Under review as a conference paper at ICLR 2024

SSC LAYER - A REPLACEMENT FOR CONVOLUTIONAL
LAYERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Convolutional layers have been used in practically every application of machine
learning. We propose the SSC layer, which functions similarly to the convolu-
tional layer but is faster, more memory efficient and competitive in terms of ac-
curacy. The SSC layer splits the input tensor across the channel dimension, shifts
each split by a different amount and subtracts the result from the input. This
process enables a kernel size equal to the channel size without increasing model
size, memory usage and without affecting speed, unlike convolutional layers. The
SCC layer functions in multiple dimensions and is able to replace the convolu-
tional layer in a number of applications including image classification, sequence
modelling and single-channel speech separation.

1 INTRODUCTION

Within machine learning, convolutional layers are used practically everywhere. The most well
known application of convolutional layers are for computer vision tasks in their two dimensional
form (Yu et al., 2018; He et al., 2016) with images as the input. They are, however, also commonly
used for one dimensional data like audio Baevski et al.| (2020); [Luo & Mesgarani (2019) and text
(Bai et al.| 2018 |Gehring et al.l [2017), as well as three dimensional data for tasks like 3D shape
completion (Dai et al.l 2017) reconstruction (Choy et al., [2016). The big advantages of convolu-
tional layers are their ability to include local context across multiple dimensions and their relatively
low computational complexity, at least for the one and two dimensional versions.

In this paper, we propose a replacement option for the convolutional layer. This replacement is
called the shift split channels (SSC) layer. The SSC layer manages to maintain all of the advantages
of convolutional layers while being faster, more memory efficient and significantly lowering model
size. The SSC layer is conceptually similar to the depthwise separable convolutional layer. The SSC
layer, however, still has lower computational cost than the depthwise separable convolutional layer
across a variety of tasks shown in section [}

The main mechanism which allows for this improvement is the decoupling of the local awareness
of the layer from the size of the weight tensor. If the local awareness of a convolutional layer
is to be increased, the kernel size is increased which leads to a higher computational cost. The
SSC layer, however, does not contain this trade-off and can freely increase the local awareness
without increasing computational complexity. This attribute of the SSC layer is possible due to the
relative context operation which is explained in detail in section 3 and Figure[3] The relative context
operation is the main contribution of this paper as the rest of the SSC layer is just a linear layer and
an optional downsampling step. While upsampling and using the SSC layer as a replacement for
the transposed convolutional layer should also be possible, we have not tested this approach in the
paper.

The paper has the following structure:

* section 2] will introduce related works and will give a detailed explanation of the convolu-
tional layer,

e section E] will introduce the SSC layer,

* section @] shows the results of the experiments which compare the SSC layer with different
convolutional layers,

Under review as a conference paper at ICLR 2024

* section[5]is about the limitations of this paper and the SSC layer,

» and section [will summarize the results as well as hypothesize about possible future work.

2 RELATED WORKS

Sequence length L —5 =7

A
v

Input

0

channelsizeC||2 |5 31| 7|3[1]0]|5]|4 E
71942161 3|11 g

3]0t AAjvtput channel size E

0
6|3]|3|5]2|ofo]1|9]2 Input 211

channel size C

2 2 714 2 312 1 8 3 R —
Kernel size k
Input Filter

Sequence length L

A
A

o|jo|j0JjO0O|JO]JOJO]JO]JO]|O

Output

channel size E ofojojojojojojojojo

121)151|134]142]103|97 |69 [148[121|84

Llefelwlelzfa] «efa]af «[ea]ef«[2]s]a]x[2]e]2]

s o fe] +[ols]s]+[2]2] 7]+ [3]o] 1]
AEEEEEEE D EEEEED

151

Figure 1: One dimensional convolutional layer showcasing the way an output element is calculated
through the sum of cross correlations between input and filter.

