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ABSTRACT

Visual perception in the human brain is often thought to arise from inverting an
internal generative model. In contrast, today’s most successful machine vision
models are non-generative, relying on an encoder and not a generative decoder.
This raises the question of whether generation is required for machines to achieve
human-level visual perception. In this work, we address this question from the
perspective of data efficiency, a core feature of human perception. Specifically, we
investigate whether compositional generalization to out-of-domain (OOD) images
is achievable, both in theory and practice, using generative and non-generative
methods. We first formalize the inductive biases required to guarantee composi-
tional generalization in generative (decoder-based) and non-generative (encoder-
based) methods. We then provide theoretical results suggesting that such inductive
biases cannot be enforced on an encoder through practical means such as regular-
ization or architectural constraints, and thus compositional generalization cannot
be guaranteed. In contrast, enforcing the inductive biases on a decoder is straight-
forward, enabling compositional generalization through inverting the decoder. We
highlight that this inversion can be performed efficiently for OOD images, either
online through gradient-based search or offline through generative replay. Empir-
ically, we train a variety of non-generative methods on image datasets with con-
cepts such as animals and backgrounds, and find that they tend to fail to generalize
compositionally in a data-efficient manner. By comparison, generative methods,
which leverage search and replay, yield significant gains in OOD performance.

1 INTRODUCTION

Perceiving the visual world requires forming internal representations of sensory input. Two opposing
views exist for how these representations should be acquired. The generative view posits that
representations are obtained by inverting an internal generative model, or decoder, to identify the
latent variables that give rise to the input (Friston and Stephan, 2007; Hinton, 2007; Olshausen,
2014; von Helmholtz, 1867). Conversely, the non-generative view holds that representations are
not defined through inverting a generative model, but instead as the direct output of a feedforward
encoder (Gibson, 1979; LeCun, 2022; Yamins et al., 2014). A core problem in AI is to understand
which of these paradigms should be adopted to build machines with human-level visual perception.

In recent years, consensus around this problem has shifted, following breakthroughs in non-
generative methods for representation learning (Caron et al., 2021; Oquab et al., 2024; Radford et al.,
2021; Tschannen et al., 2025). These methods, trained with self- or weak supervision, now enable
unprecedented performance on perceptual tasks such as object recognition (Siméoni et al., 2025)
and image captioning (Beyer et al., 2024; Fan et al., 2025). This progress has given rise to a com-
mon assumption that non-generative methods provide the most promising path toward human-level
visual perception, while generative approaches are not necessary (Balestriero and LeCun, 2024).

Yet, despite their remarkable performance, current non-generative methods fall short in another
key pillar of human visual perception: data efficiency. Specifically, these methods rely on web-
scale datasets in which different visual concepts are encountered across diverse contexts, with high
frequency, and often with language supervision. In contrast, human children observe concepts pri-
marily within the same settings (e.g., the home), often only a small number of times, and with little
supervision, yet can make generalizations that extend far beyond this experience (Lake et al., 2017;
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Figure 1: Generative vs. non-generative compositional generalization. We assume in- and out-of-domain
images arise from a latent variable model through an unknown generator f ∈ Fint, with inverse g ∈ Fint.
Guaranteeing compositional generalization for a generative approach requires constraining a decoder such that
f̂ ∈ Fint, and for a non-generative approach, an encoder such that ĝ ∈ Gint (Sec. 2). We show theoretically
in (Sec. 3) that placing such constraints on an encoder is generally infeasible with practical approaches
while for a decoder it is straightforward. Empirically, this tends to manifest in an encoder yielding incorrect
representations for OOD images (Sec. 5.2). In contrast, a decoder is able to correctly generate such images
enabling compositional generalization through inversion (Sec. 4, 5.2).

Tenenbaum et al., 2011). To achieve this level of data efficiency, it has been conjectured across
several disciplines (Kilbertus et al., 2018; Lake et al., 2015; Peters et al., 2024) that generative ap-
proaches may be necessary. This raises a key question: Can non-generative approaches to visual
perception also achieve human-level data efficiency, or is generation required?

In the present work, we approach this question by studying, both in theory and practice, whether gen-
erative or non-generative methods enable compositional generalization (Fodor and Pylyshyn, 1988;
Greff et al., 2015). This refers to the ability to perceive out-of-domain images containing unseen
combinations of visual concepts, a core factor enabling the data-efficiency of human perception.

Structure and Contributions. We build upon Brady et al. (2025) to formalize the constraints
required to guarantee compositional generalization for both generative (decoder-based) and non-
generative (encoder-based) approaches. In Sec. 3, we show theoretically that enforcing such con-
straints on encoders is generally infeasible, as they depend on the geometry of out-of-domain re-
gions of the data manifold, which is unknown. By contrast, for generative models the constraints
are not data-dependent and can be imposed directly through regularization or architectural design.
These results suggest that inversion of a decoder is necessary to guarantee compositional generaliza-
tion. In Sec. 4, we describe how such inversion can be implemented efficiently: in-distribution via
an autoencoder, and out-of-distribution via gradient-based search (Sec. 4.1) and generative replay
(Sec. 4.2). Finally, in Sec. 5, we empirically evaluate compositional generalization using photore-
alistic image data containing concepts such as animals and backgrounds (Bordes et al., 2023). We
find that non-generative models frequently fail to generalize compositionally on this data, requiring
large-scale pretraining to succeed (Sec. 5.2). In contrast, generative methods leveraging search and
replay achieve substantial gains in OOD performance.

2 PROBLEM SETUP

Perception. We begin by formalizing visual perception. To this end, we assume that images x ∈
X ⊂ Rdx arise from a latent variable model. Specifically, we assume x is generated from a latent
vector z ∈ Z := Rdz by a diffeomorphic generator f : Z → X , i.e., x = f(z). Visual concepts
in x (e.g. “camel” and “desert” in Fig. 1) are modelled as K distinct slots of latents zk ∈ Rm

such that z = (z1, ...,zK) (Brady et al., 2025). Now, assume we have a representation of an image
ẑ = ϕ(x), where ϕ : Rdx → Z . We define perception as the ability to invert the generator f via
ϕ to recover the slots zk that generated x. In general, recovering zk exactly is impossible. Thus,
we only require that ϕ inverts f up to permutation and re-parameterizations of the slots. Formally,
let hπ be a function composed of slot-wise bijections hk : Rm → Rm and permutations π, i.e.,
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hπ(z) := {hk(zπ(k))}Kk=1. Perception on a set ZS ⊆ Z requires that there exist an hπ such that

∀z ∈ ZS , ϕ(f(z)) = hπ(z). (2.1)

Eq. (2.1) takes the perspective of perception as an inverse problem (Tenenbaum et al., 2011), but
with respect to the ground-truth generator f . This contrasts with a task-based view (Yamins and
DiCarlo, 2016) where perception is defined with respect to solving a downstream task. We note that
the task-based view can be framed as a special case of Eq. (2.1), by treating task-specific predictions
as the latent variables to be recovered by ϕ. Moreover, if a representation satisfying Eq. (2.1) is
learned, downstream tasks such as object classification can be solved via a simple readout applied
independently to each inferred slot ẑk (see Sec. 5).

Generative and non-generative approaches. Using Eq. (2.1), we now characterize the genera-
tive and non-generative approaches to perception. For the generative approach, representations are
obtained by inverting a learned decoder f̂ : Z → Rdx , i.e., ϕ(x) = f̂−1(x). For this to yield a
representation satisfying Eq. (2.1), the decoder f̂ must identify the ground-truth generator f such
that

f̂(hπ(z)) = f(z) . (2.2)
Alternatively, for the non-generative approach, a representation is defined as ϕ(x) = ĝ(x), where
ĝ : Rdx → Z is a learned encoder which is not constructed to invert a decoder f̂ . For this to
satisfy Eq. (2.1), ĝ must identify the inverse generator g := f−1 such that for x ∈ X

ĝ(x) = hπ(g(x)). (2.3)

We emphasize that the difference between these approaches is not whether an encoder or decoder is
used. Instead, the difference is whether a representation satisfying Eq. (2.1) is obtained by directly
inverting the ground-truth generator f or by inverting a learned approximation of this generator f̂ .

