw(x), y)
]

=
∫

X

ptr
1 (x)

ptr
2 (x)Ep(y|x) [ℓ(hw(x), y)] ptr

2 (x) dx

=
∫

X
ptr

1 (x)Ep(y|x) [ℓ(hw(x), y)] dx

=
∫

X
pte

1 (x)Ep(y|x) [ℓ(hw(x), y)] dx

= Epte
1 (x,y) [ℓ(hw(x), y)]

= R1(hw).

For the scenario with covariate shift only for client 1 or for both clients, FTW-ERM in Eq. (C.2) admits

1
ntr

2

ntr
2∑

i=1

pte
1 (xtr

2,i)
ptr

2 (xtr
2,i)

ℓ(hw(xtr
2,i), ytr

2,i)
ntr

2 →∞−−−−−→ Eptr
2 (x,y)

[
pte

1 (x)
ptr

2 (x) ℓ(hw(x), y)
]

=
∫

X

pte
1 (x)

ptr
2 (x)Ep(y|x) [ℓ(hw(x), y)] ptr

2 (x) dx

=
∫

X
pte

1 (x)Ep(y|x) [ℓ(hw(x), y)] dx

= Epte
1 (x,y) [ℓ(hw(x), y)]

= R1(hw).

We note that pte
1 (x)

ptr
2 (x) = pte

1 (x)
ptr

1 (x)
ptr

1 (x)
ptr

2 (x) , which is the product of ratios due to intra-client covariate shift on client 1
and inter-client covariate shift.

For multiple clients, let k ∈ [K]. Similarly, we have

1
ntr

k

ntr
k∑

i=1

pte
1 (xtr

k,i)
ptr

k (xtr
k,i)

ℓ(hw(xtr
k,i), ytr

k,i)
ntr

k →∞
−−−−−→ R1(hw).

Then we have
K∑

k=1

λk

ntr
k

ntr
k∑

i=1

pte
1 (xtr

k,i)
ptr

k (xtr
k,i)

ℓ(hw(xtr
k,i), ytr

k,i)
ntr

1 ,...,ntr
K →∞−−−−−−−−−→ R1(hw).

The consistency of FTW-ERM, i.e., convergence in probability, is immediately followed the standard
arguments in e.g., (Shimodaira, 2000)[Section 3] and (Sugiyama et al., 2007)[Section 2.2] using the law of
large numbers. ■

Note that to solve Eq. (C.3), client 1 needs to estimate pte
1 (x)

ptr
k

(x) for all clients k with λk > 0 in (C.3).

Remark 5. Scaling
∑K

k=1 λk does not affect the optimal parameters in Eq. (C.3). For rotational simplicity,
we set λk = 1 for k ∈ [K].

C.1 No intra-client shift

In this section, we consider the important and special case of the setting described in Section 2.1 under no
intra-client covariate shifts but inter-client covariate shifts. For simplicity, we consider a two clients with
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train/test distributions P and Q whose train/test densities are denoted by p and q, respectively. We also
suppose that we have a sample z ∼ P and z′ ∼ Q to learn with the goal is to find an unbiased estimate of the
overall risk with the smallest variance. In this setting, the classical ERM (FedAvg) objective ℓ(z, θ) + ℓ(z′, θ)
is an unbiased estimate for the overall risk L(θ) = EP [ℓ(z, θ)] + EQ[ℓ(z′, θ)]6. In this setting, the objective
of FTW-ERM, i.e., 1

2 (L̂P (θ) + L̂Q(θ)) with L̂P (θ) =
(
1 + q(z)

p(z)
)
ℓ(z, θ) and L̂Q(θ) =

(
1 + p(z′)

q(z′)
)
ℓ(z′, θ) is an

unbiased estimate for the overall risk L(θ).

We now show that the our method (FTW-ERM) has a smaller variance than FedAvg under certain conditions.
Let EP [(ℓ(z, θ) − EP [ℓ(z, θ)])2] = σ2

P and EQ[(ℓ(z′, θ) − EQ[ℓ(z′, θ)])2] = σ2
Q.

For FedAvg, the variance is given by

EP,Q[(ℓ(z, θ) + ℓ(z′, θ) − L(θ))2] = σ2
P + σ2

Q.

For FTW-ERM, the variance is given by

EP,Q[(1
2(L̂P (θ) + L̂Q(θ)) − L(θ))2] = VP + VQ

where VP = 1
4EP [(L̂P (θ) − L(θ))2] and VQ = 1

4EQ[(L̂Q(θ) − L(θ))2].

We now expand each term VP and VQ. We can show that

VP = 1
4EP

[(
(1 + q(z)

p(z) )ℓ(z, θ) − EP [ℓ(z, θ)] − EQ[ℓ(z′, θ)]
)2]

= σ2
P + σ̃2

P

4

where σ̃2
P = EP

[(
q(z)
p(z) ℓ(z, θ) − EQ[ℓ(z′, θ)]

)2]
+ 2EP

[(
ℓ(z, θ) − EP [ℓ(z, θ)]

)(
q(z)
p(z) ℓ(z, θ) − EQ[ℓ(z′, θ)]

)]
. Sim-

ilarly, we have

VQ = 1
4EQ

[(
(1 + p(z′)

q(z′) )ℓ(z′, θ) − EP [ℓ(z, θ)] − EQ[ℓ(z′, θ)]
)2]

=
σ2

Q + σ̃2
Q

4

where σ̃2
Q = EQ

[(
p(z′)
q(z′) ℓ(z′, θ) − EP [ℓ(z, θ)]

)2]
+ 2EQ

[(
ℓ(z′, θ) − EQ[ℓ(z′, θ)]

)(
p(z′)
q(z′) ℓ(z′, θ) − EP [ℓ(z, θ)]

)]
.

We note if σ̃2
P + σ̃2

Q ≤ 3(σ2
P + σ2

Q) then, FTW-ERM will have smaller variance than FedAvg, i.e., VP + VQ ≤
σ2

P + σ2
Q. The exact condition depends on the loss and densities. To show a concrete example, for the

more general and practical case with both intra/inter-client , in Section 4.2, we show that FTW-ERM
results in smaller excess risk compared to FedAvg through a refined bias-variance decomposition. Given two
distributions, considering the case of no intra-client shift is a special case, where it is true that FedAvg is an
unbiased estimate of the overall risk. However, this unbiasedness breaks as soon as there is only one client
whose test and train distributions are different, which is very common in theory and practice. Please note
that FTW-ERM is an unbiased estimate of the overall risk in a general FL setting without requiring any
prior knowledge/assumptions on the potential covariate shifts.

D Ratio estimation

D.1 nnBD DRM for a single client

For simplicity, we firstly focus on the problem of estimating r(x) = pte(x)
ptr(x) and then extend our consideration

to the estimation of rk(x) in Eq. (3.1). Let r∗ denote the true density ratio. Our goal is to estimate r∗ by
optimizing our ratio model r. The discrepancy between r and r∗ is measured by Eptr [BDf (r∗(x) ∥ r(x))].
We note that Eptr [BDf (r∗(x) ∥ r(x))] = Ef (r) + Eptr [f(r∗(x))] where Ef (r) = Eptr [∇f(r(x))r(x) − f(r(x))] −
Epte [∇f(r(x))]. Note that Eptr [f(r∗(x))] is constant w.r.t. r. Let {xtr

i }ntr

i=1 and {xte
j }nte

j=1 denote unlabelled
6For notational simplicity, we overload ℓ(z, θ) to denote the loss of model θ on example z.
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samples drawn i.i.d. from distributions ptr and pte, respectively. Let Hr ⊂ {r : X → Bf } denote a hypothesis
class for our model r. Using an empirical approximation of Ef (r∗(x) ∥ r(x)), Sugiyama et al. (2012)
formulated BD-based DRM problem as minr∈Hr Êf (r) where

Êf (r) = 1
ntr

ntr∑
i=1

(
∇f(r(xtr

i ))r(xtr
i ) − f(r(xtr

i ))
)

− 1
nte

nte∑
j=1

∇f(r(xte
j )). (D.1)