While there have been many proposals for alternatives to convolutional networks such as capsule
neural networks (Sabour et al., 2017) or graph neural networks (Scarselli et al.,|2009), in practice,
the vast majority of SOTA approaches still rely on convolutional layers. As such, this section will be
a detailed description of the convolutional layer and its variants. The convolutional layer itself was
proposed over twenty years ago (Lecun et al.,|1998)) and since then a number of different variations
like the depthwise convolutional layer (Sifre & Mallat, |2014), depthwise separable convolutional
layer (Chollet, |2017) and architectures like the temporal convolutional network (Lea et al., [2016)
have iterated on it and used it.

A standard, one dimensional convolutional layer is shown in Figure[T] Note, that we assume padding
is used to make sure sequence length L is not changed between the input and output. For simplicity’s

Under review as a conference paper at ICLR 2024

sake we maintain this assumption for the remainder of the paper. Another omission is leaving out
the bias b € RZ with being the channel size of the output. The bias would simply be added to the
output but as it is optional and does not contribute to the local awareness of the layer like the filter,
we elect to not mention the bias for the rest of the paper.

Convolutional layers function by sliding a trainable filter across the input and calculating the cross
correlation between the input and filter. More specifically, each output element is the result of input
channel size C' additions of cross correlations between the input and the filter. This is shown in
detail in Figure [I| For simplicity’s sake, in the example shown we set two out of the three slices
of the filter in the axis with size I/ to zero which is why the first two rows of the output are zero.
Figure [T] shows how the second element of the last row of the output is calculated in regards to the
input and filter. The size of the filter is determined by C', F and kernel size K. The kernel size is
the parameter which determines how many neighbouring elements of the sequence (in case of a one
dimensional input like shown in Figure[I) the layer is aware of. The sliding step size is determined
by the stride factor .S which describes how the filter is moved over the input - the filter is moved
over the input with a step size of S. This can be used to downsample the input if S > 1. The group
size (G affects the shape of the filter tensor and thereby the calculations that are done using the filter.

The input channel size of the filter tensor is set to —. If G = C, then it is a depthwise convolutional

layer with a filter size of K x E. For comparison, a standard convolutional layer with G = 1 has
a filter size of K x C' x E as is shown in Figure[I] The depthwise separable convolutional layer is
simply a depthwise convolution followed by a pointwise convolution. A pointwise convolution is a
convolutional layer where K = 1, meaning it has a filter size of C' x E.

Lastly, there is the dilation rate D which is mostly just used within the TCN architecture. The
dilation describes the spaces of the input over which the filter is applied. For D = 1, the filter is
simply applied over neighbouring elements of the input. For D = 2, the filter is skipping every
second input element. The dilation rate can be useful for long-term sequence modelling by chaining
together convolutional layers with K > 1 and increasing the dilation rate for each layer. Typically,
the dilation rate within TCNs is increasing exponentially with base 2 to take further and further
sequence elements into consideration when calculating the output.

3 SSC LAYER DESCRIPTION

Figure [2] shows the entire process of the SSC layer. The relative context step is what ultimately
makes the SCC layer work and represents the main part of our contribution, shown in Figure [3]
The input into the SCC layer can have any number of dimensions. The relative context step then
operates on all dimensions except for the channel and batch dimensions - just like a convolutional
layer would. This process is followed by a simple linear layer and an optional downsampling step.
The downsampling step is implemented to skip elements across the downsampling dimensions if
S > 1. Alternatively, in some cases moving the linear layer in front of the relative context operation
can improve results.

|Input '—>| Relative context |—>| Linear layer '—>| Downsampling (optional) |

Figure 2: Overview of the SSC layer.

The basic concept of the SCC layer is to split the input across the channel dimension K times, shift

K K
each subchannel starting from —— to — and subtract the result from the original input. This step

is called relative context in Figure [2] and is shown in detail in Figure[3] In the example shown in
Figure[3] C' = K = 5, meaning that each subchannel has a size of 1, with the shift starting at -2 and
ending at 2. If we instead set K = 3, then the shifts would start at -1 and end at 1. Out of the three
subchannels, the sizes of the subchannels would be 2, 2, 1.

