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Abstract

Transfer learning for GANs successfully improves low-shot generation perfor-
mance. However, existing studies show that the pretrained model using a single
benchmark dataset is not generalized to various datasets. More importantly, the pre-
trained model can be vulnerable to copyright or privacy risks. To resolve both issues,
we propose an effective and unbiased data synthesizer, namely Primitives-PS,
inspired by the generic characteristics of natural images. Since Primitives-PS
only considers the generic properties of natural images, the images are free from
copyright and privacy issues. In addition, the single model pretrained on our dataset
can be transferred to various target datasets. Extensive analysis demonstrates that
each component of our data synthesizer is effective, and provides insights on the
desirable nature of the pretrained model for the transferability of GANs. For
better reproducibility and implementation details we provide the source code at
https://github.com/FriedRonaldo/Primitives-PS.

1 Introduction

Generative adversarial networks (GANs) [7] are a powerful generative model that can synthesize
complex data by learning the implicit density distribution with adversarial training. Despite the
remarkable quality, GANs require at least several thousand, mostly several hundred thousand images
for training. This requirement for data collection is often infeasible in practical applications (e.g.,
many pictures of a treasure, endangered species, or the medical images of rare disease).

The idea of transfer learning has been recently introduced to GAN training [35, 20] for low-shot
generation. Following the common practice, GAN transfer learning 1) pretrains GANs on a large-
scale source dataset (e.g., FFHQ) and then 2) finetunes GANs with a relatively small target dataset.
As a result, developing GANs with transfer learning clearly improves the generation quality and
diversity over the models trained from scratch only with the target dataset.

However, the effectiveness highly depends on how similar the source dataset is to the target dataset.
According to TransferGAN [35], transfer learning can achieve the best performance when the source
shares characteristics with the target. Other than the performance issue, we argue that the current
pretrained models can be vulnerable to copyright and privacy issues [40]. Even for public benchmark
datasets, employing them for commercial purposes is not always permitted. For this reason, one might
compose her own dataset via web crawling, but filtering out the copyrighted samples is practically
difficult. Besides, unresolved copyright and privacy issues might cause legal issues [28].

Recent studies [9, 12, 5] also show that the deep generative models are vulnerable to membership
inference attacks, implying that privacy issues still remains beyond the copyright issues. An adversary
can reconstruct a face even without additional prior information [37]. That is, we can reveal individual
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(a) PinkNoise (b) Primitives

(c) Primitives-S (d) Primitives-PS
Figure 1: Visualization of our synthetic datasets.
We visualize four variants of synthetic datasets and
Primitives-PS is finally chosen for the best perfor-
mance. Images are resized in three different scales.

Figure 2: Potentials of primitive shapes for represent-
ing things. We only use a line, ellipse, and rectangle to
express a cat and a temple. These examples motivate
us to develop Primitives, which generates the data
by a simple composition of the shapes.

training samples by attacking the trained model. As the network capacity of GANs increases rapidly
to improve performance, the risk of memorization also grows quickly. Memorization effects make
GANs more vulnerable to membership inference attacks [4]. Since we consider transfer learning,
someone might argue that the membership inference on the source (e.g., pretraining) dataset should
not be a critical issue. However, Zou et al. [40] reported that the membership inference of the source
dataset could be conducted even after the transfer learning.

In this work, we dive into tackling the two undiscovered but critical issues of transfer learning for
GANs: 1) the lack of generalization for the pretrained model and 2) the copyright or privacy issue of
the pretraining dataset. Towards this goal, we adopt the generic property of the natural images in the
frequency spectrum and structure. We develop our data generation strategy, namely Primitives-PS,
inspired by the analysis and observations on natural images from previous studies [23, 30, 19]. We
pretrain GANs using the synthetic dataset generated by our data synthesizer. Then, the effectiveness
of the proposed method is evaluated by repurposing the pretrained model to various low-shot datasets.
The experimental results verify that our synthetic dataset pretrained model achieves comparable to
FFHQ pretrained model or outperforms in various low-shot datasets. We also provide the analysis on
the diversity of the filters to support the result in Appendix.

2 Related work

Utilizing synthetic datasets. The samples and labels of synthetic datasets can be generated au-
tomatically and unlimitedly by a pre-defined process. Since generating synthetic data can by-
pass the cumbersome data crawling and pruning for data collection, previous works have utilized
synthetic datasets for training the model and then achieved performance improvement on real
datasets [14, 13, 27, 25, 26, 36, 31].