Sugiyama et al. (2012) showed that BD-based DRM unifies well-known density ratio estimation methods
by substituting an appropriate f in (D.1). However, it is shown that solving BD-based DRM with highly
flexible models such as neural networks typically leads to an over-fitting issue (Kato & Teshima, 2021;
Kiryo et al., 2017). In particular, Kato & Teshima (2021) called such issue “train-loss hacking” where
− 1

nte

∑nte

j=1 ∇f(r(xte
j )) in (D.1) diverges if there is no lower bound on this term. Even when there exists

a lower bound, the model r tends to increase to the largest possible values of its output range at points
{xte

j }nte

j=1. To resolve such issue, Kato & Teshima (2021) proposed to use non-negative BD (nnBD) DRM, i.e.,
minr∈Hr

Ê+
f (r) where

Ê+
f (r) = ReLU

( 1
ntr

ntr∑
i=1

ℓ1(r(xtr
i )) − C

nte

nte∑
j=1

ℓ1(r(xte
j ))
)

+ 1
nte

nte∑
j=1

ℓ2(r(xte
j )), (D.2)

ReLU(z) = max{0, z}, 0 < C < 1
r , r = supx∈X tr r∗(x), ℓ1(z) = ∇f(z)z − f(z), and ℓ2(z) = C(∇f(z)z −

f(z)) − ∇f(z). Substituting f(z) = (z−1)2

2 into (D.2), the least-squares importance fitting (LSIF) variant of
nnBD is given by

Ê+
LSIF(r) = ReLU

( 1
2ntr

ntr∑
i=1

r2(xtr
i ) − C

2nte

nte∑
j=1

r2(xte
j )
)

− 1
nte

nte∑
j=1

(
r(xte

j ) − C

2 r2(xte
j )
)
.

In Appendix F, we show explicit expressions for unnormalized Kullback–Leibler (UKL), logistic regression
(LR), and positive and unlabeled learning (PU) variants of nnBD.

Estimating r = supx∈X tr r∗(x) is a key step for density ratio estimation. It is shown that underestimating C
leads to significant performance degradation (Kato & Teshima, 2021, Section 5). Kato & Teshima (2021)
considered C as a hyper-parameter, which can be tuned. However, obtaining an efficient estimate of r is
desirable, in particular when training a deep model.

Let B ⊂ X tr. Assume ptr and pte are continuous. Since B is connected and Lebesgue-measurable with
finite measure, by applying intermediate value theorem (Russ, 1980), there exist x̃tr and x̂te such that
Pr{Xtr ∈ B} = ptr(x̃tr)Vol(B) and Pr{Xte ∈ B} = pte(x̂te)Vol(B) where Vol(B) =

∫
x∈B dx. We note that

supx∈B r∗(x) ≤ supx∈B pte(x)
infx∈B ptr(x) and pte(x̂te)

ptr(x̃tr) ≤ supx∈B pte(x)
infx∈B ptr(x) . We partition X tr into M bins where for each bin

Bm, if there exists some xtr
i ∈ Bm, then we define r̃m := Pr{Xte∈Bm}

Pr{Xtr∈Bm} ≃
1

nte

∑nte

j=1
1(xte

j ∈Bm)

1
ntr

∑ntr

i=1
1(xtr

i
∈Bm)

for m ∈ [M ].

Otherwise, r̃m = 0. Finally, we propose to use C ≤ 1
r̃ where r̃ = max{r̃1, . . . , r̃M }. Convergence of r̃ to r is

established in Appendix G.

Now, suppose there are K clients where each client provides nte unlabelled test samples to the pool of
samples. Our goal is to estimate rk in Eq. (3.1) for k = 1, . . . , K. The BD-based DRM for client k is given by
minrk∈Hr

Êf (rk) where Êf (rk) = 1
ntr

k

∑ntr
k

i=1

(
∇f(rk(xtr

k,i))rk(xtr
k,i)−f(rk(xtr

k,i))
)

− 1
nte

∑nte

j=1
∑K

l=1 ∇f(rk(xte
l,j)).

The nnBD DRM problem for client k is minrk∈Hr Ê+
f (rk) where

Ê+
f (rk) = ReLU(Ŝ1,ℓ1) + 1

nte

nte∑
j=1

K∑
l=1

ℓ2(rk(xte
l,j)), (D.3)
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Ŝ1,ℓ1 = 1
ntr

k

∑ntr
k

i=1 ℓ1(rk(xtr
k,i)) − Ck

nte

∑nte

j=1
∑K

l=1 ℓ1(rk(xte
l,j)), 0 < Ck < 1

rk
, and rk = supx∈X tr r∗

k(x). Sub-

stituting f(z) = (z−1)2

2 into (D.3), the LSIF variant of nnBD for client k is given by minrk∈Hr
Ê+

LSIF(rk)
where

Ê+
LSIF(rk) = ReLU(ŜLSIF) − 1

nte

nte∑
j=1

K∑
l=1

(
rk(xte

l,j) − Ck

2 r2
k(xte

l,j)
)
, (D.4)

and ŜLSIF = 1
2ntr

k

∑ntr
k

i=1 r2
k(xtr

k,i) − Ck

2nte

∑nte

j=1
∑K

l=1 r2
k(xte

l,j). We provide explicit expressions for UKL, LR, and
PU variants of nnBD for client k in Appendix H.

Our goal is to estimate rk = supx∈X tr

∑K

l=1
pte

l (x)
ptr

k
(x) . For HDRM method, we first partition X tr into M

bins where for each bin Bm, if there exists some xtr
k,i ∈ Bm, then we define r̃k,m :=

∑K

l=1
Pr{Xte

l ∈Bm}
Pr{Xtr

k
∈Bm} ≃

1
nte

∑nte

j=1

∑K

l=1
1(xte

l,j∈Bm)

1
ntr

k

∑ntr
k

i=1 1(xtr
k,i

∈Bm)
for m ∈ [M ]. Otherwise, r̃k,m = 0. Finally, we propose to use Ck = 1

r̃k
where

r̃k = max{r̃k,1, . . . , r̃k,M }.

D.2 BD-based DRM for FL

Our goal is to estimate rk by minimizing the discrepancy Eptr
k

[BDf (r∗
k(x) ∥ rk(x))], which is equivalent to

minrk∈Hr
Ef (rk) where

Ef (rk) = Eptr
k

[∇f(rk(x))rk(x) − f(rk(x))] −
K∑

l=1
Epte

l
[∇f(rk(x))] , (D.5)

since Eptr
k

[BDf (r∗
k(x) ∥ rk(x))] = Ef (rk)+Eptr

k
[f(r∗

k(x))] and Eptr
k

[f(r∗
k(x))] is constant w.r.t. rk. Let {xtr

k,i}
ntr

k
i=1

and {xte
l,j}nte

j=1 denote unlabelled samples drawn i.i.d. from distributions ptr
k and pte

l , respectively, for l ∈ [K].
A natural way to solve minrk∈Hr Ef (rk) is to substitute empirical averages in Eq. (D.5) (Sugiyama et al.,
2012), leading to BD-based DRM for FL: minrk∈Hr Êf (rk) where

Êf (rk) = 1
ntr

k

ntr
k∑

i=1

(
∇f(rk(xtr

k,i))rk(xtr
k,i) − f(rk(xtr

k,i))
)

− 1
nte

nte∑
j=1

K∑
l=1

∇f(rk(xte
l,j)).

E Communication costs and FITW-ERM

To estimate density ratios for FTW-ERM, clients require to send a few unlabelled test samples only once.
The server shuffles those samples and broadcasts the shuffled version to clients only once. The communication
overhead to estimate ratios is negligible compared to the communication costs for sharing high-dimensional
stochastic gradients over the course of training.

Consider the example of CIFAR10 consisting of 32 by 32 images with 3 channels represented by 8 bits. If one
shares 1000 unlabelled images7, the communication amounts to sharing roughly 3 × 106 values each with 8
bits, i.e., 25 × 106 total communication bits or 3.1MB. In contrast, during training, the network size alone
easily surpasses this size (e.g. the common ResNet-18 has 11 million parameters, each represented by a 32-bit
floating point). Standard training of ResNet-18 requires 8 × 104 iterations and aggregations, which amounts
to 2.816 × 1013 total communicated bits per client, i.e., 3.5TB during training.

