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Abstract

Transformers have dominated sequence pro-001
cessing tasks for the past seven years—most002
notably language modeling. However, the in-003
herent quadratic complexity of their attention004
mechanism remains a significant bottleneck as005
context length increases. This paper surveys006
recent efforts to overcome this bottleneck, in-007
cluding advances in (sub-quadratic) attention008
variants, recurrent neural networks, state space009
models, and hybrid architectures. We critically010
analyze these approaches in terms of compute011
and memory complexity, benchmark results,012
and fundamental limitations to assess whether013
the dominance of pure-attention transformers014
may soon be challenged.015

1 Introduction016

The transformer architecture represents a founda-017

tional breakthrough in Natural Language Process-018

ing (NLP) (Vaswani et al., 2017), forming the back-019

bone of most Large Language Models (LLMs)020

(Brown et al., 2020) and serving as a reliable archi-021

tecture choice for predictable performance scal-022

ing laws (Kaplan et al., 2020; Hoffmann et al.,023

2022). Its self-attention mechanism (Bahdanau024

et al., 2015) projects inputs into queries (Q), keys025

(K), and values (V ), enabling efficient pairwise026

token interactions:027

Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V028

Despite providing direct O(1) paths between029

any pair of tokens, computing the full n× n atten-030

tion matrix incurs O(n2) time complexity, increas-031

ing latency and compute costs as the input length032

n grows (Vaswani et al., 2017). This has moti-033

vated research efforts into sub-quadratic sequence-034

modeling operators to replace attention, aiming to035

improve efficiency while retaining strong task per-036

formance. These include sub-quadratic attention037

Figure 1: The four types of dot-product attention alter-
natives identified in our survey, including examples for
each type. We further distinguish between two major
classes for hybrid concepts, namely striped and fusion
hybrids, as well as for sub-quadratic attention variants,
namely approximate and sparse attention.

variants (Katharopoulos et al., 2020), Recurrent 038

Neural Networks (RNNs) (Beck et al., 2024), State 039

Space Models (SSMs) (Gu and Dao, 2023; Gu et al., 040

2022), and hybrids thereof (De et al., 2024). 041

This paper reviews alternatives to transformers 042

and examines whether their dominance may soon 043

be challenged. Our main contributions are: 044

(1) A systematic review of the most relevant (sub)- 045

quadratic attention variants, RNNs, SSMs, 046

and hybrid architectures. An overview can 047

be found in Figure 1. 048

(2) A comparative analysis of time and mem- 049

ory complexity for training and inference of 050

sequence-modeling mechanisms, as well as 051

reported benchmark results for SOTA models. 052

(3) A critical analysis of strengths, tradeoffs, and 053

limitations, with an informed perspective on 054

when and where pure attention-based trans- 055

formers may be surpassed. 056

Our methodology is described in Appendix A.1. 057
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2 Related Review Work058