Figure 2: Visualization of a data generating
process with in- and out-of-domain regions.

Compositional generalization. We now formalize
compositional generalization. Informally, composi-
tional generalization is the ability to perceive out-of-
domain images containing unseen concept combina-
tions (e.g. “penguin” and “desert” in Fig. 1). To for-
malize this, we assume observed images XID ⊂ X
arise from only a subset of possible concept combi-
nations ZID ⊂ Z , i.e., XID := f(ZID) (see Fig. 2).
OOD concept combinations ZOOD are defined as the
set of all unseen combinations of slots

ZOOD := {Z1 ×Z2 × · · · × ZK } \ ZID with Zk := {zk ∈ Rm | z ∈ ZID}, (2.4)

which give rise to OOD images XOOD := f(ZOOD) (Fig. 2). Compositional generalization is then
achieved if Eq. (2.1) is satisfied both in-domain, for z ∈ ZID, and out-of-domain, for all z ∈ ZOOD.

The problem of identifiability. Compositional generalization, using a generative or non-generative
approach, requires identifying the ground-truth generator f or its inverse g, both in-domain and
out-of-domain. In-domain identifiability is a well-studied problem (Hyvärinen et al., 2023). It
can be solved using both approaches by leveraging observed images x ∈ XID together with self-
(Gresele et al., 2021; von Kügelgen et al., 2021; Zimmermann et al., 2021) or weakly-supervised
information (Hyvärinen and Morioka, 2016; Khemakhem et al., 2020; Locatello et al., 2020a) about
the data-generating process. Out-of-domain identifiability, however, presents a different challenge:
because x ∈ XOOD is unobserved, the strategies above cannot be applied. Consequently, out-of-
domain identifiability must be implied by in-domain identifiability (Wiedemer et al., 2024b). This
is only possible if f belongs to a function class F such that for all f1,f2 ∈ F

∀z ∈ ZID, f
1(hπ(z)) = f2(z) =⇒ ∀z ∈ ZOOD, f

1(hπ(z)) = f2(z), (2.5)

which equivalently implies that for all inverses g1, g2 ∈ G := {f−1 | f ∈ F}

∀x ∈ XID, hπ(g
1(x)) = g2(x) =⇒ ∀x ∈ XOOD, hπ(g

1(x)) = g2(x). (2.6)

If these implications do not hold then the problem is non-identifiable, since there is no way to
distinguish between f1 and f2 or g1 and g2 from observed data.
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Further assumptions on f . Under our current assumptions, the ground-truth generator can be any
diffeomorphism from Z to X . This function class is far too large to satisfy Eq. (2.5). Thus, further
assumptions on f are required. Recently, Brady et al. (2025, Thm. 4.4) proved that diffeomorphisms
(on their image) with the following form will satisfy Eq. (2.5) (when f is sufficiently nonlinear)

f(z) =

K∑
k=1

fk (zk) +
∑

α:|α|≤n

cαz
α , (2.7)

where n ∈ N, cα ∈ Rdx , and α ∈ Ndz
0 is a multi-index.1 This function class, denoted Fint, was

introduced to model concepts with varying degrees of interaction n. For example, when n = 1,
the second-sum on the RHS vanishes and concepts can only interact additively (Lachapelle et al.,
2023). For n > 1 concepts can interact explicitly via polynomial functions of components from
different slots. This aims to capture more complex concept interactions such as between objects
and backgrounds. Such functions thus offer a flexible model of visual concepts, and are the largest
function class shown to enable OOD identifiability (Eq. (2.5)). For these reasons, we assume that
ground-truth generators f belong to Fint, and inverse generators g to Gint := {f−1 | f ∈ Fint}.

Guaranteeing compositional generalization. We can now formalize what is required to guarantee
compositional generalization using both a generative and non-generative approach. To this end, we
assume ID identifiability holds for a decoder f̂ and encoder ĝ, i.e., Equations 2.2 and 2.3 are satisfied
in-domain. Since ground-truth generators Fint and inverses Gint satisfy Equations 2.5 and 2.6, OOD
identifiability is guaranteed if the decoder class f̂ ∈ Fdec is constrained to Fdec = Fint and similarly
if the encoder class ĝ ∈ Genc is constrained to Genc = Gint. Compositional generalization is thus
possible in theory for both generative and non-generative approaches. This does not necessarily
imply, however, that it can be guaranteed in practice for both approaches. Specifically, guaranteeing
compositional generalization in practice depends on whether practical means exist to enforce f̂ ∈
Fint in the generative case and ĝ ∈ Gint in the non-generative case.

3 THEORETICAL ANALYSIS

In this section, we theoretically analyze the structure of Fint and Gint to understand whether a model
can be constrained to these classes with practical means such as regularization or architecture design.

Structure of Fint. Generators in Fint are defined as diffeomorphisms which take the form
of Eq. (2.7). Consequently, to enforce f̂ ∈ Fint, we must constrain a decoder to match this
form. This can be done in a straightforward manner via architecture design. For example, the
first term on the RHS of Eq. (2.7) can be parameterized as the sum of slot-wise neural networks
and the second term using learned coefficients for cα. Furthermore, we highlight that functions of
the form in Eq. (2.7) can equivalently be expressed as having block-diagonal derivative matrices
Dn+1f(z) (Brady et al., 2025; Lachapelle et al., 2023). Specifically, if n = 1, then the Hessian
D2f has the structure that for any two slots zk and zl,

∀1 ≤ k ̸= l ≤ K, Dzk
Dzl

f(z) = 0. (3.1)

For n > 1, analogous conditions hold for higher-order derivatives (Brady et al., 2025). Thus, we
can also enforce that f̂ ∈ Fint for a decoder f̂ via regularization. For example, when n = 1, we can
use the following regularizer (with similar expressions for higher-order derivatives when n > 1)

R(f̂ , z) =
∑

k ̸=l∈[K]

∥∥∥D2
zk,zl

f̂(z)
∥∥∥ . (3.2)

3.1 STRUCTURE OF Gint .

We now investigate the structure of inverse generators in Gint. For simplicity, we present results for
n = 1; similar statements can in principle be derived for higher order derivatives for the case n > 1.
We first note that inverse generators g ∈ Gint do not admit an analytical form similar to Eq. (2.7).
Thus, understanding their structure requires analyzing finer-grained properties of these functions.

1A multi-index is an ordered tuple α = (α1, α2, ..., αd) of non-negative integers αi ∈ N0, with operations
|α| := α1 + α2 + ...+ αd, and zα := zα1

1 zα2
2 ... z

αd
d .
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To this end, we investigate their derivatives. We also study whether we can find architectures with
an inductive bias towards Gint, but delegate this to Appendix A.2 due to space constraints.

We will first assume that the observed dimension dx equals the ground-truth latent dimension dz
such that X = Z . In this case, we show that, similar to generators in Fint, inverse generators in Gint
have a structured Jacobian and Hessian. Specifically, we prove the following result.
Lemma 3.1. Let g ∈ Gint for n = m = 1 and dx = dz . Then g has the property that for x ∈ X

(Dg)−⊤(x)D2gs(x)(Dg)−1(x) ∈ Diag(dx) (3.3)

is a diagonal matrix for s ∈ [dz]. Further, if g is a diffeomorphism satisfying Eq. (3.3) then g ∈ Gint.

Thus, when X = Z , enforcing that ĝ ∈ Gint requires constraining an encoder according to Eq. (3.3).
This is achievable, for instance, through regularization on the derivatives of ĝ analogous to Eq. (3.2).

This setting, however, is not applicable to image data since images typically lie in a manifold em-
bedded in a higher-dimensional ambient space Rdx . We therefore consider the more practical case
where dx is much larger than the ground-truth latent dimension dz . Specifically, we assume dx ≥ d3z .
In this case, we first prove that the aforementioned structure on Dg and D2g is no longer present.
Theorem 3.2. Assume that dx ≥ d3z . Let Bl ∈ Rdx×dx be symmetric matrices for 1 ≤ l ≤ dz .
Then there is for any x0 ∈ Rdx and for almost every A ∈ Rdz×dx a generator f ∈ Fint with a
(left)-inverse g ∈ Gint, such that f(0) = x0 and Dg(x0) = A and D2gl(x0) = Bl for 1 ≤ l ≤ dz .