Although the previous methods improved the performance of the model on the real dataset, generating
such synthetic datasets requires expertise in domain knowledge or a specific software (e.g., GTA-5
game engine [24]). To handle the issue, Kataoka et al. [17] utilized the iterated function system to
generate fractals and used the fractals as a pretraining dataset for classification. As a concurrent work,
Baradad et al. [2] observe that the unsupervised representation learning [10] trains the model using
patches, and these patches are visually similar to the noise patches (from the noise generation model)
or the patches drawn from GANs. However, none of the existing studies have investigated synthetic
data generation for training GANs.

Transfer learning in GANs. GANs involve a unique architecture and a training strategy; consisting
of a discriminator and generator trained via adversarial competition. Therefore, the GAN transfer
learning method should be developed by considering the unique characteristics of GANs [35, 21,
34, 20, 38, 22]. TransferGAN [35] trains GANs with a small number of samples by transferring the
weights trained on a relatively large dataset. FreezeD [20] fixes several layers of the discriminator and
then finetunes the remaining layers. FreezeD improved the generation performance of transferring
from the FFHQ pretrained model to various animals. Despite the improvement in GAN transfer
learning, the model still requires a large-scale pretraining dataset. Consequently, they commonly
suffer from copyright issues, and their performance is sensitive to the relationship between the source
and target dataset. In contrast, our goal is to tackle both issues simultaneously by introducing an
effective data synthesizer.
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Figure 3: Comparison between (a) Primitives and
(b) Primitives-PS on Obama dataset. The model
pretrained with Primitives generates multiple faces
in a single image.

S
T Obama Grumpy cat Bridge Panda

Scratch + DiffAug 48.98 27.51 57.72 15.82
PinkNoise 50.32 29.47 73.82 15.65
Primitives 43.20 27.97 59.89 12.78
Primitives-S 43.29 26.57 57.24 11.95
Primitives-PS 41.62 26.01 54.02 12.23

Table 1: The FID score of transferring to low-shot
datasets from the proposed pretraining datasets. The
lower is the better. Bold and underlined text indi-
cates the best and second best performance among the
pretraining datasets. It will be the same convention
throughout the paper. S and T represent the source and
target dataset, respectively.

Low-shot learning in GANs. For high-quality image generation, GANs require a large-scale
dataset, and such a requirement can limit the practical use of GANs. To reduce the number of
samples for training, several recent studies have introduced data augmentation for training the
discriminator[33, 39, 15]. Then, the generator can produce images with a small number of samples
without reflecting an unwanted transformation in the results (i.e., augmentation leakage [15]). In
this work, we tackle low-shot generation using GANs via transfer learning; GANs are trained with a
small number of samples by transferring a pretrained network into a low-shot dataset.

3 Towards an effective data synthesizer

In this work, our primary goal is to develop an unbiased and effective data synthesizer. The synthetic
dataset secured by our synthesizer is then used to pretrain GANs, which facilitates low-shot data
generation. To accomplish unbiased data generation, we only consider the generic properties of
natural images because the inductive bias in a pretraining dataset is harmful to transfer learning
of GANs. In the following, we introduce three design choices of our synthesizer inspired by the
common characteristics of natural images: 1) modeling the power spectrum of images, 2) exploiting
the shape primitives from natural images, and 3) adopting the existence of saliency in images.
Figure 1 shows several example images by adding each aspect. For the better reproducibility
and exact implementation, we provide the source code at https://github.com/FriedRonaldo/
Primitives-PS.

3.1 Learning the power spectrum of natural images

Several previous works reported the magnitude of natural images in the frequency domain [6, 3, 32]
roughly obeys wm = 1

|fx|a+|fy|a where a is a constant, well approximated to one. Inspired by
this finding, we generate synthetic images by randomly drawing a from the uniform distribution
of U(0.5, 3.5), as also suggested in [2]. Specifically, random white noise is sampled, and then its
magnitude signal after applying the Fast Fourier Transform (FFT) is weighted by wm. By applying
the inverse FFT to the weighted signal, we can easily compute the synthetic image. We repeat this
for RGB color channels and finally produce synthetic images. Originally, the image with a = 1 was
named a pink noise. We call this method of generating images with a ∼ U(0.5, 3.5) as PinkNoise.
Since we only utilize the generic properties of natural images, no inductive bias toward any specific
dataset influences PinkNoise. As shown in Figure 1(a), PinkNoise produces interesting patterns
with vertical, horizontal orientation, or color blobs.
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3.2 Shape primitives inspired by natural images

“Everything in nature is formed upon the sphere, the cone, and the cylinder. One must learn to paint these
simple figures, and then one can do all that he may wish.”

