
SLaM: Student-Label Mixing for Distillation with
Unlabeled Examples

Vasilis Kontonis
UT Austin

vasilis@cs.utexas.edu

Fotis Iliopoulos
Google Research

fotisi@google.com

Khoa Trinh
Google Research

khoatrinh@google.com

Cenk Baykal
Google Research

baykalc@google.com

Gaurav Menghani
Google Research

gmenghani@google.com

Erik Vee
Google Research

erikvee@google.com

Abstract

Knowledge distillation with unlabeled examples is a powerful training paradigm
for generating compact and lightweight student models in applications where the
amount of labeled data is limited but one has access to a large pool of unlabeled
data. In this setting, a large teacher model generates “soft” pseudo-labels for the
unlabeled dataset which are then used for training the student model. Despite its
success in a wide variety of applications, a shortcoming of this approach is that the
teacher’s pseudo-labels are often noisy, leading to impaired student performance.
In this paper, we present a principled method for knowledge distillation with
unlabeled examples that we call Student-Label Mixing (SLaM) and we show that
it consistently improves over prior approaches by evaluating it on several standard
benchmarks. Finally, we show that SLaM comes with theoretical guarantees; along
the way we give an algorithm improving the best-known sample complexity for
learning halfspaces with margin under random classification noise, and provide the
first convergence analysis for so-called “forward loss-adjustment” methods.

1 Introduction

While good quality human-labeled data are often hard to obtain, finding huge amounts of unlabeled
data is relatively easy. Therefore, in modern machine learning applications, we often face the
situation where we have a small “golden” dataset with human labels and a large unlabeled dataset. In
Distillation with Unlabeled Examples [12, 26, 16] a large teacher model is first trained (or fine-tuned)
on the human-labeled data and is then used to generate “soft” pseudo-labels for the unlabeled dataset.
Then the (typically smaller) student model, i.e., the model that will be deployed for the purposes of the
application, is trained on the combined dataset that contains both the labels generated by humans and
the pseudo-labels generated by the teacher model. This general-purpose training paradigm has been
applied in a wide variety of contexts [16, 46, 53, 54, 58, 57] including but not limited to distilling
knowledge from large-scale foundational models like BERT [18] and GPT-3 [11]. We remark that
in such settings one does not have access to the teacher model but only on its pseudo-labels (which
were generated during some previous “bulk-inference” phase). This “bulk-inference” step is typically
computationally expensive and happens once: one cannot modify the teacher network (or even use it
for inference) during the training process of student.

Despite its widespread success in practice, the effectiveness of this powerful approach generally
depends on the quality of the pseudo-labels generated by the teacher model. Indeed, training the
student model on noisy pseudo-labels often leads to significant degradation of its generalization

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

performance, and this is a well-known phenomenon that has been observed and studied in a plethora
of papers in the literature, e.g., [6, 36, 44, 51, 53, 8, 27].

In this work, we propose Student-Label Mixing (SLaM), a principled method for knowledge dis-
tillation with unlabeled examples that accounts for the teacher’s noise and consistently improves
over prior approaches. At the heart of our method lies the observation that the noise introduced
by the teacher is neither random nor adversarial, in the sense that it correlates well with metrics of
“confidence” such as the margin score or the entropy of the teacher’s predictions. We exploit this
empirical fact to our benefit in order to introduce a model for the teacher’s noise, which we use to
appropriately modify the student’s loss function. At a high level, for any given example during the
student’s training process, we evaluate the student’s loss function on a convex combination of the
student’s current prediction and another (soft-)label that we estimate using our model for the teacher’s
noise (hence the name “student-label mixing”).

Our contributions can be summarized as follows:

1. We propose SLaM: a principled method for improving knowledge distillation with unlabeled
examples. The method is efficient, data-agnostic and simple to implement.

2. We provide extensive experimental evidence and comparisons which show that our method
consistently outperforms previous approaches on standard benchmarks. Moreover, we show
that SLaM can be combined with standard distillation techniques such as temperature scaling
and confidence-based weighting schemes.

3. We give theoretical guarantees for SLaM under standard assumptions. As a byproduct of
our analysis we obtain a simple “forward loss-adjustment” iteration that provably learns
halfspaces with γ-margin under Random Classification Noise with O(1/(ϵ2γ2)) samples
improving over prior works that had worse dependence on either the margin γ or the
generalization error ϵ (see Theorem 5.1 and Remark 5.2).

2 Related Work

Knowledge Distillation. Most of the literature on knowledge distillation has been focused on the
fully supervised/labeled setting, i.e., when distillation is performed on the labeled training data of the
teacher model rather than on new, unlabeled data — see e.g. the original paper of [26]. Naturally,
in this setting the pseudo-labels generated by the teacher are almost always accurate and so many
follow-up works [2, 14, 15, 41, 52] have developed advanced distillation techniques that aim to
enforce greater consistency between the teacher’s and the student’s predictions, or even between
the intermediate representations learned by the two models. Applying such methods in our setting
where the training dataset contains mainly unlabeled examples is still possible but, in this case,
it is known [51, 27] that fully trusting the teacher model can be actually harmful to the student
model, making these methods less effective. (In fact, when the teacher is highly noisy these methods
even underperform vanilla distillation with unlabeled examples.) In Section 4.2 we present results
that show the improved effectiveness of SLaM relative to the state-of-the-art supervised knowledge
distillation methods like the Variational Information Distillation for Knowledge Transfer (VID)
framework [2]. Moreover, in Appendix D.5 we show that our method can be combined with (i.e.,
provide an additional improvement) the most simple, yet surprisingly effective, methods of improving
knowledge distillation, namely the temperature-scaling idea introduced by [26].

For distillation with unlabeled examples, many approaches [17, 33, 29] propose filtering-out or
reweighting the teacher’s pseudo-labels based on measures of teacher’s uncertainty, such as dropout
variance, entropy, margin-score, or the cut-statistic. These methods are independent of the student
model and can be synergistically combined with our technique. For instance, in Section D.4 we
demonstrate that combining our method with teacher-uncertainty-based reweighting schemes leads to
improved student performance relative to applying the reweighting scheme alone.

Much more closely related to our approach is the recently introduced approach of [27]. There, the
authors design a model for the teacher’s noise and utilize it in order to modify the student’s loss
function so that, in expectation, the loss simulates the loss with respect to noise-free pseudo-labels.
One of the main advantages of our method compared to that of [27] is that our model for the teacher’s
noise is more structured and easier to learn, which — as our experiments in Section 4.2 show — leads
to consistently better student performance.

2

Learning From Noisy Labels. Learning from noisy labels is an important and well-studied problem
with a vast literature [7, 21, 23, 28, 31, 37, 40, 42, 45, 47] — see [50] for a recent survey. The
fundamental difference between our setting and papers in this literature is that the noise introduced
by the teacher is structured, and this is a crucial observation we utilize in our design. Specifically, our
approach is inspired by the so-called forward loss-adjustment methods, e.g. [43], but it is specifically
tailored to the structure of the distillation with unabeled examples setting. Indeed, forward methods
typically attempt to estimate a noise transition matrix whose (i, j) entry is the probability of the true
label i being flipped into a corrupted label j, which can be rather problematic when dealing with
general, instance specific noise like in the case of distillation with unlabeled examples. On the other
hand, we exploit that (i) we have access to confidence metrics of the teacher’s predictions; and (ii)
that often times, when the teacher model’s top-1 prediction is inaccurate the true label is within its
top-k predictions for some appropriate k, to design and estimate a much more refined model for the
teacher’s noise that we use to inform the design of the student’s loss function.

Another related technique for dealing with noisy data is using “robust” loss functions [4, 20, 24,
35, 56] such that they achieve a small risk for new clean examples even under the presence of
noise in the training dataset. In Section 4.2 we compare our method with the general framework
of [20] for designing robust loss functions and we show that our approach, when applied to the
standard cross-entropy loss, consistently outperforms [20] in the setting of distillation with unlabeled
examples. That said, we stress that our method is not tied to the cross-entropy loss and, in fact, it
often gives better results when combined with more sophisticated loss functions. We demonstrate
this in Appendix D.6 where we apply our method in cases where the student loss function comes
from the families of losses introduced in [20] and [35].

Semi-Supervised Learning. Akin to our setting, in semi-supervised learning (SSL) (see e.g. [55]
for a recent survey) the learner is presented with a small labeled dataset A and a typically much
larger unlabeled dataset B. Unlike to our setting though, there is typically no distinction between
the student and teacher: the model of interest generates pseudo-labels on B which are utilized by
using appropriate loss functions or preprocessing procedures (e.g. “filtering” or “correcting”) —
often times in an iterative fashion with the goal of improving the quality of the newly-generated
pseudo-labels. It is also worth noting that in many real-world applications of distillation with
unlabeled examples either the teacher model is unavailable or it is too expensive to retrain it and
create fresh pseudo-labels on the data (e.g., when we request labels from a pretrained large language
model). Therefore, SSL approaches that either (i) update the “teacher” model (e.g., [34]), or (ii)
require several fresh teacher-generated pseudo-labels (e.g., by requesting teacher-predictions on
random data-augmentations or perturbed version of the unlabeled examples of B e.g., [9]) are not
applicable in our setting. We implement the recent SSL technique of [48] and show that our method
outperforms it in the context of distillation with unlabeled examples. Besides performing on par with
state-of-the-art SSL approaches like [9], the method of [48] is free of inherent limitations like using
domain-specific data augmentations — which is also an important feature of our approach.

Learning Halfspaces with Random Classification Noise. The theoretical study of classification
with Random Classification Noise (RCN) was initiated by [5]. For the fundamental class of linear
classifiers (halfspaces) the first polynomial time algorithms for the problem where given in [13] and
[10]. The iteration proposed in [13] is a “backward loss-adjustment” method [43] for which it is
known that resulting optimization landscape is convex (for linear classifiers). In [19] an improved
analysis of the method of [13] was given, showing that SGD on this convex loss learns γ-margin
halfspaces with RCN with Õ(1/(γ4ϵ2)) samples. On the other hand, forward loss-adjustment
methods for dealing with RCN are known to result in an inherently non-convex landscape, see [38]
and Figure 9). Our theoretical result for SLaM (see Theorem 5.1) is the first convergence result
for a “forward loss-adjustment” method and, at the same time, achieves a sample complexity of
O(1/(γ2ϵ2)) improving over the prior work.

3 SLaM: Student-Label Mixing Distillation

In this section, we describe our distillation with unlabeled examples setting and present SLaM. In what
follows, we assume that examples are represented by feature-vectors in some spaceX . We shall denote
by X the distribution over examples. We consider multi-class classification with L classes and assume
that the ground-truth label of an example x is represented by a one-hot vector in Y = {0, 1}L given by
some unknown function g(x) : X 7→ Y . In multi-class classification the learning algorithm typically

3

optimizes a parametric family of classification models F = {f(·;w) : X 7→ RL : w ∈ W}, i.e., for
every parameter w ∈ W , f(x;w) is an L-dimensional “score vector”, where f(x;w)i corresponds
to the probability that the model assigns to the class i for the example x. We shall denote by
ℓ(·, ·) : RL×RL 7→ R the classification loss function used by the learning algorithm. During training
the algorithm considers a set of labeled examples S = {(x(1), g(x(1))), . . . , (x(n), g(x(n))} and
optimizes the loss ℓ(·, ·) over S, i.e., solves the problem minw∈W

1
|S|
∑

(x,g(x))∈S ℓ(g(x), f(x;w)) .

For two vectors v, u ∈ RL we denote by err(v, u) = 1{argmax(v) ̸= argmax(u)} the indicator of
the event that the positions of the maximum elements of v, u agree. Similarly, for two classifiers
h(x), f(x) : Rd 7→ RL we can use err(h(x), f(x)) to denote whether their top-1 predictions for the
example x agree. Our goal is to train a classifier over the sample S so that its generalization error,
i.e., Ex∼X [err(f(x;w), g(x))], is small.

Distillation with Unlabeled Examples. We assume that we are given a (usually small) dataset
A of correctly labeled examples (x, g(x)) and a set of unlabeled data U . A “teacher” model
ys(·) : X 7→ RL is first trained on the labeled dataset A and then provides soft-labels for the
examples of dataset U , i.e., we create a dataset B = {(x, ys(x)) : x ∈ U} containing examples
labeled with the corresponding probability distribution over classes (soft-labels) of the teacher model.
We then train a (typically smaller) student model using both the original labeled data A and the
teacher-labeled dataset B, i.e., minw∈W

1
|A∪B|

∑
(x,z)∈A∪B ℓ(z, f(x;w)). In what follows, we shall

call the above training procedure as “vanilla-distillation”.

Remark 3.1 (“Hard-” vs “Soft-” Distillation). We remark that the process where instead of using
the soft-labels provided by the teacher model on the unlabeled dataset U, we use one-hot vectors
representing the class with maximum score according to the teacher, is known as hard-distillation.
We will denote by ys(x) the soft-label of the teacher and by y(x) the corresponding hard-label, i.e.,
y(x) is the one-hot representation of argmax ys(x). When it is clear from the context we may simply
write y instead of y(x).