Figure 3: Structure of a data manifold X and
latent manifold Z .

Thus, when dx ≫ dz , D2g and Dg can be arbi-
trary matrices (up to a set of measure 0). We em-
phasize that this result applies to Fint with arbitrary
interaction degree n ≥ 1 and any slot dimensions.
However, the structure expressed in Eq. (3.3) does
not vanish entirely from g. Instead, it persists, but
only for the restriction of g to the data manifold X .
Specifically, the constraint Eq. (3.3) holds more gen-
erally for n = m = 1 when Dg is projected on the
tangent space TxX of the data manifold, i.e.,(

(Dg(x)ΠTxX )
+
)⊤

(z)D2gs(x) (Dg(x)ΠTxX )
+ ∈ Diag(dz) (3.4)

where ΠTxX denotes the orthogonal projection on the tangent space (see Lemma A.4 for details).

Constraining an encoder such that ĝ ∈ Gint thus requires enforcing this structure on ĝ. This is chal-
lenging because the constraints depend on the geometry of the unknown data manifold X . Enforcing
such constraints is thus not only impractical but also ill-posed since the geometry of out-of-domain
regions XOOD ⊂ X is unobserved. This suggests that constraining an encoder through approaches
such as architectural design or regularization is infeasible, as any such method would necessarily be
data-dependent as well as implicitly assume knowledge of XOOD.

We contrast this with the reverse direction for f ∈ Fint. In this case, the structure to be enforced
(see Eq. (3.1)) is not manifold-dependent but is always aligned with the global coordinate axes
(Fig. 3, right). This allows for a universal procedure to constrain a decoder to Fint, rather than
a manifold-dependent one (Fig. 3, left). Moreover, such constraints can also be applied in OOD
regions, since the manifold ZID extends in a Cartesian fashion and its structure is therefore known.

Special case of n = 0. We briefly discuss the case of functions in Fint when n = 0. These functions,
introduced by Brady et al. (2023), are a special case of n = 1 with the additional, more restrictive
condition |Dzk

fi(z)| · |Dzl
fi(z)| = 0 for each i ∈ [dx]. In other words, each pixel i depends only

on a single slot and no interactions (such as occlusions) between objects are possible. In this case,
we can find a left inverse g of f ∈ Fn=0

int (for any dx ≥ dz) whose Jacobian satisfies the sparsity
constraint |Dxigk| · |Dxjgl| = 0 for l ̸= k. This additional structure can thus be leveraged to restrict
Genc. However, this remains challenging in practice because the sparsity pattern (i.e., which slots zl
depends on which pixel xi) is not known a-priori. In Section 5, we study whether concepts satisfying
n = 0 can empirically enable compositional generalization for non-generative approaches.

Takeaways. Our results suggest that, in contrast to decoders, it is generally not feasible to con-
strain an encoder to achieve out-of-domain identifiability. Importantly, however, this does not imply
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penguin

desert

penguin

desert

Figure 4: Approaches for inverting a generator out-of-domain. Left. Visualization of gradient-based
search to invert a decoder f̂ out-of-domain, with initialization given by an encoder ĝ. Right. Visualization of
generative replay in which an encoder is trained on OOD images generated by a decoder.

that compositional generalization is impossible in practice for non-generative methods. Rather, it
means that such methods cannot rely on architectural (see App. A.2) or regularization constraints to
guarantee it. Thus, whether compositional generalization occurs depends on the optimizer and the
solution it converges to, rather than being ensured by design. In Sec. 5, we investigate empirically
the extent to which compositional generalization can arise in non-generative methods without such
constraints.

4 SEARCH AND REPLAY

Our results in Sec. 3 suggest that guaranteeing compositional generalization requires a generative
approach, i.e., inverting a learned decoder f̂ . If a decoder admits an explicit inverse, this inversion
is trivial. For image data, however, constructing such a decoder is challenging as this generally
requires that X = Rdx (Papamakarios et al., 2021). Consequently, inverting f̂ requires solving an
inference problem: given an image x, we must find a latent z∗ such that

x = f̂(z∗). (4.1)
In this section, we explore strategies for solving this inference problem efficiently.

Inversion on XID. For in-domain images, i.e. x ∈ XID, inverting a decoder f̂ to obtain z∗ can be
done directly by training an autoencoder. Specifically, we can leverage an encoder ĝ to invert f̂
in-domain by minimizing the reconstruction objective

min
f̂ ,ĝ

Ex∼XID

∥∥∥x− f̂(ĝ(x))
∥∥∥2 . (4.2)

Thus, for images x ∈ XID, z∗ (Eq. (4.1)) can be obtained directly as the output of the encoder.
For out-of-domain images, however, minimizing Eq. (4.2) is not an option since x ∈ XOOD is
unobserved. Thus, to efficiently solve Eq. (4.1) on XOOD, other strategies are required. We explore
two such strategies: gradient-based search (Sec. 4.1) and generative replay (Sec. 4.2).

4.1 GRADIENT-BASED SEARCH.

We note that the inference problem in Eq. (4.1) can be expressed as an optimization problem, i.e.,

z∗ = argmin
ẑ

∥∥∥x− f̂(ẑ)
∥∥∥2 . (4.3)

Thus, for OOD images x ∈ XOOD, we can recover z∗ online by solving Eq. (4.3) using gradient-
based optimization. The efficiency of this, however, depends on the initialization ẑ(0). If ẑ(0) is far
from the optimum, many gradient steps are required, leading to slow or suboptimal convergence.
To mitigate this, we can leverage the encoder trained on XID to provide an initial prediction for z∗

such that ẑ(0) = ĝ(x) and then optimize Eq. (4.3) (see Fig. 4, left). Intuitively, the encoder gives a
fast “System 1” guess that constrains the space for slower, “System 2” reasoning (Kahneman, 2011;
Prabhudesai et al., 2023a), where “reasoning” corresponds to gradient-based search (LeCun, 2022).

4.2 GENERATIVE REPLAY

For out-of-domain images, Eq. (4.1) can also be solved in an offline manner by leveraging generative
replay (Kurth-Nelson et al., 2023; Schwartenbeck et al., 2023). Recall that images x ∈ XOOD are

6
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A. B. C.

Figure 5: OOD performance for non-generative methods. We report ODD performance across three dataset
splits for non-generative methods trained with and without supervision and with differing base encoders. On
PUG-Background (A.), we see that strong OOD performance generally emerges only for base encoders with
large scale pretraining such as SigLIP2 and is otherwise poor. We see a similar trend on PUG-Texture (B.)
though OOD performance is generally higher across models. On PUG-Object (C.), concepts do not interact,
such that Gint is more constrained (Sec. 3.1). This structure is sufficient for all models to generalize OOD.

generated by f as combinations of ground-truth slots zk. Since the decoder f̂ identifies f up to slot-
wise transformations, images x ∈ XOOD can likewise be generated by re-combining inferred slots
ẑk. Concretely, this can be achieved by sampling a latent ẑ from a distribution pẑ with independent
slot-wise marginals and decoding them with f̂ such that f̂(ẑ) ∈ XOOD. We can then solve Eq. (4.1)
out-of-domain by training an encoder ĝ on these samples such that ĝ(f̂(ẑ)) = ẑ (see Fig. 4, right).
This is captured by the following objective function (Wiedemer et al., 2024a)

min
ĝ

Eẑ∼pẑ

∥∥∥ẑ − ĝ(f̂(ẑ))
∥∥∥2 . (4.4)

5 EXPERIMENTS

In this section, we conduct an experimental study with two main components. First, we aim to assess
the extent to which non-generative methods can achieve compositional generalization in practice
without enforcing explicit constraints to this end. Second, we evaluate whether generative methods,
which leverage search (Sec. 4.1) and replay (Sec. 4.2), can achieve superior compositional general-
ization. We describe our experimental setup below, further details can be found in App. B.

5.1 SETUP

Data. We are interested in evaluating compositional generalization for images in realistic settings.
This is challenging, however, since web-scale image datasets do not provide explicit controllability
over in- and out-of-domain regions. To address this, we leverage the PUG datasets (Bordes et al.,
2023), which offer photorealistic images while remaining explicitly controllable. The images we
consider are defined by a background and one or two animals, which can take on 10 and 32 different
values, respectively. In addition, animals can vary in position and texture.