While several recent and concurrent works overlap059

with aspects of our scope, they differ in focus and060

conclusions. For example, Schneider (2025) dis-061

cusses hypothetical post-transformer architectures062

without restricting to sub-quadratic complexity or063

state-of-the-art performance. Wang et al. (2024c)064

reviews approaches for handling longer input se-065

quences, and Tiezzi et al. (2025) examines alterna-066

tive architectures from the perspective of recurrent067

processing.068

Several surveys provide overviews of techniques069

for efficient transformers and LLMs in general070

(Tay et al., 2022; Wan et al., 2024; Miao et al.,071

2024; Tang et al., 2024; Miao et al., 2023; Huang072

et al., 2023), but these often emphasize linear at-073

tention variants when considering alternative archi-074

tectures. There are also focused surveys on spe-075

cific subgroups, such as SSMs (Somvanshi et al.,076

2025; Wang et al., 2024b) and recurrent models077

(Tiezzi et al., 2024). Some works address models078

for domains like computer vision (Patro and Ag-079

neeswaran, 2024) or time series forecasting (Kim080

et al., 2025), whereas our emphasis is on NLP tasks081

and sub-quadratic alternatives to attention-based082

models.083

Finally, Strobl et al. (2024) provide a detailed084

overview of previous works on transformer expres-085

sivity, which relates to our discussion of architec-086

tural limitations in Section 8.087

3 O(n2) Attention Variants088

Despite not breaking the O(n2) bottleneck, many089

attention variants deliver substantial practical090

speedups with no reduction in quality compared to091

standard attention.092

Reducing KV Cache To reduce unnecessary re-093

computations, the keys and values of attention are094

often cached during inference. Managing such095

a key-value (KV) cache efficiently is key for re-096

ducing memory requirements. Multi-Query Atten-097

tion (MQA) (Shazeer, 2019) and Grouped-Query098

Attention (GQA) (Ainslie et al., 2023) share key099

and value matrices across attention heads, reduc-100

ing cache size by a constant factor but at the cost101

of reduced expressivity. Multi-Head Latent Atten-102

tion (MLA), introduced by DeepSeek (DeepSeek-103

AI et al., 2024; DeepSeek-AI et al., 2025), uses a104

shared latent matrix among heads, which is pro-105

jected back individually, achieving similar cache106

savings but with better performance than MQA and 107

GQA. Refer to Li et al. (2025b) and Luohe et al. 108

(2024) for a more detailed overview of KV cache 109

techniques. 110

Flash Attention FlashAttention (Dao et al., 111

2022) and its successors exploit GPU memory hi- 112

erarchies to make attention both faster and more 113

memory-efficient, reducing memory usage to be lin- 114

ear in sequence length and delivering 2–4× runtime 115

speedups over strong baselines. FlashAttention-2 116

(Dao, 2023) improved thread work partitioning for 117

further speedup (as proven by GPT-style (Brown 118

et al., 2020) LLM training), while FlashAttention-3 119

(Shah et al., 2024), specialized for Hopper GPUs, 120

adds asynchrony and low-precision operations for 121

an additional 1.5–2× boost. 122

Paged Attention Paged Attention (Kwon et al., 123

2023) improves inference memory efficiency by 124

partitioning the KV cache into fixed-size pages and 125

tracking them via a page table, boosting throughput 126

2–4× and eliminating padding. 127

4 Sub-Quadratic Architectures 128

Categorizing sub-quadratic attention alternatives 129

is challenging due to overlapping ideas and mech- 130

anisms. We organize them as Linear Attention, 131

Recurrent Models, SSMs, and Hybrids according 132

to their main design motivation, though some (e.g., 133

RWKV-7) fall into several categories. Earlier sub- 134

quadratic architectures now outperformed are listed 135

in Appendix A.2 for completeness. 136

4.1 O(n2−ϵ) Attention Variants 137

Approximate Attention Approximate attention 138

mechanisms, including linear attention, reduce 139

computational cost by using approximations such 140

as kernel functions or low-rank factorization. 141

Kernel-based linear attention reformulates self- 142

attention as a linear dot-product in feature space, 143

achieving O(n) complexity (Katharopoulos et al., 144

2020; Zhuoran et al., 2021), but may suffer from 145

reduced expressivity if the kernel is poorly chosen. 146

Sequential cumulative summation can also slow in- 147

ference in causal settings (e.g., Linear Transformer 148

(Katharopoulos et al., 2020), Performer (Choro- 149

manski et al., 2020)). Low-rank methods—e.g., 150

Linformer (Wang et al., 2020)—similarly achieve 151

O(n) complexity, but their effectiveness depends 152

on the rank selected. 153
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Recent variants such as REGAL (Lu et al., 2025),154