In other words, the number of communication bits needed during training in standard federated learning is
usually many orders of magnitudes larger than the size of samples shared for estimating the ratios. To further

7A total number of 1000 images are shown to be sufficient to learn density ratios on CIFAR10 (Kato & Teshima, 2021)[10,
Section 5.1].
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reduce communication costs of density ratio estimation and gradient aggregation, compression methods
such as quantization, sparsification, and local updating rules, can be used along with FTW-ERM on the
fly (Alistarh et al., 2017).

Alternatively, to eliminate any privacy risks, clients may minimize the following surrogate objective, which
we name FITW-ERM:

min
w∈Rd

F̃ (w) :=
K∑

k=1
F̃k(w) (E.1)

where F̃k(w) = 1
ntr

k

∑ntr
k

i=1
pte

k (xtr
k,i)

ptr
k

(xtr
k,i

) ℓ(hw(xtr
k,i), ytr

k,i).

We note that privacy risks are eliminated by solving E.1. However, to exploit the entire data distributed among
all clients and achieve the optimal global model in terms of overall test error, clients need to compromise
some level of privacy and share unlabelled samples generated from their test distribution with the server.
Hence, in this paper, we focus on the original objective F (w) in FTW-ERM, which is different from F̃ (w).

F Variants of nnBD

In this section, we show explicit expressions for unnormalized Kullback–Leibler (UKL), logistic regression
(LR), and positive and unlabeled learning (PU) variants of nnBD.

Substituting f(z) = z log(z) − z into Eq. (D.2), we have ℓ1(z) = z and ℓ2(z) = zC − log(z), and the UKL
variant of nnBD is given by

Ê+
UKL(r) = ReLU

( 1
ntr

ntr∑
i=1

r(xtr
i ) − C

nte

nte∑
j=1

r(xte
j )
)

− 1
nte

nte∑
j=1

(
log(r(xte

j )) − Cr(xte
j )
)
.

(F.1)

Substituting f(z) = z log(z) − (z + 1) log(z + 1) into Eq. (D.2), we have ℓ1(z) = log(z + 1) and ℓ2(z) =
C log(z + 1) + log

(
z+1

z

)
, and the LR (BKL) variant of nnBD is given by

Ê+
LR(r) = ReLU

( 1
ntr

ntr∑
i=1

log(r(xtr
i ) + 1) − C

nte

nte∑
j=1

log(r(xte
j ) + 1)

)

− 1
nte

nte∑
j=1

(
log
(

r(xte
j )

r(xte
j ) + 1

)
− C log(r(xte

j ) + 1)
)

.

(F.2)

Substituting f(z) = C log(1 − z) + Cz(log(z) − log(1 − z)) into Eq. (D.2), we have ℓ1(z) = −C log(1 − z) and
ℓ2(z) = −C log(z) + (C − C2) log(1 − z), and the PU variant of nnBD is given by

Ê+
PU(r) = ReLU

(−C

ntr

ntr∑
i=1

log(1 − r(xtr
i )) + C2

nte

nte∑
j=1

log(1 − r(xte
j ))
)

− 1
nte

nte∑
j=1

(
C log(r(xte

j )) − (C − C2) log(1 − r(xte
j ))
)

.

(F.3)

G Convergence of r̃ and k-means clustering

Lemma 2. If ntr
k , nte, and M go to infinity with supm Vol(Bm) → 0, then r̃k → rk.
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Proof. Let x ∈ X tr. Note that when ntr
k , nte, and M go to infinity, the numerator and denominator of r̃k

become
∑K

l=1 pte
l (x)Vol(Bm) and ptr

k (x)Vol(Bm), respectively, where x ∈ Bm. ■

Please note that our density ratio in Eq. (3.1) is in the form of a sum of test densities over own train density.
So even if one or a few number of ratios are poorly estimated, it will not impact the entire ratio in Eq. (3.1)
as nested estimation errors. The error does not propagate in a multiplicative manner but in an additive way.

k-means clustering for HDRM. We note that partitioning the space and counting the number of samples
in each bin is not necessarily an easy task when data is high dimensional. In practice, one simple method is
to cluster train and test samples using an efficient implementation of k-means clustering with M clusters and
count the number of train and test samples in each cluster (Lloyd, 1982). To estimate the ratios, we need a
batch of samples from the test distribution of each client in addition to a batch of samples from the train
distribution for each estimating client. The running time of Lloyd’s algorithm with M clusters is O(ndxM)
where n is the total number of samples with dimension dx.

H UKL, LR, and PU variants of nnBD for multiple clients

In this section, we provide explicit expressions for UKL, LR, and PU variants of nnBD for client k.

The UKL variant of nnBD for client k is given by minrk∈Hr
Ê+

UKL(rk) where

Ê+
UKL(rk) = ReLU

( 1
ntr

k

ntr
k∑

i=1
rk(xtr

k,i) − Ck

nte

nte∑
j=1

K∑
l=1

rk(xte
l,j)
)

− 1
nte

nte∑
j=1

K∑
l=1

(
log(rk(xte

l,j)) − Ckrk(xte
l,j)
)
.

(H.1)

The LR variant of nnBD for client k is given by minrk∈Hr Ê+
LR(rk) where

Ê+
LR(rk) = ReLU

( 1
ntr

k

ntr
k∑

i=1
log(rk(xtr

k,i) + 1) − Ck

nte

nte∑
j=1

K∑
l=1

log(rk(xte
l,j) + 1)

)

− 1
nte

nte∑
j=1

K∑
l=1

(
log
(

rk(xte
l,j)

rk(xte
l,j) + 1

)
− Ck log(rk(xte

l,j) + 1)
)

.

(H.2)

The PU variant of nnBD for client k is given by minrk∈Hr Ê+
PU(rk) where

Ê+
PU(rk) = ReLU

(−Ck

ntr
k

ntr
k∑

i=1
log(1 − rk(xtr

k,i)) + C2
k

nte

nte∑
j=1

K∑
l=1

log(1 − rk(xte
l,j))

)

− 1
nte

nte∑
j=1

K∑
l=1

(
Ck log(rk(xte

l,j)) − (Ck − C2
k) log(1 − rk(xte

l,j))
)

.

(H.3)

I Proof of Theorem 1

In this section, we prove Theorem 1, which establishes an upper bound on the ratio estimation error of nnBD
DRM (HDRM method with an arbitrary f) for client k in terms of BD risk, which holds with high probability
along the lines of (Kiryo et al., 2017; Lu et al., 2020; Kato & Teshima, 2021).

We remind that client k’s goal is to estimate this ratio:

rk(x) =
∑K

l=1 pte
l (x)

ptr
k (x) . (I.1)
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For client k, the BD risk is given by

Ef (rk) = Ẽk(x)[ℓ1(rk(x))] +
K∑

l=1
Epte

l
[ℓ2(rk(x))] (I.2)

where Ẽk := Eptr
k

− Ck

∑K
l=1 Epte

l
, 0 < Ck < 1

rk
, rk = supx∈X tr =

∑K

l=1
pte

l (x)
ptr

k
(x) , ℓ1(z) = ∇f(z)z − f(z), and

ℓ2(z) = C(∇f(z)z − f(z)) − ∇f(z). We note that the definition of Ck implies p̃k = ptr
k − Ck

∑K
l=1 pte

l > 0.
We remind that f : Bf → R is a strictly convex function with bounded gradient ∇f where Bf ⊂ [0, ∞), and
Hr ⊂ {r : X → Bf } denotes a hypothesis class for our model r.

The nnBD DRM problem for client k is minrk∈Hr Ê+
f (rk) where

Ê+
f (rk) = ReLU

(
(Êptr

k
− Ck

K∑
l=1

Êpte
l

)[ℓ1(rk(x))]
)

+
K∑

l=1
Êpte

l
[ℓ2(rk(x))] (I.3)

with Êptr
k

is the sample average over {xtr
k,i}

ntr
k

i=1, and Êpte
l

is the sample average over {xte
l,j}nte

j=1. In the following,
we denote Êk := Êptr

k
− Ck

∑K
l=1 Êpte

l
for notational simplicity.