Modelling the Teacher as a “Noisy” Label Oracle. In the distillation setting described in the
previous paragraph, it is known [51, 27, 8, 44] that the teacher model often generates incorrect
predictions on the unlabeled examples, impairing the student’s performance. Given any x ∈ U ,
we model the teacher’s prediction y as a random variable. Similarly to [27] we assume that, for
every unlabeled datapoint x ∈ U , the provided teacher label y is correct with probability α(x) and
incorrect with probability 1− α(x). However, in contrast with [27], our noise model prescribes a
non-advsersarial (semi-random) behavior of the teacher when its top-1 prediction is incorrect.

A first step towards more benign noisy teachers is to assume that, conditionally on being wrong, the
teacher label is a uniformly random class of the remaining L−1 classes. We remark that this model is
already enough to give improvements in datasets with a moderately large number of classes (e.g., up
to 100). In particular, it perfectly captures the noisy teacher in binary classification: when the teacher
label is different than the ground-truth g(x) then it has to be equal to the “flipped” ground-truth
1− g(x).

We now further refine our model so that it is realistic for datasets with thousands of classes. Even
though the top-1 accuracy of the teacher model may not be very high on the unlabeled data U , the
true label is much more likely to belong in the top-5 or top-10 predictions of the teacher rather
than being completely arbitrary. For example, training a ResNet50 network on 10% of ImageNet
[49] yields an average top-1 accuracy about 52.78% on the test dataset whereas the top-10 accuracy
of the same model is about 83.55%. In datasets with a large number of classes, this observation
significantly reduces the number of potential correct classes of the examples where the teacher label
is incorrect. Motivated by the above, we assume the following structured, semi-random noise model
for the teacher, tailored to multi-class settings.

Definition 3.2 (Noisy Teacher Model). Let x be any example of the unlabeled data U and denote by
g(x) its ground-truth label. Let ys(x) resp. y(x) be the random variable corresponding to the soft
resp. hard prediction of the teacher model for the example x. We assume that for every x there exist
(unknown to the learner) α(x) ∈ [0, 1] and k(x) ∈ {2, . . . , L} such that the teacher’s top-1 prediction
y agrees with the ground-truth g(x) with probability α(x) and, with probability 1 − α(x): (i) the

4

ground-truth belongs in the top-k(x) predictions of the teacher; and (ii) the teacher’s (hard)-prediction
is a uniformly random incorrect class out of the top-k(x) predictions of the teacher soft-label ys(x) 1.
Remark 3.3. We remark that the model of Definition 3.2 captures having a “perfect” teacher model by
setting α(x) = 1 for all x and also generalizes the binary case described above by taking k(x) = 2
for all x ∈ X .

Given the above noise model for the teacher, the problem of improving knowledge-distillation consists
of two main tasks: (i) obtaining estimates for accuracy statistics α(x), k(x) for each example x ∈ U ;
and (ii) using those estimated values to improve the training of the student model so that it is affected
less by the mistakes of the teacher on dataset B.

Training Better Students Using α(x), k(x) We first assume that for every x we have oracle
access to the values α(x), k(x) and present our Student-Label Mixing loss function. Instead of using
α(x), k(x) to “denoise” the teacher’s label, we use them to add noise to the student’s predictions. To
make notation more compact, in what follows, given a vector z ∈ RL we denote by top(z; k) the
vector that has the value 1 in the positions of the of the 1-st up to k-th largest elements of z and 0 in all
other positions, e.g., top((1, 2, 3); 1) = (0, 0, 1) and top((−1, 1, 0, 2); 3) = (0, 1, 1, 1). Assuming
that the student-label for some x ∈ U is f(x;w) we “mix” it (hence the name Student-Label Mixing)
using α(x), k(x) to obtain the mixed prediction

mix(f(x;w);α(x), k(x)) = α(x)f(x;w) + (1− α(x)) top(ys(x); k(x)) ∗
1− f(x;w)

k(x)− 1
, (1)

where q ∗ p is the element-wise multiplication of the vectors p, q. We then train the mixed student
model, on the “noisy” dataset B:

min
w∈W

1

|A ∪B|

(∑
(x,z)∈A

ℓ(z, f(x;w)) +
∑

(x,y)∈B

ℓ(y,mix(f(x;w);α(x), k(x))

)
(2)

The main intuition behind the mixing of the student’s labels is that by training the “noisy” student to
match the “noisy” teacher label y on dataset B, the underlying (non-mixed) student f(x;w) will
eventually learn the ground-truth. In particular, when ℓ(·, ·) is the Cross-Entropy loss we have that
the expected mixed loss conditioned on any x is

E[ℓ(y; mix(f(x;w), a(x), k(x))) | x] = ℓ(mix(g(x);α(x), k(x)),mix(f(x;w);α(x), k(x))) ,

where we used the fact that the cross-entropy is linear in its first argument, and that by the definition
of our noise model (Definition 3.2) it holds that E[y | x] = mix(g(x);α(x), k(x)). Therefore,
when the student is equal to the ground-truth f(x;w) = g(x), we obtain that the mixed student-
model will satisfy mix(g(x);α(x), k(x)) = mix(f(x;w);α(x), k(x)) for all x ∈ X , and (by Gibb’s
inequality), we obtain that g(x) is a minimizer of the SLaM loss. We show the following proposition,
see Appendix C for the formal statement and proof.
Proposition 3.4 (SLaM Consistency (Informal)). Let D be the distribution of the teacher-labeled
examples of dataset B, i.e., we first draw x ∼ X and then label it using the noisy teacher
of Definition 3.2. Moreover, assume that there exists some parameter w∗ ∈ W such that the
ground-truth g(x) = f(x;w∗). Then w∗ is the minimizer of the (population) SLaM objective:
minw E(x,y)∼D[ce(y,mix(f(x;w);α(x), k(x)))], where ce(·, ·) is the Cross-Entropy loss.

Estimating the Teacher’s Accuracy Statistics α(x), k(x) via Isotonic Regression We first show
how we estimate α(x) for each x of dataset B, i.e., the dataset labeled by the teacher model. In [27]
the authors empirically observed that α(x) correlates with metrics of teacher’s confidence such as
the “margin”, i.e., the difference between the probabilities assigned in the top-1 class and the second
largest class according to the teacher’s soft label ys. In particular, the larger the margin is the more
likely is that the corresponding teacher label is correct. We exploit this monotonicity by employing
isotonic regression on a small validation dataset to learn the mapping from the teacher’s margin at an
example x to the corresponding teacher’s accuracy α(x). For more details, see Appendix B.1.

To perform this regression task we use a small validation dataset V with correct labels that the
teacher has not seen during training. For every example x ∈ V we compute the corresponding

1Given that the teacher’s prediction is incorrect and that the ground-truth belongs in the top-k(x) predictions
of the teacher, assumption (ii) describes a uniform distribution on k(x)− 1 labels.

5

soft-teacher label ys(x) and compute its margin margin(x) = max1(ys(x)) −max2(ys(x)). For
every x ∈ V we also compute the hard-prediction of the teacher and compare it with the ground-truth,
i.e., for every x ∈ V the covariate and responce pair is (margin(x), 1− err(g(x), y(x))). We then
use isotonic regression to fit a piecewise constant, increasing function to the data. We remark that
isotonic regression can be implemented very efficiently in O(n log n) time (where n is the size of the
validation dataset).

For k(x) we consider two different options: (i) using the same value for all examples (e.g., using
k so that the top-k accuracy of teacher is above some threshold on the validation data); and (ii)
using a “data-dependent” k(x) that we estimate by solving L (recall that L is the number of classes)
isotonic-regression problems (similar to that for estimating α(x) above). We refer to Appendix B.1
for more details.

4 Experimental Evaluation

Figure 1: Learning α(x) via iso-
tonic regression. The data were
generated by a ResNet 110 teacher
trained on 5000 examples of CIFAR-
100 and evaluated on a validation
dataset V of 500 examples. The
regression data {(margin(ys(x)), 1 −
err(ys(x), g(x))) : x ∈ V } are shown
in gray (the response is binary 0/1). By
enforcing monotonicity, isotonic regres-
sion yields a more stable and robust
curve than, for example, the KNN pre-
dictor.

In this section, we present our experimental results. In
Section 4.1 we describe our experimental setup and in
Section 4.2 we compare the performance of our method
with previous approaches on standard benchmarks. In Sec-
tion D.4 we show that our method can be combined with
teacher-uncertainty-based reweighting techniques. Finally,
due to space limitations, we provide additional empirical
results in the Appendix: in Appendix D.5 we show that
SLaM can effectively be used with distillation temperature,
and in Appendix D.6 we consider using SLaM with other
losses beyond the Cross-Entropy.

4.1 The Setup

Here, we describe our procedure for simulating knowl-
edge distillation with unlabeled examples on academic
datasets. We start by splitting the training dataset in two
parts: dataset A and dataset C. We then train the teacher
and student models on dataset A (using the standard cross-
entropy loss).2 Then we perform multiple independent
trials where, for each trial, we randomly split dataset C
into a small (e.g., 500 examples validation dataset V and
an unlabeled training dataset U. For each trial we (i) use
the teacher model to label the points on dataset U to obtain
the teacher-labeled dataset B (ii) initialize the weights of
the student to those of the student model that was pre-trained on dataset A; (iii) train the student
model (using each distillation method) on the combined labeled data of A, V (that have true labels)
and the data of B (that have teacher labels). We remark here that we include the validation data V
during the training of the student to be fair towards methods that do not use a validation dataset.
However, while it is important that the teacher has not seen the validation data during training, the
performance of no method was affected significantly by including (or excluding) the validation data
from the training dataset.

4.2 Comparison with Previous Approaches

The Baselines A natural question is whether a more sophisticated distillation method that enforces
greater consistency between the teacher and the student, would improve distillation with unlabeled
examples: we use the VID method [2] that incorporates the penultimate layer of the student model
(after a suitable trainable projection) in the loss. We also compare our method against the weighted
distillation method of [27] that reweights the examples of dataset B in order to “correct” the effect
of the noisy pseudo-labels provided by the teacher. The Taylor cross-entropy method of [20] is

2We remark that our method does not require pre-training the student on dataset A, however, since [27]
requires pre-training the student, we do the same for all methods that we compare.

6

Figure 2: Comparison of distillation methods on CIFAR-10,100 and CelebA. On the horizontal axis
we plot the size of Dataset A as a percentage of the whole training dataset. On the vertical axis we
plot the accuracy of the trained student-model on the test dataset.

Table 1: Experiments on CIFAR-10 (soft-distillation). See Section 4.2 for details.
Labeled Examples 5000 7500 10000 12500 15000 17500

Teacher 61.30 68.98 72.42 73.92 76.63 78.63

Vanilla 63.53 ± 0.29 70.39 ± 0.11 73.23 ± 0.15 74.29 ± 0.25 76.64 ± 0.20 78.63 ± 0.16

Taylor-CE [20] 64.07 ± 0.26 71.19 ± 0.17 74.18 ± 0.25 74.65 ± 0.24 77.17 ± 0.04 78.67 ± 0.13

UPS [48] 64.56 ± 0.13 71.10 ± 0.34 74.17 ± 0.06 75.05 ± 0.24 77.64 ± 0.12 79.21 ± 0.27

VID [3] 63.76 ± 0.13 70.58 ± 0.17 73.77 ± 0.40 74.95 ± 0.21 77.25 ± 0.06 78.23 ± 0.09

Weighted [27] 63.85 ± 0.13 71.04 ± 0.24 73.64 ± 0.36 75.00 ± 0.17 77.40 ± 0.17 78.93 ± 0.19

SLaM (Ours) 66.82 ± 0.61 72.61 ± 0.30 75.01 ± 0.25 75.72 ± 0.17 78.04 ± 0.16 79.22 ± 0.11

a modification of CE that truncates the taylor-series of the CE loss. In [20] it was shown that it
offers significant improvements when the labels are corrupted by random classification noise. The
fact that the teacher’s noise is much closer to random than to adversarial makes this approach a
natural baseline. The UPS loss of [48] is a semi-supervised technique that takes into account the
variance (uncertainty) of the teacher model on the examples of dataset B in order to transform the soft
pseudo-labels provided by the teacher to more “robust” binary vectors and then use a modified binary
CE loss. To estimate the uncertainty of the teacher model, we used either dropout with Monte-Carlo
estimation or random data-augmentations as suggested in [48]. We remark that, as we discussed in
Section 2 and Section 1, strictly speaking, this method is not applicable in our setting because it
requires multiple forward passes of the teacher model to estimate its variance but we implement it as
it is a relevant approach that aims to improve the pseudo-labels of the teacher.