Hedgehog (Zhang et al., 2024), and RoFly (Ro155

et al., 2025) further improve efficiency and expres-156

sivity. Log-linear attention (Guo et al., 2025) ex-157

tends linear attention by allowing a logarithmically158

growing set of hidden states, providing a flexible159

trade-off between efficiency and expressiveness.160

Sparse Attention Sparse attention mechanisms161

focus computation on a subset of the sequence us-162

ing fixed or learnable patterns. Sparse Transform-163

ers (Child et al., 2019) pioneered sparse factoriza-164

tions of the attention matrix, reducing complexity165

to O(n
√
n). Local (sliding window) attention re-166

stricts computation to a window around each to-167

ken and is often paired with global attention, as168

in Longformer (Beltagy et al., 2020), to regain ex-169

pressivity by allowing selected tokens to attend170

globally. Other variants, such as strided or random171

patterns, are often combined (e.g., Zaheer et al.,172

2020). While some sparse patterns can achieve173

O(n) time and memory complexity, they may un-174

derperform on tasks requiring fine-grained global175

dependencies and often require task-specific tun-176

ing. Learnable and adaptive sparsity patterns (e.g.,177

Correia et al., 2019) are proposed to address these178

limitations.179

Lightning Attention Lightning Attention—also180

known as Lightning Attention-2 (Qin et al.,181

2024b)—divides attention into intra-block (stan-182

dard attention) and inter-block (linear attention via183

kernel tricks) computations. This “divide and con-184

quer” strategy addresses the slow training of causal185

linear attention—caused by sequential cumulative186

summations—by combining efficient intra-block187

processing with fast, kernel-based inter-block cal-188

culations. Lightning Attention also incorporates189

IO-aware optimizations from FlashAttention and190

enhances GPU performance through tiling. Both191

forward and backward passes have time complexity192

O(nd2) (Qin et al., 2024c). It is used by MiniMax-193

01 (Li et al., 2025a), who report that for a given194

computational budget, Lightning Attention mod-195

els can use more parameters and tokens, achieving196

lower loss than models with standard softmax at-197

tention.198

4.2 Linear RNN-based Models199

Recurrent Neural Networks (RNNs) process se-200

quences by maintaining a fixed-size state updated201

at each time step, allowing them to model tempo-202

ral dependencies (Yu et al., 2019). Long Short-203

Term Memory (LSTM) networks (Hochreiter and 204

Schmidhuber, 1997) mitigate the vanishing gradi- 205

ent problem through a complex gating mechanism, 206

while Gated Recurrent Units (GRU) (Cho et al., 207

2014) offer a simpler alternative with similar per- 208

formance and lower computational cost. 209

RNNs and their variants offer linear autoregres- 210

sive generation, but suffer from (1) varying degrees 211

of vanishing/exploding gradients, (2) limited train- 212

ing parallelism, and (3) lack of expressivity due 213

to a representation state not scaling with context 214

length (Yu et al., 2019). 215

Receptance Weighted Key Value (RWKV) 216

RWKV-4 (Peng et al., 2023) builds on the Atten- 217

tion Free Transformer (AFT) (Zhai et al., 2021) by 218

using channel-wise time decay vectors in place of 219

global interaction weights, effectively transforming 220

linear attention into an RNN. Training has a com- 221

plexity of O(Bnd2), involving an attention-like 222

WKV computation of O(Bnd) (with trainable de- 223

cay vector W , key K, and value V ), parallelizable 224

over batch (B) and hidden dimension (d), but not 225

the sequence length n. A custom CUDA kernel 226

was developed to further improve the efficiency of 227

the computations. Inference resembles an RNN but 228

includes channel- and sequence-mixing, utilizing 229

both previous input and hidden state. With these ar- 230

chitectural tweaks, RWKV combines transformer- 231

like scaling laws, competitive performance, and 232

lower inference costs, but inherits limitations of 233

recurrence, such as sensitivity to input order and 234

reduced recall (see Section 8.2). The latest version, 235

Goose (RWKV-7) (Peng et al., 2025), introduces 236

a generalized delta rule, vector-valued gating, in- 237

context learning rates, and a relaxed value replace- 238

ment rule. RWKV-7 offers constant memory and 239

inference time per token, parallelizable training, 240

and increased expressivity beyond TC0 transform- 241

ers (see Section 8.1). See Li et al. (2025c) for a 242

detailed overview. 243

Although RWKV-7 incorporates attention- 244

inspired mechanisms and could be viewed as a 245

hybrid, we classify it as the current SOTA in RNN- 246

based models. 247

Hierarchically Gated Recurrent Neural Net- 248

work (HGRN) HGRN (Qin et al., 2023) consists 249

of stacked layers comprising token mixing (HGRU) 250

and channel mixing (GLU) modules. Unlike S4 or 251

RWKV-4, HGRN uses data-dependent, dynamic 252

decay rates via forget gates, allowing lower layers 253
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to focus on short-term and higher layers on long-254

term dependencies. Learnable lower bounds on255

forget gates prevent vanishing gradients.256

To address limited recurrent state size, HGRN2257

(Qin et al., 2024d) expands the state non-258

parametrically, improving scaling and outperform-259

ing Mamba on Long Range Arena (Tay et al.,260

2021), though pretrained transformers like LLaMA261

(Touvron et al., 2023) still perform better on long-262

context tasks. HGRN2 has been scaled to 3B pa-263

rameters.264

xLSTM xLSTM (Beck et al., 2024) enhances265

the LSTM architecture by incorporating state ex-266

pansion, exponential gating, normalization, and267

stabilization techniques. It stacks two specialized268

LSTM modules: sLSTM, with scalar memory and269

update mechanisms for efficient state mixing and270

tracking, and mLSTM, with matrix memory and a271

covariance-based update rule for improved mem-272

orization and parallelism. The mLSTM’s matrix273

memory supports tasks like Multi-Query Associa-274

tive Recall. xLSTM achieves linear time and con-275

stant memory complexity, but incurs additional276

overhead from complex memory operations, par-277

tially offset by hardware-aware optimizations.278

4.3 State Space Models279

State Space Models (SSMs), originally from con-280

trol theory for modeling dynamic systems via state281

variables, have emerged as promising sub-quadratic282

alternatives to transformers. A key aspect is their283

dual perspective: a recurrent formulation enables284

O(n) inference, while a convolutional view allows285

for O(n log(n)) training via efficient FFT-based286

convolutions.287

Structured SSMs Structured SSMs impose a288

specific mathematical structure—such as low-rank289

or diagonal-plus-low-rank forms—on state transi-290

tion and input matrices, enabling efficient and ex-291

pressive modeling of long-range dependencies. S4292

(Gu et al., 2022) introduces the use of a Highly Pre-293

dictive Polynomial Projection Operator (HiPPO)294

matrix for initializing the state transition. This295

approach enables the construction of global convo-296

lution kernels that can efficiently encode long-term297

dependencies. At the time of release, S4 matched298

the performance of transformers (Gu et al., 2022).299

S5 (Smith et al., 2023) simplifies and extends S4300

by replacing its diagonal block structure with dense301

matrices. Additionally, S5 leverages an efficient302

parallel scan, removing the need for S4’s convo- 303

lutional and frequency domain computations and 304

streamlining kernel computation. 305

Selective SSMs Mamba (Gu and Dao, 2023) ad- 306

vances SSMs by replacing fixed transition matrices 307

with input-dependent functions, increasing flexibil- 308

ity and expressivity. Its core is the Mamba block, 309

which combines the ideas of H3 (Fu et al., 2022) 310

and gated MLP blocks by adding a convolution and 311

an SSM to the main branch of the gated MLP. Effi- 312

cient implementation is achieved via kernel fusion, 313

parallel scan, and recomputation. 314

Mamba2 (Dao and Gu, 2024) further unifies 315

structured SSMs with attention mechanisms, en- 316

abling the application of transformer-style opti- 317

mizations. It uses modified Mamba blocks for 318

tensor parallelism and introduces the State Space 319

Dual (SSD) layer as the inner SSM, which, in its re- 320

current form, is a selective SSM with single-input 321

single-output structure. This design slightly re- 322

duces expressivity but significantly improves train- 323

ing efficiency on modern accelerators. 324

5 Hybrids 325

(a) Striped Hybrid (b) Fusion Hybrid

Figure 2: Different types of hybrids. (a): block types
using different primitives are connected in series. (b):
block types are connected in parallel.