Paul Cézanne

Considering the importance of phase in images (e.g., determining the unique appearance of the
image [23]), PinkNoise alone is insufficient to represent the rich characteristics of natural images;
PinkNoise is random noise on a phase spectrum. To have a meaningful signal even in its phase, we
can consider 1) modeling the phase of natural images independently or 2) developing the different
generation strategies to model the magnitude and phase simultaneously. Unlike the magnitude
spectrum, we seldom find regularity in the phase of images. Besides, separately modeling the phase
and magnitude may not produce meaningful images, preserving the proper structures [30]. For this
reason, we focus on finding structural regularity in natural images because it can affect both magnitude
and phase. Specifically, we are inspired by the observation that natural images can be represented
by the composition of the elementary shapes [19]. The common practice in artistic drawings also
utilizes elementary shapes as the basis for representing things (inspired by Paul Cézanne).

Figure 2 demonstrates the abstraction examples of various images using elementary shapes, such as
ellipses, lines, and rectangles. We find the potential of abstraction via elementary shapes to encode
the structural information of natural images and to remove the bias to a specific dataset. We then
devise the data synthesizer to produce images consisting of various elementary shapes. The outputs
of this synthesis procedure are akin to those of the dead leaves model [8, 18]. The dead leaves model
is an early generative model, which closely mimics natural images by conducting tessellation, where
their sizes and positions are determined by sampling from the Poisson process. Unlike the dead leaves
model, we do not fill all the regions and use different distributions for sampling because the resultant
images are quite sensitive to the hyperparameter of the Poisson process. For position, we use the
uniform distribution. To prevent the large shapes in the later stage from completely overwriting those
in the early stage, we gradually decrease the maximum shape size over multiple stages; drawing the
small objects toward the end. In addition, it is conversely proportional to the number of currently
injected shapes. We name this generation strategy Primitives, and Figure 1(b) visualizes the
representative examples.

3.3 Combining saliency as prior

In addition to the natural images, we investigate the benchmark datasets and find that they commonly
have saliency, target objects of interest to determine the class. These salient objects are usually
located nearly in the middle of the image. For example, the animal face on the cat and panda dataset
can be the saliency. To reflect the nature of benchmark datasets, we insert a large shape after applying
Primitives and name it as Primitives-S (Primitives with Saliency).

By utilizing the three design factors, we develop four variants of our data synthesizer. They are
1) PinkNoise adopting the nature of magnitude spectrum of natural images only as shown in
Figure 1(a), 2) Primitives generating various elementary (monotone) shapes randomly as illustrated
in Figure 1(b), and 3) Primitives-S adding a salient object into Primitives in Figure 1(c).

Finally, we apply a PinkNoise pattern onto the salient object and the background of Primitives-S,
which is called (4) Primitives-PS (Primitives with Patterned Saliency) as shown in Figure 1(d).
Since the size of the salient object is considerable, having a salient monotone object may induce an
unwanted texture bias. Focusing on the visual effects, inserting the monotone object can be similar
to the regional dropout [29, 1] in the weakly-supervised object localization (WSOL) task. When
training a network with the regional dropout, previous WSOL methods suggest filling the dropped
region with mean statistics or with other regions from the same image to prevent distribution bias.
Motivated by the practice in WSOL, we apply PinkNoise to the salient object.

The effectiveness of the proposed synthetic datasets is evaluated by transferring GANs in Section 4.
We first pretrain GANs using the randomly generated images via our Primitives-PS, and then
finetune the pretrained model on low-shot datasets. While finetuning, all competitors and our
pretrained model utilize DiffAug (translation, cutout, and color jittering).
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(a) From scratch (b) TransferGAN (c) FreezeD (d) Primitives-PS

Figure 4: Qualitative evaluation on Obama, Grumpy cat, Temple, and Wuzhen.