CIFAR-{10,100} and CelebA Here we present our results on CIFAR-{10, 100} [30] and
CelebA [22]. CIFAR-10 and CIFAR-100 are image classification datasets with 10 and 100 classes
respectively. They contain 60000 labeled images, which are split to a training set of 50000
images, and a test set of 10000 images. From the 50000 images of the train set we use the
10%, 15%, 20%, 25%, 30%, 35% (or 5000, 7500, 10000, 12500, 15000, and 17500 examples) as the
labeled dataset A where we train the teacher and pre-train the student models. For each size of
dataset A, we perform a random split on the remaining training data and use 500 labeled examples
as the validation dataset and the remaining examples as the unlabeled dataset U. For the CIFAR-10
experiments, we use a Mobilenet with depth multiplier 2 as the teacher, and a Mobilenet with depth
multiplier 1 as the student. For CIFAR-100, we use a ResNet-110 as a teacher, and a ResNet-56 as
the student. We compare the methods both on soft- and hard-distillation. For each trial we train the
student model for 200 epochs and keep the best test accuracy over all epochs. We perform 3 trials
and report the average of each method and the variance of the achieved accuracies over the trials. The
results of our experiments for soft-distillation can be found in Table 1 and Table 2. The corresponding
plots are given inFigure 2. We include our results for hard-distillation in Appendix D.2.

We consider the male/female binary classification task using the CelebA dataset [22] consisting of
a training set of 162770 images and a test set of 19962 images. We use a MobileNet with depth
multiplier 2 as the teacher, and a ResNet-11 as the student. As the labeled dataset A we used
2%, 3%, 4%, 5%, 6% percent (or 3256, 4883, 6510, 8138, 9766, 11394 examples) of the training
dataset and split the remaining data in a validation dataset of 500 examples and an unlabeled dataset
U. Our results for CelebA can be found in Table 3 (soft-distillation) and in Table 7 (hard-distillation).

7

Table 2: Experiments on CIFAR-100 (soft-distillation). See Section 4.2 for details.
Labeled Examples 5000 7500 10000 12500 15000 17500

Teacher 35.97 44.65 49.62 55.68 59.19 62.05

Vanilla 37.94 ± 0.10 46.42 ± 0.24 52.17 ± 0.21 57.72 ± 0.17 60.91 ± 0.07 63.47 ± 0.23

Taylor-CE [20] 40.18 ± 0.07 48.05 ± 0.29 54.08 ± 0.24 58.45 ± 0.17 61.13 ± 0.10 63.54 ± 0.26

UPS [48] 39.62 ± 0.23 48.48 ± 0.15 54.43 ± 0.27 58.17 ± 0.07 60.74 ± 0.10 62.13 ± 0.12

VID [3] 38.93 ± 0.39 46.76 ± 0.10 52.56 ± 0.17 57.94 ± 0.37 61.14 ± 0.28 63.56 ± 0.18

Weighted [27] 38.63 ± 0.32 47.11 ± 0.29 53.16 ± 0.25 58.20 ± 0.11 61.29 ± 0.15 63.58 ± 0.07

SLaM (Ours) 42.72 ± 0.30 49.89 ± 0.23 54.73 ± 0.27 58.78 ± 0.15 61.30 ± 0.09 63.98 ± 0.19

Table 3: Experiments on CelebA (soft-distillation). See Section 4.2 for details.
Labeled Examples 2% 3% 4% 5% 6% 7%

Teacher 86.19 88.25 88.95 91.31 92.09 92.62

Vanilla 89.96 ± 0.08 91.55 ± 0.14 92.16 ± 0.10 93.42 ± 0.06 93.98 ± 0.04 94.29 ± 0.03

Taylor-CE [20] 90.80 ± 0.07 92.23 ± 0.1 92.56 ± 0.14 93.80 ± 0.20 94.17 ± 0.07 94.47 ± 0.01

UPS [48] 89.96 ± 0.11 92.03 ± 0.09 92.44 ± 0.04 93.9 ± 0.05 94.28 ± 0.07 94.68 ± 0.03

VID [3] 89.91 ± 0.10 91.75 ± 0.21 92.21 ± 0.10 93.67 ± 0.21 94.15 ± 0.07 94.33 ± 0.16

Weighted [27] 89.92 ± 0.12 91.73 ± 0.09 92.31 ± 0.22 93.64 ± 0.10 93.93 ± 0.14 94.23 ± 0.11

SLaM (Ours) 90.37 ± 0.17 92.25 ± 0.11 92.74 ± 0.17 94.06 ± 0.07 94.39 ± 0.10 94.75 ± 0.08

The corresponding plots are given in Figure 2. Due to space limitations our results for hard-distillation
can be found in Appendix D.2.

Taken together, our comparisons show that SLaM consistently outperforms the baselines, often by a
large margin. The reader is referred to Appendix D.1 for additional details.
Remark 4.1 (Soft-Distillation and Temperature Scaling). We remark that in the comparisons we
performed soft-distillation with temperature set to 1, i.e., for every example we do not scale the
corresponding teacher and student logits. In Appendix D.5 we show that our method can readily be
used together with temperature scaling to improve the accuracy of the student model.

Figure 3: Comparison of distillation methods on ImageNet.
On the horizontal axis we plot the size of Dataset A as a
percentage of the whole training dataset. On the vertical axis
we plot the accuracy of the trained student-model on the test
dataset.

ImageNet Here we present the re-
sults on ImageNet [49]. ImageNet
is an image classification dataset
with 1000 classes consisting of a
training set of approximately 1.3
million images, and a test set of
50000 images. From the 1.3 mil-
lion images of the training set we
use the 5%, 10%, 15%, 20% percent
(or 64058, 128116, 192174, 256232
examples) as the labeled dataset A
where we train the teacher and pre-
train the student models. For each
size of dataset A, we perform a ran-
dom split on the remaining training
data and use 10000 labeled examples
as the validation dataset and the re-
maining examples as the unlabeled
dataset U . We use a ResNet-50 as
the teacher, and a ResNet-18 as the
student. We compare the methods on
soft-distillation. For each trial, we
train the student model for 100 epochs
and keep the best test accuracy over all epochs. We perform 4 trials and report the average of each
method and the variance of the achieved accuracies over the trials. Our results for ImageNet can be
found in Table 4. We remark that we do not include the results of the UPS method in Table 4 because
it did not improve over the accuracy achieved after pre-training the student model on dataset A. The
reader is referred to Appendix D.1 for additional details.

8

Table 4: Experiments on ImageNet (soft-distillation). See Section 4.2 for details.
Labeled Examples 5% 10% 15% 20% 25% 30%

Teacher 39.48 52.96 59.64 63.62 66.00 67.85

Vanilla 41.67 ± 0.05 55.9 ± 0.06 62.3 ± 0.09 65.91 ± 0.05 67.98 ± 0.07 69.12 ± 0.08

Taylor-CE [20] 41.61 ± 0.06 56.43 ± 0.06 62.38 ± 0.11 65.86 ± 0.08 67.70 ± 0.22 68.62 ± 0.07

VID [3] 40.12 ± 0.04 52.75 ± 0.04 58.01 ± 0.03 61.21 ± 0.06 62.37 ± 0.06 63.05 ± 0.07

Weighted [27] 41.67 ± 0.04 55.96 ± 0.07 62.29 ± 0.08 65.91 ± 0.05 67.96 ± 0.06 69.16 ± 0.08

SLaM (Ours) 48.1 ± 0.05 59.51 ± 0.07 64.08 ± 0.06 66.72 ± 0.11 68.17 ± 0.07 69.07 ± 0.05

Large Movies Reviews Dataset Here we present results on the Large Movies Reviews Dataset [39].
This is a dataset for binary sentiment classification containing 25000 movie reviews for training and
25000 for testing. We use an ALBERT-large model [32] as a teacher, and an ALBERT-base model as
a student. We use 2%, 4%, 8%, 40% percent (or 500, 1000, 2000, 10000 examples) from the training
dataset and split the remaining data in a validation dataset of 500 examples and an unlabeled dataset
U . Our results and more experimental details can be found in Appendix D.3.

Performance Gains of SLaM as a Function of The Number of Labeled Examples In our
experiments, the fraction of examples we consider “labeled” controls two things at the same time:
(i) the accuracy of the teacher model — as the teacher is trained on the labeled examples available;
and (ii) the number of unlabeled examples the teacher model provides pseudo-labels for. The more
inaccurate the teacher model is, the better the improvements provided by our method. (Given a
“perfect” teacher that never generates incorrect pseudo-labels for the unlabeled examples, our method
is mathematically equivalent to the “vanilla” approach (see the mixing operation in Equation (1)).
Therefore, the smaller the number of labeled examples available, the bigger the performance gains of
SLaM as (i) the teacher will be less accurate; and (ii) it has to generate labels for more unlabeled
examples (and therefore the absolute number of inaccurate predictions that SLaM “corrects” increases
statistically). It is worth emphasizing that the main reason behind the enormous success of distillation
is exactly that the teacher network can blow up the size of the student’s training dataset: in practice,
the ratio of labeled examples to unlabeled examples is typically (much) less than 1%.

5 Distilling Linear Models and Learning Noisy Halfspaces

In this section we show that, when the dataset is separable by a halfspace, i.e., for every example
x, the ground-truth is g(x) = (1{w∗ · x > 0},1{w∗ · x ≤ 0}) for some unknown weight vector
w∗, then using SLaM with a linear model as the student will recover the ground truth classifier. We
make the standard assumption that the ground-truth halfspace has γ-margin, i.e., that ∥w∗∥2 = 1
and that it holds |w∗ · x| ≥ γ for all examples x. For a fixed example x, the observed noisy teacher-
label y satisfies Definition 3.2, i.e., y = g(x) w.p. α(x) and y = 1 − g(x) w.p. 1 − α(x) (since
k = 2 for binary classification). Our approach consists of using the standard cross-entropy loss
ce(p, q) and training a student-model consisting of a linear layer plus a soft-max activation, i.e.,
f(x;w) =

(
1

1+e−w·x ,
e−w·x

1+e−w·x

)
.

Theorem 5.1 (SLaM Convergence). Let X be a distribution on Rd and g(x) be the ground-truth
halfspace with normal vector w∗ ∈ Rd. Let D be the distribution over (noisy) teacher-labeled
examples (x, y) whose x-marginal is X . Assume that there exist β, γ > 0 such that for all examples
x in the support of X it holds that |w∗ · x| ≥ γ and |1/2 − α(x)| ≥ β. Let ϵ > 0. After
T = O(1/(β2γ2ϵ2)) SGD iterations on the SLaM objective (see Algorithm 3), with probability at
least 99%, there exists an iteration t ≤ T where Px∼X [err(f(x;w(t)), g(x))] ≤ ϵ.

Remark 5.2 (Learning Halfspaces with RCN). The problem of learning halfspaces with Random
Classification Noise (RCN) can be modeled as having a teacher with constant accuracy probability,
i.e., α(x) = α > 1/2 for all x. As a corollary of Theorem 5.1 we obtain an efficient learning
algorithm for γ-margin halfspaces under RCN achieving a sample complexity of O(1/(γ2ϵ2)). Prior
to our work, the best known sample complexity for provably learning halfspaces with RCN was
Õ(1/(γ4ϵ2)) [19] where the “backward loss-adjustment” of [13] was used.

9

6 Conclusion, Limitations, and Broader Impact

In this work we propose SLaM, a novel and principled method for improving distillation with
unlabeled examples. We empirically show that SLaM consistently outperforms the baselines, often by
a large margin. We also showed that SLaM can be used with and improve (i) knowledge distillation
with temperature scaling; (ii) loss functions beyond the standard Cross-Entropy loss; and (iii)
confidence-based weighting schemes that down-weight examples where the teacher model is not very
confident. Apart from extensive experimental evaluation, we provide strong theoretical guarantees
establishing the consistency and optimality of SLaM. As a byproduct of our theoretical analysis,
we obtain a new iteration for learning γ-margin halfspaces with RCN that improves the best known
sample complexity for this problem.

A limitation of SLaM is that it does not necessarily improve over vanilla distillation when the teacher
model makes only a few mistakes (this is to be expected as our method is designed for the case where
the teacher-model is imperfect).

Knowledge-distillation is a very popular deep learning method, and therefore, potentially malicious
usage of our work is an important societal issue, as deep learning has far-reaching applications from
NLP to Robotics and Self-Driving cars.

References
[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

[2] Sungsoo Ahn, Shell Xu Hu, Andreas Damianou, Neil D Lawrence, and Zhenwen Dai. Vari-
ational information distillation for knowledge transfer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9163–9171, 2019.

[3] Sungsoo Ahn, Shell Xu Hu, Andreas Damianou, Neil D. Lawrence, and Zhenwen Dai. Vari-
ational information distillation for knowledge transfer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[4] Ehsan Amid, Manfred KK Warmuth, Rohan Anil, and Tomer Koren. Robust bi-tempered logistic
loss based on bregman divergences. Advances in Neural Information Processing Systems, 32,
2019.

[5] D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2(4):343–370,
1988.

[6] Eric Arazo, Diego Ortego, Paul Albert, Noel E O’Connor, and Kevin McGuinness. Pseudo-
labeling and confirmation bias in deep semi-supervised learning. In 2020 International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2020.