Hybrid architectures combine different 326

primitives—such as SSMs, attention, and RNNs— 327

to leverage their strengths while mitigating 328

the limitations of individual approaches (see 329
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Sections 8.1 and 8.2). Such hybrids are usually of330

a striped (i.e., alternating primitives in series) or331

a fusion nature (i.e., primitives are calculated in332

parallel, combining their outputs). See Figure 2 for333

reference.334

5.1 O(n2) Hybrids335

SSM + Attention Recent studies show that com-336

bining SSM and attention layers often outper-337

forms using either one alone. For instance, Dao338

and Gu (2024) demonstrated that integrating SSD339

layers, attention, and MLPs can surpass pure340

Transformers and Mamba-2. Jamba (Lenz et al.,341

2025) merges transformer, Mamba, and Mixture-of-342

Experts (MoE) layers into a striped hybrid, achiev-343

ing performance comparable to Llama-2 70B and344

Mixtral, but with 2x–7x longer context windows,345

3x higher throughput, fewer total parameters (52B,346

12B active), and reduced KV cache memory (32GB347

for 256K tokens vs. 4GB for Mixtral). Another no-348

table example is the MambaFormer (Park et al.,349

2024), another striped hybrid.350

Lightning Attention + Attention Li et al.351

(2025a) introduces the MiniMax-01 series by com-352

bining lightning attention with an MoE approach.353

To address lightning attention’s limited retrieval,354

Hybrid-lightning replaces lightning attention with355

O(n2) attention every eight layers, resulting in a356

striped hybrid. MiniMax-Text-01 was competitive357

with SOTA models like GPT-4o and Claude-3.5-358

Sonnet at the time of release, supporting context359

windows up to 1M tokens during training and 4M360

during inference at reasonable cost. However, it361

still struggles with multilevel instruction following362

due to sparse training data.363

5.2 O(n2−ϵ) Hybrids364

De et al. (2024) propose the Real-Gated Linear365

Recurrent Unit (RG-LRU), a gated LRU (Orvieto366

et al., 2023) variant without complex transforma-367

tions in the recurrence as they do not improve lan-368

guage modeling in practice. RG-LRU, a fusion369

hybrid of local attention and linear recurrence, is370

used for sequence mixing in a recurrent block, re-371

placing MQA.372

Griffin, using RG-LRU, achieves higher infer-373

ence throughput and lower latency on long se-374

quences than MQA Transformers (De et al., 2024).375

On benchmarks, Griffin-3B outperforms Mamba-376

3B, and Griffin-7B and 14B are competitive with377

Llama-2 despite using much less training data.378

Griffin is also used as the base for Recurrent- 379

Gemma (Botev et al., 2024). 380

Other notable sub-quadratic hybrids include 381

Hymba (Dong et al., 2025), combining both fu- 382

sion and striped hybrid patterns, and Samba (Ren 383

et al., 2025), a striped hybrid, both using a combina- 384

tion of sliding window attention and Mamba/SSM 385

layers. 386

6 Novel Architecture Design Concepts 387

Memory System Design Recent models increas- 388

ingly integrate several memory types (Irie et al., 389

2025; Nunez et al., 2025). Titans (Behrouz et al., 390

2024) introduce meta in-context neural long-term 391

memory, storing surprising data at test time, and 392

combine core attention-based short-term, neural 393

long-term, and persistent task memory modules. 394

B’MOJO (Zancato et al., 2025) generalizes trans- 395

formers and SSMs by blending permanent, short- 396

term, fading, and long-term memories, with a slid- 397

ing attention mechanism to aggregate information. 398

Both models show good results versus transformers 399

on several benchmarks (see Table 2). 400

Tailored Architecture Search Thomas et al. 401

(2024)’s STAR framework unifies popular se- 402

quence model architectures under the theory of 403

Linear Input-Varying systems (LIVs), creating a 404

larger and more structured search space for model 405

design. Given target metrics such as cache size, per- 406

plexity, or device latency, STAR uses gradient-free 407

evolutionary algorithms to automatically search the 408

LIV space and generate architectures optimized 409

for several objectives, outperforming highly-tuned 410

transformer and hybrid models on various quality 411

and efficiency frontiers. One of the first models re- 412

alized through STAR (although with slight modifi- 413

cations) is the strong edge model LFM2 (LiquidAI, 414

2025). 415

7 Complexity and Benchmark Analysis 416

Moving away from the qualitative analysis in the 417

previous sections, this section focuses on quanti- 418

tative results and a direct comparison of model ar- 419

chitectures in terms of complexity and benchmark 420

performance. 421

Complexity Comparison We compare the com- 422

plexities of selected sequence-modeling mecha- 423

nisms in Table 1. It is important to note that these 424

complexities are sometimes dominated by feed- 425

forward neural networks in the full model, e.g., in 426
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Method Training Inference

Time Space Parallel Time Space

FFT-Convolution O(Bnd log(dn)) O(Bnd) Yes O(nd log(nd)) O(nd)
RNN O(Bnd2) O(Bnd) No O(d2)2 O(nd)
Vanilla Transformer O(B(n2d+ nd2)) O(B(n2 + nd)) Yes O(n2d+ d2n) O(n2 + nd)
LSH (Reformer) O(Bd2n log n) O(Bn log n+Bnd) Yes O(d2n log n) O(n log n+ nd)
FAVOR+ (Performer) O(Bnd2 log d) O(Bnd log d+Bd2 log d) Yes O(nd2 log d) O(nd log d+ d2 log d)
Linear Transformer O(Bnd2) O(B(nd+ d2)) Yes O(nd2) O(nd+ d2)
Lightning Attention O(Bnd2) O(B(nd+ d2)) Yes O(nd2) O(nd+ d2)
RWKV O(Bnd2) O(Bnd) Yes O(nd) O(d)
Hyena-3 O(Bnd log(dn)) O(Bnd) Yes O(nd log(n+ d)) O(nd)
S4 O(Bnd log(dn)) O(Bnd) Yes O(d2) O(nd)
Mamba3 O(B(nd2 + nd log(nd))) O(Bnd) Yes O(nd2 + nd log(nd)) O(nd)

Table 1: Overview on time & space complexities for training on a single batch and inference of a single token of
different sequence-modeling mechanisms. n: sequence length; d: hidden dimension; B: batch size