Using this dataset, we construct three different in- and out-of-domain splits (see Fig. 7, left). In
PUG-Background, XOOD contains unseen combinations of animals and backgrounds. In PUG-
Texture, XOOD contains unseen combinations of animals and textures. Finally, in PUG-Object, XOOD
contains unseen combinations of animals. In this case, animals never occlude each other and there-
fore do not interact, meaning that concepts satisfy n = 0.

Evaluating compositional generalization. To evaluate compositional generalization on this data,
we assume a model gives inferred latent slots ẑk. Each slot should encode either one of the two
animals or the background, both on XID and XOOD. To test this, we train a slot-wise readout in-
domain to predict the category of the corresponding animal or background. We then report out-of-
domain accuracy for these predictions.

Encoders. We consider encoder architectures with the following structure. Images are first divided
into patches and processed by a base encoder, which produces a set of embeddings. These em-
beddings are then mapped to slots by a slot encoder (see Fig. 7, right). We implement the base
encoder using a Vision Transformer (ViT) (Dosovitskiy et al., 2020), while the slot encoder is either
a Transformer (Vaswani et al., 2017) or a Slot Attention module (Locatello et al., 2020b).
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B.A.

Figure 6: OOD performance for generative methods. We report ODD performance across three dataset
splits for unsupervised autoencoders which leverage replay (Sec. 4.2) and search (Sec. 4.1) trained with
differing base encoders. On PUG-Background (A.), we observe a significant increase in OOD performance
using replay and additional gains through search. On PUG-Texture (B.) we also see a noticeable increase in
OOD performance when using search.

Ideally, we would train encoders from scratch using state-of-the-art non-generative methods. How-
ever, such methods rely on large-scale datasets, while our datasets are comparatively small (∼20000
images). We thus leverage pretrained models. Concretely, for the base encoder, we use DI-
NOv1 (Caron et al., 2021), I-JEPA (Assran et al., 2023), DINOv2 (Oquab et al., 2024), CLIP (Rad-
ford et al., 2021), and SigLIP2 (Tschannen et al., 2025). These models are optionally fine-tuned
using a LoRA adapter (Hu et al., 2022), while the slot encoder is always trained from scratch. We
note that the PUG datasets were not contained in the pretraining set for these models, thus data con-
tamination is not an issue. Finally, we also include a ViT-Small base encoder trained from scratch.

Decoders. Brady et al. (2025) argued that constraining a decoder to Fint can be done approximately
using a regularized cross-attention Transformer. In this model, pixels query slots, and a regulariza-
tion term is applied to the resulting attention weights to encourage pixels to specialize to a single
slot. This model is also sufficiently flexible to capture complex images and concepts with varying
degrees of interaction. For these reasons, we leverage such decoders in our experiments.

Training objectives. To learn a representation ẑ, we train non-generative methods using both a
supervised and unsupervised objective. In the supervised setting, the encoder is trained on XID to
predict the animal and background categories using a cross-entropy loss. In the unsupervised case,
we train a variational autoencoder (VAE) (Kingma and Welling, 2014) with our regularized decoder
architecture. This case is nevertheless non-generative since the encoder is only constructed to invert
the decoder on XID, and not on XOOD. For our generative methods, we take this learned decoder and
invert it on XOOD using search and replay.

5.2 RESULTS

Non-generative methods. In Fig 5, we evaluate compositional generalization for non-generative
methods trained on each PUG split. All methods achieve nearly perfect ID accuracy (∼ 99%), thus
we only visualize OOD accuracy. For each base encoder, we report the OOD accuracy obtained
with the best-performing combination of slot encoder and fine-tuning choice. In Fig. 5 A. (PUG-
Background), base encoders trained from scratch (ViT-Small) or pretrained on relatively small cor-
pora (e.g., DINOv1 on ImageNet) fail to generalize OOD. OOD accuracy improves with encoders
leveraging larger-scale pretraining, such as SigLIP2. In Fig. 5 B. (PUG-Texture), we observe a
boost in OOD performance across models, though performance remains suboptimal overall. Again,
models with larger-scale pretraining exhibit stronger OOD performance.

Finally, in Fig. 5 C., we report results for PUG-Object in which concepts do not interact. This
corresponds to the special case of n = 0 in Sec. 3 in which Gint is more structured. Although we
do not explicitly enforce this structure on the models, they nevertheless achieve near-perfect OOD
accuracy, indicating that such structure makes compositional generalization fundamentally easier.

Generative Methods. In Fig. 6, we take the autoencoders trained in Fig. 5 and report OOD accuracy
after leveraging replay and search for inverting the decoder. On PUG-Background (Fig. 6 A.), we
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observe a significant increase in OOD accuracy when training encoders with replay across all mod-
els, with further improvement when additionally using search. On PUG-Texture (Fig. 6 B.), replay
cannot be applied, since in our setup, slots are designed to capture objects and backgrounds, and
therefore cannot be trivially recomposed to generate novel animal–texture combinations. However,
leveraging search yields a clear improvement in OOD performance across all models.

6 RELATED WORK

Limitations of non-generative methods for compositional generalization. Several empirical
studies have shown limitations in compositional generalization for non-generative methods trained
using natural language supervision (Assouel et al., 2025; Lewis et al., 2022; Ma et al., 2023; Tong
et al., 2024; Yuksekgonul et al., 2022). These works generally posit that poor generalization arises
from issues with standard contrastive language-image training objectives. In contrast, our theoret-
ical and empirical contributions suggest that such issues are more fundamental, arising from the
structure of the inverses of the unknown generator, i.e.,. Gint.

Generative approaches for improving generalization. The idea that a generative approach can
enable compositional generalization has long been advocated in the cognitive science commu-
nity (Lake et al., 2015; 2017; Tenenbaum et al., 2011). Empirical realizations of this idea have
recently been shown for diffusion models repurposed as classifiers (Jeong et al., 2025; Wang et al.,
2025). Further (Prabhudesai et al., 2023a;b), showed that inverting a generative model with mech-
anisms similar to gradient-based search (Sec. 4.1) improves object-decomposition for OOD images
and enhances the robustness of classifiers. Recent work explored training encoder-only models us-
ing synthetically generated data similar to Sec. 4.2, showing improvements in representations (Fan
et al., 2025; Tian et al., 2023) and compositional generalization (Assouel et al., 2022; Jung et al.,
2024; Wiedemer et al., 2024a). Our work provides a theoretical motivation for these approaches by
highlighting challenges in achieving compositional generalization using non-generative methods.

Causal and anti-causal learning. Our theoretical contribution relates to ideas in the field of causal-
ity. A key heuristic in this area posits that the factorization P (cause)P (effect|cause) is, in general,
less complex than the reverse factorization P (effect)P (cause|effect) (Janzing and Schölkopf, 2010;
Sun et al., 2006; 2008). It was conjectured by Kilbertus et al. (2018) that this principle indicates
generalization is typically easier to achieve in the causal direction than in the anti-causal direction.
Moreover, they propose an abstract version of the search procedure (Sec. 4.1). The present paper
can be seen as providing a formal justification for these ideas through theoretical insights on the
structure of generators f (the causal direction) and their inverses g (the anti-causal direction).

7 DISCUSSION

Limitations. Our theory is limited to generators which belong to Fint. We studied this function
class as it provides a suitable model of visual data and is the largest class which enables OOD iden-
tifiability. However, these results may, in principle, fail to generalize to function classes associated
with other settings, where non-generative strategies may be effective. Additionally, while our ex-
periments leverage photorealistic data, they focus on concepts in simple settings which do not fully
capture the complexity of real world data. To this end, an important future question is to understand
how to create benchmarks to evaluate compositional generalization in a rigorous manner on data at
a more realistic scale.