[7] Noga Bar, Tomer Koren, and Raja Giryes. Multiplicative reweighting for robust neural network
optimization. arXiv preprint arXiv:2102.12192, 2021.

[8] Cenk Baykal, Khoa Trinh, Fotis Iliopoulos, Gaurav Menghani, and Erik Vee. Robust active
distillation. International Conference on Learning Representations (ICLR), 2023.

[9] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A
Raffel. Mixmatch: A holistic approach to semi-supervised learning. Advances in neural
information processing systems, 32, 2019.

[10] A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial-time algorithm for learning
noisy linear threshold functions. Algorithmica, 22(1):35–52, 1998.

[11] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

10

[12] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In
Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 535–541, 2006.

[13] T. Bylander. Learning linear threshold functions in the presence of classification noise. In
Proceedings of the seventh annual conference on Computational learning theory, pages 340–347,
1994.

[14] Hanting Chen, Yunhe Wang, Chang Xu, Chao Xu, and Dacheng Tao. Learning student networks
via feature embedding. IEEE Transactions on Neural Networks and Learning Systems, 32(1):25–
35, 2020.

[15] Liqun Chen, Dong Wang, Zhe Gan, Jingjing Liu, Ricardo Henao, and Lawrence Carin. Wasser-
stein contrastive representation distillation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 16296–16305, 2021.

[16] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big
self-supervised models are strong semi-supervised learners. Advances in neural information
processing systems, 33:22243–22255, 2020.

[17] Mostafa Dehghani, Arash Mehrjou, Stephan Gouws, Jaap Kamps, and Bernhard Schölkopf.
Fidelity-weighted learning. arXiv preprint arXiv:1711.02799, 2017.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[19] I. Diakonikolas, T. Gouleakis, and C. Tzamos. Distribution-independent pac learning of
halfspaces with massart noise. Advances in Neural Information Processing Systems, 32, 2019.

[20] Lei Feng, Senlin Shu, Zhuoyi Lin, Fengmao Lv, Li Li, and Bo An. Can cross entropy loss
be robust to label noise? In Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence, pages 2206–2212, 2021.

[21] Benoı̂t Frénay and Michel Verleysen. Classification in the presence of label noise: a survey.
IEEE transactions on neural networks and learning systems, 25(5):845–869, 2013.

[22] Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
Born again neural networks. In International Conference on Machine Learning, pages 1607–
1616. PMLR, 2018.

[23] Dragan Gamberger, Nada Lavrac, and Ciril Groselj. Experiments with noise filtering in a
medical domain. In ICML, volume 99, pages 143–151, 1999.

[24] Aritra Ghosh, Himanshu Kumar, and P Shanti Sastry. Robust loss functions under label noise
for deep neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 31, 2017.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[26] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural
network. CoRR, abs/1503.02531, 2015.

[27] Fotis Iliopoulos, Vasilis Kontonis, Cenk Baykal, Gaurav Menghani, Khoa Trinh, and Erik Vee.
Weighted distillation with unlabeled examples. In NeurIPS, 2022.

[28] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning
data-driven curriculum for very deep neural networks on corrupted labels. In International
Conference on Machine Learning, pages 2304–2313. PMLR, 2018.

[29] Akisato Kimura, Zoubin Ghahramani, Koh Takeuchi, Tomoharu Iwata, and Naonori Ueda.
Few-shot learning of neural networks from scratch by pseudo example optimization. arXiv
preprint arXiv:1802.03039, 2018.

11

[30] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[31] Abhishek Kumar and Ehsan Amid. Constrained instance and class reweighting for robust
learning under label noise. arXiv preprint arXiv:2111.05428, 2021.

[32] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations. arXiv
preprint arXiv:1909.11942, 2019.

[33] Hunter Lang, Aravindan Vijayaraghavan, and David Sontag. Training subset selection for weak
supervision. arXiv preprint arXiv:2206.02914, 2022.

[34] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method
for deep neural networks. In Workshop on challenges in representation learning, ICML,
volume 3, page 896, 2013.

[35] Zhaoqi Leng, Mingxing Tan, Chenxi Liu, Ekin Dogus Cubuk, Jay Shi, Shuyang Cheng, and
Dragomir Anguelov. Polyloss: A polynomial expansion perspective of classification loss
functions. In International Conference on Learning Representations, 2022.

[36] Lu Liu and Robby T Tan. Certainty driven consistency loss on multi-teacher networks for
semi-supervised learning. Pattern Recognition, 120:108140, 2021.

[37] Tongliang Liu and Dacheng Tao. Classification with noisy labels by importance reweighting.
IEEE Transactions on pattern analysis and machine intelligence, 38(3):447–461, 2015.

[38] Michal Lukasik, Srinadh Bhojanapalli, Aditya Menon, and Sanjiv Kumar. Does label smoothing
mitigate label noise? In International Conference on Machine Learning, pages 6448–6458.
PMLR, 2020.

[39] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pages
142–150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

[40] Negin Majidi, Ehsan Amid, Hossein Talebi, and Manfred K Warmuth. Exponentiated gradient
reweighting for robust training under label noise and beyond. arXiv preprint arXiv:2104.01493,
2021.

[41] Rafael Müller, Simon Kornblith, and Geoffrey Hinton. Subclass distillation. arXiv preprint
arXiv:2002.03936, 2020.

[42] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. Learning
with noisy labels. Advances in neural information processing systems, 26, 2013.

[43] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu.
Making deep neural networks robust to label noise: A loss correction approach. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 1944–1952, 2017.

[44] Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta pseudo labels. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11557–11568,
2021.

[45] Geoff Pleiss, Tianyi Zhang, Ethan Elenberg, and Kilian Q Weinberger. Identifying mislabeled
data using the area under the margin ranking. Advances in Neural Information Processing
Systems, 33:17044–17056, 2020.

[46] Ilija Radosavovic, Piotr Dollár, Ross Girshick, Georgia Gkioxari, and Kaiming He. Data
distillation: Towards omni-supervised learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4119–4128, 2018.

[47] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples
for robust deep learning. In International conference on machine learning, pages 4334–4343.
PMLR, 2018.

12

[48] Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S Rawat, and Mubarak Shah. In defense of
pseudo-labeling: An uncertainty-aware pseudo-label selection framework for semi-supervised
learning. In International Conference on Learning Representations (ICLR), 2021.

[49] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

[50] Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from
noisy labels with deep neural networks: A survey. IEEE Transactions on Neural Networks and
Learning Systems, 2022.

[51] Samuel Stanton, Pavel Izmailov, Polina Kirichenko, Alexander A Alemi, and Andrew G Wilson.
Does knowledge distillation really work? Advances in Neural Information Processing Systems,
34:6906–6919, 2021.

[52] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. arXiv
preprint arXiv:1910.10699, 2019.

[53] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student
improves imagenet classification. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10687–10698, 2020.

[54] I Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and Dhruv Mahajan. Billion-scale
semi-supervised learning for image classification. arXiv preprint arXiv:1905.00546, 2019.

[55] Xiangli Yang, Zixing Song, Irwin King, and Zenglin Xu. A survey on deep semi-supervised
learning. IEEE Transactions on Knowledge and Data Engineering, 2022.

[56] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
with noisy labels. Advances in neural information processing systems, 31, 2018.

[57] Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao Liu, Ekin Dogus Cubuk, and
Quoc Le. Rethinking pre-training and self-training. Advances in neural information processing
systems, 33:3833–3845, 2020.

[58] Yang Zou, Zhiding Yu, Xiaofeng Liu, BVK Kumar, and Jinsong Wang. Confidence regularized
self-training. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 5982–5991, 2019.

13

A Notation

For two vectors p, q ∈ Rd we denote by p · q =
∑d

i=1 piqi their inner product. We use p ∗ q to denote
their element-wise product, i.e., (p ∗ q)i = piqi. We use the notation maxi p to denote the i-th largest
element of the vector p. We use margin(p) to denote the difference between the top-2 elements of p,
i.e., margin(p) = max1 p−max2 p. Moreover, we use margink(p) to denote the top-k margin, i.e.,
margink(p) =

∑k
i=1 maxi p−maxk+1 p. Given a function f(w) : Rd 7→ R we denote by ∂wf(w)

the gradient of f with respect to the parameter w.

B Detailed Description of SLaM

B.1 Estimating the Teacher’s Accuracy Parameters: α(x), k(x)

Estimating the Teacher’s Accuracy α(x) via Isotonic Regression We now turn our attention to
the problem of estimating α(x) for each x of dataset B, i.e., the dataset labeled by the teacher model.
In [27] the authors empirically observed that α(x) correlates with metrics of teacher’s confidence
such as the “margin”, i.e., the difference between the probabilities assigned in the top-1 class and
the second largest class according to the teacher’s soft label ys. In particular, the larger the margin
is the more likely is that the corresponding teacher label is correct. We exploit (and enforce) this
monotonicity by employing isotonic regression on a small validation dataset to learn the mapping
from the teacher’s margin at an example x to the corresponding teacher’s accuracy α(x).

To perform this regression task we use a small validation dataset V with correct labels that the
teacher has not seen during training. For every example x ∈ V we compute the corresponding
soft-teacher label ys(x) and compute its margin margin(x) = max1(ys(x)) −max2(ys(x)). For
every x ∈ V we also compute the hard-prediction of the teacher and compare it with the ground-
truth, i.e., for every x the covariate and responce pair is (margin(x), 1 − err(g(x), y(x))). We
then use isotonic regression to fit a piecewise constant, increasing function to the data. Sorting
the regression data {(margin(x), 1− err(g(x), y(x)))x ∈ V } by increasing margin to obtain a list
(c(1), . . . , r(1)), . . . , (c(m), r(m)), isotonic regression solves the following task

min
r̂(1),...,r̂(m)

m∑
i=1

(r(i) − r̂(i))2

subject to lb ≤ r̂(i) ≤ r̂(i+1) ≤ 1,

where the parameter lb is a lower bound on the values r̂(i) and is a hyper-parameter that we tune.
On the other hand, the upper bound for the values can be set to 1 since we know that the true value
α(x) is at most 1 for every x (since it corresponds to the probability that the teacher-label is correct).
After we compute the values r̂(1), . . . , r̂(m) for any given c ∈ [0, 1] the output of the regressor is the
value of r̂(i) corresponding to the smallest c(i) that is larger-than or equal to c. This is going to be
our estimate for α(x). We remark that finding the values r(i) can be done efficiently in O(n) time
after sorting the data (which has a runtime of O(n log n)) so the whole isotonic regression task can
be done very efficiently.

Estimating k(x). We now describe our process for estimating the values of α(x) and k(x) for
every example of dataset B. Similarly to the binary classification setting, we estimate the accuracy
probability α(x) using isotonic regression on a small validation dataset. The value of k(x) can be set
to be equal to a fixed value of k for all data, so that the top-k accuracy of the teacher on the validation
data is reasonable (say above 60%). For example, in our ImageNet experiments, we used k = 5. We
also provide a data-dependent method to find different values k(x) for every example x. To do this
we adapt the method for estimating the top-1 accuracy α(x) of the teacher from the validation dataset.
For every value of k = 2, . . . , L− 1 we compute the top-k margin of the teacher’s predictions on the
validation data which is equal to the sum of the top-k probabilities of the teacher soft-label minus the
probability assigned to the k + 1-th class, i.e.,

margink(ys(x)) =
(k∑

i=1

max
i

ys(x)
)
−max

k+1
ys(x) .

14

Using the top-k margin as the covariate and the top-k accuracy as the response we solve the cor-
responding regression task using isotonic regression to obtain the value αk(x) representing the
probability that the true label belongs in the top-k predictions of the teacher soft-label. For some
threshold, say 90%, for every x we set k(x) to be the smallest value of k so that αk(x) ≥ 90%. We
empirically observed that using larger thresholds for the top-k accuracy (e.g., 90% or 95%), is better.
We remark that while using the top-k margin as the covariate in the regression task is reasonable, our
method can be used with other “uncertainty metrics” of the teacher’s soft-labels, e.g., the entropy of
the distribution of ys(x) after grouping together the top-k elements. The higher this entropy metric is
the more likely that the top-k accuracy probability α(x)k of the teacher is low.

B.2 SLaM for Distillation with Unlabeled Examples: Pseudocode

In this section we present pseudo-code describing the distillation with unlabeled examples setting
and the SLaM method, Algorithm 1.
Remark B.1. We remark that in our experiments, we observed that not normalizing the mixing
operation with k(x)− 1 resulted in better results overall. Therefore, the mixing operation used in our
experimental evaluation of SLaM is mix(f(x;w);α(x), k(x)) = α(x)f(x;w) + (1 − α(x))(1 −
f(x;w)) ∗ top(ys(x); k(x)). For more details we refer the reader to the code provided in the
supplementary material.