Let r̂k := arg minrk∈Hr Ê+
f (rk) and r∗

k := arg minrk∈Hr Ef (rk). We first decompose the ratio estimation error
into maximal deviation and bias terms:

Ef (r̂k) − Ef (r∗
k) ≤ Ef (r̂k) − Ê+

f (r̂k) + Ê+
f (r̂k) − Ef (r∗

k)

≤ Ef (r̂k) − Ê+
f (r̂k) + Ê+

f (r∗
k) − Ef (r∗

k)

≤ 2 sup
rk∈Hr

|Ef (rk) − Ê+
f (rk)|

≤ 2 sup
rk∈Hr

|Ê+
f (rk) − E[Ê+

f (rk)]| + 2 sup
rk∈Hr

|E[Ê+
f (rk)] − Ef (rk)|

(I.4)

where the second inequality holds since r̂k := arg minrk∈Hr
Ê+

f (rk). The first term in the RHS of (I.4) is the
maximal derivation and the second term is the bias.

In the following two lemmas, we find an upper bound on the maximal deviation suprk∈Hr
|Ê+

f (rk)−E[Ê+
f (rk)]|

and bias suprk∈Hr
|E[Ê+

f (rk)] − Ef (rk)|, respectively.
Lemma 3 (Maximal deviation bound). Denote ∆ℓ := supz∈Bf

maxi∈{1,2} |ℓi(z)|, then for any 0 < δ < 1, the
maximal deviation term is upper bounded with probability at least 1 − δ

sup
rk∈Hr

|Ê+
f (rk) − E[Ê+

f (rk)]| ≤ 4L1R
ptr

k

ntr
k

(Hr) + 4(CkL1 + L2)
K∑

l=1
R

pte
l

nte(Hr)

+ ∆ℓ

√
2
( 1

ntr
k

+ K(1 + Ck)2

nte

)
log 1

δ
.

(I.5)

Proof. Denote Φ(Sk) := suprk∈Hr
|Ê+

f (rk) −E[Ê+
f (rk)]| with Sk = {xtr

k,1, . . . , xtr
ntr

k
,1, xte

1,1, . . . , xte
K,nte}. Let S(i)

k

be obtained by replacing element i of set Sk by an independent data point taking values from the set X tr. We
now measure the absolute value of the difference caused by changing one data point in the maximal deviation
term (I.5), i.e., |Φ(Sk) − Φ(S(i)

k )|. If the changed point is sampled from ptr
k , then the absolute value of the

difference caused in the maximal deviation term is upper bounded by 2∆ℓ

ntr
k

. If the changed point is sampled
from pte

l , the the absolute value of the difference caused in the maximal deviation term is upper bounded by
2∆ℓ(Ck+1)

nte for l = 1, . . . , K. Applying McDiarmid’s inequality (McDiarmid et al., 1989), with probability at
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least 1 − δ, we have

sup
rk∈Hr

|Ê+
f (rk) − E[Ê+

f (rk)]| ≤ E[ sup
rk∈Hr

|Ê+
f (rk) − E[Ê+

f (rk)]|]

+ ∆ℓ

√
2
( 1

ntr
k

+ K(1 + Ck)2

nte

)
log 1

δ
.

In the following, we establish an upper bound on the expected maximal deviation E[suprk∈Hr
|Ê+

f (rk) −
E[Ê+

f (rk)]|] by generalization the symmetrization argument in (Kiryo et al., 2017; Lu et al., 2020) followed by
applying Talagrand’s contraction lemma for two-sided Rademacher complexity.

Let m ∈ [M ] and Nm ∈ Z+ for M ∈ Z+. Let gm : R → R be a Lgm-Lipschitz function. Let pm,p denote
a probability distribution over X tr. Suppose that {xi}

nm,p

i=1 are drawn i.i.d. from pm,p for p ∈ [Nm] and
m ∈ [M ]. Let ℓm,p : Bf → R+ be a Lm,p-Lipschitz function and C̃m,p be a constant ∀ m, p. Consider the
following stochastic process:

R̂k(rk) :=
M∑

m=1
gm

( Nm∑
p=1

C̃m,pÊm,p[ℓ(m,p)(rk(x))]
)

where Êm,p denotes sample average over {xi}
nm,p

i=1 . In the rest of the proof, we show that

E[ sup
rk∈Hr

|R̂k(rk) − E[R̂k(rk)]|] ≤ 4
M∑

m=1

Nm∑
p=1

Lgm
|C̃m,p|Lm,pRpm,p

nm,p
(Hr). (I.6)

To prove (I.6), we consider a continuous extension of ℓ(m,p) defined on the origin. We note that such extension
does not change R̂k(rk) since ℓ(m,p) takes values only in Bf . If Bf = {(z1, z2)} for some 0 ≤ z1 < z2,
then for any z ∈ [0, z1], we define ℓ(m,p)(z) = limz↓z1 ℓ(m,p)(z) where limz↓z1 ℓ(m,p)(z) exists since ℓ(m,p) is
uniformly continuous due to Lipschitz continuity. Then ℓ(m,p) will be Lm,p-Lipschitz on z ∈ [0, z2]. Let
{x̃i}

nm,p

i=1 be an independent copy of {xi}
nm,p

i=1 . Let denote δR̂ := E[suprk∈Hr
|R̂k(rk) − E[R̂k(rk)]|]. Following

a symmetrization argument (Vapnik, 1999), an upper bound on the symmetrized process can be established
by Rademacher complexity:

δR̂ ≤ E

[
sup

rk∈Hr

M∑
m=1

∣∣∣∣∣gm

( Nm∑
p=1

C̃m,pÊm,p[ℓ(m,p)(rk(x))]
)

− Ẽ
[
gm

( Nm∑
p=1

C̃m,p
ˆ̃Em,p[ℓ(m,p)(rk(x))]

)]∣∣∣∣∣
]

≤ EẼ

[
sup

rk∈Hr

M∑
m=1

∣∣∣∣∣gm

( Nm∑
p=1

C̃m,pÊm,p[ℓ(m,p)(rk(x))]
)

− gm

( Nm∑
p=1

C̃m,p
ˆ̃Em,p[ℓ(m,p)(rk(x))]

)∣∣∣∣∣
]

≤
M∑

m=1

Lgm

Nm∑
p=1

|C̃m,p|EẼ
[

sup
rk∈Hr

∣∣∣Êm,p[ℓ(m,p)(rk(x))] − ˆ̃Em,p[ℓ(m,p)(rk(x))]
∣∣∣]

=
M∑

m=1

Lgm

Nm∑
p=1

|C̃m,p|EẼ
[

sup
rk∈Hr

∣∣Êm,p[ℓ(m,p)(rk(x)) − ℓ(m,p)(0)] − ˆ̃Em,p[ℓ(m,p)(rk(x)) − ℓ(m,p)(0)]
∣∣]

≤ 4
M∑

m=1

Lgm

Nm∑
p=1

|C̃m,p|E
[

sup
rk∈Hr

∣∣Êm,p[σm,p(ℓ(m,p)(rk(x)) − ℓ(m,p)(0))]
∣∣]

≤ 4
M∑

m=1

Lgm

Nm∑
p=1

|C̃m,p|Rpm,p
nm,p (Hr)

(I.7)

where σm,p are Rademacher variables uniformly chosen from {−1, 1}, Ẽ and ˆ̃Em,p denote the expectation
and sample average over data distribution pm,p and the independent copy {x̃i}

nm,p

i=1 , respectively, the third
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inequality holds by the Lipschitz continuous property of gm, and the last inequality is obtained by applying
Talagrand’s contraction lemma for two-sided Rademacher complexity (Ledoux & Talagrand, 1991; Bartlett &
Mendelson, 2002).

Applying (I.6), we can show that

E[ sup
rk∈Hr

|Ê+
f (rk) − E[Ê+

f (rk)]|] ≤ 4L1R
ptr

k

ntr
k

(Hr) + 4(CkL1 + L2)
K∑

l=1
R

pte
l

nte(Hr),

which completes the proof. ■

Next we find an upper bound on the bias suprk∈Hr
|E[Ê+

f (rk)] − Ef (rk)|.