The big difference between the SSC layer and the convolutional layer is that the SSC layer con-
sciously makes use of the channel dimension which allows it to use any K as long as C' > K

Under review as a conference paper at ICLR 2024

without increasing model size, memory usage or computation time. This is vastly different to the
convolutional layer, as well as the depthwise convolutional layer, since increasing K will negatively
affect model size, memory usage and speed. For convolutional layers, increasing K and therefore
local context awareness of the layer therefore comes at a computational cost.

The only downside of the SSC layer’s approach is that it does not provide context over the entire
channel size like the convolutional layer would. As is shown in Figure 3] the context for the previ-
ous element of the sequence is only known for the second row from the top while every other row
encompasses a different context. Note, that for a shift of 0, the SSC layer does not perform subtrac-
tion as it would just erase information, resulting in a row of zeros. Instead, the input row is simply
copied. The elements shown with a grey background of the output in Figure [3|are unchanged from
the input. For the first two and last two rows, the elements do not change because the shifting values
are out of bounds.

Sequence length L

< > K=5

3|1|8|6]|7]2|2]9]4]|5 3|1 (5|5 |-1|-4|5[7|2]-4] -2

63|3|5|2|0ofo|1]|9]2 6 |-3]0of2(-3]-2f0f1 |8]7]-1
ChannelsizeC||2 | 53|17]|3|[1|0o]|5]| 4 - M2 |5|3|1|7]|3[1]of5]4|] O

shift and
7194|2161]|3]|1]| 1] subtract 25| 2f1|-5][5]-2]2]0]1
212742321]8]3 5|25 1|o0] 2|-6|-2]8(3] 2
Input Output

Figure 3: The relative context operation for a one dimensional SSC layer.

Overall then, the SSC layer is most similar to the depthwise separable convolutional layer. The
relative context step replaces the depthwise convolutional layer and the linear layer is the same thing
as a pointwise convolutional layer. The equivalence between these two operations can be visualised
with Figure [I] If the kernel size was 1 instead of 3, all the cross correlations would simply be
multiplications between two numbers followed by the summation of the input axis - in other words,
a pointwise convolution is just a matrix multiplication between the input and the trainable weight or
the filter. Therefore, a pointwise convolution calculates the same thing as a linear layer.

The SSC layer is designed to be a more efficient and in some cases more accurate replacement
for convolutional layers. Just like convolutional layers, it can be implemented across multiple di-
mensions, uses local context and can even be used with a dilation factor for long-term sequence
processing like a temporal convolutional network (TCN). The way dilation is implemented in the
SSC layer is to simply multiply the shifts by the dilation factor D.

The reason that the SSC layer is more efficient than the convolutional layer is that the shape of
the weight tensor is @ € RE*¥ instead of € REX*C*XF with C being the channel size of the
input, E being the channel size of the output and K being the kernel size. The reason that the
SSC layer can be more accurate than the convolutional layer is that the context is relative, not
absolute. For convolutional layers, each input is aware of neighbouring inputs depending on K and
D. However, these neighbouring inputs are simply used as is. The SSC layer uses relative context,
meaning the neighbouring inputs are subtracted from the current input. This subtraction produces
valuable information - for example, for two dimensional inputs like images, this can tell us whether
neighbouring pixels are brighter or darker rather than just the exact value.

The other and more straightforward way in which the SSC layer can increase accuracy, is by increas-
ing K. Since K is decoupled from computational cost in the SSC layer, this can be used to increase
the local awareness of the SSC layer. This does not always result in accuracy increases, however,
since increasing K decreases the size of the subchannels which can negatively impact accuracy. It
requires case-by-case testing to figure out the optimal configuration for each use case. Generally,
however, there are clearly diminishing returns for increasing K, even within convolutional layers,
where it should not have any negative trade-offs in terms of accuracy. This is because the larger

Under review as a conference paper at ICLR 2024

the context becomes, the less valuable it is. The most important context is almost always produced
by the neighbouring elements. Therefore, setting K = C in the SSC layer is likely not going to
maximize accuracy, as it decreases the subchannel size of the most important context in favor of
including significantly less valuable context.