Conclusion. In this work, we sought a principled understanding of whether compositional gen-
eralization should be pursued through generative or non-generative approaches. Theoretically, we
showed that for non-generative methods, enforcing the structure needed to guarantee composition-
ality tends to be infeasible. As a result, generalization is determined largely by the optimization
process rather than by principled guarantees. Empirically, we observed that methods optimized from
scratch or with little pretraining data tend to fail at compositional generalization, while larger-scale
pretrained models improve OOD performance at the cost of data efficiency. By contrast, generative
approaches can directly enforce constraints for compositional generalization which manifest in sig-
nificant gains in OOD performance in practice. While scaling such generative approaches to more
challenging settings remains an open problem, we hope our findings will inspire renewed interest in
this direction.
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J. von Kügelgen, Y. Sharma, L. Gresele, W. Brendel, B. Schölkopf, M. Besserve, and F. Locatello.
Self-supervised learning with data augmentations provably isolates content from style. In Ad-
vances in Neural Information Processing Systems, volume 34, pages 16451–16467, 2021. [Cited
on p. 3.]

Y. Wang, J. Dauwels, and Y. Du. Compositional scene understanding through inverse generative
modeling. In Forty-second International Conference on Machine Learning, 2025. [Cited on p. 9.]

T. Wiedemer, J. Brady, A. Panfilov, A. Juhos, M. Bethge, and W. Brendel. Provable compositional
generalization for object-centric learning. In International Conference on Learning Representa-
tions, 2024a. [Cited on p. 7, 9, and 23.]

T. Wiedemer, P. Mayilvahanan, M. Bethge, and W. Brendel. Compositional generalization from first
principles. In Advances in Neural Information Processing Systems, volume 36, 2024b. [Cited on
p. 3.]

D. Yamins, H. Hong, C. F. Cadieu, E. A. Solomon, D. Seibert, and J. J. DiCarlo. Performance-
optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of
the National Academy of Sciences, 111:8619 – 8624, 2014. [Cited on p. 1.]

D. L. Yamins and J. J. DiCarlo. Using goal-driven deep learning models to understand sensory
cortex. Nature neuroscience, 19(3):356–365, 2016. [Cited on p. 3.]

M. Yuksekgonul, F. Bianchi, P. Kalluri, D. Jurafsky, and J. Zou. When and why vision-language
models behave like bags-of-words, and what to do about it? arXiv preprint arXiv:2210.01936,
2022. [Cited on p. 9.]

R. S. Zimmermann, Y. Sharma, S. Schneider, M. Bethge, and W. Brendel. Contrastive learning
inverts the data generating process. In International Conference on Machine Learning, pages
12979–12990. PMLR, 2021. [Cited on p. 3.]

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendices

Table of Contents
A Proofs 14

A.1 Local regularization of encoders . . . . . . . . . . . . . . . . . . . . . . . . . . 14
A.2 Constraining Genc by architecture . . . . . . . . . . . . . . . . . . . . . . . . . 18

B Experimental details 22
B.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
B.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
B.3 Training Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Use of Language Models Large language models (LLMs) were employed exclusively during the
final stages of manuscript preparation for the purpose of refining language, grammar, and readability.
They were not used for generating ideas, conducting analysis, or contributing to the substantive
content of this work.

A PROOFS

In this section we collect the proofs of the results in the paper and some additional background
material. First, in Section A.1 we investigate the local restrictions that g ∈ Gint need to satisfy.
Similarly we investigate in Section A.2 whether we can enforce g ∈ Gint by architectural constraints.
Let us, however, first introduce a notation for a subset of Fint.
Definition A.1 (Additive functions). We denote the function class of coordinate-wise additive func-
tions f : Rdz → Rdx by Fadd. They can be expressed as

f(x) =

dz∑
i=1

fi(xi) (A.1)

where fi : R → Rdx .

Clearly Fadd agrees with Fint for n = m = 1, i.e., interactions of first order and blocks of dimension
1 and generally Fadd ⊂ Fint for n ≥ 1 (higher order interactions and larger blocks are more flexible).

A.1 LOCAL REGULARIZATION OF ENCODERS

As discussed in the main text, we can enforce f ∈ Fint by enforcing that certain derivatives of f
vanish (see equation 3.2). We now study to what extend this generalizes to functions g ∈ Gint that
are left inverses of such functions.

The key relation. The key relation that we need for the proofs below is that if g ◦ f(z) = z for
two functions f : Rdz → Rdx and g : Rdx → Rdz , then for every s ∈ [dz]

Df⊤(z)D2gs(f(z))Df(z) +

dx∑
k=1

(∂kgs)(f(z))D
2fk(z) = 0. (A.2)

This relation follows by straightforward calculation, indeed we find using the chain rule

∂i∂jgs(f(z)) = ∂i

(
dx∑
k=1

∂jfk(z)(∂kgs)(f(z))

)

=

dx∑
k,l=1

∂jfk(z)∂ifl(z)(∂k∂lgs)(f(z)) +

dx∑
k=1

∂i∂jfk(z)(∂kgs)(f(z))

(A.3)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

which is equation A.2 after rewriting the relation in matrix form.

Restrictions for dx = dz . We now prove Lemma 3.1 showing that for dx = dz , i.e., for equal
dimension of latent space and data it is possible to find a local constraint for the inverses of additive
functions f ∈ Fadd.
Lemma 3.1. Let g ∈ Gint for n = m = 1 and dx = dz . Then g has the property that for x ∈ X

(Dg)−⊤(x)D2gs(x)(Dg)−1(x) ∈ Diag(dx) (3.3)

is a diagonal matrix for s ∈ [dz]. Further, if g is a diffeomorphism satisfying Eq. (3.3) then g ∈ Gint.
Remark A.2. For higher dimensional slots there is a natural generalization, namely, the expression
Dg−⊤D2gsDg−1 has a block diagonal structure.

Proof. Note that g ◦ f(z) = z implies Iddz = (Dg ◦ f)Df and thus Df(z) = (Dg)−1(f(z)).
Therefore, we find using equation A.2

(Dg)−⊤(f(z))D2gs(f(z))(Dg)−1(f(z)) = −
dx∑
k=1

(∂kgs)(f(z))D
2fk(z) ∈ Diag(dz). (A.4)

where we used that f ∈ Fadd implies that the off-diagonal entries of D2f vanish. This implies the
first part of the statement. For the reverse statement, we apply equation A.2 to f ◦ g(x) = x (here
we use dz = dx) and we find that

0 = (Dg)⊤(x)D2fs(g(x))Dg(x) +

dz∑
k=1

(∂kfs)(g(x))D
2gk(x). (A.5)

We multiply this relation from the left and right by (Dg)−⊤(x) and (Dg)−1(x) respectively (the
inverses exist by assumption) and we find

D2fs(g(x)) = −
dz∑
k=1

(∂kfs)(g(x))(Dg)−⊤(x)D2gk(x)(Dg)−1(x) ∈ Diag(dz). (A.6)

Here we used the assumption equation 3.3 to conclude that the right hand side is diagonal. Therefore
f has a diagonal Hessian which implies that it is additive.

The previous statement can be generalized to the general case dx > dz . The crucial ingredient is the
following simple and standard lemma.
Lemma A.3. Let A ∈ Rd1×d2 and B ∈ Rd2×d1 two matrices with d2 ≥ d1 and assume that
AB = 1d1×d1

. Then B = (AΠ)+ where Π denotes the orthogonal projection onto Range(B) and
(·)+ the Moore-Penrose inverse of a matrix.

Proof. We check that B satisfies the Moore-Penrose axioms (MM+M = M , M+MM+ =
M+, M+M and MM+ are Hermitian). We find

AΠBAΠ = ABAΠ = AΠ (A.7)

where we used ΠB = B by definition of Π. Similarly, we obtain

BAΠB = ΠB = B. (A.8)

Next we claim that

BAΠ = Π (A.9)

which is Hermitian. Consider v ∈ Rd2 then by definition of Π there is w ∈ Rd1 such that Bw = Πv
and thus

BAΠv = BABw = Bw = Πv. (A.10)

Finally, we find

AΠB = AB = 1d1×d1
. (A.11)
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We have the following generalization of Lemma 3.1.
Lemma A.4. Let f ∈ Fadd and g a left-inverse of f . Then g has the property that for x ∈ X(

(Dg(x)ΠTxX )
+
)⊤

(z)D2gs(x) (Dg(x)ΠTxX )
+ ∈ Diag(dz) (A.12)

is a diagonal matrix for s ∈ [dz]. Here, we denote by ΠTxX the orthogonal projection on the tangent
space at x.