Lemma 4 (Bias bound). Denote ∆ℓ := supz∈Bf
maxi∈{1,2} |ℓi(z)|. Assume infr∈Hr E[Êk[ℓ1(rk(x))]] > 0 for

k ∈ [K]. Then, an upper bound on the bias term is given by

sup
rk∈Hr

|E[Ê+
f (rk)] − Ef (rk)| ≤ (1 + KCk)∆ℓ exp

( −2η2
k

∆2
ℓ/ntr

k + KC2
k∆2

ℓ/nte

)
(I.8)

for some constant ηk > 0.

Proof. Let ˆ̃Ek := Êptr
k

− Ck

∑K
l=1 Êpte

l
. We first note that

|E[Ê+
f (rk)] − Ef (rk)| = |E[Ê+

f (rk) − Êf (rk)]|

=
∣∣∣E [ReLU

( ˆ̃Ek[ℓ1(rk(x))]
)

− ˆ̃Ek[ℓ1(rk(x))]
]∣∣∣

≤ E
[∣∣∣ReLU

( ˆ̃Ek[ℓ1(rk(x))]
)

− ˆ̃Ek[ℓ1(rk(x))]
∣∣∣]

= E
[
1
{

ReLU
( ˆ̃Ek[ℓ1(rk(x))]

)
̸= ˆ̃Ek[ℓ1(rk(x))]

}]
·
∣∣∣ReLU

( ˆ̃Ek[ℓ1(rk(x))]
)

− ˆ̃Ek[ℓ1(rk(x))]
∣∣∣

= E
[
1
{

ReLU
( ˆ̃Ek[ℓ1(rk(x))]

)
̸= ˆ̃Ek[ℓ1(rk(x))]

}]
sup

z:|z|≤(1+KCk)∆ℓ

(ReLU(z) − z)

where the third inequality holds due to Jensen’s inequality.

We note that ˆ̃Ek[ℓ1(rk(x))] ≤ (1 + KCk)∆ℓ implies

sup
z:|z|≤(1+KCk)∆ℓ

(ReLU(z) − z) ≤ (1 + KCk)∆ℓ.

Due to the assumption infr∈Hr
E[Êk[ℓ1(rk(x))]] > 0, there exists an ηk > 0 such that E[Êk[ℓ1(rk(x))]] ≥ ηk

for all rk ∈ Hr. Then we have

E
[
1
{

ReLU
( ˆ̃Ek[ℓ1(rk(x))]

)
̸= ˆ̃Ek[ℓ1(rk(x))]

}]
= Pr

{ ˆ̃Ek[ℓ1(rk(x))] ∈ supp(R̃eLU)
}

= Pr
{ ˆ̃Ek[ℓ1(rk(x))] < 0

}
= Pr

{ ˆ̃Ek[ℓ1(rk(x))] < E[ ˆ̃Ek[ℓ1(rk(x))]] − ηk

}
where R̃eLU(z) = ReLU(z) − z.

Denote Φ̃(Sk) := ˆ̃Ek[ℓ1(rk(x))] where Sk = {xtr
k,1, . . . , xtr

ntr
k

,1, xte
1,1, . . . , xte

K,nte}. Let S(i)
k be obtained by

replacing element i of set Sk by an independent data point taking values from the set X tr. We now measure
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the absolute value of the difference caused by changing one data point in |Φ̃(Sk) − Φ̃(S(i)
k )|. If the changed

point is sampled from ptr
k , the the absolute value of the difference caused in the maximal deviation term is

upper bounded by ∆ℓ

ntr
k

. If the changed point is sampled from pte
l , the the absolute value of the difference

caused in the maximal deviation term is upper bounded by ∆ℓCk

nte for l = 1, . . . , K. Finally, McDiarmid’s
inequality (McDiarmid et al., 1989) implies:

Pr
{ ˆ̃Ek[ℓ1(rk(x))] < E[ ˆ̃Ek[ℓ1(rk(x))]] − ηk

}
≤ exp

( −2η2
k

∆2
ℓ/ntr

k + KC2
k∆2

ℓ/nte

)
,

which completes the proof. ■

Substituting the upper bounds in (I.5) and (I.8) into (I.4), with probability at least 1 − δ, we have

Ef (r̂k) − Ef (r∗
k) ≤ 8L1R

ptr
k

ntr
k

(Hr) + Ψ(δ, ∆ℓ, ntr
k , nte) + 8(CkL1 + L2)

K∑
l=1

R
pte

l

nte(Hr) (I.9)

where Ψ = ∆ℓ

√
8( 1

ntr
k

+ K(1+Ck)2

nte ) log 1
δ + 2(1 + KCk)∆ℓ exp

( −2η2
k

∆2
ℓ
/ntr

k
+KC2

k
∆2

ℓ
/nte

)
for some constant ηk > 0.

This completes the proof.

J Ratio estimation error bound for multi-layer perceptron and multiple clients

Our high-probability ratio estimation error bound for client k depends on the Rademacher complexity of the
hypothesis class for our density ratio model Hr ⊂ {r : X → Bf } w.r.t. client k train distribution ptr

k and all
client’s test distributions pte

l for l ∈ [K]. By restricting a function class for density ratios and substituting an
upper bounds on its Rademacher complexity, we can obtain explicit ratio estimation error bounds in terms of
ntr

k , nte in a special case. As an example, the following corollary establishes a ratio estimation error bound
for multi-layer perceptron density ratio models in terms of the Frobenius norms of weight matrices.
Example J.1 (Complexity for multi-layer perceptron class (Golowich et al., 2018)). Assume that distribution
p has a bounded support Sp := supx∈supp(p) ∥x∥ < ∞. Let H be the class of real-valued neural networks
with depth L over the domain X tr, Wi be the network weight matrix i. Suppose that each weight matrix
has a bounded Frobenius norm ∥Wi∥F ≤ ∆Wi

for i ∈ [L] and the activation ϕ is 1-Lipschitz, and positive-
homogeneous function, i.e., ϕ(αz) = αϕ(z), which is applied element-wise. Then we have

Rp
n(H) ≤

Sp(
√

2L log 2 + 1)
∏L

i=1 ∆Wi√
n

.

Remark 6. To control the upper bound ∆Wi for i ∈ [L], it is natural to employ the sparsity of the weights, e.g.,
(Golowich et al., 2018, Section 4) and (Hanin & Rolnick, 2019). We consider a special network architecture
where diag(Wi)’s are close to 1-sparse unit vectors for i ∈ [L], which implies that the matrices Wi’s will be
almost rank-1. Then ∥Wi∥F is upper bounded by 1 for i ∈ [L].
Corollary 1 (High-probability ratio estimation error bound under Example J.1). For Example J.1 and loss
functions described in Theorem 1, with probability at least 1 − δ, we have

Ef (r̂k) − Ef (r∗
k) ≤ Ktr

k√
ntr

k

+
K∑

l=1

Kte
l√
nte

+ Ψ(δ, ∆ℓ, ntr
k , nte)

where Ktr
k = O(L1Sptr

k

√
L
∏L

i=1 ∆Wi
), Kte

l = O(max{L1, L2}Spte
l

√
L
∏L

i=1 ∆Wi
), and Ψ =

∆ℓ

√
8( 1

ntr
k

+ K(1+Ck)2

nte ) log 1
δ + 2(1 + KCk)∆ℓ exp

( −2η2
k

∆2
ℓ
/ntr

k
+KC2

k
∆2

ℓ
/nte

)
for some constant ηk > 0.

Finally, we apply union bound and obtain a global ratio estimation error bound that holds for all clients:
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Corollary 2 (High-probability ratio estimation error bound for multiple clients). Let 0 < δk < 1 for k ∈ [K].
Let K

tr = maxk∈[K] Ktr
k . For Example J.1 and loss functions described in Theorem 1, with probability at least

1 −
∑K

k=1 δk, we have

max
k∈[K]

{Ef (r̂k) − Ef (r∗
k)} ≤ K

tr√
ntr

+
K∑

l=1

Kte
l√
nte

+ Ψ(δ, ∆ℓ, ntr, nte)

where Ψ = ∆ℓ

√
8( 1

ntr + K(1+C)2

nte ) log 1
δ + 2(1 + KC)∆ℓ exp

( −2η2

∆2
ℓ
/ntr+KC

2∆2
ℓ
/nte

)
, C = maxk∈[K] Ck, ntr =

mink∈[K] ntr
k , δ = mink∈[K] δk, and η = mink∈[K] ηk.