Another thing to note is the implication this behaviour of the SSC layer has for multidimensional
SSC layers. To incorporate the same local context as a 3x3 kernel would in a two dimensional
convolutional layer, the SSC layer has to split the input into 9 subchannels. This means that the
subchannels of the SSC layer get less space for multidimensional SSC layers, causing potential
accuracy drops but even greater computational cost improvements when compared to convolutional
layers.

E E E £
Convolutional Layer Depthwise Separable Depthwise SSC Layer
Convolutional Layer Convolutional

Layer

Figure 4: With an input shape of L x C' and an output shape of L x E, these are the shapes of the
weights of the convolutional layer, depthwise separable convolutional layer, depthwise convolutional
layer and SCC layer. C'is the input channel size, E is the output channel size, L is the sequence
length and K is the kernel size.

The difference in weight shapes among the SSC layer and various convolutional layer can be seen
in Figure |4} The SSC layer will always have less trainable parameters than both the standard and
depthwise separable convolutional layer since K does not affect the weight shape. In theory, the SSC
layer could also have less parameters than the depthwise convolutional layer if X > C. Note, that
Figure] shows the shapes for one dimensional layers for the sake of readability. The discrepancy in
model size between the SSC layer and the convolutional layers only increases with more dimensions.

4 EXPERIMENTS

There are 3 experiments contained in this paper which are meant to showcase that the SSC layer is
a viable replacement for convolutional layers. These experiments focus on the comparison between
convolutional layers and SSC layers, meaning the hyperparameters were identical unless specified
otherwise. Note, that we do not propose any new model architectures but simply use established
models which use convolutional layers and replace them with SSC layers. The 3 experiments we
selected were an image classification task, a sequence modelling task and single-channel source
separation. The purpose of choosing these problems areas is to showcase the SSC layer’s ability to
work in multiple dimensions (image classification), to work within the TCN architecture (sequence
modelling), to replace linear layers for an accuracy boost without impacting computational cost
(speech separation) and to work with downsampling (image classification).

4.1 DATASETS

The datasets used in the experiments are the WSJO corpus (Garofolo, John S. et all [{1993)), the
CIFAR-100 dataset (Krizhevsky et al., 2009) as well as all the datasets contained in the long range
arena (LRA) benchmark (Tay et al., 2021} [Krizhevsky et al.,|2009; Maas et al., 2011; Radev et al.,
2009; Nangia & Bowman, |2018; |Linsley et al., [2018]).

Under review as a conference paper at ICLR 2024

4.2 SINGLE-CHANNEL SPEECH SEPARATION

Single-channel speech separation describes the problem of trying to recover the original speaker
sources out of a single-channel audio mixture. The standard benchmark used for this task is the
WSJ0-2Mix dataset (Hershey et al.l |2016) and the metric used to measure accuracy is the SI-SDRi
(scale-invariant signal-to-distortion ratio (Roux et al.l 2018)) improvement).

The baseline model we selected is the SepFormer (Subakan et al., [2021) architecture which makes
heavy use of Transformers. While it does not reach SOTA performance (Wang et al., 2022; Mu
et al., 2023), it is still quite close, easy to replicate and uses many linear layers. Table [I] shows the
results of the experiment. We show the baseline SepFormer model using linear layers for the feed
forward network of the Transformers and two alternative versions using one dimensional convolu-
tional and SSC layers instead of linear layers. We observe significant improvements in SI-SDRi for
both the convolutional and SSC versions with the convolutional version achieving slightly higher
improvements.

Table 1: Comparing the scale-invariant signal-to-distortion ratio improvement (SI-SDRi) on the
WSJ0-2Mix dataset after 10 epochs with the SepFormer architecture serving as the baseline. The
linear layers of the feed forward networks were replaced with SSC and convolutional layers with a
kernel size of 3.