Algorithm 1 Student Label Mixing (SLaM) Distillation
Input: Labeled Dataset A, Labeled Validation dataset V, Unlabeled Dataset U
Output: A trained Student model f(x;w)

Train Teacher model on Labeled Dataset A
Pre-train Student model on Labeled Dataset A

Label examples of Dataset U using the Teacher
B ← ∅
for each x ∈ U do

Add (x, ys(x)) to B # For hard-distillation use y(x)
end for

Learn Teacher Accuracy Statistics α(x), k(x) Algorithm 2
α̂(x), k̂(x)← LearnAccuracyStatistics(y(·), V, B)
Train student f(x;w) using the SLaM loss:∑

(x,y)∈A∪V

ℓ(y, f(x;w)) +
∑

(x,y)∈B

ℓ(y,mix(f(x;w); â(x), k̂(x)))

C SLaM Consistency

In the following proposition we show that any minimizer of the SLaM loss over the noisy teacher-data
must agree with the ground-truth for all x (that have positive density). To keep the presentation
simple and avoid measurability issues (e.g., considering measure zero sets under X) in the following
we will assume that the example distribution X is supported on a finite set. We remark that one
can easily adapt the proof to hold for any distribution X (but the result will hold after excluding
measure-zero sets under X).

Proposition C.1 (SLaM Consistency). Let D be the distribution of the teacher-labeled examples
of dataset B, i.e., we first draw x ∼ X and then label it using the noisy teacher of Definition 3.2.
Moreover, assume that there exists some parameter w∗ ∈ W such that the ground-truth g(x) =
f(x;w∗). Denote by LSLaM(w) = E(x,y)∼D[ℓ(y,mix(f(x;w);α(x), k(x))]. the SLaM objective.
The following hold true.

1. w∗ minimizes the SLaM objective.

15

Algorithm 2 Estimating Teacher’s Accuracy Statistics α(x), k(x)
Input: (Noisy) Teacher Model ys(x), Labeled Validation dataset V,
Isotonic-Regression lower-bound lb ∈ [0, 1], and top-k accuracy threshold t ∈ [0, 1].
Output: Estimates α̂(x), k̂(x) of the actual α(x), k(x).

Create Soft-labels for the Validation dataset using the teacher model {ys(x) : x ∈ V }.
for j = 1 to L− 1 do

Map ys(x) to top-j margin and accuracy pairs on the Validation V

C ←

{(
j∑

r=1

max
r

ys(x)−max
j+1

ys(x), 1− err(ys(x), z)

)
: (x, z) ∈ V

}
.

Set α̂j(x) to be the output of Isotonic-Regression with lower-bound lb on the (covariate,
responce) pairs in C. # See Appendix B.1

end for
â(x)← â1(x)
âL(x)← 1 # The top-L accuracy is always (trivially) equal to 1
Given example x for some threshold t set k̂(x) to be the smallest integer r ∈ {1, . . . , L} so that
ar(x) ≥ t.

2. Assuming further that for all x it holds that α(x)k(x) ̸= 1, we have that any minimizer w of
the SLaM objective satisfies: f(x;w) = g(x) for all x.

Proof. Fix any example x ∈ X . By Definition 3.2 we have that the corresponding teacher label y is
correct with probability α(x) and a uniformly random incorrect label out of the top-k labels according
to the teacher soft-label ys(x). Recall for an L-dimension score vector p, by top(p; k) ∈ {0, 1}L we
denote the vector that has 1 on the positions of the top-k elements of p, e.g., top((1, 2, 3, 4, 5); 2) =
(0, 0, 0, 1, 1). Conditional on x, the corresponding expected noisy teacher label is

E[y | x] = P[y = g(x) | x]g(x) +P[y ̸= g(x)]E[y | x, y ̸= g(x)]

= α(x)g(x) + (1− α(x))E[y | y ̸= g(x), x] .

We know that the expected teacher label conditional on it being wrong E[y | y ̸= g(x), x] is a
uniformly random incorrect label from the top-k labels of the corresponding teacher soft-label ys(x).
Assume first that k = L, since the ground-truth is represented by a one-hot vector, the distribution
of uniformly random incorrect labels conditional on x can be written as (1 − g(x))/(L − 1). For
example, if the ground-truth label is g(x) = (1, 0, 0, 0, 0) then a uniformly random incorrect label
has probability distribution (0, 1/4, 1/4, 1/4, 1/4). Assume now that k(x) = 3 and top(ys(x); 3) =
(1, 1, 1, 0, 0). Then the distribution of the (incorrect) teacher label becomes (0, 1/2, 1/2, 0, 0). Using
∗ to denote element-wise multiplication of two vectors, we have

E[y | x, y ̸= g(x)] =
1− g(x)

k(x)− 1
∗ top(ys(x); k(x))

Therefore, we obtain

E[y | x] = α(x)g(x) + (1− α(x))
1− g(x)

k(x)− 1
∗ top(ys(x); k(x)) = mix(g(x);α(x), k(x)) .

Therefore, by using the fact that Cross-Entropy is linear in its first argument, we obtain that the
expected SLaM loss on some example x is

E[ce(y,mix(f(x;w);α(x), k(x))) | x] = ce(E[y | x],mix(f(x;w);α(x), k(x)))

= ce(mix(g(x;w);α(x), k(x)),mix(f(x;w);α(x), k(x))) .

We first have to show that there exist some parameter w ∈ W that matches the (expected) ob-
served labels E[y | x]. Observe first that by using the realizability assumption, i.e.,that there
exists w∗ so that f(x;w∗) = g(x) we obtain that, for every x, it holds mix(g(x);α(x), k(x)) =
mix(f(x;w∗);α(x), k(x)). In fact, by Gibb’s inequality (convexity of Cross-Entropy) we have that
w∗ is a (global) minimizer of the SLaM objective.

16

We next show that any (global) minimizer of the SLaM objective must agree with the ground-truth
for every x. Since we have shown that w∗ is able to match the (expected) labels E[y | x] any
other minimizer w must also satisfy mix(g(x);α(x), k(x)) = mix(f(x;w);α(x), k(x))). Assume
without loss of generality that g0 = 1, i.e., the ground-truth label is 0. We observe that by using that
mix(g(x;w);α(x), k(x)) = α(x)g(x) + (1− α(x)) 1−g(x)

k(x)−1 ∗ top(ys(x); k(x)) and the fact that the
ground-truth belongs in the top-k(x) of the teacher’s predictions conditional that the teacher’s top-1
prediction is incorrect (thus top(ys(x))0 = 1), we obtain that

α(x)g0(x)+(1−α(x))(1−g0(x))/(1−k(x)) = α(x)f(x;w)0+(1−α(x))(1−f(x;w)0)/(k(x)−1) .

Using the fact that g0 = 1 we can simplify the above expression to

(1− f(x;w)0)

(
α(x)− 1− α(x)

k(x)− 1

)
= 0 .

Using the assumption that a(x)k(x) ̸= 1 we obtain that the term
(
α(x)− 1−α(x)

k(x)−1

)
is not vanishing

and therefore it must hold that f(x;w)0 = 1 = g0, i.e., the student model must be equal to the
ground-truth.

D Extended Experimental Evaluation

We implemented all algorithms in Python and used the TensorFlow deep learning library [1]. We ran
our experiments on 64 Cloud TPU v4s each with two cores.

D.1 Implementation Details: Vision Datasets

Here we present the implementation details for the vision datasets we considered.
Remark D.1. We note that in all our experiments, “VID” corresponds to the implementation of the
loss described in equation (2), (4) and (6) of [2] (which requires appropriately modifying the student
model so that we have access to its embedding layer).

Experiments on CIFAR-{10/100} and CelebA For the experiments on CIFAR-10/100 and CelebA
we use the Adam optimizer with initial learning rate lr = 0.001. We then proceed according to the
following learning rate schedule (see, e.g., [25]):

lr←


lr · 0.5 · 10−3, if #epochs > 180

lr · 10−3, if #epochs > 160

lr · 10−2, if #epochs > 120

lr · 10−1, if #epochs > 80

Finally, we use data-augmentation. In particular, we use random horizontal flipping and random
width and height translations with width and height factor, respectively, equal to 0.1.

The hyperparameters of each method are optimized as follows. For SLaM we always use 0.5 as
the lower bound for isotonic regression (i.e., the parameter lb in Algorithm 2). As CelebA is
a binary classification benchmark k(x) is naturally set to 2 for all examples. For CIFAR-10/10
we used the data-dependent method for estimating k(x) (see Algorithm 2) with threshold pa-
rameter t = 0.9. For weighted distillation we do a grid search over updating the weights every
{1, 25, 50, 100, 200} epochs and we report the best average accuracy achieved. Finally, for VID we
search over {0.001, 0.1, 0.2, 0.5, 0.8, 1.0, 2.0, 10.0, 50.0, 100.0} for the coefficient of the VID-related
term of the loss function, and for the Taylor cross-entropy method we optimize its hyperparameter
over {1.0, 2.0, 3.0, 4.0, 5.0, 6.0}.

Experiments on ImageNet For the ImageNet experiments we use SGD with momentum 0.9 as the
optimizer. For data-augmentation we use random horizontal flipping and random cropping. Finally,
the learning rate schedule is as follows. For the first 5 epochs the learning rate lr is increased from

17

Figure 4: Comparison of distillation methods on ImageNet. On the horizontal axis we plot the size
of Dataset A as a percentage of the whole training dataset. On the vertical axis we plot the accuracy
of the trained student-model on the test dataset.

Table 5: Experiments on CIFAR-10 (hard-distillation). See Section 4.2 for details.
Labeled Examples 5000 7500 10000 12500 15000 17500

Teacher 61.30 68.98 72.42 73.92 76.63 78.63

Vanilla 62.26 ± 0.45 69.07 ± 0.11 72.09 ± 0.11 73.43 ± 0.16 75.93 ± 0.25 77.43 ± 0.15

Taylor-CE [20] 63.14 ± 0.07 69.98 ± 0.11 72.72 ± 0.36 73.77 ± 0.28 76.26 ± 0.29 77.88 ± 0.20

UPS [48] 64.27 ± 0.08 70.93 ± 0.26 73.78 ± 0.16 74.66 ± 0.29 77.38 ± 0.37 78.95 ± 0.08

VID [3] 61.95 ± 0.22 66.91 ± 0.21 69.59 ± 0.24 72.16 ± 0.47 74.83 ± 0.11 75.55 ± 0.21

Weighted [27] 63.22 ± 0.45 71.04 ± 0.26 72.84 ± 0.12 74.20 ± 0.16 76.56 ± 0.24 78.23 ± 0.15

SLaM (Ours) 66.40 ± 0.31 72.44 ± 0.17 74.77 ± 0.13 75.64 ± 0.19 77.99 ± 0.36 79.26 ± 0.26

0.0 to 0.1 linearly. After that, the learning rate changes as follows:

lr =


0.01, if #epochs > 30

0.001, if #epochs > 60

0.0001, if #epochs > 80 .

The hyperparameters of each method are optimized as follows. For SLaM we do a hyperparameter
search over {0.55, 0.60, 0.65, 0.70} for the lower bound for isotonic regression, and we keep the best
performing value for each potential size of dataset A. We used the fixed value 5 for k(x), as the
top-5 accuracy of the teacher model was satisfactory (much higher than its top-1 accuracy) on the
validation dataset. For Taylor-CE we did a hyper-parameter search for the Taylor series truncation
values in {1, 2, 3, 4, 5, 6, 10, 20, 50, 80, 100}. For weighted distillation we compute the weights in a
one-shot fashion using the pre-trained student (as in the ImageNet experiments in [27]). For VID we
search over {0.1, 0.3, 0.5} for the coefficient of the VID-related term of the loss function.

D.2 Hard-Distillation

Here we present results on hard-distillation. The hyper-parameters of all methods are chosen the
same way as in our soft-distillation experiments, see Appendix D.1. Tables 5, 6 and 7 contain
our results on CIFAR-10, CIFAR-100 and CelebA, respectively. We observe that in almost all
cases, SLaM consistently outperforms the other baselines. Moreover, for CIFAR-10 and CIFAR-100
hard-distillation performs worse than soft-distillation (as it is typical the case) but in CelebA hard-
distillation seems to be performing on par with (sometimes even outperforming) soft-distillation. A
plausible explanation for the latter outcome is that in our CelebA experiments the teacher and student
have different architectures (MobileNet and ResNet, respectively) so that soft-labels from the teacher
are not so informative for the student. (This is also a binary classification task where the information
passed from the teacher to the student through its soft-labels is limited.)