The rates match the optimal minimax rates for example for a density estimation problem when the density
belongs to the Hölder function class (Tsybakov, 2008)[Section 2] with a sufficiently large β based on
Definition 1.2 of Tsybakov (2008). The Ω(1/

√
n) lower bounds are obtained for important problems including

nonparametric regression, estimation of functionals, nonparametric testing, and finding a linear combination
of M functions to be as close as the target data generating function (Nemirovski, 1998)[Section 5.3].

K Additional error due to estimation of rk

In this section, we consider a practical scenario where we have access to only in imperfect estimate of
rk = supx∈X tr r∗

k(x) to find Ck in Eq. (3.2). In particular, we find additional error when using C̃k = 1
r̃k

where
r̃k is obtained by HDRM in Section 3. The nnBD DRM problem for client k using C̃k is minrk∈Hr

Ê+
f (rk)

where

Ê+
f (rk) = ReLU

(
(Êptr

k
− C̃k

K∑
l=1

Êpte
l

)[ℓ1(rk(x))]
)

+
K∑

l=1
Êpte

l
[ℓ2(rk(x))]. (K.1)

Along the lines of the proof of Lemma 3, we can show that the maximal deviation term using C̃k is upper
bounded with probability at least 1 − δ:

sup
rk∈Hr

|Ê+
f (rk) − E[Ê+

f (rk)]| ≤ 4L1R
ptr

k

ntr
k

(Hr) + 4(C̃kL1 + L2)
K∑

l=1
R

pte
l

nte(Hr)

+ ∆ℓ

√
2
( 1

ntr
k

+ K(1 + C̃k)2

nte

)
log 1

δ
.

(K.2)

Under perfect estimate of rk = supx∈X tr r∗
k(x) with Ck = 1

rk
, the nnBD DRM problem for client k is

minrk∈Hr Ê++
f (rk) where

Ê++
f (rk) = ReLU

(
(Êptr

k
− Ck

K∑
l=1

Êpte
l

)[ℓ1(rk(x))]
)

+
K∑

l=1
Êpte

l
[ℓ2(rk(x))]. (K.3)

Applying triangle inequality, we first decompose the bias term

sup
rk∈Hr

|E[Ê+
f (rk)] − Ef (rk)| ≤ sup

rk∈Hr

|E[Ê+
f (rk) − Ê++

f (rk)]|

+ sup
rk∈Hr

|E[Ê++
f (rk)] − Ef (rk)|.

(K.4)
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An upper bound on suprk∈Hr
|E[Ê++

f (rk)] − Ef (rk)| is established similar to the proof of Lemma 4:

sup
rk∈Hr

|E[Ê++
f (rk)] − Ef (rk)| ≤ (1 + KCk)∆ℓ exp

( −2η2
k

∆2
ℓ/ntr

k + KC2
k∆2

ℓ/nte

)
.

Substituting Eq. (K.1) and Eq. (K.3) into |E[Ê+
f (rk) − Ê++

f (rk)]|, we have

|E[Ê+
f (rk) − Ê++

f (rk)]|

= |E[ReLU((Êptr
k

− C̃k

K∑
l=1

Êpte
l

)[ℓ1(rk(x))]) − ReLU((Êptr
k

− Ck

K∑
l=1

Êpte
l

)[ℓ1(rk(x))])]| ,

which together with ReLU(a) − ReLU(b) ≤ |a − b| is used to establish the following upper bound:∣∣∣E[Ê+
f (rk) − Ê++

f (rk)
]∣∣∣ ≤ K∆ℓ|C̃k − Ck|. (K.5)

Let m∗ = arg maxm∈[M ] r̃k,m. We note that by the construction of HDRM, there is a constant lower bound on
the numerator of r̃k, i.e., 1

nte

∑nte

j=1
∑K

l=1 1(xte
l,j ∈ Bm∗) ≥ c, that is achieved when {xte

l,j}nte

j=1 are distributed
uniformly across M bins. Let x ∈ X and let p̂tr

k (x; M) denote a histogram-based density estimate of
ptr

k (x) with M bins. The maximum value of C̃k is attained when 1
nte

∑nte

j=1
∑K

l=1 1(xte
l,j ∈ Bm∗) meets its

lower bound, which leads to the maximum deviation from Ck ≤ C̃k. Assuming ptr
k (x) is Lk-Lipschitz with

supx∈X ptr
k (x) < ∞, the mean squared error of a histogram-based density estimate with M bins is upper

bounded by (Wasserman, 2006, Section 6): E|p̂tr
k (x; M) − ptr

k (x)|2 = O(L2
k/M2 + M/ntr

k ). Putting together
with a constant lower bound on the numerator of r̃k and applying Jensen’s inequality, we have:

E[|C̃k − Ck|] ≲ 1
M

+
√

M

ntr
k

.

L Proof of Lemma 1

We first note that
E[L(θ̂)] − L(θ∗) = E∥θ̂ − θ∗∥2

Σte = Bias + Variance .

We first find the expression for θ̂ considering the ridge regression problem assuming pte(x)
ptr(x) is given. FTW-ERM

problem with Tikhonov regularization is given by

θ̂ = arg min
θ

n∑
i=1

wi(θ⊤xi − yi)2 + λ∥θ∥2
2

where wi = pte(xi)
ptr(xi) and λ is the regularization parameter. This is a reweighted least squares problem.

The objective function above is strongly convex and differentiable. Applying the fist-order condition, the
unique minimum is as follows:

θ̂ =
(
X⊤WX + λId

)−1 X⊤Wy (L.1)

where W = diag(w1, . . . , wn).

Substituting y = Xθ∗ + ϵ into (L.1), we note that

θ̂ =
(
X⊤WX + λId

)−1 X⊤WXθ∗ +
(
X⊤WX + λId

)−1 X⊤Wϵ
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and

EX,ϵ[θ̂] = EX

[(
X⊤WX + λId

)−1 X⊤WXθ∗

]
.

We now characterize the bias B(θ̂) and variance V(θ̂) terms when the model estimate is given by (L.1).

Let ∥x∥2
A := x⊤Ax. Substituting the expression for θ̂ into R(θ̂), the excess risk can be decomposed into a

bias and a variance term as follows:

R(θ̂) = EX,ϵ,x,ϵte [(y − θ̂⊤x)2 − (y − θ⊤
∗ x)2]

= EX,ϵ,x,ϵte [
(
y − θ⊤

∗ x + (θ∗ − θ̂)⊤x
)2 − (y − θ⊤

∗ x)2]

= EX,ϵ,x

[(
(θ∗ − θ̂)⊤x

)2
]

= EX,ϵ[∥θ∗ − θ̂∥2
Σte ]

= B + V

where the bias is given by

B = EX,ϵ

[∥∥∥ (X⊤WX + λId

)−1 X⊤WXθ∗ − θ∗

∥∥∥2

Σte

]
= EX

[∥∥∥ (X⊤WX + λId

)−1
λθ∗

∥∥∥2

Σte

]
.

= λ2θ⊤
∗ EX[∆W,λΣte∆W,λ]θ∗

with

∆W,λ =
[(

X⊤WX + λId

)−1]
,

and the variance is given by

V = EX,ϵ

[∥∥∥ (X⊤WX + λId

)−1 X⊤Wϵ
∥∥∥2

Σte

]
= σ2

ϵEX [tr (ΦV )] .

where ΦV =
(

X⊤WX + λId

)−1
X⊤W2X

(
X⊤WX + λId

)−1
Σte.