S4, which have a time complexity of O(nd2). Ex-427

cept for RWKV, which can process a single query428

at a time at inference, models are lower bounded429

on memory complexity by storing the sequence in430

its entirety. Many of these algorithms rely on pro-431

jections, thus requiring at least O(nd2) operations,432

often serving as an upper bound for time complex-433

ity. Another major influence on time complexity is434

the use of FFT convolutions, as used in SSM-based435

models for training, which requires O(nd log(dn))436

computational steps, binding the algorithm to log-437

linear time.438

7.1 Benchmark Performance439

In Table 2, we provide a performance comparison440

of previously mentioned sub-quadratic models with441

recent high-performing models based on quadratic442

attention. We chose a configuration variety that443

sees frequent use: two table sections comparing444

models with a total parameter size of 0.7-1.5B and445

14-70B (for MoE models, the total parameter count446

applies) on eight prominent benchmarks that cover447

a broad range of downstream tasks. For the model448

and benchmark sources, see Appendix A.4.449

We can see that in a low-parameter setting (0.7-450

1.5B), several edge models compete for the top451

scores. In particular, Samba and RWKV7-World3452

significantly outperform the full attention Llama453

3.2 and Qwen2.5 in several instances. In the454

midrange (14-70B), no pure sub-quadratic mod-455

els are present anymore; merely the hybrids Griffin456

and Jamba remain, with only the latter realistically457

competing with Qwen2.5 and Llama3.1. In the458

evaluation of frontier (100B+) models, we referred459

to the LMsys chatbot arena (Chiang et al., 2024)460

instead of a custom-made table. Across all bench-461

marks1, only MiniMax-Text-01 (Li et al., 2025a) 462

appears in the top-20 ranking once, but among the 463

top 10, we cannot find any single model known to 464

be built on an alternative architecture. 465

8 Fundamental Architectural Limitations 466

Both quadratic attention and sub-quadratic archi- 467

tectures face fundamental limitations that cannot 468

be overcome by scaling parameters or training. In 469

this section, we discuss these inherent restrictions. 470

Broader limitations of language models in general 471

(e.g., Wheeler and Jeunen, 2025) are beyond this 472

survey’s scope. 473

8.1 Limitations of Attention 474

General Theoretical Expressivity The standard 475

transformer forward pass belongs to the log-time 476

uniform TC0 circuit complexity class (Merrill 477

and Sabharwal, 2023). This fundamentally lim- 478

its its ability to simulate finite automata or solve 479

graph connectivity—necessary for state tracking 480

and multi-step reasoning (Merrill and Sabharwal, 481

2025). In practice, such tasks are tractable for 482

short contexts (e.g., by using transformers of depth 483

O(logC) for context length C), but remain infeasi- 484

ble for unbounded inputs under standard complex- 485

ity assumptions. To scale up these capabilities, the 486

model dimension must grow with the task complex- 487

ity, as is also highlighted in related work (Hahn, 488

2020; Sanford et al., 2023). 489

Allowing intermediate steps, i.e., Chain of 490

Thought (CoT) (Wei et al., 2022), increases trans- 491

former expressivity w.r.t. the number of steps. Li 492

1Accessed on 2025-07-25
2Assuming the sequence has been processed already, only

necessary once
3We consider an entire Mamba layer here, including pro-

jections
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Model Benchmark Selection

0.7-1.5B Size MMLU LMB ARC-E ARC-C Wino. Hella. PIQA

Titans-MAG 760M - 41.0 68.2 36.2 52.9 48.9 70.3
Griffin 1B 29.5 - 67.0 36.9 65.2 67.2 77.4
Llama3.2* 1B 32.1 63.0 - - 60.7 63.7 -
HGRN2 1.3B - 49.4 58.1 28.1 52.3 51.8 71.4
Mamba2 1.3B - 65.7 61.0 33.3 60.9 59.9 73.2
xLSTM[1:0] 1.3B - 57.8 64.3 32.6 60.6 60.9 74.6
BMoJo-Fading 1.4B - 45.4 52.3 26.6 53.3 46.0 70.0
RWKV7-World3 1.5B 43.3 69.5 78.1 44.5 68.2 70.8 77.1
Qwen2.5* 1.5B 60.9 63.0 75.5 54.7 65.0 67.9 75.8
Samba 1.7B 48.0 - 79.3 48.2 72.9 49.7 77.1

14-70B Size MMLU BBH GSM8K ARC-C Wino. Hella. HumanEval

Griffin 14B 49.5 - - 50.8 74.1 81.4 -
Qwen* 14B 79.7 78.2 90.2 67.3 81.0 84.3 56.7
Jamba 52B 67.40 45.40 59.9 64.40 82.5 87.1 29.30
Mixtral* 56B 70.6 - 60.4 59.7 77.2 84.4 40.2
Llama3.1* 70B 79.5 81.0 95.1 68.8 85.3 88.0 48.2
Qwen2.5* 72B 86.1 86.3 95.8 72.4 83.9 87.6 59.1