18

Table 6: Experiments on CIFAR-100 (hard-distillation). See Section 4.2 for details.
Labeled Examples 5000 7500 10000 12500 15000 17500

Teacher 35.97 44.65 49.62 55.68 59.19 62.05
Vanilla 36.36 ± 0.04 44.15 ± 0.10 50.22 ± 0.07 55.55 ± 0.24 58.85 ± 0.1 61.43 ± 0.19

Taylor-CE [20] 39.12 ± 0.14 46.87 ± 0.10 52.64 ± 0.22 57.19 ± 0.28 59.95 ± 0.11 62.36 ± 0.21

UPS [48] 39.49 ± 0.13 48.36 ± 0.44 53.95 ± 0.10 57.95 ± 0.10 60.59 ± 0.29 62.09 ± 0.28

VID [3] 37.19 ± 0.09 44.67 ± 0.16 50.63 ± 0.35 54.78 ± 0.07 59.27 ± 0.14 62.01 ± 0.05

Weighted [27] 38.04 ± 0.29 46.45 ± 0.22 52.33 ± 0.18 57.43 ± 0.13 60.81 ± 0.09 63.02 ± 0.06

SLaM (Ours) 42.01 ± 0.29 49.08 ± 0.14 54.49 ± 0.17 58.53 ± 0.04 61.12 ± 0.15 63.21 ± 0.18

Table 7: Experiments on CelebA (hard-distillation). See Section 4.2 for details.
Labeled Examples 2% 3% 4% 5% 6% 7%

Teacher 86.19 88.25 88.95 91.31 92.09 92.62

Vanilla 89.73 ± 0.08 91.61 ± 0.09 92.05 ± 0.11 93.41 ± 0.13 94.02 ± 0.15 94.05 ± 0.04

Taylor-CE [20] 90.62 ± 0.05 92.19 ± 0.02 92.66 ± 0.11 93.60 ± 0.14 94.00 ± 0.04 94.38 ± 0.10

UPS [48] 89.35 ± 0.04 91.30 ± 0.04 91.95 ± 0.12 93.18 ± 0.07 93.71 ± 0.04 94.18 ± 0.03

VID [3] 89.92 ± 0.21 91.60 ± 0.11 92.20 ± 0.12 93.51 ± 0.15 94.08 ± 0.15 94.27 ± 0.10

Weighted [27] 90.06 ± 0.06 91.97 ± 0.13 92.45 ± 0.10 93.60 ± 0.07 93.94 ± 0.12 94.25 ± 0.16

SLaM (Ours) 90.43 ± 0.05 92.25 ± 0.11 92.71 ± 0.08 93.96 ± 0.17 94.39 ± 0.21 94.52 ± 0.12

Figure 5: Comparison of distillation methods on CIFAR-10,100 and CelebA. On the horizontal axis
we plot the size of Dataset A as a percentage of the whole training dataset. On the vertical axis we
plot the accuracy of the trained student-model on the test dataset.

D.3 Large Movies Reviews Dataset Results

Here we present the results and the implementation details regarding the experiments on the Large
Movies Reviews dataset. Recall that we use an ALBERT-large model as a teacher, and an ALBERT-
base model as a student. We also use 2%, 4%, 8%, 40% percent (or 500, 1000, 2000, 10000 examples)
from the training dataset and split the remaining data in a validation dataset of 500 examples and
an unlabeled dataset U. We compare the methods on the soft-distillation. For each trial we train the
student model for 40 epochs and keep the best test accuracy over all epochs. We perform 3 trials and
report the average of each method and the variance of the achieved accuracies over the trials. The
results of our experiments can be found in Table 8. We remark that we did not implement the UPS
method for this dataset as the data-augmentation method for estimating the teacher’s accuracy could
not be readily used for this NLP dataset. Moreover, using dropout and Monte Carlo estimation for
the uncertainty was also not compatible with the Albert model used in this experiment.

Since we are dealing with ALBERT-models (which are already pre-trained), we do not pre-train the
student model on dataset A except in the case of “weighted-distillation” [27], where we pre-train the
student model on dataset A just for 1 epoch. The teacher model is trained using the Adam optimizer
for 20 epochs with initial learning rate 2 · 10−5. The student model is trained also using the Adam
optimizer but for 40 epochs and with learning rate 10−7.

The hyperparameters of each method are optimized as follows. For SLaM we do a hyperparameter
search over {0.5, 0.6, 0.7, 0.8, 0.9} for the lower bound for isotonic regression, and we keep the best
performing value for each potential size of dataset A. As this is a binary classification benchmark we
naturally set k(x) = 2 for all examples. For weighted distillation we do a grid search over updating
the weights every {1, 10, 20, 40} epochs and, similarly, we report the best average accuracy achieved.
Finally, for VID (recall also Remark D.1) we search over {0.1, 0.5, 1.0, 2.0} for the coefficient of

19

Table 8: Experiments on the Large Movies Reviews Dataset (soft-distillation). See Section D.3 for
details.

Labeled Examples 2% 4% 8% 40%

Teacher 77.52 84.04 85.44 88.3

Vanilla 80.93 ± 0.10 85.12 ± 0.29 85.99 ± 0.08 87.50 ± 0.6

Taylor-CE [20] 79.5 ± 0.38 85.14 ± 0.13 85.98 ± 0.14 87.57 ± 0.3

VID [3] 81.76 ± 0.32 85.33 ± 0.35 86.17 ± 0.06 87.71 ± 0.01

Weighted [27] 81.1 ± +0.1 85.2 ± 0.05 86.13 ± 0.17 87.8 ± 0.25

SLaM (Ours) 81.88 ± 0.23 85.5 ± 0.09 86.23 ± 0.13 87.73 ± 0.38

Figure 6: Composability the fidelity-based weighting scheme of [17]. The x-axis shows the different
values of the fidelity hyper-parameter β and the size of dataset A. From left to right we increase
the size of dataset A from 10% to 35% and for each size we try different values of β. We observe
that SLaM on its own (shown in green) is usually much better than the fidelity weighting scheme
(shown in orange). Moreover, using SLaM on top of the fidelity weighting scheme (shown in blue)
consistently improves its performance.

the VID-related term of the loss function, and for the PolyLoss we opitmize its hyperparameter over
{−1.0,−0.8,−0.6,−0.4,−0.2, 0.5, 1.0, 2.0}.

D.4 Combining with Teacher-Uncertainty-Based Reweighting Techniques

As we discussed in Section 2, our method can in principle be combined with teacher-uncertainty filter-
ing and weighting schemes as these can be seen as preprocessing steps. To demonstrate this, we com-
bine our method with the so-called fidelity-based weighting scheme of [17]. The fidelity weighting
scheme reweights examples using some uncertainty measure for teacher’s labels, e.g., by performing
random data-augmentations and estimating the variance of the resulting teacher labels or using dropout
and Monte Carlo estimation. More precisely, for every example x in the teacher-labeled dataset B, the
fidelity-weighting scheme assigns the weight wFid(x) = exp(−β uncertaintyteacher(x)) for some
hyper-parameter β > 0. In our experiments we performed 10 random data augmentations (random
crop and resize), estimated the coordinate-wise variance of the resulting teacher soft-labels, and
finally computed the average of the variances of the k-classes, as proposed in [17]. We normalized
the above uncertainty of each example by the total uncertainty of the teacher over the whole dataset
B. The weights of examples in dataset A are set to 1 and the reweighted objective is optimized over
the combination of the datasets A,B.

Lfid(w) =
1

|A ∪B|

(∑
(x,y)∈A

ℓ(y, f(x;w)) +
∑

(x,y)∈B

wFid(x) ℓ(y, f(x;w))

)
. (3)

To demonstrate the composability of our method with such uncertainty-based weighting schemes,
we use CIFAR100 and the percentage of the labeled dataset A (as a fraction of the whole training
set) is 10%, 15%, 20%, 25%, 30%, 35%, similar to the setting of Section 4.2. The teacher is a
ResNet110 and the student is a ResNet56. We first train the student using only the fidelity weighting
scheme, i.e., optimize the loss function of Equation (4) using different values for the hyperparameter
β ∈ {0.1, 0.2, 1.0, 1.2, 2.0, 5.0, 10.0, 20.0}, i.e., ranging from mildly reweighting the examples of

20

Figure 7: CIFAR100: Temperature Ablation. On the x-axis we have the size of the labeled dataset (as
a percentage of the whole training dataset) that the teacher model uses for training.

dataset B to more agressively “removing” examples where the teacher’s entropy is large. For the
same values of β we then train the student using the reweighted SLaM objective:

LFid+SLaM(w) =
1

|A ∪B|

(∑
(x,y)∈A

ℓ(y, f(x;w)) +
∑

(x,y)∈B

wfid(x) ℓ(y,mix(f(x;w);α(x), k(x))

)
.

(4)

For the combined SLaM + Fidelity method we did not perform hyper-parameter search and used
the same parameters for the isotonic regression as we did in the “standard” SLaM experiment in
CIFAR100 of Appendix D.1. We present our comprehensive results for all sizes of dataset A and
values of the hyper-parameter β in Figure 6. Our results show that, regardless of the value of
the hyperparameter β and the size of the labeled dataset A, using SLaM together with the fidelity
weighting scheme provides consistent improvements. Moreover, in Figure 6, we observe that by
using SLaM the achieved accuracy depends less on the hyper-parameter β: since SLaM takes into
account the fact that some of the teacher’s predictions are incorrect, it is not crucial to down-weight
them or filter them out.

D.5 Using Distillation Temperature

In this section we show that our approach can be effectively combined with temperature-scaling [26].
Choosing the right distillation temperature often provides significant improvements. In our setting,
the teacher provides much more confident predictions (e.g., soft-labels with high-margin) on dataset
A (where the teacher was trained) compared to the teacher soft-labels of dataset B where the
teacher is, on average, less confident. Given this observation, it is reasonable to use different
distillation temperatures for dataset A and dataset B. We try different temperatures for dataset A
and dataset B and perform vanilla distillation with temperature and also consider applying the
temperature scaling before applying SLaM. For each size of dataset A we try pairs of temperatures
tA, tB ∈ {0.01, 0.1, 0.5, 0.8, 1., 2., 5., 10., 100.} and report the best accuracy achieved by vanilla
distillation and the best achieved by first applying temperature scaling and then SLaM. In Figure 7
we observe that SLaM with temperature scaling consistently improves over vanilla distillation with
temperature.

D.6 Using SLaM with other loss functions beyond cross-entropy

In this section, we demonstrate that our method can be successfully applied when the student loss
function comes from the families of losses introduced in [20] and [35]. We perform experiments on
CIFAR-100 and ImageNet following the setting of Section 4.2. In particular, we compare vanilla
distillation with unlabeled examples using the Taylor-CE loss of [20] and the PolyLoss of [35], with
combining SLaM with these losses. For the Taylor-CE loss we set the “degree” hyperparameter to
be 2 (as suggested in [20]) and we set the hyperparameter of the PolyLoss to be 2.0 (as suggested
in [35]). The corresponding results can be found in Figure 8.

21

Figure 8: Using SLaM with PolyLoss [35] and Taylor CE [20]. On the x-axis we have the size of the
labeled dataset (as a percentage of the whole training dataset) that the teacher model uses for training.
See Appendix D.6 for more details.

D.7 Performance of SLaM with (even) fewer labels

In this section we investigate more extensively the effect of the range of the the size of the labeled-
dataset. In particular, we provide experiments with even fewer labeled examples available. Experi-
ments in which the number of available labeled examples is small are of greater importance since
this is the typical scenario where “distillation with unlabeled examples” applies. For larger dataset
sizes, as seen in the plots of the previous experiments, all methods converge to roughly the same
performance.

Labeled Examples CIFAR10, 1% CIFAR10, 5% CIFAR100, 1% CIFAR100, 5%
Teacher 10.07 51.67 9.45 23.61
Vanilla 11.75 ± 0.1 54.2 ± 0.16 10.08 ± 0.06 25.15 ± 0.11

Taylor-CE [20] 10.00 ± 0.01 55.14 ± 0.28 9.79 ± 0.13 26.14 ± 0.39
UPS [48] 12.74 ± 0.94 56.21 ± 0.23 10.40 ± 0.05 26.41 ± 0.13
VID [3] 13.25 ± 0.26 54.32 ± 0.05 10.02 ± 0.13 24.93 ± 0.19

Weighted [27] 12.67 ± 0.01 54.58 ± 0.1 10.07 ± 0.06 25.36 ± 0.14
SLaM 26.73 ± 0.02 57.40 ± 0.05 10.87 ± 0.07 27.76 ± 0.19

Table 9: Comparison of methods on CIFAR10 and CIFAR100 datasets.

D.8 SLaM Hyper-parameter Ablation

We investigate the effect of the hyper-parameters used in SLaM, see Appendix D.1.

In Table 10 we investigate using different values for the isotonic regression lower-bound parameter,
(lb in Appendix D.1). We observe that SLaM is rather robust to this hyperpameter and usually simply
setting lb = 0.5 yields good results.