Model | SI-SDRIi (dB) | Time/epoch (s) | Memory (Gb) | Model size (million)
SepFormer Linear 14.9 11180 6.7 26
SepFormer Conv 15.9 11820 7.2 59
SepFormer SSC 15.6 11680 6.7 26

In all the other metrics, however, the SSC version outperforms the convolutional version, meaning it
is faster, uses less memory and less than half of the trainable parameters. Note, that the kernel size is
just set to 3 - if the kernel size were to be increased even further, the difference in computational cost
between the SSC and convolutional versions would increase even further. The cause of this is due
to the computational cost of the SSC layer being completely removed from the kernel size while the
convolutional layer’s computational cost increases with higher kernel sizes which can be visualized
through Figures [T]and [4]

The SSC layer is in fact so lightweight that it can replace a linear layer for almost no additional com-
putational cost. As is shown in Table|l} both model size and memory usage do not change between
the linear and SSC versions with only speed increasing by roughly 5%. Since our implementation
has not fused the entire SSC layer into a single kernel, however, it is likely that a more optimal
implementation would be able to decrease if not remove the small speed penalty of the SSC layer.

To summarize the results of this experiments, it is possible to use the SSC layer as a drop-in replace-
ment for a linear layer while not impacting computational cost. Unlike the linear layer, the SSC layer
allows for local context awareness which can result in significant accuracy improvements. The con-
volutional layer can produce these accuracy improvements as well, but negatively impacts a number
of performance metrics, especially the model size.

4.3 SEQUENCE MODELLING

In order to show the sequence modelling capabilities of the SSC layer, we borrow the TCN architec-
ture and simply replace the convolutional layers with SSC layers. The dataset used for this task is the
LRA benchmark which contains six different classification tasks. The inputs are all one dimensional
sequences ranging from 1024 to 4096 elements and the classes range from 2 to 10. We elected to
leave out the Path-X task (Kim et al., 2019) which contains a sequence length of 16384 elements as
none of the tested models were able to converge for it.

Unlike the other two experiments in the paper, we do have to describe the hyperparameters and
model architecture of this experiment. The model architecture itself is very simple and the general

Under review as a conference paper at ICLR 2024

structure is shown in Figure[5] The tensor shapes produced by each step are shown below. The text
tasks use embedding layers while the image tasks use linear layers for the first step of the model. The
TCN blocks consist of the convolutional or SSC layer, followed by a ReLU activation (Fukushima,
1975)), the normalization layer, dropout and finally the residual connection.

By "% |+ [TeN] [Norm] +[Mean]-+| Mg LT |+ [Linear Layer]

Lx1 LxC LxC LxC C 2C N

Figure 5: Architecture used for the LRA experiments with L being the sequence length, C' being the
channel size and IV being the number of classes.

Table [2] shows the hyperparameters used for the experiments. As is the norm for TCNs, we set the
dilation factor to increasing exponents of base 2, starting from 0 to increase the receptive field.

Table 2: The hyperparameters of the LRA tasks. Depth refers to the number of blocks per TCN,
K is the kernel size, C' the channel size, BN is batch normalization (loffe & Szegedyl, 2015), LN is
layer normalization (Ba et al.,|2016), LR the learning rate and WD the weight decay.

Task Depth | K| C | Norm | Batchsize | LR WD | Epochs
ListOps 10 8 | 256 | BN 32 0.002 | 0.005 32
Text 10 8 | 256 | BN 16 0.005 | 0.05 32
Retrieval 10 8 | 128 | LN 32 0.001 0 32
Image 10 8 | 256 | BN 64 0.002 | 0.005 100
Pathfinder 10 8 | 256 | BN 64 0.002 | 0.005 32

The results comparing the SSC layer with various convolutional layers are shown in Table 3]

Table 3: Comparing TCNs using convolutional layers, depthwise convolutional layers, depthwise
separable convolutional layers and SSC layers on the LRA dataset.