M Proof of Theorem 2

In the one-hot case, it is clear that X⊤X =
∑n

i=1 xix⊤
i and X⊤WX =

∑n
i=1 wixix⊤

i are diagonal matrices.
For bias in the one-hot setting, we have

B(θ̂) = λ2
[
θ⊤

∗
(
X⊤WX + λI

)−1 Σte (X⊤WX + λI
)−1

θ∗

]
= λ2

d∑
i=1

[(θ∗)i]2λ′
i

(λi(X⊤WX) + λ)2

= λ2
d∑

i=1

[(θ∗)i]2λ′
i

[µiwi + λ]2

where the equation holds by the fact that, all matrices are diagonal including X⊤X, X⊤WX, and Σte.
Accordingly, we have λi(X⊤WX) = λi(X⊤X)λi(W) with i ∈ [d]. For the classical ERM, the bias is

B(θv) = λ2
d∑

i=1

[(θ∗)i]2λi

[µi + λ]2
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where λi is the eigenvalue of Σtr. To achieve B(θ̂) ⩽ B(θv), we have to make some assumptions on the
relationship between λi, λ′

i and wi. Our analysis of error bound requires

λ′
i

[µiwi + λ]2
⩽

λi

[µi + λ]2
⇔ µi + λ

µiwi + λ
⩽

√
λi

λ′
i

, (M.1)

which implies

wi ⩾

√
λ′

i

λi
− 1 , (M.2)

such that Eq. (M.1) holds where we use the inequality a+c
b+c ⩽ a

b + 1 for any a, b, c > 0.

For the vanilla ERM, the variance is

V(θv) = σ2
ϵ

d∑
i=1

λiµi

[µi + λ]2
.

For FTW-ERM, the variance is

V(θ̂) = σ2
ϵ

[(
X⊤WX + λI

)−1 X⊤W2X
(
X⊤WX + λI

)−1 Σte
]

= σ2
ϵ

d∑
i=1

λ′
iλi(X⊤W2X)

(λi(X⊤WX) + λ)2

= σ2
ϵ

d∑
i=1

λ′
iµiw

2
i

[µiwi + λ]2
.

We note that V(θ̂) ≤ V(θv) can be achieved by

λiµi

[µi + λ]2
≥ λ′

iµiw
2
i

[µiwi + λ]2
.

This can be obtained by
µi + λ

wi

µi + λ
≥

λ
wi

µi + λ
≥

√
λ′

i

λi
, (M.3)

which implies wi ⩽ ξi

√
λi

λ′
i
. Combining Eqs. (M.2) and (M.3), the proof is complete.

N When FTW-ERM cannot outperform ERM

In this section, we provide a counterexample to show that, under which certain case, FTW-ERM cannot
provably outperform ERM.
Proposition 3. Under the same setting of Theorem 2, i.e., the fixed-design setting and label noise assumption,
under the following condition √

λ′
i

λi
⩾ max{ξ, 1 − ξ} .

If the ratio satisfies

wi ⩽ min
{ 1√

λ′
i
/λi−1
ξ

+ 1
,

√
λ′

i

λi
+ λ

µi

√
λ′

i

λi
− λ

µi

}
, (N.1)

then we have
R(θv) ⩽ R(θ̂) .
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Proof. According to Eq. (M.1), B(θv) ⩽ B(θ̂) holds by

µi + λ

µiwi + λ
⩾

√
λi

λ′
i

,

which is equivalent to

wi ⩽

√
λ′

i

λi
+ λ

µi

√
λ′

i

λi
− λ

µi
. (N.2)

According to Eq. (M.3), V(θv) ⩽ V(θ̂) holds by

µi + λ
wi

µi + λ
≤

√
λ′

i

λi
,

which is equivalent to

wi ⩽
1√

λ′
i

λi
−1

ξ + 1

. (N.3)

Combining Eqs. (N.2) and (N.3), the proof is complete. To validate the condition in Eq. (N.1), we require
each term in the RHS to be nonnegative. That implies√

λ′
i

λi
⩾ max{ξ, 1 − ξ} ,

which is our condition in Proposition 3.

By checking Eqs. (N.2) and (N.3), in both cases
√

λ′
i

λi
≥ 1 and

√
λ′

i

λi
≤ 1, we have

wi ⩽ 1 .

■

O Experimental details and additional experiments

Datasets: We make use of three datasets in the experiments: MNIST (LeCun et al., 1998), Fashion
MNIST8 (Xiao et al., 2017), and CIFAR10 (Krizhevsky). MNIST consists of images depicting handwritten
digits from 0 to 9. The resolution of each image is 28 × 28. The dataset includes 60, 000 images for training.
Similarly Fashion MNIST includes grayscale images of clothing of resolution 28 × 28. The training set
consists of 60, 000 examples, and the test set of 10, 000 examples. CIFAR10 consists of colored images with a
resolution of 32 × 32. The training set contains 50, 000 examples while the test set contains 10, 000 examples.

Experimental setup: For all experiments we use the cross entropy loss. The stochastic gradient for each of
the clients are computed with a batch size of 64 and aggregated on the server, which uses the Adam optimizer.
Experiments on MNIST and Fashion MNIST uses a LeNet (LeCun et al., 1998), a learning rate of 0.001, no
weight decay, and runs for 5, 000 iterations. For CIFAR10 experiments we use the larger ResNet-18 (He et al.,
2016). Batch normalization in ResNet-18 is treated by averaging the statistics on the server and subsequently
broadcasting to the workers. A learning rate of 0.0001 and weight decay of 0.0001 are used. We report the
best iterate in terms of average test accuracy after 20, 000 iterations in Table 7. FedBN Li et al. (2021c) is
given a 10 times larger horizon due to slower convergence. The partial client participation experiment in
Table 2 uses 200, 000 iterations.

All reported mean and standard deviations are computed over 5 independent runs except for CIFAR10
which uses 3 independent runs. For target shift the randomisation is also over the realization of the class
distributions to ensure that the conclusions are not due to the particularities of the sub-sampled images. All
experiments are carried out on an internal cluster using one GPU.

8Fashion MNIST is provided under the MIT license.
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Table 6: CIFAR10 target shift distribution across 100 clients where groups of 10 clients shares the same distribution.

Class
0 1 2 3 4 5 6 7 8 9

Client 1-10 Train 95/100 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 95/100

Client 11-20 Train 5/9 95/100 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 95/100 5/9

Client 21-30 Train 5/9 5/9 95/100 5/9 5/9 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9 5/9 5/9 95/100 5/9 5/9

Client 31-40 Train 5/9 5/9 5/9 95/100 5/9 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9 5/9 95/100 5/9 5/9 5/9

Client 41-50 Train 5/9 5/9 5/9 5/9 95/100 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9 95/100 5/9 5/9 5/9 5/9

Client 51-60 Train 5/9 5/9 5/9 5/9 5/9 95/100 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 95/100 5/9 5/9 5/9 5/9 5/9

Client 61-70 Train 5/9 5/9 5/9 5/9 5/9 5/9 95/100 5/9 5/9 5/9
Test 5/9 5/9 5/9 95/100 5/9 5/9 5/9 5/9 5/9 5/9

Client 71-80 Train 5/9 5/9 5/9 5/9 5/9 5/9 5/9 95/100 5/9 5/9
Test 5/9 5/9 95/100 5/9 5/9 5/9 5/9 5/9 5/9 5/9

Client 81-90 Train 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 95/100 5/9
Test 5/9 95/100 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9

Client 91-100 Train 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 95/100
Test 95/100 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9

O.1 Target shift

For the target shift experiments on Fashion MNIST in Table 1, we summarize the different number of
data points for each dataset split in Table 9. A similar distribution across clients is used for the additional
experiments for FTW-ERM and FedAvg on CIFAR10 (Table 8). CIFAR10 differs from Fashion MNIST in
the number of examples due to the training set being smaller. The results for CIFAR10 in Table 7 shows
that FTW-ERM uniformly improves the accuracy over FedAvg on this difficult target shift instance. We
additionally include a two-client setting in Table 10 with the associated distribution described in Table 11.