Source
Target Obama Grumpy cat Bridge Panda Temple Wuzhen Fountain Buildings

Scratch + DiffAug [39] 48.98 27.51 57.72 15.82 46.69 146.81 44.46 93.71
TransferGAN [35] 36.50 30.60 60.29 14.53 40.58 95.83 46.61 81.63
FreezeD [20] 35.90 29.41 59.47 13.39 42.09 93.54 45.70 80.48
Primitives-PS 41.62 26.01 54.02 12.23 40.42 88.14 43.06 78.74

Table 2: The FID score of transferred models to low-shot datasets. We use FFHQ pretrained weight for
TransferGAN and FreezeD. For all models, we apply DiffAug.

4 Experiments

We first demonstrate the effectiveness of four variants of our data synthesizer. Then, we choose the
best strategy among the four variants and use it for pretraining GANs. Our model is compared with
other models pretrained on a natural benchmark dataset in the transfer learning scenario.

Datasets. For the comparison between our synthesizers, we adopt four datasets, including Obama,
Grumpy cat, Panda, and Bridge of sighs (Bridge) [39]. To compare with transfer learning methods,
we also use Wuzhen, Temple of heaven (Temple), and Medici fountain (Fountain). Each dataset has
100 images. In addition, we create a dataset, namely Buildings, by merging a subset of four datasets;
Bridge of sighs, Wuzhen, Temple of heaven, and Medici fountain. Buildings is used to evaluate the
performance under highly diverse conditions.

Evaluation protocols. StyleGAN2 architecture [16] with DiffAug [39] is applied when evaluating
all models in the low-shot generation task. The baseline is the model trained from scratch with
DiffAug. The strong competitors are TransferGAN [35] and FreezeD [20], where both methods
suggest finetuning strategies. To reproduce the competitors, we used StyleGAN2 model pretrained
on FFHQ and then finetune the model using TransferGAN and FreezeD, respectively. We stress
that all competitors, baseline and Primitives-PS use DiffAug. We follow the configuration of
DiffAug for Primitives-PS and the baseline (from scratch with DiffAug). Otherwise, we use the
configuration of TransferGAN and FreezeD as described in [39] for the best performance. As an
evaluation metric, we use Fréchet inception distance (FID) [11] and report the FID score of the best
model during training as suggested by DiffAug [39].

4.1 Effects of different data synthesizers

We developed four variants of data synthesizer: PinkNoise, Primitives, Primitives-S, and
Primitives-PS. We evaluate their effectiveness in the low-shot generation scenario– pretraining
with the synthetic dataset and then finetuning on target datasets with DiffAug. Table 1 summarizes
the FID scores of four data synthesizers and the baseline under four different low-shot datasets.

In general, PinkNoise fails to improve the FID score (worse than the baseline). Unlike PinkNoise,
Primitives clearly improves the generation performance in Obama and Panda. However, it is not
effective on Grumpy cat and Bridge. Compared to Primitives, Primitives-S further improves
the FID scores, demonstrating the effectiveness of saliency prior. Finally, Primitives-PS clearly im-
proves the low-shot generation performance on all datasets by about 15% on average over the baseline.
From these results, we observe that 1) a naïve synthesizer (PinkNoise) is even worse than simply
using the low-shot dataset, and 2) the combination of our three design factors (Primitives-PS)
remarkably improves the baseline, supporting the effectiveness and importance of each factor.
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(a) Obama (b) Bridge

Figure 5: FID per training iterations. The star marker (⋆) indicates the point where the model reaches 95% of
the best FID score of the from scratch model with DiffAug (baseline).

We also verify the effect of the saliency prior by comparing Primitives and Primitives-PS.
Because Primitives includes multiple shapes, meaning all can be candidates for the main object,
the outputs often contain multiple faces in the middle of training (e.g., the top-left and the middle in
Figure 3(a)). On the other hand, Primitives-PS focuses on generating a single face and eventually
exhibits improved quality.

Considering all, we confirm that Primitives-PS is the best data synthesizer, and thus it is chosen
as our final model for comparative evaluations with competitors.

4.2 Comparisons with the state-of-the-arts

We pretrain a model using Primitives-PS and compare it with state-of-the-art models pretrained
with FFHQ in a transfer learning task to low-shot datasets.

Table 2 reports the quantitative results and Figure 4 shows the qualitative comparison. As expected,
TransferGAN [35] and FreezeD [20] show outstanding performance on the Obama dataset because
they are pretrained with FFHQ that is a superset of the target. Except for the Obama dataset,
Primitives-PS pretrained model outperforms all competitors. Unless the inductive bias in the
source dataset is advantageous to the target (e.g., Obama), FreezeD does not consistently outperform
the baseline (from scratch with DiffAug). In fact, the performances of existing methods highly vary
upon target datasets. Contrarily, our pretrained model with Primitives-PS consistently outperforms
the competitors in each dataset, except Obama. This implies that our pretrained model has strong
transferability. Since Primitives-PS does not use any inductive bias for modeling human faces,
the performance drawback on Obama can be acceptable.