Proof. Starting from equation A.2 we find that for f ∈ Fadd we get

Df⊤(z)D2gs(f(z))Df(z) ∈ Diag(dz). (A.13)

Applying Lemma A.3 we find

Df(z) =
(
Dg(f(z))ΠTf(z)X

)+
(A.14)

because the range of Df is the tangent space of the data manifold. Therefore we conclude that for
x ∈ X the relation equation A.12 indeed holds.

Regularization for dx > dz . In this paragraph we investigate the local restrictions that g ∈ Gint
need to satisfy, and in particular we prove Theorem 3.2. The proof of Theorem 3.2 requires two
lemmas as a key ingredient, which state that the crucial constraint on the second derivative stated in
equation A.2 can be satisfied for a suitable choice of M = Df(0) and D2f(0) for given matrices
Bs corresponding to the Hessian of g and almost every matrix A (corresponding to the Jacobian of
g). The first lemma establishes the existence of M such that first term in equation A.2 (given by
M⊤BsM is diagonal for all s. The second lemma constructs suitable second derivatives D2f so
that the relation equation A.2 also holds for the diagonal entries.
Lemma A.5. Assume dx ≥ d3z . For all symmetric matrices Bs ∈ Rdx×dx for s ∈ [dz], and almost
every A ∈ Rdz×dx there is a matrix M ∈ Rdx×dz such that M⊤BsM ∈ Diag(dz) for s ∈ [dz]
and AM = Iddz

.
Remark A.6. 1. Counting parameters and equations, we find that M has dzdx parameters and

(by symmetry of Bs) there are

dz ·
dz(dz − 1)

2
+ d2z =

d2z(dz + 1)

2
(A.15)

equations. So, generally, we expect the result to hold for dx ≥ dz(dz + 1)/2.

2. On the other hand, the result does not hold for every A with maximal rank. Indeed, there
can be a non-trivial null set of full rank matrices A such that the result does not hold. E.g.,
consider dz = 2, A ∈ Rdz×dx such that all entries of A are zero except A1,1 = A2,2 = 1.
Moreover, B1 has all entries zero except (B1)1,2 = (B1)2,1 = 1. Then AM = Iddz

implies that M1,1 = M2,2 = 1, and M1,2 = M2,1 = 0. But then we find M⊤
:,1B1M:,2 =

(B1)1,2 = 1 ̸= 0.

Proof. We inductively construct dz linear subspaces Vi ⊂ Rdx such that dim(Vi) = dz and

(vi)⊤Bsv
j = 0 (A.16)

for vi ∈ Vi, vj ∈ Vj and i ̸= j. We pick V1 arbitrarily. Then, given a basis vi,1, . . . ,vi,dz of Vi

for i ≤ j we select Vj+1 ⊂ kerTj where Tj : Rdx → Rd2
z·j given by (Tjv)s,(k,i) = (vi,k)⊤Bsv

(here it is convenient to identify [d2z · j] with [dz] × ([dz] × [j])). By assumption dx − d2z · j ≥
dx − d2z · (dz − 1) ≥ dz and therefore dimkerTj ≥ dz and we can find a suitable subspace
Vj+1 ⊂ kerTj . Given a matrix A = (a1, . . . ,adz )⊤ ∈ Rdz×dx , we want to find wi ∈ Vi so that
M = (w1, . . . ,wdz ) satisfies AM = Iddz . Equivalently Awi = ei, where ei denotes the i-th
standard basis vector. We expand into the basis of Vi, i.e., wi =

∑
j λ

i
jv

i,j and find the equivalent
relation

Awi = (a1, . . . ,adz )⊤(vi,1, . . . ,vi,dz )λi = ei. (A.17)
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Since the second matrix has maximal rank ((vi,k)1≤k≤dz
is a basis of Vi), we find that for almost

all A the matrix product is invertible, and a solution λi exists and thus a suitable wi exists. To see
this, we can assume that the basis vi,· is an orthonormal basis and expand ai in this basis (and an
irrelevant orthogonal complement). We conclude that for almost all A such a wi exists. Since the
union of null-sets is a null-set the same statement holds for almost all A for all i at the same time
and therefore we find a matrix M such that AM = Iddz

and, moreover, (wi)⊤Bsw
j = 0 because

this holds for all wi ∈ Vi and wj ∈ Vj .

We now construct the diagonal matrices that will later correspond to D2fs.
Lemma A.7. Assume dx ≥ dz Given A ∈ Rdz×dx of maximal rank and diagonal matrices
D1, . . . ,Ddz ∈ Rdz×dz we can find diagonal matrices Λ1, . . . ,Λdx ∈ Rdz×dz such that for all
s ∈ [dz]

Ds = −
dx∑
i=1

As,iΛ
i. (A.18)

Proof. The proof is straightforward as soon as one observes that this is a linear equation for
the diagonal entries of Λi. Indeed, denoting by λ = (Λ1

11, . . . ,Λ
1
dz,dz

, . . . , (Λdx

dz,dz
)⊤ ∈

Rdz·dx the vector containing all diagonal entries of the matrices Λi and similarly d =

(D1
11, . . . ,D

1
dz,dz

, . . . ,Ddz

dz,dz
)⊤ ∈ Rd2

z for the diagonal entries of Ds. Then we can rewrite equa-
tion A.18 as follows using the Kronecker product ⊗

(A⊗ Iddz )λ = −d. (A.19)

Now the rank of the matrix A⊗ Iddz
is the product of the ranks, i.e., dz min(dx, dz) = d2z ≤ dxdz

and thus a solution λ exists.

With these technical lemmas at hand, we can prove the theorem which we now restate for conve-
nience of the reader.
Theorem 3.2. Assume that dx ≥ d3z . Let Bl ∈ Rdx×dx be symmetric matrices for 1 ≤ l ≤ dz .
Then there is for any x0 ∈ Rdx and for almost every A ∈ Rdz×dx a generator f ∈ Fint with a
(left)-inverse g ∈ Gint, such that f(0) = x0 and Dg(x0) = A and D2gl(x0) = Bl for 1 ≤ l ≤ dz .

Proof of Theorem 3.2. Clearly we can assume that x0 = 0. The key idea is that if we can ensure
that equation A.2 holds for z = 0 we can extend f and g such that g ◦ f(z) = z and f ∈ Fadd.
To achieve this, we first apply Lemma A.5 and then find a matrix M such that AM = Iddz

and
M⊤BsM ∈ Diag(dz). Then we apply Lemma A.7 and find matrices Λi such that

M⊤BsM +

dx∑
i=1

As,iΛ
i = 0. (A.20)

Now we pick a function f ∈ Fadd such that f(0) = 0, Df(0) = M and D2fi = Λi. Clearly,
this is possible because Λi are diagonal, e.g., we can locally use a quadratic polynomial to achieve
this. The next step is to construct a function g such that g ◦ f(z) = z. Using standard techniques
(partition of unity) it is sufficient to construct this locally and then extend it globally. First, we
consider ϕ̄ : Ω ⊂ Rdx ×Rdx such that ϕ̄(f(z)) = (z, 0) for z ∈ Ω (e.g., by the existence of tubular
neighbourhoods). We call the composition of ϕ̄ with the projection on the first dz components ϕ.
Then we define

g(x) = Ax+
1

2

 x⊤B1x
...

x⊤Bdzx

+ h(ϕ(x)) (A.21)

where h is given by

h(z) = h(ϕ(f(z)) = z −Af(z)− 1

2

 f(z)⊤B1f(z)
...

f(z)⊤Bdz
f(z).

 (A.22)
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We can calculate

g(f(z)) = z (A.23)

so g is indeed a left-inverse of f . Taking the derivative of this equation at 0 we obtain

Dh(0) = Iddz
−A(Df(0)) + 0 = Iddz

−AM = 0. (A.24)

For the second derivative we get

D2hs(0) = −
dx∑
i=1

As,iD
2fi(z)−Df(0)⊤BsDf(0) = −

dx∑
i=1

As,iΛ
i +M⊤BsM = 0.