Table 2: Performance comparison of recent pure quadratic attention LMs (highlighted with *) and subquadratic
models of similar size. Best results for each parameter category are marked in bold, second-best results are
underlined. Model names are in bold or underlined when they scored first or second at least once. Results are
rounded to one decimal point. For sources, see Appendix A.4

et al. (2024) show that with T CoT steps, constant-493

depth transformers with O(log n) embeddings can494

solve any problem solvable by boolean circuits495

of size T . Additionally, Qiu et al. (2025) prove496

that prompting is Turing-complete: for any com-497

putable function, a finite-size transformer can com-498

pute it with an appropriate prompt. However, these499

enhancements also introduce new drawbacks, as500

shown by Amiri et al. (2025); Peng et al. (2024);501

Saparov et al. (2025).502

Length Generalization Transformers struggle to503

extrapolate, i.e., to generalize from shorter training504

context sizes to longer test sequences. In addi-505

tion to being limited by memory constraints, the506

transformer architecture has fundamental length-507

generalization limits caused by positional encod-508

ings (Kazemnejad et al., 2023). While transformers509

without position encodings (NoPE) seem to be an510

alternative and work for longer sequences than ex-511

plicit encodings, they still impose a context length512

limit (Wang et al., 2024a).513

Building upon Huang et al. (2025)’s framework514

to analyze length generalization, Veitsman et al.515

(2025) show that, if pretraining is done right, cer-516

tain capabilities w.r.t. length generalization of trans-517

formers can be improved, but fundamental limita-518

tions persist. For models like SSMs and B’MOJO,519

the length generalization is instead limited by the520

capacity of the recurrent state.521

For the framework of Huang et al. (2025) and a 522

more detailed analysis of the limitations of atten- 523

tion, see Appendix A.3. 524

8.2 Limitations of Sub-Quadratic Alternatives 525

Sub-quadratic architectures share some limitations 526

with quadratic attention. For instance, Merrill et al. 527

(2024) showed that SSMs are also limited to the 528

complexity class TC0. Although these models im- 529

prove efficiency, they introduce new challenges due 530

to the inherent difficulty of compressing sequence 531

context into a reduced state. 532

This finite state capacity has strong implications 533

for “lookup table” tasks (e.g., MQAR (Arora et al., 534

2024a), hopk (Sanford et al., 2024)), where such 535

information is part of the input, as SSMs cannot re- 536

call an arbitrary amount of information previously 537

seen Arora et al. (2024b); De et al. (2024); Jelassi 538

et al. (2024), even though recent work (Grazzi et al., 539

2024) shows that some improvements can be made, 540

as seen in Mamba (Gu and Dao, 2023). 541

A similar problem occurs in linear RNNs, which 542

are highly sensitive to the order of context, mak- 543

ing prompt engineering critical—selection and re- 544

call become much harder as input order varies 545

(Sutskever et al., 2014; Arora et al., 2024c). RNNs 546

require Ω(N) space for reliable recall (Arora et al., 547

2024b), and constant-memory models cannot per- 548

form associative recall or solve tasks like q-sparse 549

averaging or copying, unlike shallow transformers 550
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(Sanford et al., 2024; Jelassi et al., 2024; Wen et al.,551