We emphasize that our achievement is impressive and meaningful in two aspects: 1) Primitives-PS
uses no real but all synthetic images, which possesses all the attractive nature in application scenarios
and 2) our results show the great potential of a single pretrained model for GAN transfer learning.

Training convergence speed. We investigate the convergence speed of transfer learning by examining
FID upon training iterations. Figure 5 describes the evolution of the FID scores during the training.
To save space, we provide two different datasets; Obama and Bridge. For Obama, all pretrained
models converge faster than the baseline (from scratch with DiffAug). Meanwhile, only our model
converges faster than the baseline for Bridge. Compared to the baseline, the model pretrained with
Primitives-PS reaches 95% of the best baseline performance within the first 30% of iterations.
Interestingly, other pretrained models cannot reach 95% of the best baseline performance earlier than
the baseline. This shows that our model effectively reduces the required iterations for convergence,
and the overhead for pretraining can be sufficiently deducted.

5 Limitation and conclusion

Limitation. Our Primitives-PS is devised based on the observations from natural images. Hence,
it is possible that more effective observations can further improve the data generation quality. Devel-
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oping a metric to quantify the transferability of the model and deriving a data generation process by
optimizing the metric might be a good way to overcome this limitation.

Conclusion. Existing studies for GAN transfer learning utilize a model trained with natural images
and thereby suffer from 1) biased pretrained model that can be harmful to the resultant performance
and 2) copyright or privacy issues with both the model and dataset. To overcome these limitations, we
introduce a new image synthesizer, namely Primitives-PS, inspired by the three generic properties
of natural images: 1) following the power spectrum of natural images, 2) abstracting the image via
the composition of primitive shapes (e.g., line, circle, and rectangle), and 3) having saliency in the
image. Experimental comparisons and analysis show that our strategy effectively improves both the
generation quality and the convergence speed.
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Appendix: Generic and Privacy-free Synthetic Data
Generation for Pretraining GANs

1 Additional Experiments and Analysis

Conditional generation task using CIFAR. We conduct conditional generation via transfer learning
on CIFAR-10 and 100 as summarized in Table 1. Figure 1 shows the qualitative evaluation result on
CIFAR-10 with 10% of samples; our Primitives-PS produces the general shape and its structural
components better than the baseline and DiffAug. Compared to BigGAN trained from scratch,
BigGAN trained from scratch with DiffAug significantly improves the FID score, and the gain is
pronounced as the number of training samples decreases. However, we observe that DiffAug suffers
from augmentation leakage [1] when the samples are scarce (i.e., the generated samples contain
the cutout). Our pretrained model with Primitives-PS shows remarkable performances under the
data-hungry scenario, better than DiffAug.

However, when the samples are sufficient (100%), pretraining does not always provide gains over
DiffAug. This tendency appears in various downstream tasks. Newell et. al. [2] reported that the
self-supervised pretraining for semi-supervised classification is not advantageous when the amount of
data-label pairs are sufficient. TransferGAN [3] showed that the gain via transfer learning decreases
when the amount of samples is sufficient. In the same vein, the advantage of our pretraining with
Primitives-PS decreases as the number of samples increases.

For the extreme low-shot scenario, we also evaluated the model trained with 1% of the dataset. Only
for this evaluation, we compare three models; 1) the model naïvly trained from scratch, 2) the model
trained with DiffAug only (DiffAug), and 3) our model pretrained with Primitives-PS and then
finetuned without DiffAug. The FID score of the baseline, DiffAug, and ours are 112.13, 101.91,
and 78.48, respectively. Although DiffAug improved FID, we observe that DiffAug suffers from the
augmentation leakage issue. Therefore, the improvement in FID and its generation results are not
meaningful. In contrast, our pretrained model can significantly improve the generation performance
without any issue.