Model | Image | ListOps | Text | Retrieval | Pathfinder || Avg. | Speed (s) | Memory (Gb)
Conv 69.4 51.2 88.4 86.5 79.9 75.1 299 6.5
Depthwise 60.5 41.0 80.0 81.8 71.4 66.9 163 6.0
Depthwise Separable 71.5 55.9 88.2 79.6 79.0 74.8 227 7.3
Conv Groups half C 63.5 42.8 84.7 84.6 73.2 69.8 191 6.6
Conv Groups quarter C 66.6 46.5 85.2 85.5 73.9 71.5 238 6.6
SSC 67.1 54.5 86.9 80.8 75.2 72.9 207 5.8

Unlike the first experiment, a number of more lightweight convolutional layers are included this
time. The intention is to find out, how the SSC layer compares to existing methods which sacrifice
accuracy for lower computational cost. Therefore, this experiment includes the depthwise convolu-
tional layer, the depthwise separable convolutional layer as well as convolutional layers where the
group size is set to half and a quarter of the input channel size. The reason the last two versions
were included, is to find a method with speed and memory usage as close as possible to the SSC
layer and then compare their accuracies to investigate whether the balance between accuracy and
computational cost of the SSC layer was already possible with previous work.

The most accurate methods are the standard convolutional layer and the depthwise separable convo-
lutional layer. The standard convolutional layer does best at the binary classification tasks while the
depthwise separable convolutional layer reaches the highest accuracy for the task with 10 classes.

Under review as a conference paper at ICLR 2024

The accuracy scores generally follow the same pattern with the retrieval task being the only outlier
where both the SSC and depthwise separable convolutional layer underperform when compared to
the rest of the tasks. This again shows that the SSC layer and depthwise separable convolutional
layer are quite similar as they both underperform on the retrieval and overperform on the listops
task. A possible reason for the comparatively low accuracy on the retrieval task could be the lower
channel size set for this task shown in Table 2]

On average, the SSC layer is the third most accurate version, followed by the convolutional layers
with increasing group sizes. Out of the six methods tested, the SSC layer is also the third fastest
method as well as the most memory efficient. While the SSC layer does not reach the standard
convolutional layer and the depthwise separable convolutional layer in terms of accuracy, the SSC
layer does clearly outperform them in terms of speed and especially memory usage. This is caused
due to the kernel size being relatively large which does not affect the SSC layer, but does negatively
impact all of the convolutional layer variants. It does, however, also mean that the subchannel size of
the SSC layer is smaller which could reduce accuracy. The results shown in Table [3|clearly indicate
that the balance between accuracy and computational cost achieved by the SSC were not possible
with currently existing versions of convolutional layers.

Note, that none of these TCNs reach SOTA performance on the LRA task as current SOTA perfor-
mance is an average of 88.21% accuracy across all six LRA tasks (Ma et al.||2022). This experiment
was just meant to showcase the SCC layer’s ability to perform long-term sequence modelling when
compared to the convolutional layer.

4.4 IMAGE CLASSIFICATION

While convolutional layers are used across almost all machine learning tasks, the one it is most
commonly known for is computer vision. In order to show that the SSC layer is a viable alternative
for convolutional layers, we therefore chose a common computer vision benchmark, the CIFAR-100
image classification task. We selected the ResNet-18 model as the architecture and tested accuracy,
speed, memory usage and model size once with various convolutional layers and once with SSC
layers as is shown in Table[d] Note, that the speed and memory measurements taken refer to training
speed and memory usage. This is true for the other experiments as well.

Table 4: Comparing the ResNet on the CIFAR-100 dataset with convolutional layers and with SSC
layers.

Model | Accuracy | Time/epoch (s) | Memory (Gb) | Model size (million)
Conv 78.68 35 2.5 11.2
Depthwise 56.82 25 22 0.27
Depthwise Separable 77.08 31 2.5 1.67
SSC 71.09 32 2.4 1.46

The best performing layer in terms of accuracy is the standard convolutional layer, followed closely
by the depthwise separable convolutional layer. In terms of accuracy, the SSC layer finds itself be-
tween the depthwise and depthwise convolutional layer, being roughly 15% more accurate than the
depthwise convolutional layer and about 6% less accurate than the depthwise separable convolu-
tional layer. This continues the trend shown in the LRA experiments in the previous subsection. In
terms of speed and memory usage, most of the methods perform similarly except for the depthwise
convolutional layer clearly being the most lightweight option. The model size of the standard con-
volutional layer is once again significantly larger than the other methods tested while the SSC layer
slots in between the depthwise and depthwise separable convolutional layer.