To compute the exact ratio r(x) we will assume that the distributions are separable.
Definition 3 (Separability). A distribution over X × Y is separable if there exists a partition (Xi)m

i=1 of
X such that p(yi|Xi) = 1 for some yi ∈ Y and all i ∈ [m]. We denote the associated deterministic label
assignment as g : X → Y.
Proposition 4. Assume that the distributions pte(x, y) and ptr(x, y) are both separable. Then the ratio can
be computed based on the associated label y := g(x) as follows,

r(x) = pte(y)
ptr(y) . (O.1)

Proof. Due to separability, pte(y|x) = ptr(y|x). So

r(x) := pte(x)
ptr(x) = pte(x)pte(y|x)

ptr(x)ptr(y|x) = pte(x, y)
ptr(x, y) . (O.2)

It follows that,
pte(x, y)
ptr(x, y) = pte(x|y)pte(y)

ptr(x|y)ptr(y) . (O.3)

Using the definition of the target shift assumption, pte(x|y) = ptr(x|y), the conditional distributions cancel
and we obtain the claim. ■
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Table 7: Target shift on CIFAR10 with ResNet-18. Note that FedBN is given a 10 times larger horizon due to slower
convergence.

FTW-ERM FedAvg FedBN
Average accuracy 0.6004 ± 0.0076 0.4426 ± 0.0291 0.5081 ± 0.0520
Client 1 accuracy 0.6714 ± 0.0153 0.3984 ± 0.1497 0.6699 ± 0.1283
Client 2 accuracy 0.8196 ± 0.0962 0.7307 ± 0.1533 0.7213 ± 0.0810
Client 3 accuracy 0.5412 ± 0.0776 0.3333 ± 0.2251 0.1584 ± 0.1222
Client 4 accuracy 0.5087 ± 0.0827 0.3030 ± 0.1106 0.2907 ± 0.1859
Client 5 accuracy 0.4610 ± 0.0508 0.4476 ± 0.3649 0.7003 ± 0.0386

Table 8: CIFAR10 target shift distribution.

Class
0 1 2 3 4 5 6 7 8 9

Client 1 Train 28 28 28 28 28 4885 28 28 28 28
Test 977 5 5 5 5 5 5 5 5 5

Client 2 Train 28 28 28 28 28 28 4885 28 28 28
Test 5 977 5 5 5 5 5 5 5 5

Client 3 Train 28 28 28 28 28 28 28 4885 28 28
Test 5 5 977 5 5 5 5 5 5 5

Client 4 Train 28 28 28 28 28 28 28 28 4885 28
Test 5 5 5 977 5 5 5 5 5 5

Client 5 Train 28 28 28 28 28 28 28 28 28 4885
Test 5 5 5 5 977 5 5 5 5 5

Table 9: Fashion MNIST target shift distribution.

Class
0 1 2 3 4 5 6 7 8 9

Client 1 Train 34 34 34 34 34 5862 34 34 34 34
Test 977 5 5 5 5 5 5 5 5 5

Client 2 Train 34 34 34 34 34 34 5862 34 34 34
Test 5 977 5 5 5 5 5 5 5 5

Client 3 Train 34 34 34 34 34 34 34 5862 34 34
Test 5 5 977 5 5 5 5 5 5 5

Client 4 Train 34 34 34 34 34 34 34 34 5862 34
Test 5 5 5 977 5 5 5 5 5 5

Client 5 Train 34 34 34 34 34 34 34 34 34 5862
Test 5 5 5 5 977 5 5 5 5 5

Proposition 4 provides a way to compute the ratio r(x) when the labels are available and the shift is known.

O.2 Covariate shift

The color flipping probability used to generate each of the colored MNIST datasets for the covariate shift
experiment can be found in Table 12. We consider an asymmetric client setup where client 1 in addition has
40 times less training examples than client 2.
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Table 10: Fashion MNIST with target shift across two clients.

FTW-ERM FITW-ERM FedAvg
Average accuracy 0.82 ± 0.00 0.76 ± 0.01 0.76 ± 0.01
Client 1 accuracy 0.89 ± 0.01 0.80 ± 0.02 0.94 ± 0.00
Client 2 accuracy 0.74 ± 0.01 0.71 ± 0.02 0.58 ± 0.01

Table 11: Two-client Fashion MNIST. The number of samples for each class across the different datasets.

Class
0 1 2 3 4 5 6 7 8 9

Client 1 Train 100 100 100 100 100 100 100 100 100 100
Test 9 9 9 9 9 990 990 990 990 990

Client 2 Train 39 39 39 39 39 3986 3986 3986 3986 3986
Test 990 990 990 990 990 9 9 9 9 9

P Computational complexity of Algorithm 1

We note that clients compute the ratios in parallel where each client needs to estimate one ratio. To estimate
density ratios for FTW-ERM, clients require to send a few unlabelled test samples only once. The server
shuffles those samples and broadcasts the shuffled version to clients only once. Compared to FedAvg, the
additional computational cost per client is O(TNk) where T is the number of iterations for Algorithm 1 to
converge and Nk is the number of batches for ratio estimation. Compared to baseline FedAvg, the additional
computation of FTW-ERM is negligible but leads to substantial improvements of the overall generalization
in settings under challenging distribution shifts.

Q Limitations

In this paper, we focus on settings where ratio estimation is required once prior to model training. Handling
distribution shifts in complex non-stationary settings where ratio estimation is an ongoing process is an
interesting problem for future work.

In addition, various personalization methods have been proposed to improve fairness in terms of uniformity of
model performance across clients (Li et al., 2021a;b). To meet specific requirements of each client, our global
model can be combined with a personalized model on each client. Developing new variants of FTW-ERM
with a focus on fairness is an interesting problem for future work.

To estimate {rk(x)}K
k=1, clients need to send unlabelled samples xte

l,j for l ∈ [K] and j ∈ [nte] from their test
distributions. We note that instead of their true samples, clients can alternatively send samples generated
from a generative model (Goodfellow et al., 2020).

Note that training GANs may be computationally extensive due to required computational resources and
availability of representative samples. However, we propose to use GANs as an alternative method with
clear caveats, only when 1) clients have sufficient computational resources and 2) they are unwilling to share
unlabelled data with the server.

Table 12: For covariate shift the datasets for each of the client are constructed using different probabilities.

ptr
1 (x) pte

1 (x) ptr
2 (x) pte

2 (x)
Probability of flipping color 0.5 0.2 0.2 0.8
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Table 13: Estimating ratio upper bound with k-means clustering. We consider the target shift setup, such
that a tight upper bound is known, and construct a single client variant for simplicity. We specifically consider
MNIST with a label distribution during training and testing to be qtr ∝ (1/20, 1/20, 1/20, 1/20, 1/20, 1, 1, 1, 1, 1)⊤ and
qte ∝ (1, 1, 1, 1, 1, 1/20, 1/20, 1/20, 1/20, 1/20)⊤ respectively. The table shows the estimated upper bound on the ratio (r̃)
for a range of clustering sizes. A reasonable estimate of the true maximal ratio of 20 is obtained for a wide range
of clustering sizes. Whereas naively binning the space can be problematic due to division by zero, the clustering
approach is less prone to this issue as long as #(clusters) ≪ #(datapoints).

#(clusters) 10 20 40 50 100 200 500
r̃ 10.31 15.48 19.08 27.41 31.47 32.84 206.76

Figure 3: The sudden increase in the eigenvalue ratio observed in Figure 2 for i larger than 780 and 1300 in Fashion
MNIST and CMNIST respectively is most likely due to numerical error. We plot the eigenvalues under the test
distributions (λ′) and under the training distribution (λ) and observe that indeed the eigenvalues suddenly drop very
close to zero at those exact indices.
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As a partial mitigation of privacy risks, we introduced FITW-ERM. FITW-ERM does not require any data
sharing among clients and does not require any GAN training. In this paper, we focus on FTW-ERM since it
outputs an unbiased estimate of a minimizer of the overall true risk, and enables us to theoretically show the
benefit of importance weighting in generalization.

One particular challenge in real-world cross-device FL is to estimate ratios on real-world datasets such
as WILDS (Koh et al., 2021) and LEAF (Caldas et al., 2019). WILDS has been mostly used for domain
generalization, where the setting is not similar to ours. We still have to decide on an arbitrary test/train
split. LEAF mainly captures inter-client distribution shifts and settings where different clients have different
numbers of examples over thousands of clients. This work is not about scalability to thousands of clients
experimentally using our single GPU simulated setup. While we anticipate efficient ratio estimation will
improve over time, our FTW-ERM and FITW-ERM formulations along with improved ratio estimates will
provide reasonable solutions to learn an effective global model in real-world cross-device FL under covariate
shifts.
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