Diverse filters matter for transferring GANs. From the superior performances of our pretrained
model, we conjecture that our achievement was possible by the unbiased nature of our dataset; the
pretrained model with FFHQ (FreezeD) has an inductive bias as the face dataset. A previous study
analyzing the transferability of CNN [4] also pointed out that the performance of the target dataset
degrades when the filters are highly specialized to the source dataset. To analyze the transferability
empirically, we measure the similarity between the filters of each layer of the pretrained model. We
regard that highly diverse (less similar to each other) filters can indicate that the model is less biased
towards a particular domain. That means that the highly transferable model tends to have low filter
similarity on average. Specifically, given a weight matrix of each layer, its shape is [O, I,H,W ],
where O filters have I ×H ×W tensors. Then, we measure the cosine similarity among all possible
permutations of O filters and report the average similarity of all layers in Table 3.

In summary, Primitives-PS shows the more diverse filter set in 21 out of 26 layers than the FFHQ
pretrained model. According to [4], the higher layer (close to the output) tends to specialize in the
trained dataset. The same observation holds in our discriminator. The similarity in the last layer of
the FFHQ pretrained model is approximately four times higher than Primitives-PS. This explains
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CIFAR-10 CIFAR-100
10% 20% 100% 10% 20% 100%

BigGAN 44.14 20.80 9.45 66.21 34.78 13.45
+ DiffAug 29.78* 14.04 8.55 41.70* 21.14 11.51
+ Pretrained (PS) 21.33 12.79 8.79 32.57 20.58 11.29

Table 1: The FID of BigGAN, with DiffAug, and with
DiffAug initialized by Primitives-PS (PS) pretrained
model on CIFAR. ’*’ indicates the best FID before
augmentation leakage [1].

Policy Obama Grumpy cat Bridge Panda
Fix (1/10) 48.30 29.74 63.00 17.69
Fix (1/5) 46.41 29.22 64.02 14.97
Fix (1/2) 48.05 29.37 64.65 15.14
PinkNoise + PS 49.13 29.87 66.00 15.12
Rand 44.85 29.84 60.45 14.67
Decay 41.62 26.01 54.02 12.23
# of particles Obama Grumpy cat Bridge Panda
0 49.13 29.87 66.00 15.12
10 44.10 28.00 63.26 13.35
50 42.49 28.40 59.17 11.79
100 41.62 26.01 54.02 12.23
500 42.45 27.92 52.27 12.12

Table 2: The average consine similarity between the
filters in the same layer. The lower value indicates the
more diverse filters.

(a) From scratch (b) + DiffAug (c) + Primitives-PS pretraining

Figure 1: Qualitative evaluation on CIFAR-10 dataset with 10% of samples. Each row contains
samples in the same class.

that the FFHQ pretrained model specialized in human faces, thus transferring well to Obama but not
to others.

Ablation study. When developing Primitives-PS, we introduce two hyperparameters; 1) the total
number of shapes and 2) the policy to determine the size of each component. For determining the
size, we consider three policies; Fix, Rand and Decay. Fix indicates that all particles have the same
size. To examine the effect of various scale, we set this size as H · [1/10, 1/5, 1/2], where H is the
image resolution. Rand randomly samples the size from the uniform distribution. Both policies
can induce the occlusion of the previously injected shapes by the later shape. Decay can bypass the
occlusion issue effectively. Decay arbitrarily samples the size from the uniform distribution, where
the maximum size is limited to (H · 1/5 · (N − n)/N), and N and n are the total number of shapes and
the number of previously injected particles. In this way, we can ensure that the shapes inserted in the
early stage are still visible in the final data. The upper-side of Table 2 summarizes the FID score for
each policy on four datasets. The differences in FID among Fix policies are trivial in that their ratios
are not highly correlated with their ranks. Also, we observe that the shapes at the final stage overwrite
the previous shapes. Then, the overall appearance with Fix are similar to PinkNoise with a salient
object. We investigate the synthesizer that combines PinkNoise with PS by injecting a saliency and
then applying PinkNoise on it. Interestingly, we observe that it shows the similar FID scores to
Fix. For Rand, it improves the FID score on Obama and bridge, however, the overall performance is
much worse than Decay. Therefore, we choose a Decay policy as default for choosing the size.