2025).552

Han et al. (2025) show that linear attention is553

not injective, often assigning identical attention554

weights to different queries and causing semantic555

confusion. They also demonstrate that linear at-556

tention struggles with effective local modeling, a557

strength of softmax attention. Related work finds558

that the low-rank nature of linear attention’s fea-559

ture map can further hinder modeling of complex560

spatial or local information (Fan et al., 2025).561

Backurs and Indyk (2018) prove that under the562

SETH (which implies P ̸= NP ), edit distance can-563

not be computed in truly subquadratic time, setting564

a fundamental limit on sequence comparison effi-565

ciency for any such architecture. Under the same566

assumption, Alman and Yu (2025) show that docu-567

ment similarity tasks inherently require quadratic568

time.569

Implications The limitations applying to alterna-570

tive architectures mostly subsume the limitations571

applying to transformers. This implies that while572

sub-quadratic alternatives significantly enhance ef-573

ficiency and lower computational costs, they do not574

fundamentally surpass transformers in theoretical575

expressivity.576

9 Discussion577

In this section, we synthesize insights from our578

review to discuss whether sub-quadratic and hybrid579

alternatives start claiming meaningful territory.580

9.1 Current Landscape581

Despite the reviewed advances in alternative ar-582

chitectures, at the time of writing, most frontier583

general-purpose models strongly rely on full atten-584

tion mechanisms. No model scoring in the top 10585

on LLMSys (Chiang et al., 2024) is known to be586

sub-quadratic or a hybrid, showing that the “Trans-587

former++” remains the default choice when com-588

pute is not a limiting factor. We have also seen589

that full attention is free from many limitations590

that apply to alternative architectures (Section 8.2),591

adding to the extent of their superiority.592

However, the picture changes for edge models,593

where compute, memory, and latency are tightly594

bound, and alternative architectures have gained595

substantial traction. Especially hybrids, such as596

Samba (Ren et al., 2025) or RWKV7 (Peng et al.,597

2025), offer favorable inference properties. They598

can meet resource constraints by offloading local or599

intermediate computations to more efficient mod- 600

ules, while maintaining reasonable generalization 601

and global context modeling via attention. For 602

the edge, we also increasingly see differentiated 603

memory modeling with newer models, like Titans 604

(Behrouz et al., 2024) and B’MOJO (Zancato et al., 605

2025), segmenting memory into short-term, long- 606

term, and permanent storage, assigning specialized 607

mechanisms to each. 608

In the mid-size regime, hybrids like Jamba (Lenz 609

et al., 2025) show promise, though they remain a 610

minority and do not outperform well-tuned trans- 611

formers. Their advantages are domain-specific, 612

tied to scenarios where efficiency provides tangible 613

gains. In general, the maturity of transformer in- 614

frastructure also makes switching to other architec- 615

tures costly due to ecosystem inertia (Rahman et al., 616

2025; Brem and Nylund, 2024). However, work 617

that enables the conversion of pretrained transform- 618

ers to alternative architectures without retraining, 619

such as RWKV, starts lowering these barriers. 620

Together, these trends signal a shift toward ar- 621

chitectural diversity. While transformers remain 622

dominant, alternatives are finding footholds in spe- 623

cific use cases and operational niches. 624

9.2 Outlook 625

At the frontier, full attention is likely to remain 626

central for the foreseeable future. Still, even 627

these models may begin incorporating hybrid el- 628

ements, especially for memory management or 629

task-specific routing. In this sense, we also an- 630

ticipate model routing and Mixture of Architectures 631

(MoA) paradigms to become more relevant. The 632

shift is not toward replacement, but toward building 633

flexible systems from a growing set of specialized 634

primitives. This idea has already been surfaced by 635

Yu et al. (2025) and Varangot-Reille et al. (2025), 636

although they focused more on model sizes than 637

underlying architectures. 638

10 Conclusion 639

Through our review of recent subquadratic archi- 640

tectures, we have highlighted the most promising 641

alternatives to full attention for sequence modeling 642

in NLP. Our analysis shows that these models in- 643

troduce valuable tradeoffs in efficiency and latency, 644

particularly in edge and mid-sized deployments. 645

However, they remain fundamentally constrained 646

in generality compared to transformers and will not 647

compete in the frontier for the foreseeable future. 648
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Limitations649

As a focused and concise survey, our work comes650

with several limitations. We restrict our analysis to651

language models, and therefore, our findings may652

not generalize to other modalities such as vision,653

audio, or multimodal systems. Additionally, the654

performance comparison presented in Table 2 is655

limited in its language coverage, as it focuses pri-656

marily on English. There is also a slight variation657

in training data and procedure across the bench-658

mark results of the models we report on, which is659

explained in A.4. Finally, while our methodology660

(see Appendix A.1) reflects a rigorous effort to iden-661

tify and synthesize relevant literature, researchers662

with a different focus could consider some missing663

works more significant.664
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A Appendix1474

A.1 Sourcing Methodology1475

Our survey followed a two-fold methodology: First,1476

to determine which alternative model architectures1477

to include, we began with a set of seed papers1478

drawn from recent articles in the field, namely1479

Wang et al. (2024c), Gu and Dao (2023), Sun1480

et al. (2023), and Tay et al. (2022). From this1481

base, we employed a backward and forward snow-1482

balling strategy: we examined the references cited1483

within these seed papers (backward snowballing)1484

as well as subsequent papers that cited them (for-1485

ward snowballing). This iterative process enabled1486

us to trace the development and recurrence of spe-1487

cific architectural primitives over time and across1488

various research communities. Architectures that1489

consistently reappeared in recent high-impact pub-1490

lications were included in the main body of our1491

review. In contrast, those that were short-lived but1492

had significant conceptual or empirical influence1493

were included in Appendix A.2 as honorable men-1494

tions. Architectures with limited recurrence and1495

marginal impact were excluded.1496

Second, for the chapter discussing the funda-1497

mental limitations of quadratic and sub-quadratic1498

architectures, we conducted a systematic literature1499

review. This involved querying several academic1500

databases with the search term1501

("fundamental limitation") AND ("transformer"1502

OR "attention" OR "subquadratic") AND ("natural1503

language processing" OR "NLP" OR "language1504

model")1505

to identify relevant theoretical and empirical1506

work. The results, i.e., number of hits for each1507

platform, and the search space (full text or abstract1508

only), are stated in the following:1509

• ACL: 300 (full text)1510

• Semantic Scholar: 258 (full text)1511

• Google Scholar: 4430 (full text)*1512

• IEEE: 4 (abstract)1513

We then condensed our findings and reported on1514

the very core of limitations that the other findings1515

build upon. Secondary limitations were moved1516

to Appendix A.3. *For Google Scholar, we used1517

additional filtering to address the high number of1518

hits and relatively low overall relevance. Cutoff1519

for the SLR was 2025-06-18, but we continued1520

to include individual relevant papers until paper 1521

submission. 1522

A.2 Honorable Mentions 1523

In our work, we have encountered various inter- 1524

esting and previously impactful subquadratic ar- 1525

chitectures, which, however, we were not able to 1526

include in the main body of this paper. This was 1527

usually due to a combination of limited space and 1528

our findings that these architectures were outper- 1529

formed by others before they became relevant in 1530

the long run. For completeness, this section gives a 1531

brief overview of these works. 1532

• DeltaNet Schlag et al. (2021) proposed 1533

DeltaNet, a linear transformer variant that 1534

retrieves and updates a value vector associ- 1535

ated with each key using an update rule sim- 1536

ilar to the delta rule. DeltaNet employs a di- 1537

agonal plus low-rank (DPLR) state-update 1538

mechanism similar to S4, enabling efficient 1539

parallelization across the temporal dimension 1540

and significantly improving training efficiency 1541

(Yang et al., 2025). 1542

• Hyena Poli et al. (2023) introduced Hyena, a 1543

subquadratic alternative to attention. Hyena 1544

combines implicitly parameterized long con- 1545

volutions with input-dependent gating mecha- 1546

nisms. Architecturally, Hyena resembles H3 1547

(Fu et al., 2022) but substitutes the original S4 1548

layer with global convolutions parameterized 1549

by multilayer perceptrons. 1550

• RetNet Sun et al. (2023) introduced RetNet, 1551

a retention mechanism for sequence model- 1552

ing that supports three computation modes: 1553

parallel (enabling efficient training), recurrent 1554

(providing low-cost O(1) inference, reducing 1555

latency and memory usage without sacrificing 1556

performance), and chunkwise recurrent (com- 1557

bining parallel encoding within chunks and 1558

recurrent summarization for efficient linear- 1559

complexity modeling of long sequences). At 1560

release, RetNet demonstrated strong scaling, 1561

efficient parallel training, and cost-effective 1562

inference. 1563

• TransNormerLLM (Qin et al., 2024a): In- 1564

troduced TransNormerLLMs (TNLs), whose 1565

architecture is specifically designed for light- 1566

ning attention, and has additional modifica- 1567

tions regarding positional embedding, linear 1568
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attention acceleration, gating mechanism, and1569