This experiment shows that the SSC layer can be extended to any number of dimensions, just like
the convolutional layer, and can successfully be used with downsmapling. However, in many ways,
this experiment represents the worst case scenario in which the SSC layer should not be used. The
reason there is a much smaller difference in speed, memory usage and model size between the SSC

Under review as a conference paper at ICLR 2024

layer and the depthwise separable convolutional layer in this experiment compared to the previous
experiment is simply due to the difference in model architecture and chosen hyperparameters. The
ResNet-18 uses not many blocks of convolutional layers with a maximum kernel size of 3 and a
maximum channel size of 512. The higher the kernel size, channel size and number of layers, the
greater the amount of computational cost that can be saved by the SSC layer. Since the ResNet-18
is a fairly small and lightweight architecture, however, it does not really make sense to use the SSC
layer over the depthwise separable convolutional layer here unless the reduction in model size is
valued more than the decrease in accuracy.

5 LIMITATIONS

Currently, we have only implemented the one dimensional and two dimensional versions of the SSC
layer. The relative context operation is implemented in a custom cuda kernel, however, the entire
SSC layer is not fused as a single cuda kernel. It is therefore likely possible to achieve even lower
computational cost than reported in this paper by fusing the relative context operation, the linear
layer and the downsampling into one cuda kernel.

Another limitation is that currently, our implementations do not support upsampling, meaning the
SSC layer cannot be used as a replacement for transposed convolutional layers.

6 CONCLUSION

Through the experiments, we have shown that the SSC layer is a viable alternative to convolutional
layers. Compared to previous methods, the biggest improvements the SSC layer achieves is when
the kernel size is large as its computational cost is completely decoupled from this parameter unlike
all the convolutional layer variants. While it does not quite reach the accuracy of the standard and
depthwise separable convolutional layers in our experiments, the SSC is consistently signifcantly
more lightweight than both of them while still being relatively close in terms of accuracy. The
balance between accuracy and computational cost of the SSC layer is not achievable with existing
methods. Since the computational cost of the SSC layer is almost identical to the linear layer, it can
be used as a drop-in replacement to enable local context awareness at practically no computational
cost.

Additionally, we have shown that the SSC layer works in multiple dimensions, like the convolu-
tional layer and that it can be used for long-term sequence modelling through the use of a dilation
factor. Since the main concept of the SSC layer is very similar to the convolutional layer, we believe
it should be able to replace convolutional layers not just in the applications tested in this paper, but
in any other use case as well. For our future work, we intend to test the SSC layer as replacements
for transposed convolutional layers and for three dimensional inputs. Three dimensional convolu-
tional layers are notoriously computationally expensive, but since the kernel size does not affect the
computational cost of the SSC layer, it could be a viable replacement.

REFERENCES
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. Wav2vec 2.0: A frame-
work for self-supervised learning of speech representations. In Proceedings of the 34th Interna-
tional Conference on Neural Information Processing Systems, NIPS 20, Red Hook, NY, USA,
2020. Curran Associates Inc.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Convolutional sequence modeling revisited. 2018.

Francois Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEFE conference on computer vision and pattern recognition, pp. 1251-1258, 2017.

Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-r2n2: A
unified approach for single and multi-view 3d object reconstruction. In Computer Vision-ECCV
2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceed-
ings, Part VIII 14, pp. 628-644. Springer, 2016.

Under review as a conference paper at ICLR 2024

Angela Dai, Charles Ruizhongtai Qi, and Matthias NieBner. Shape completion using 3d-encoder-
predictor cnns and shape synthesis. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 5868-5877, 2017.

Kunihiko Fukushima. Cognitron: A self-organizing multilayered neural network. Biological cyber-
netics, 20(3-4):121-136, 1975.

Garofolo, John S., Graff, David, Paul, Doug, and Pallett, David. CSR-I (WSJO) Complete, May
1993.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. In International conference on machine learning, pp. 1243-1252.
PMLR, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

John R. Hershey, Zhuo Chen, Jonathan Le Roux, and Shinji Watanabe. Deep clustering: Discrim-
inative embeddings for segmentation and separation. In 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 31-35, Shanghai, March 2016. IEEE.
doi: 10.1109/ICASSP.2016.7471631.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448—-456.
pmlr, 2015.