(A.25)

Here we used for the derivative of the quadratic term that the contribution where the derivative hits
one f(z) twice vanishes since f(0) = 0. Finally, we can now evaluate

Dg(0) = A+Dh(ϕ(0)) = A+Dh(0) = A (A.26)

and

D2gs(0) = Bs +D2hs ◦ ϕ = Bs (A.27)

where D2hs ◦ ϕ = 0 follows from the chain rule and Dh(0) = 0 and D2h(0) = 0.

A.2 CONSTRAINING Genc BY ARCHITECTURE

In this section we discuss results showing that it is challenging to construct practical function classes
Genc which are sufficiently expressive so that they contain a left-inverse for each f ∈ Fint. As
explained before, the main challenge is that setting Genc = Gint is in principle sufficient to ensure
identifiability and out of distribution generalization. So we need to make additional assumptions
on Genc that function classes used in widely applied algorithms satisfy which then ensure that Genc
is very expressive preventing that equation 2.6 holds. We will make the assumption that Genc has a
linear structure, i.e., g1 + g2 ∈ Genc if g1, g2 ∈ Genc. This is clearly satisfied when Genc is a vector
space (e.g., this assumption is satisfied for linear or kernel methods, or when learning a linear head
on a fixed representation). For functions implemented by neural networks with fixed architecture this
is in general not true. However, it does apply to infinite width limits of fixed architectures (this does
not generally imply universal approximation properties when the architecture is sparse, e.g., we use
slot-wise neural networks for the forward direction which cannot approximate interactions x1x2

even at infinite width). Note that large width is also generally required to make neural networks
sufficiently expressive because for fixed width neural networks implement a parametric function
class while Fint is non-parametric. We then show that such a function class Genc does not have a
useful inductive bias.

Architecture constraints for dx = dz . We first consider the simpler case dx = dz where f is
bijective on the codomain (and not only on its image).

Our main result here is that Genc has the universal approximation property when Genc ⊃ F−1
add and

Genc is closed under addition.
Theorem A.8. Assume dx = dz = d. Consider an encoder function class Genc with the following
two properties:

1. The class Genc is closed under addition, i.e., for g1, g2 ∈ Genc also g1 + g2 ∈ Genc.

2. The function class Genc is expressive enough such that it contains all inverses of additive
functions, i.e., F−1

add ⊂ Genc.

Then Genc is dense in the space of all continuous functions on all compact subset of Rdx .

Since Fadd ⊂ Fint for n ≥ 1 and any m we directly get the following corollary.
Corollary A.9. Assume dx = dz = d and the encoder function class Genc is closed under addition
and satisfies Gint ⊂ Genc. Then Genc is dense in the space of all continuous functions on all compact
subset of Rdx .
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The takeaway from these results is that it is challenging to find natural function classes Genc so that
Genc ⊃ Gint (sufficient expressivity) but Genc is not much larger than Gint. Therefore, learning only
encoders from Genc does not provide a strong inductive bias towards the inverse of the ground truth
decoder and out of distribution generalization.

Proof of Theorem A.8. The general strategy is to prove that the conditions imply that all maps g
where gj (the j-th coordinate of g) is any polynomial and gi = 0 for i ̸= j are contained in Genc.
This will end the proof because polynomials are dense in the scalar valued continuous functions,
and we can then apply this result coordinate-wise using the additive structure.

Step 1: Vector space structure of Genc. We now show that we can scale certain functions in Genc.
Denote for λ ̸= 0 by Mλ the multiplication map z → λz. Then f ◦ Mλ ∈ Fadd if f ∈ Fadd.
Since (f ◦ Mλ)

−1 = λ−1f−1 we conclude that scalar multiples of f−1 are in F−1
add and the first

assumption then implies that the vector space V generated by f−1 for f ∈ Fadd is contained in
Genc.

Step 2: We show that the monomials xk
i are contained in Genc. Consider the map f ∈ Fadd where

x = f(z) has coordiates

x1 = zk
2 + z1

xi = zi for d ≥ i ≥ 2.
(A.28)

This is clearly an additive function with inverse

z1 = x1 − xk
2

zi = xi for d ≥ i ≥ 2.
(A.29)

Similarly, we consider

x1 = −(−z2)
k − z1

xi = −zi for d ≥ i ≥ 2.
(A.30)

with inverse

z1 = −x1 − xk
2

zi = −xi for d ≥ i ≥ 2.
(A.31)

Summing these two functions, we find that the function g with

gi(x) = −2δ1ix
k
1 (A.32)

satisfies g ∈ Genc. By permutation of the outputs and inputs (and scaling) we find that all functions
g with gi(x) = δijx

k
l are in Genc for all j, l ∈ [d] and k ∈ N.

Step 3: Now we show with a similar argument that more generally functions of the form gj(x) =

δjl(
∑d

i=1 αixi)
k for all coefficients αi and all 1 ≤ l ≤ d are in Genc. If only one αi is non-zero

we have shown this before, so we can assume that at least two αi are non-zero and without loss of
generality we assume that αi for 1 ≤ i ≤ k are non-zero where 2 ≤ k ≤ d. Then we consider the
additive map g which satisfies for x = g(z)

x1 =
1

α1

(
zk
1 + z1 −

k∑
i=2

zi

)
,

x2 =
1

α2
(z2 − zk

1 ),

xi =
1

αi
zi for 3 ≤ i ≤ k,

xi = zi for k < i ≤ d.

(A.33)

Then we observe that
k∑

i=1

αixi = z1 (A.34)
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and thus the inverse is given by

z1 =

k∑
i=1

αixi,

z2 = α2x2 +

(
k∑

i=1

αixi

)k

,

zi = αixi for 3 ≤ i ≤ k

zi = xi for d ≥ i > k.

(A.35)

Similarly, we find that the inverse of the additive map given in coordinates by

x1 =
1

α1

(
−(−z1)

k − z1 +

k∑
i=2

zi

)
,

x2 =
1

α2
(−z2 + (−z1)

k),

xi = − 1

αi
zi for 3 ≤ i ≤ k,

xi = zi for k < i ≤ d.

(A.36)

can be written as (note
∑k

i=1 αixi = −z1)

z1 = −
k∑

i=1

αixi,

z2 = −α2x2 +

(
k∑

i=1

αixi

)k

,

zi = −αixi for 3 ≤ i ≤ k

zi = −zi for d ≥ i > k.

(A.37)

Summing the two inverses in equation A.33 and equation A.37 we find that the map g given by

gj(x) = 2δj2

(∑k
i=1 αixi

)k
is in Genc and by permuting the indices and scaling we find that all

maps of the form

gj(x) = δjl

(
k∑

i=1

αixi

)k

(A.38)

are in Genc. Using Lemma A.10 stated below we infer that indeed all multinomial polynomials are
in Genc and this ends the proof in light of the Stone-Weierstrass Theorem.

The following technical but standard lemma was used in the proof of Theorem A.8.

Lemma A.10. Consider the space of functions gα : Rd → R for α ∈ Rd given by

gα(x) =

(
d∑

i=1

αixi

)k

. (A.39)

Then the vector space generated by the functions gα is the space of all k-homogeneous polynomials.

Proof. This is a general version of the well known polarization identity, namely

(x1 + x2)
2 − (x1 − x2)

2 = 4x1x2. (A.40)
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For completeness we sketch the full proof. Denote the generated space by V . Let ϕj(x) be linear
functions for 1 ≤ j ≤ k, i.e., ϕj(x) =

∑d
i=1 α

j
ixi for some αj

i . Then using the multnomial
expansion we find

∑
(ϵ1,...,ϵk)∈{−1,1}k

 k∏
j=1

ϵj

 k∑
j=1

ϵjϕj

k

=
∑

(ϵ1,...,ϵk)∈{−1,1}k

 k∏
j=1

ϵj

 ∑
γ1+...+γk=k

k!

γ1! · . . . · γk!

k∏
i=j

ϕ
γj

j

=
∑

(ϵ1,...,ϵk)∈{−1,1}k

 k∏
i=j

ϵj

 ∑
γ1+...+γk=k

k!

γ1! · . . . · γk!

k∏
j=1

(ϵjϕj)
γj

=
∑

γ1+...+γk=k

k!

γ1! · . . . · γk!

k∏
j=1

ϕ
γj

j

k∏
j=1

∑
ϵj∈{−1,1}

ϵ
γj+1
j .