Besides, the total number of shapes is important because it affects the transferability and the time
complexity of the synthesizer. The lower-side of Table 2 demonstrates the performance trends upon
the total number of shapes. A zero particle case implies that only one background and one salient
object, thus equivalent to PinkNoise + PS. As the number of shapes (N ) grows upon roughly 100,
the performance tends to improve. However, over N = 100, we do not observe the consistent gain.
From the ablation study, we decide N = 100 in each image to enjoy the reasonable performance gain
and to reduce the time complexity.
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Discriminator Generator
Primitives-PS FFHQ Primitives-PS FFHQ

conv0 0.00660 0.01245 0.00315 0.00685
conv1 0.02104 0.00932 0.00273 0.00843
conv2 0.01012 0.00779 0.00291 0.00956
conv3 0.00839 0.01216 0.00348 0.01080
conv4 0.00607 0.00713 0.00539 0.01059
conv5 0.00596 0.00668 0.00329 0.01406
conv6 0.00507 0.00563 0.00363 0.01199
conv7 0.00632 0.00714 0.00433 0.01465
conv8 0.00380 0.00365 0.00652 0.01317
conv9 0.00521 0.00703 0.00933 0.01626

conv10 0.00503 0.00420 0.01133 0.01778
conv11 0.00462 0.00760 0.01981 0.01977
conv12 0.01844 0.08438 0.03176 0.03250
Mean 0.00820 0.01348 0.00828 0.01434

Table 3: Ablation study on the policy to determine the
size of each particle (upper) and the number of particles
(lower).

Figure 2: The outputs of the model pretrained with
Primitives-PS. The generated outputs are similar to
the synthetic samples.

2 Pretraining Results and Details

We provide the outputs of the generator pretrained with Primitives-PS. For pretraining, we train
the model during 800K images with batch size = 16, therefore, the total number of iterations is 50K.
For finetuing all the models, we train the model during 400K images. The generated (fake) synthetic
images are similar to the real synthetic samples as shown in Figure 1 of the main text.
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Figure 3: The additional results of Figure 6 in the main text. FID per training iterations. The star
marker (⋆) indicates the point where the model reaches 95% of the best FID score of the from
scratch model with DiffAug (baseline). The legend is the same for all graphs.

3 Convergence Speed of Transfer Learning Methods

Figure 3 shows the evolution of the FID scores during the training of the transfer learning methods.
The model pretrained with our synthetic dataset exhibits comparable or faster convergence than the
competitors that are pretrained on FFHQ. Herein, we observe the convergence speed in terms of the
number of iterations to reach 95% of the best FID score of the baseline (from scratch model with
DiffAug).
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(a) PinkNoise

(b) Primitives

Figure 4: Low-shot image generation results of the models transferred from PinkNoise and
Primitives.

4 Qualitative Comparison Among Data Synthesizers

In addition to the quantitative comparison of our data synthesizers, we also qualitatively compare our
four variants of the data synthesizer used for quantitative evaluation. From the first to the last row,
Bridge of sighs, Obama, Grumpy cat, and Panda. PinkNoise generates the images with unstructured
samples (e.g. Obama and Grumpy cat) and the outputs of Primitives on Panda have lower fidelity
(e.g. the last three samples). Compared to PinkNoise and Primitives, Primitives-S and
Primitives-PS provide plausible samples. Between the last two synthetic datasets, Primitives-S
sometimes drops the important factor, for example, the eyes of the cat (6-th column). While
Primitives-PS generates more diverse and plausible samples than the other synthetic datasets.
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(a) Primitives-S

(b) Primitives-PS

Figure 5: Low-shot image generation results of the models transferred from Primitives-S and
Primitives-PS.
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5 Qualitative Comparisons With Competing Transfer Learning Methods

In addition to the quantitative comparison, we also provide the qualitative comparisons on eight
datasets that are used for quantitative evaluation in the main text. From the first to the last row,
Buildings, Bridge of sighs, Obama, Medici fountain, Grumpy cat, Temple of heaven, Panda, and
Wuzhen. In terms of fidelity of the generated images, our Primitives-PS outperforms the competi-
tors. Especially, Grumpy cat images generated by the competitors often do not contain eyes or have
only part of the face. Because of the size, we show one figure per page.

7



Figure 6: The additional generated samples of Figure 5 in the main text. The images are generated
with the model trained from scratch.
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Figure 7: The additional generated samples of Figure 5 in the main text. The images are generated
with the model pretrained with FFHQ and transferred by using TransferGAN.
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Figure 8: The additional generated samples of Figure 5 in the main text. The images are generated
with the model pretrained with FFHQ and transferred by using FreezeD.
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Figure 9: The additional generated samples of Figure 5 in the main text. The images are generated
with the model pretrained with our Primitives-PS.
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