Labeled Examples 10% 15% 20% 25% 30% 35%
lb=0 65.89 ± 0.14 71.32 ± 0.11 74.02 ± 0.19 76.71 ± 0.08 77.76 ± 0.12 78.9 ± 0.12
lb=0.1 65.7 ± 0.06 71.73 ± 0.17 74.18 ± 0.14 76.42 ± 0.10 78.07 ± 0.19 78.99 ± 0.15
lb=0.3 65.88 ± 0.21 71.94 ± 0.08 74 ± 0.09 76.76 ± 0.13 78.19 ± 0.18 79.01 ± 0.21
lb=0.5 66.13 ± 0.18 71.96 ± 0.21 74.27 ± 0.12 76.73 ± 0.07 78.01 ± 0.14 78.98 ± 0.09
lb=0.7 64.69 ± 0.09 71.19 ± 0.13 73.74 ± 0.18 76.38 ± 0.11 78.2 ± 0.10 78.71 ± 0.16
lb=0.9 63.51 ± 0.17 69.86 ± 0.14 72.57 ± 0.20 75.32 ± 0.17 77.35 ± 0.09 78.19 ± 0.11
lb=0.99 62.86 ± 0.21 69.84 ± 0.18 72.34 ± 0.16 75.16 ± 0.21 77.37 ± 0.20 78.13 ± 0.13
lb=1 62.78 ± 0.11 69.84 ± 0.09 72.63 ± 0.14 75.1 ± 0.19 77.19 ± 0.08 78.17 ± 0.16

Table 10: CIFAR10: a(x) ablation results for the lower bound lb of isotonic regression. The value of
lb ranges from 0 to 1.

We next compare using a fixed value for the top-k threshold value, k(x) versus the data-depenent
method described in Appendix D.1. We again observe that SLaM is robust to the value of k
used since it outperforms vanilla distillation for reasonable values of k. Overall, we found that
using fixed values of k(x) (after some hyper-parameter search for k) and using the data-dependent
method yield comparable results. The advantage of the fixed-value method is that it is easier to
implement (and slightly more efficient) and the advantage of the data-dependent method is that its
hyperparameter (threshold t in Algorithm 2) is easier to tune (in all our experiments t = 0.9 achieved
good performance).

22

Labeled Examples 10% 15% 20%
Vanilla 37.94 ± 0.10 46.42 ± 0.24 52.17 ± 0.21
k=2 41.25 ± 0.36 49.18 ± 0.19 54.48 ± 0.25
k=5 40.71 ± 0.29 49.41 ± 0.23 54.41 ± 0.2
k=10 41.2 ± 0.8 49.31 ± 0.12 54.42 ± 0.19
Data-Dependent k(x) (t = 0.9) 42.7 ± 0.30 49.89 ± 0.23 54.73 ± 0.27

Table 11: CIFAR100: Fixed-Value vs Data-Dependent k(x) Ablation.

D.9 Robustness of SLaM to inaccuracies in α(x), k(x)

We perform a “controlled” experiment by adding noise to the estimates of α(x) and k(x) to test
the robustness of SLaM to inaccurate predictions of α(x) and k(x) is a valuable addition to our
experimental evaluation. To do this, we start from the oracle values for α(x) and k(x), i.e., α∗(x) = 1
if the teacher prediction is correct on x and 0 if it is incorrect and k∗(x) is equal to the smallest
integer value ℓ so that the ground-truth label is contained in the top ℓ predictions of the teacher. We
then introduce random noise to the oracle predictions: for α(x) we perform a random perturbation

α(x) = α∗(x) + (1− 2α∗(x)) ξ,

where ξ is uniformly distributed in [0, σ]. Hence, when α∗(x) = 0 we increase it by adding a random
variable ξ ∈ [0, σ] and when α∗(x) = 1 we decrease it by subtracting the same random variable
ξ ∈ [0, σ]. We clip the resulting value in the interval [0, 1]. To create noisy values for k(x) we simply
add a random integer to the optimal value k∗(x), i.e., k(x) = k∗(x) + Z, where Z is a random
integer in {−ℓ, . . . , ℓ}. We clip the resulting value of k(x) in the range {0, . . . ,numClasses}.
We test our method on CIFAR100 and observe that the accuracy of SLaM gracefully decays as the
predictions for α(x) and k(x) become worse (bottom right corner is the noisiest σ = 0.5, ℓ = 90 and
top left is the noiseless σ = 0, ℓ = 0), see Table 12.

CIFAR100, 20% Labeled Data ℓ = 0 ℓ = 5 ℓ = 10 ℓ = 50 ℓ = 90
σ = 0 61.69 ± 0.3 59.71 ± 0.49 59.7 ± 0.55 59.63 ± 0.44 59.4 ± 0.65
σ = 0.1 60.04 ± 0.29 59.55 ± 0.33 59.66 ± 0.35 59.79 ± 0.2 60.03 ± 0.41
σ = 0.2 59.39 ± 0.1 59.23 ± 0.25 59.5 ± 0.39 59.16 ± 0.29 59.31 ± 0.31
σ = 0.5 57.71 ± 0.15 57.6 ± 0.23 57.56 ± 0.28 57.46 ± 0.25 57.29 ± 0.21

Table 12: CIFAR100 with 20% labeled data performance with different levels of noise added to the
predictions for k(x) and α(x).

D.10 Different Regression Algorithms for α(x), k(x)

In our main experimental evaluation of SLaM, we chose isotonic regression to enforce the mono-
tonicity in the learned accuracy estimates for α(x) based on the empirical observation that α(x)
is often approximately monotone as a function of the margin of the teacher. Moreover, the lower
threshold (denoted by lb in Appendix D.1) in isotonic regression gives us a way to control how
”agressive” the mixing operation is going to be. That said, SLaM does not hinge on some particular
regression method and other methods can be used. We investigate using different regression methods
(knn, Logistic regression) for estimating α(x), k(x) with SLaM. In Table 13 and Table 14, we see
that Isotonic regression typically outperfoms other methods. Moreover, SLaM provides consistent
improvements regardless of regression method used.

Labeled Data 10% 15% 20% 25% 30% 35%
kNN k=10 67.1 ± 0.15 70.56 ± 0.21 74.6 ± 0.11 76.68 ± 0.17 78 ± 0.16 79.26 ± 0.12
kNN k=20 67.5 ± 0.15 71.09 ± 0.19 74.47 ± 0.15 77.03 ± 0.1 78.03 ± 0.17 79.21 ± 0.13
kNN k=30 67.51 ± 0.11 71.27 ± 0.13 74.66 ± 0.12 77.03 ± 0.13 78.07 ± 0.2 79.2 ± 0.18
kNN k=40 67.64 ± 0.21 71.08 ± 0.22 74.5 ± 0.09 76.64 ± 0.12 77.92 ± 0.11 79.41 ± 0.22
Logistic 65.26 ± 0.05 68.85 ± 0.08 73.35 ± 0.12 76.17 ± 0.15 76.87 ± 0.25 78.76 ± 0.35

Isotonic lb=0.5 66.82 ± 0.61 72.61 ± 0.30 75.01 ± 0.25 75.72 ± 0.17 78.04 ± 0.16 79.22 ± 0.11

Table 13: CIFAR10: Using different regression methods for estimating α(x), k(x).

23

Labeled Data 10% 15% 20% 25% 30% 35%
kNN k=10 40.75 ± 0.02 49.07 ± 0.15 54.86 ± 0.11 57.87 ± 0.17 61.9 ± 0.2 63.06 ± 0.22
kNN k=20 41.03 ± 0.05 49.19 ± 0.12 54.9 ± 0.1 57.85 ± 0.18 61.76 ± 0.2 63.45 ± 0.16
kNN k=30 41.04 ± 0.07 49.55 ± 0.13 55.14 ± 0.15 57.96 ± 0.21 61.9 ± 0.19 63.2 ± 0.23
kNN k=40 41.23 ± 0.03 49.76 ± 0.15 54.78 ± 0.1 58.15 ± 0.17 61.98 ± 0.21 63.47 ± 0.2
Logistic 39.68 ± 0.03 48.17 ± 0.1 53.56 ± 0.11 57.45 ± 0.09 61.77 ± 0.19 63.24 ± 0.18

Isotonic lb=0.5 42.72 ± 0.30 49.89 ± 0.23 54.73 ± 0.27 58.78 ± 0.15 61.30 ± 0.09 63.98 ± 0.19

Table 14: CIFAR100: Using different regression methods for estimating α(x), k(x).

D.11 Validation dataset size ablation

In this section we investigate the effect of the size of the validation dataset required by SLaM. As we
have already showed in our previous experiments, SLaM requires only rough estimates of α(x) and
k(x) and thus even very small validation datasets suffice. We observe that SLaM is able to provide
improvements even with very small validation datasets (e.g., with 128 labels).

In Table 15 we use different validation sizes for the CIFAR-100 experiment described in our
manuscript and and show that the performance of SLaM improves when the validation dataset
is larger but the gaps are not very significant especially for larger sizes of the labeled dataset. We
show that SLaM is able to provide improvements even with very small validation datasets (e.g., with
128 labels).

Labeled Data 10% 15% 20% 25% 30% 35%
128 40.67 ± 0.24 48.95 ± 0.18 54.27 ± 0.21 58.87 ± 0.19 61.42 ± 0.22 63.65 ± 0.21
256 40.97 ± 0.12 49.21 ± 0.17 54.18 ± 0.23 58.54 ± 0.13 61.18 ± 0.25 63.19 ± 0.07
512 41.06 ± 0.30 49.27 ± 0.19 54.36 ± 0.12 58.57 ± 0.26 61.25 ± 0.31 63.38 ± 0.11
1024 41.83 ± 0.32 49.35 ± 0.25 54.71 ± 0.18 58.95 ± 0.32 61.28 ± 0.46 63.62 ± 0.28

Table 15: CIFAR-100 validation dataset size ablation results.

E Distilling Linear Models and Learning Noisy Halfspaces

In this section we state and prove our convergence result for the SLaM method when applied
to linear models. Our assumption is that the ground-truth g(x) corresponds to a halfspace, i.e.,
g(x) = (1{w∗ · x > 0},1{w∗ · x ≤ 0}) for some unknown weight vector w∗. We show that
using SLaM with a linear model as the student will recover the ground truth classifier. We make the
standard assumption that the ground-truth halfspace has γ-margin, i.e., that ∥w∗∥2 = 1 and that it
holds |w∗ · x| ≥ γ for all examples x. For a fixed example x, the observed noisy teacher-label y
satisfies Definition 3.2, i.e., y = g(x) w.p. α(x) and y = 1− g(x) w.p. 1− α(x) (since k = 2 for
binary classification). Our approach consists of using the standard cross-entropy loss ce(p, q) and
training a student-model consisting of a linear layer plus a soft-max activation, i.e.,

f(x;w) = (f0(x;w), f1(x;w)) =

(
1

1 + e−w·x ,
e−w·x

1 + e−w·x

)
.

Recall, that for binary classification, we define the mixing operation as

mix(f(x;w);α(x)) = α(x)f(x;w) + (1− α(x))(1− f(x;w)) .

Theorem E.1 (Student Label Mixing Convergence). Let X be a distribution on Rd and g(x) be
the ground-truth halfspace with normal vector w∗ ∈ Rd. Let D be the distribution over (noisy)
teacher-labeled examples (x, y) whose x-marginal is X . We denote by α(x) the probability that the
teacher label y ∈ [0, 1]2 is correct, i.e., α(x) = P(x,y)∼D[argmax(y) = g(x) | x]. Assume that
there exist β, γ > 0 such that for all examples x in the support of X it holds that |w∗ · x| ≥ γ and
|1/2 − α(x)| ≤ β. Let ϵ > 0. After T = O(1/(β2γ2ϵ2)) iterations of SLaM (Algorithm 3), with
probability at least 99%, there exists an iteration t ≤ T where Px∼X [err(f(x;w(t)), g(x))] ≤ ϵ.
Remark E.2 (High-Probability Result). We remark that even though our learner succeeds with
constant probability (at least %99) we can amplify its success probability to 1 − δ by standard
amplification techniques (i.e., by repeating the algorithm O(log(1/δ)) times and keeping the best
result). To achieve success probability 1− δ the total sample complexity is O(log(1/δ)/(ϵ2γ2β2)).

Proof. We first provide simplified expressions for the gradient of the SLaM objective and the update
vectors λ(t)g(t) used in Algorithm 3. In what follows we remark that for any binary classification

24

Algorithm 3 SLaM for Linear Models

Initialiaze weight vector of student w(0) ← 0
for t = 1, . . . , T do

Draw example x(t) ∼ X .
Label x(t) with (noisy) teacher to obtain y(t)

Compute the gradient of the SLaM loss at (x(t), y(t)):

g(t) ← ∂wce(y
(t),mix(f(x(t));w(t−1)), α(x(t))) |w=w(t−1)

Compute step size: λ(t) ← 1/r(f(x(t);w(t−1)), α(x(t))) (see Lemma E.3 for the definition of
r(·, ·)).
Update the student model: w(t) ← w(t−1) − λ(t) g(t)

end for

model f(x;w) = (f0(x;w), f1(x;w)) we have the following identities: (i) (mix(f(x;w);α(x)))0 =
mix(f0(x;w);α(x)), where to simplify notation we overload the mixing operation to also act on
the scalar f0(x;w), i.e., mix(f0(x;w);α(x)) = α(x)f0(x;w) + (1− α(x))(1− f0(x;w)); and (ii)
f1(x;w) = 1− f0(x;w).