(A.41)

Now the last sum is 0 for γj even and 2 for γj odd. So the only non-zero term corresponds to all γj

odd and thus γj = 1 for all j and therefore

∑
(ϵ1,...,ϵk)∈{−1,1}k

 k∏
j=1

ϵj

 k∑
j=1

ϵjαj

k

= 2kk!

k∏
j=1

ϕj ∈ V. (A.42)

Clearly this implies that the monomials
∏d

i=1 x
βi

i with βi ≥ 0 and
∑d

i=1 βi = k are generated by
the functions gα (pick ϕj(x) = xi for βi of the ϕj).

Architectural constraints for dx > dz . The case dx > dz is more challenging because the data
manifold is then a submanifold and even if we know that there is a g ∈ Genc inverting f on the
data manifold (i.e., Genc is sufficiently expressive) this provides (essentially) no information about g
away from X = f(Z) and the data manifolds for different generators are unrelated. However, we
can leverage the result for dx = dz to obtain a weaker version in the general case. Here we make the
additional assumption that Genc is closed under coordinate projections in the sense that g̃ ∈ Genc if
g̃(x) = g(xI ,0[dx]\I) for some index set I ⊂ [dx] and g ∈ Genc. Note that this is naturally satisfied
for neural networks where we can remove the influence of a coordinate by zeroing its outgoing
weights.
Corollary A.11. Assume that Genc is a class of encoder functions such that Genc is closed under
addition and coordinate projections and sufficiently expressive, i.e., for every f ∈ Fint there is
g ∈ Genc such that g ◦ f = id. Let f ∈ Fint be such that fI is a diffeomorphism (on its image)
for some I with |I| = dz . Then Genc ◦ f is dense in all continuous functions C(K,Rdz ) for every
compact K ⊂ Rdz , i.e., essentially arbitrary representations can be learned using function in Genc.

Proof. Consider a set I ⊂ [dz]. Then the restrictions fI of functions f ∈ Fint such that fIc(z) = 0
(i.e., functions that vanish in all but dz coordinates) are in bijection to functions in Fint mapping
Rdz → Rdz . Applying Theorem A.8 we therefore find that the set of functions zI → g(zI ,0Ic) for
g ∈ Genc) is dense in the continuous functions defined on any compact set K ′. It is convenient to
introduce the shorthand ḡ for the function zI → g(zI ,0Ic) by ḡ. Then we can restate the density
statement before as follows: Given any continuous function h : K → Rdz we can find for any ϵ > 0
a g ∈ Genc so that ∥ḡ − h ◦ (fI)

−1∥ < ϵ on the compact set K ′ = fI(K) (here we use that fI is
bijective on its image to invert it). Using that Genc is closed under coordinate projections we can find
g̃ is in Genc and satisfies

max
z∈K

∥g̃f(z)− h(z)∥∞ = ∥g(fI(z),0Ic)− h ◦ (fI)
−1 ◦ fI(z)∥∞

= ∥ḡ(fI(z))− h ◦ (fI)
−1(fI(z))∥∞

≤ max
xI∈K′

∥ḡ(xI)− h ◦ (fI)
−1(xI)∥∞.

(A.43)
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This ends the proof.

While the previous corollary makes the strong assumption that fI is globally bijective we note that
this is generally true at least locally. Moreover, we can patch such representations due to the addi-
tive structure. Therefore, it seems unlikely that a function class Genc satisfying the following three
constraints exists: First, the function class Genc is expressive enough, i.e., it contains left inverses for
all f ∈ Fint. Secondly, Genc is not too expressive so it provides a useful inductive bias towards Gint.
And finally, Genc can be efficiently parametrized and used for optimization.

B EXPERIMENTAL DETAILS

S
lo

t E
nc

od
er

Encoder Decoder

Base Encoder

Tr
an

sf
or

m
er

PUG-Background PUG-Texture PUG-Object

Figure 7: Left. Overview of the data splits used in the experiments. PUG-Background contains
unseen combinations of background and object in its OOD split XOOD, PUG-Texture contains un-
seen object-texture combinations in XOOD, and PUG-Object contains unseen object combinations
in XOOD. Right. General structure of the employed models. A base encoder (pretrained for most
experiments) is used to extract features from the images which are then mapped through a slot en-
coder which leverages a cross-attention mechanism and potentially self-attention. For our decoders
we use the regularized cross-attention Transformer architecture from Brady et al. (2025)

.

B.1 DATA

We create datasets for our experiments in Sec. 5 based on the PUG: Animals dataset (Bordes et al.,
2023). This data consists of 43,520 high-resolution images which we resize to 224 × 224 × 3. To
create PUG-Background, we create an OOD set containing 32,000 images which consist of unseen
combinations of animal category and backgrounds, e.g., penguin in a desert in Fig. 7, and a corre-
sponding ID set containing 11,520 images. For PUG-Texture, the OOD set contains 16,000 images
consisting of unseen combinations of animal and texture/color, e.g. blue elephant in Fig. 7, and the
ID set contains 27,520 images. Lastly, for PUG-Object, the ID and OOD set both contain 21,760
images. The OOD set here consist of unseen combinations of animal categories, e.g., rhinoceros
and caribou in in Fig. 7.

B.2 MODELS

Base encoders. We use six different pretrained base encoders along with a ViT small for our ex-
periments in Sec. 5. The specific sizes of each model can be seen in Fig. 5. When fine tuning these
models with a LORA adapter, we use a rank of 16, a scaling factor of 32, and a dropout value of 0.1.

Slot encoders. We use either a Transformer or Slot Attention model for the slot encoder in Sec. 5.
The transformer model consist of both self and cross-attention layers. Both models consist of 5
layers. We use 3 slots for each model, with dimensions of 64.

Decoders. All decoders in our experiments use the cross-attention Transformer from Brady et al.
(2025); Jaegle et al. (2022); Sajjadi et al. (2022). In this model, slots are first projected by a 2 layer
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slot-wise MLP and then passed through 2 layers of a cross-attention Transformer with pixel queries.
Pixels are tokenized using a 2 layer MLP. The pixel outputs of the cross-attention Transformer are
mapped to have a channel dimension of 3 using a 3 layer MLP. The attention weights in this model
are regularized using the regularizer introduced by Brady et al. (2025). For all experiments, we use
a value of 0.01 for this loss.

Readout. We use a single layer linear readout shared across slots to predict animal or background
categories from slots.

B.3 TRAINING OBJECTIVES

Supervised models. We train all supervised models for 100000 iterations across 3 random seeds
using a batch size of 64, with the Adam optimizer (Kingma and Ba, 2015) and a learning rate of
1e-4.

VAEs. We train all unsupervised VAE models for 300000 iterations across 3 random seeds using a
batch size of 32, with the Adam optimizer (Kingma and Ba, 2015) and a learning rate of 5e-4, which
is decayed by a factor of .1 throughout training and warmed up for the first 10000 iterations. We use
a value of either 0.005 or 0.001 for the hyperparameter β on the KL loss.

Readout. In our unsupervised experiments, we train a linear readout on learned slots for 7500
iterations. To resolve the permutation between inferred and ground-truth slots we rely on on the
Hungarian matching procedure used in Dittadi et al. (2022); Locatello et al. (2020b).

Gradient-based search. When performing gradient based search in our experiments, we optimize
Eq. 4.3 using Adam with a learning rate of .001. We optimize for either 300 or 500 iterations on
PUG-Background and 700 iterations on PUG-Texture. To further aid in optimization we add an
additional regularizer to the optimization procedure which minimizes the entropy of the logits under
the classifier. This aims to ensure that the search procedure yields latent slots which are within the
set of slots which the classifier has already observed. We use a value of either 10 or 50 for this loss.
We note that a similar loss was used for semi-supervised learning in Grandvalet and Bengio (2004).

Generative replay. For our experiments using generative replay, we generate OOD data by follow-
ing the procedure in Wiedemer et al. (2024a) in which ID slots are randomly shuffled to create novel
compositions. We train an encoder on batches of 64 of OOD samples for 15000 iterations with a
learning rate of 5e-4.

Compute. We train all models using 2 NVIDIA A100 GPUs. Total training time was approximately
1500h.
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