Junkyung Kim, Drew Linsley, Kalpit Thakkar, and Thomas Serre. Disentangling neural mechanisms
for perceptual grouping. arXiv preprint arXiv:1906.01558, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Colin Lea, René Vidal, Austin Reiter, and Gregory D. Hager. Temporal Convolutional Networks:
A Unified Approach to Action Segmentation. In Gang Hua and Hervé Jégou (eds.), Computer
Vision — ECCV 2016 Workshops, volume 9915, pp. 47-54. Springer International Publishing,
Cham, 2016. doi: 10.1007/978-3-319-49409-8_7.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278-2324, 1998. doi: 10.1109/5.726791.

Drew Linsley, Junkyung Kim, Vijay Veerabadran, Charles Windolf, and Thomas Serre. Learning
long-range spatial dependencies with horizontal gated recurrent units. Advances in neural infor-
mation processing systems, 31, 2018.

Yi Luo and Nima Mesgarani. Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking
for Speech Separation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 277
(8):1256-1266, August 2019. ISSN 2329-9290, 2329-9304. doi: 10.1109/TASLP.2019.2915167.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May,
and Luke Zettlemoyer. Mega: Moving average equipped gated attention, 2022. URL https:
//arxiv.orqg/abs/2209.10655.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pp. 142—-150, 2011.

Zhaoxi Mu, Xinyu Yang, and Wenjing Zhu. Multi-dimensional and multi-scale modeling for speech

separation optimized by discriminative learning. ArXiv, abs/2303.03737, 2023. URL |https:
//api.semanticscholar.org/CorpusID:257377942.

10

https://arxiv.org/abs/2209.10655
https://arxiv.org/abs/2209.10655
https://api.semanticscholar.org/CorpusID:257377942
https://api.semanticscholar.org/CorpusID:257377942

Under review as a conference paper at ICLR 2024

Nikita Nangia and Samuel Bowman. ListOps: A diagnostic dataset for latent tree learning. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Student Research Workshop, pp. 92-99, New Orleans, Louisiana,
USA, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-4013. URL
https://aclanthology.org/N18-4013.

Dragomir R. Radev, Pradeep Muthukrishnan, and Vahed Qazvinian. The ACL Anthology network.
In Proceedings of the 2009 Workshop on Text and Citation Analysis for Scholarly Digital Libraries
(NLPIR4DL), pp. 54-61, Suntec City, Singapore, August 2009. Association for Computational
Linguistics. URL https://aclanthology.org/W09-3607.

Jonathan Le Roux, Scott Wisdom, Hakan Erdogan, and John R. Hershey. Sdr — half-baked or well
done? ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 626-630, 2018.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. Advances
in neural information processing systems, 30, 2017.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61-80, 2009.
doi: 10.1109/TNN.2008.2005605.

Laurent Sifre and Stéphane Mallat. Rigid-motion scattering for texture classification. arXiv preprint
arXiv:1403.1687, 2014.

Cem Subakan, Mirco Ravanelli, Samuele Cornell, Mirko Bronzi, and Jianyuan Zhong. Attention Is
All You Need In Speech Separation. In ICASSP 2021 - 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 21-25, Toronto, ON, Canada, June 2021.
IEEE. doi: 10.1109/ICASSP39728.2021.9413901.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
transformers. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=gVyeW-grC2k.

Zhong-Qiu Wang, Samuele Cornell, Shukjae Choi, Younglo Lee, Byeong-Yeol Kim, and Shinji
Watanabe. Tf-gridnet: Making time-frequency domain models great again for monaural speaker
separation. ArXiv, abs/2209.03952, 2022.

Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer aggregation. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp. 2403-2412,
2018.

11

https://aclanthology.org/N18-4013
https://aclanthology.org/W09-3607
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k

	Introduction
	Related Works
	SSC Layer description
	Experiments
	Datasets
	Single-channel speech separation
	Sequence modelling
	Image classification

	Limitations
	Conclusion