Lemma E.3 (SLaM Gradient). The gradient of the SLaM objective is equal to

∂wce(y,mix(f(x;w);α(x)) = r(f0(x;w);α(x)) sgn(2α(x)− 1) ((mix(f0(x;w);α(x))− y0)x,

where

r(f(x;w);α(x)) =
f0(x;w)(1− f0(x;w))

mix(f0(x;w);α(x))(1−mix(f0(x;w), α(x)))
|2α(x)− 1|

Let L(x;w) = E(x,y)∼D[ce(y,mix(f(x;w), α(x)) | x] be the expected student label mixing loss con-
ditional on some example x ∈ Rd. It holds ∂wL(x;w) = r(f(x;w), α(x)) |2α(x)− 1| (f0(x;w)−
g0(x)) x .

Proof. We first show the formula

∂wce(y,mix(f(x;w), α(x)) = r(f0(x;w), α(x)) sgn(2α(x)− 1) ((mix(f0(x;w), α(x))− y0)x .
(5)

Using the chain rule, we obtain

∂wce(y,mix(f(x;w);α(x)) =

− y0
mix(f0(x;w), α(x))

∂w(mix(f0(x;w);α(x))

− y1
mix(f1(x;w), α(x))

∂w(mix(f1(x;w);α(x)) .

Now we observe that that for binary classification, it holds that y1 = 1− y0, mix(f1(x;w);α(x)) =
1−mix(f0(x;w);α(x)), and therefore, also ∂wmix(f(x;w);α(x))1) = −∂wmix(f(x;w);α(x))0)
to obtain the simplified expression:

∂wce(y,mix(f(x;w);α(x)) =

− y0
mix(f0(x;w), α(x))

∂w(mix(f0(x;w);α(x))

+
1− y0

1−mix(f0(x;w), α(x))
∂w(mix(f0(x;w);α(x)) .

Further simplifying the above expression, we obtain:

∂wce(y,mix(f(x;w);α(x)) =

=
mix(f0(x;w), α(x))− y0

mix(f0(x;w), α(x)) (1−mix(f0(x;w), α(x)))
∂w(mix(f0(x;w);α(x)) .

25

Using again the chain rule we obtain that

∂w(mix(f0(x;w);α(x)) = α(x)∂w(f0(x;w))+(1−α(x))∂w(1−f0(x;w)) = (2α(x)−1) ∂wf0(x;w) .

Using the fact that the derivative of the sigmoid function r(t) = 1/(1 + e−t), is r′(t) = e−t/(1−
e−t)2 = r(t)(1− r(t)), and the chain rule, we obtain that ∂wf0(x;w) = f0(x;w)(1− f0(x;w))x.
Putting everything together we obtain the claimed formula for ∂wce(y,mix(f(x;w);α(x))).

To obtain the gradient formula for the expected loss conditional on some fixed example x, we can
use the fact that ∂w E[ce(y,mix(f(x;w);α(x))) | x] = E[∂wce(y,mix(f(x;w);α(x))) | x]. Now
using the formula of Equation (5) and the fact that E[y0 | x] = mix(g0(x);α(x)) by the definition of
our noise model, we obtain that

∂wL(x;w) = r(f0(x;w);α(x))sgn(2α(x)− 1)(mix(f0(x;w);α(x))−mix(g0(x);α(x)))

= r(f0(x;w);α(x))(2α(x)− 1)(f0(x;w)− g0(x))

We first show the following claim proving that after roughly T = 1/(β2γ2ϵ2) gradient iterations the
student parameter vector w(t) will have good correlation with the ground-truth vector w∗.

Claim 1. Fix any T larger than a sufficiently large constant multiple of log(1/δ)/(ϵ2γ2β2), and
assume that for all t ≤ T it holds that Px∼X [err(f(x;w(t)), g(x))] > ϵ. Then, we have w(T) ·w∗ =
Ω(βγϵ) T , with probability at least 1− δ.

Proof. Denote by u(t) = −λ(t)g(t) the update vector used in Algorithm 3. We observe that the
weight vector at round T is equal to w(T) =

∑T
t=1 u

(t). In what follows we denote by F (t) the
filtration corresponding to the randomness of the updates of Algorithm 3. We define the martingale
q(T) =

∑T
t=1(E[u(t) | F (t−1)]− u(t)) with q(0) = 0. We first show that under the assumption that

Px∼X [argmax(f(x;w(t))) ̸= g(x)] > ϵ, for all t ≤ T , it holds that
∑T

t=1 E[u(t) | F (t−1)] · w∗ ≥
(ϵγβ/2) T . Using the SLaM gradient expression of Lemma E.3 and the definition of the step size λ(t)

we obtain that E[u(t) | F (t−1)] = Ex∼X [|2α(x) − 1| (g0(x) − f0(x;w
(t−1))) x]. Take any step t.

We have that

E[u(t) | F (t−1)] · w∗ = Ex∼X [|2α(x)− 1| (g0(x)− f0(x;w
(t−1))) (x · w∗)]

= Ex∼X [|2α(x)− 1| |g0(x)− f0(x;w
(t−1)) |x · w∗|] ,

where we used the fact that (g0(x)− f0(x;w
(t−1))) sgn(x · w∗) = |g0(x)− f0(x;w

(t−1))|. Now,
using the γ-margin assumption of the distribution D and the fact that |2α(x)− 1| ≥ β we obtain

E[u(t) | F (t−1)] · w∗ ≥ βγ Ex∼X [|g0(x)− f0(x;w
(t−1))|]

≥ βγ Ex∼X [|g0(x)− f0(x;w
(t−1))| err(g(x), f(x;w(t−1)))]

≥ (βγ/2) Px∼X [err(g(x), f(x;w(t−1)))] ≥ βγϵ/2 ,

where for the penultimate inequality we used the fact that when g(x) and f(x;w(t−1)) disagree it
holds that |g0(x) − f0(x;w

(t−1))| ≥ 1/2. Take, for example, the case where g0(x) = 1. Then
f0(x;w

(t−1)) must be smaller than 1/2 otherwise the prediction of the model argmax f(x;w(t−1))
would also be 0 (and would agree with the prediction of g(x)). Finally, for the last inequality we used
the fact that, by our assumption, it holds that Px∼X [err(g(x), f(x;w(t−1)))] ≥ ϵ. Therefore, we
conclude that

∑T
t=1 E[u(t) | F (t−1)] ·w∗ ≥ (ϵγβ/2) T . Next, we shall show that w(T) also achieves

good correlation with the optimal direction w∗ with high probability. We will use the fact that q(t) is
a martingale and the Azuma-Hoeffding inequality to show that w(T) ·w∗ will not be very far from its
expectation.

Lemma E.4 (Azuma-Hoeffding). Let ξ(t) be a martingale with bounded increments, i.e., |ξ(t) −
ξ(t−1)| ≤M . It holds that P[ξ(T) ≥ ξ(0) + λ] ≤ e−λ2/(2M2T).

26

Recall that from Lemma E.3 we have that E[u(t) | F (t−1)] = Ex∼X [|2α(x) − 1| (g0(x) −
f0(x;w

(t−1))) x] and

u(t) = sgn(2α(x(t))− 1) (y
(t)
0 −mix(f0(x

(t);w(t−1)), α(x(t))) x(t) .

Observe that since ∥x∥2 ≤ 1 for all x it holds that ∥u(t)∥2 ≤ 1. Therefore, the difference ∥E[u(t) |
F (t−1)]− u(t)∥ ≤ 2 with probability 1. Since ∥w∗∥2 = 1, using Cauchy-Schwarz, we also obtain
that |E[u(t) · w∗ | F (t−1)]− u(t) · w∗| ≤ 2.

Using Lemma E.4, and the fact that q(0) = 0 we obtain that P[q(t) · w∗ ≥ (βγϵ/4) T] ≤
e−β2γ2ϵ2T/128 . Therefore we conclude that for any T larger than 128 log(1/δ)/(β2γ2ϵ2), with
probability at least 1− δ, it holds that q(T) ·w∗ ≥ (βγϵ/4)T or equivalently w(T) ·w∗ ≥ (βγϵ/4) T ,
where we used our previously obtained bound for the expected updates

∑T
t=1 E[u(t) | F (t−1)] ·w∗ ≥

(βγϵ/2) T .

Claim 2. Fix any T ≥ 1. Then, we have ∥w(T)∥2 = O(
√
T), with probability at least 99%.

Proof. We have that ∥w(T)∥22 = ∥w(T−1)∥22 + 2u(T) · w(T−1) + ∥u(T)∥22. Unrolling the iteration,
we obtain that

∥w(T)∥22 = 2

T∑
t=1

u(t) · w(t−1) +

T∑
t=1

∥u(t)∥22 ≤ 2

T∑
t=1

u(t) · w(t−1) + T , (6)

where we used the fact that, since ∥x(t)∥2 ≤ 1, it holds that ∥u(t)∥2 ≤ 1 (see the proof of Claim 1).
We first show that

∑T
t=1 E[u(t) | F (t−1)] · w(t−1) = O(T). We have

E[u(t) | F (t−1)] · w(t−1) = Ex∼X [|2α(x)− 1| (g0(x)− f0(x;w
(t−1))) (x · w(t−1))]

≤ Ex∼X [(g0(x)− f0(x;w
(t−1))) (x · w(t−1))] .

We will show that for x it holds that

g0(x)− f(x;w(t−1))(x · w(t−1)) ≤ 1

e
.

Fix some x and let s = w(t−1) · x. Assume first that g0(x) = 1. Then, we have

g0(x)− f(x;w(t−1))(x · w(t−1)) =

(
1− 1

1 + e−s

)
s = s

e−s

1 + e−s
≤ 1

e
,

where we used the fact that s e−s

1+e−s ≤ 0 for s ≤ 0 and s e−s

1+e−s ≤ se−s ≤ 1/e for s ≥ 0 (using the
elementary inequality ze−z ≤ 1/e for all z ∈ R). When g0(x) = 0 we similarly have that

g0(x)− f(x;w(t−1))(x · w(t−1)) = − s

1 + e−s
≤ 1

e
,

where we used the fact that when s ≥ 0 it holds that − s
1+e−s ≤ 0 and when s ≤ 0, − s

1+e−s ≤
−s/e−s = −ses. For the final inequality, we used again the inequality ze−z ≤ 1/e for all z ∈ R
(where we replaced z with −s).

Therefore, we obtain that E[u(t) | F (t−1)] ·w(t−1) ≤ 1/e and
∑T

t=1 E[u(t) | F (t−1)] ·w(t−1) ≤ T/e.
Using the decomposition of Equation (6), linearity of expectation, and the tower rule for conditional
expectations, we conclude that E[∥w(T)∥22] ≤ (2/e+1)T . Using Markov’s inequality we obtain that
with probability at least 99% it holds that ∥w(T)∥22 = O(T) or equivalently ∥w(T)∥2 = O(

√
T).

We can now finish the proof of Theorem 5.1. Assume, in order to reach a contradiction, that
for all t ≤ T it holds that Px∼X [err(f(x;w(t)), g(x))] > ϵ. Now picking T to be larger than a
sufficiently large constant multiple of 1/(ϵ2γ2β2) and using Claim 1 and Claim 2 we obtain that,

27

Figure 9: The landscape and gradient field of the population student label mixing loss for a simple 2
dimensional feature problem with a ground truth corresponding to a halfspace. We observe that the
landscape is non-convex; however we can see that the corresponding gradient field “points towards
the optimal direction” and therefore gradient descent converges to the global minimizer. A potential
issue is the fact that the landscape contains regions where the gradients may almost vanish and this
could lead to the gradient iteration of the student getting trapped there. To handle this issue, in
Algorithm 3 we multiply the gradient of SLaM with an appropriate step-size.

with probability at least 99%, it holds that w(T) · w∗/∥w(T)∥2 ≥ Ω(βγϵ
√
T), which can be made to

be larger than 1 by our choice of T . However, this is a contradiction as by Cauchy-Schwarz we have
w(T) · w∗/∥w(T)∥2 ≤ ∥w∗∥2 ≤ 1. Therefore, with probability at least 99%, it must be that for some
t ≤ T it holds that Px∼X [err(f(x;w(t)), g(x))] ≤ ϵ.

28

	Introduction
	Related Work
	SLaM: Student-Label Mixing Distillation
	Experimental Evaluation
	The Setup
	Comparison with Previous Approaches

	Distilling Linear Models and Learning Noisy Halfspaces
	Conclusion, Limitations, and Broader Impact
	Notation
	Detailed Description of SLaM
	Estimating the Teacher's Accuracy Parameters: (x), k(x)
	SLaM for Distillation with Unlabeled Examples: Pseudocode

	SLaM Consistency
	Extended Experimental Evaluation
	Implementation Details: Vision Datasets
	Hard-Distillation
	Large Movies Reviews Dataset Results
	Combining with Teacher-Uncertainty-Based Reweighting Techniques
	Using Distillation Temperature
	Using SLaM with other loss functions beyond cross-entropy
	Performance of SLaM with (even) fewer labels
	SLaM Hyper-parameter Ablation
	Robustness of SLaM to inaccuracies in (x), k(x)
	Different Regression Algorithms for (x), k(x)
	Validation dataset size ablation

	Distilling Linear Models and Learning Noisy Halfspaces