tensor normalization.1570

• Gated Linear Attention Yang et al. (2024):1571

introduce the hardware-efficient algorithm1572

FlashLinearAttention, which they then gener-1573

alize with data-dependent gates and use to re-1574

place standard attention with in a Transformer1575

to propose Gated Linear Attention (GLA).1576

GLA Transformers are especially effective at1577

length generalization.1578

A.3 Additional Limitations of Attention1579

Some important secondary limitations of attention1580

had to be cut from the main body of the paper1581

due to a lack of space. We will list them in the1582

following.1583

• Hahn (2020) prove that pure attention Trans-1584

formers cannot handle bracket matching, it-1585

erated negation, or non-counter-free regular1586

languages on long inputs, nor emulate stacks1587

or arbitrary finite-state automata (unless lay-1588

ers or heads scale with input length).1589

• Sanford et al. (2023) show that single-layer,1590

multi-head Transformers require polynomi-1591

ally more heads or dimensions to solve cer-1592

tain triple detection tasks, and likely struggle1593

with higher-order tasks like Match3 (Sanford1594

et al., 2023) without hints or augmentation.1595

However, most real-world sequence problems1596

decompose into pairwise relationships, align-1597

ing well with transformer capabilities.1598

• Huang et al. (2025) propose a theoretical1599

framework to investigate length generaliza-1600

tion in causal transformers that use learnable1601

absolute positional encodings. By introducing1602

constraints on how positional information can1603

be utilized, their framework allows them to1604

derive results for multilayer models. They for-1605

mally prove problems with poor length gen-1606

eralization, such as copying sequences con-1607

taining repeated strings. Although it remains1608

an open question whether the expressivity1609

of transformers goes beyond the complexity1610

class TC0, their findings suggest a potential1611

distinction between problems solvable within1612

TC0 and those for which length generaliza-1613

tion is feasible with absolute positional encod-1614

ings.1615

• Amiri et al. (2025) investigate systematic1616

lower bounds on the number of CoT steps1617

required for various algorithmic problems 1618

within a hard-attention setting. Their analysis 1619

demonstrates that the required CoT length nec- 1620

essarily must scale with input length, thereby 1621

constraining the ability of self-attention mod- 1622

els to solve these tasks efficiently with small 1623

inference-time compute. 1624

• Peng et al. (2024) prove that a single trans- 1625

former layer is not able to do function com- 1626

position if the domain size of the functions is 1627

larger than the dimension parameters of the 1628

transformer. Moreover, they show that if we 1629

leverage CoT, the model needs to generate 1630

a Ω(
√
n) long prompt to solve iterated func- 1631

tion composition, with n being the number 1632

of tokens in the prompt. They assume that 1633

multi-layer transformers struggle as well. 1634

• Saparov et al. (2025) argue that transformers 1635

with standard training will not have robust 1636

searching and planning abilities, no matter 1637

their number of parameters. For small graphs, 1638

a model with effectively limitless and ideal- 1639

ized training data can learn to search. Nev- 1640

ertheless, according to them, even if a model 1641

can use search in-context (i.e., CoT), it still 1642

struggles with search on larger graphs. 1643

A.4 Benchmarking Details 1644

Model References Titans (Behrouz et al., 2024), 1645

Griffin (De et al., 2024), HGRN2 (Qin et al., 1646

2024d), Mamba2 (Dao and Gu, 2024), xLSTM 1647

(Beck et al., 2024), BMoJo (Zancato et al., 2025), 1648

RWKV7 (Peng et al., 2025), Samba (Ren et al., 1649

2025), Jamba (Lenz et al., 2025), Qwen2.5 (Qwen 1650

et al., 2025), Llama3.1 (Grattafiori et al., 2024), 1651

Mixtral (Jiang et al., 2024) 1652

Benchmarks (accuracy based) MMLU 1653

(Hendrycks et al., 2020), Lambada (Paperno et al., 1654

2016), PIQA (Bisk et al., 2020), BBH (Suzgun 1655

et al., 2023), ARC-E and ARC-C (Clark et al., 1656

2018), Winogrande (Sakaguchi et al., 2021), 1657

HellaSwag (Zellers et al., 2019), GSM8k (Cobbe 1658

et al., 2021), and HumanEval (Chen et al., 2021) 1659

Result Sourcing We do not have the computa- 1660

tional resources to run our own evaluations for all 1661

models on all benchmarks. Instead, we chose to use 1662

the results from Qwen et al. (2025) for Qwen2.5 1663

and Llama 3.1, Peng et al. (2025) for Llama 3.2 and 1664

RWKV, due to their consistent evaluation suites. 1665

For all other models, we gathered the results from 1666
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their original technical papers, ensuring consis-1667

tency to the best of our knowledge. Nevertheless,1668

some inconsistencies, namely in the number and1669

type of tokens used during training, and differences1670

in the number of shots for some task/model combi-1671

nations, remain.1672
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